Strumenti Utente

Strumenti Sito


magistraleinformatica:eln:start

Questa è una vecchia versione del documento!


Elaborazione del Linguaggio Naturale

Laurea Magistrale: Informatica.

Docente: Giuseppe Attardi Ricevimento: Wednesday, 11:00

Schedule
Day Hour Room
Monday 14:15-15:45 N, Polo Fibonacci
Tuesday 16-17:30 F, Polo Fibonacci

Lectures will start on September 28, 2015.

Prerequisiti

  1. Calcolo delle probabilità e statistica
  2. Programmazione

Programma

  1. Introduction
    1. History
    2. Present and Future
    3. NLP and the Web
  2. Mathematical Background
    1. Probability and Statistics
    2. Language Model
    3. Hidden Markov Model
    4. Viterbi Algorithm
    5. Generative vs Discriminative Models
  3. Linguistic Essentials
    1. Part of Speech and Morphology
    2. Phrase structure
    3. Collocations
    4. n-gram Models
    5. Word Sense Disambiguation
  4. Preprocessing
    1. Encoding
    2. Regular Expressions
    3. Segmentation
    4. Tokenization
    5. Normalization
  5. NLTK
    1. Introduction to Python
    2. Overvies of NLTK libraries
  6. Classification
    1. Machine Learning
    2. Statistical classifiers
      1. Bayesan Network
      2. Perceptron
      3. Maximum Entropy
      4. Support Vector Machines
      5. Hidden Variable Models
  7. Clustering
    1. K-means
    2. Factored Models
      1. Singular Value Decomposition
      2. Latent Semantic Indexing
  8. Tagging
    1. Part of Speech
    2. Named Entity
    3. Super Senses
  9. Sentence Structure
    1. Constituency Parsing
    2. Dependency Parsing
  10. Semantic Analysis
    1. Semantic Role Labeling
    2. Coreference resolution
  11. Statistical Machine Translation
    1. Word-Based Models
    2. Phrase-Based Models
    3. Decoding
    4. Syntax-Based SMT
    5. Evaluation metrics
  12. Processing Pipelines
    1. Integrated tooolkit
    2. Frameworks
      1. Gate
      2. UIMA
    3. Data Pipeline
      1. Tanl
  13. Applications
    1. Information Extraction
    2. Information Filtering
    3. Recommender System
    4. Opinion Mining
    5. Semantic Search
    6. Question Answering
      1. Text Entailment

Lecture Notes

Date Lecture Notes
L'età della parola
28/9/2015 Introduction 1-intro.pptx
27/9/2015 Introduction to probability (Probability)
5/10/2015 Language Modeling (Language Modeling)
6/10/2015 Python Tutorial (Tutorial)
12/10/2015 Python Tutorial and examples (Python: Functionals and Generators) Homework 1
13/10/2015 Introduction to NLTK (slides)
19/10/2015 Text Classification (slides)
20/10/2015 Naive Bayes Classifier slides
26/10/2015 Segmentation and Tokenization (slides)
27/10/2015 Maximum Entropy Models (slides) Homework n. 2
2/11/2015 Hidden Markov Model (slides)
3/11/2015 Named Entity Recognition (slides)
9/11/2015 MEMM (slides)
10/11/2015 Perceptron, SVM (8-classifiers.ppt)
16/11/2015 Dependency Formalism (slides)
17/11/2015 Dependency Parsing (Transition Based) Topics for Seminars and Projects
23/11/2015 Dependency Parsing (Graph Based )
24/11/2015 Relation Extraction 12-relextraction.ppt
28/4/2015 Sentiment Analysis13-opinionmining.ppt
State of the Art in Sentiment Analysis of Tweets NRC Canada at SemEval 2013
30/11/2015 Deep Learning Deep Learning Tutorial at NAACL 2013
1/12/2015 Deep Learning for NLP DL and the DeepNL Library
14/12/2015 Machine Translation (MT)
15/12/2015 Phrase Based Statistical Machine Translation (PBMT)
15/12/2015 The tsunami of Deep Learning over NLP
PB SMT (Phrase Tables, Decoding, Evaluation)

Suggerimenti per Progetti o Seminari

Testi di riferimento

  1. C. Manning, H. Schutze. Foundations of Statistical Natural Language Processing. MIT Press, 2000.
  2. D. Jurafsky, J.H. Martin, Speech and Language Processing. 2nd edition, Prentice-Hall, 2008.
  3. S. Kubler, R. McDonald, J. Nivre. Dependency Parsing. 2010.
  4. P. Koehn. Statistical Machine Translation. Cambridge University Press, 2010.
  5. S. Bird, E. Klein, E. Loper. Natural Language Processing with Python.
  6. I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. MIT Press, 2016.

Modalità di esame

Progetto e orale.

Progetti Evalita 2014

Corsi affini

  1. Apprendimento Automatico: Fondamenti
  2. Data Mining: fondamenti
  3. Information Retrieval
  4. Sistemi Basati sulla Conoscenza

Edizioni Precedenti

magistraleinformatica/eln/start.1474461123.txt.gz · Ultima modifica: 21/09/2016 alle 12:32 (4 anni fa) da Giuseppe Attardi