magistraleinformatica:mod:start:pretest
Differenze
Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.
| Entrambe le parti precedenti la revisioneRevisione precedenteProssima revisione | Revisione precedente | ||
| magistraleinformatica:mod:start:pretest [21/07/2015 alle 09:29 (11 anni fa)] – Roberto Bruni | magistraleinformatica:mod:start:pretest [01/03/2016 alle 23:11 (10 anni fa)] (versione attuale) – Roberto Bruni | ||
|---|---|---|---|
| Linea 1: | Linea 1: | ||
| ==== Preliminary test for the course on Models of Computation ==== | ==== Preliminary test for the course on Models of Computation ==== | ||
| - | There are no prerequisistes | + | There are no prerequisites |
| - | We encourage the students to use the following exercises to self-assess their level of knowledge for the above arguments. | + | We encourage the students to use the following |
| === Exercise 1 === | === Exercise 1 === | ||
| Linea 15: | Linea 15: | ||
| === Exercise 3 === | === Exercise 3 === | ||
| - | Let 2^n denote the nth power of 2. Prove by induction that for any natural number n > 1 we have that 3 divides | + | Let 7< |
| === Exercise 4 === | === Exercise 4 === | ||
| - | Consider the strings (i.e., finite sequences) of symbols {0,1}. Let #0(s) and #1(s) denote the number of occurrences of 0 and 1 in the string s, respectively, | + | Consider the strings (i.e., finite sequences) of symbols {0,1}. Let #<sub>0</ |
| - | - The set of all and only strings s such that #1(s) is odd. | + | - The set of all and only strings s such that #<sub>1</ |
| - | - The set of all and only strings s such that #0(s) = #1(s). | + | - The set of all and only strings s such that #<sub>0</ |
| - | - The set of all and only strings s such that s = (01)^n for some natural number n. | + | - The set of all and only strings s such that s = (01)<sup>n</ |
| - | - The set of all and only strings s such that s = 0^n 1^n for some natural number n. | + | - The set of all and only strings s such that s = 0<sup>n</ |
| === Exercise 5 === | === Exercise 5 === | ||
| - | Let us consider the program | + | Let us consider the imperative code fragment |
| < | < | ||
| - | x:=x-1 ; | + | x := x-y; |
| - | y: | + | y := y-1 |
| }</ | }</ | ||
| + | where x and y are two integer variables. | ||
| For which initial values of x and y does the execution of the above program terminate? | For which initial values of x and y does the execution of the above program terminate? | ||
magistraleinformatica/mod/start/pretest.1437470956.txt.gz · Ultima modifica: 21/07/2015 alle 09:29 (11 anni fa) da Roberto Bruni
