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Quick introduction

• Format: 20 hours
• Teachers:

▶ Prof. Salvatore Ruggieri
▶ Dott. Andrea Pugnana

• Theoretical introduction to probability/statistics

• For practical examples with R language see Statistics for Data Science
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https://didawiki.di.unipi.it/doku.php/mds/sds/start


Why Statistics for Machine Learning?

We need grounded means for reasoning about data generated from real world with some
degree of randomness.

What will you learn?

• Probability: properties of data generated by a known/assumed randomness model

• Statistics: properties of a randomness model that could have generated given data
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Sample spaces and events

• An experiment is a measurement of a random process

• The outcome of an experiment takes values in some set Ω, called the sample space.

Examples:
▶ Tossing a coin: Ω = {H, T} [Finite sample space]
▶ Month of birthdays Ω = {Jan, . . . , Dec} [Finite sample space]
▶ Population of a city Ω = N = {0, 1, 2, . . . , } [Countably infinite sample space]
▶ Length of a street Ω = R+ = (0,∞) [Uncountably infinite sample space]
▶ Tossing a coin twice: Ω = {H, T} × {H, T} = {(H, H),(H, T),(T, H),(T, T)}
▶ Testing for Covid-19 (univariate): Ω = {+,−}
▶ Testing for Covid-19 (multivariate): Ω = {f, m} × N× {+,−}, e..g, (f, 25, −) ∈ Ω

• An event is some subset of A ⊆ Ω of possible outcomes of an experiment.
▶ L = { Jan, March, May, July, August, October, December } a long month with 31 days

• We say that an event A occurs if the outcome of the experiment belongs to the set A.
▶ If the outcome is Jan then L occurs

Look at seeing-theory.brown.edu
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https://seeing-theory.brown.edu/basic-probability/index.html


Probability functions on finite sample space

A probability function is a mapping from events to real numbers that satisfies certain
axioms. Intuition: how likely is an event to occur.

• Fact: P({a1, . . . , an}) = P({a1}) + . . .+ P({an}) [Generalized additivity]
▶ Assigning probability to a singleton is enough

• Examples:
▶ P({H}) = P({T}) = 1/2
▶ P({Jan}) = 31/365,P({Feb}) = 28/365, . . .P({Dec}) = 31/365
▶ P(L) = 7/12 or 31·7/365?

• P({a}) often abbreviated as P(a), e.g., P(Jan) instead of P({Jan})
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Properties of probability functions

• P(Ac) = 1− P(A)

• P(∅) = 0 [Impossible event]

• A ⊆ B ⇒ P(A) ≤ P(B) [Monotonicity]

• P(A ∪ B) = P(A) + P(B)− P(A ∩ B) [Inclusion-exclusion principle]

• Example: P(A ∪ B) = P(A) + P(B \ A)
• probability that at least one coin toss over two lands head?

▶ Tossing a coin twice: Ω = {H, T} × {H, T} = {(H, H),(H, T),(T, H),(T, T)}
▶ A = {(H,H), (H,T )} first coin is head
▶ B = {(H,H), (T ,H)} second coin is head
▶ Answer P(A ∪ B) = P(A) + P(B)− P(A ∩ B) = 1/2 + 1/2 − 1/4 = 3/4
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Defining probability functions

Assigning probability is NOT an easy task: a prob. function can be an approximation of reality
• Frequentist interpretation: probability measures a “proportion of outcomes”.

▶ A fair coin lands on heads 50% of times
▶ P(A) = |A|/|Ω| [Counting]
▶ P({ at least one H in two coin tosses}) = |{(H,H), (H,T ), (T ,H)}|/4 = 3/4

• Bayesian (or epistemological) interpretation: probability measures a “degree of belief ”.
▶ (We believe that) Iliad and Odissey were composed by the same person at 90%
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Probability functions on countably infinite sample space

• (ii) is called countable additivity. It is equivalent to σ-additivity: for A1 ⊆ A2 ⊆ . . .

P( lim
n→∞

Ai ) = lim
n→∞

P(Ai )

• Example
▶ Experiment: we toss a coin repeatedly until H turns up.
▶ Outcome: the number of tosses needed.
▶ Ω = {1, 2, . . .} = N+

▶ Suppose: P(H) = p. Then: P(n) = (1− p)n−1p
▶ Is it a probability function? P(Ω) = . . .
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Conditional probability

• Long months and months with ‘r’
▶ L = { Jan, Mar, May, July, Aug, Oct, Dec } a long month with 31 days
▶ R = { Jan, Feb, Mar, Apr, Sep, Oct, Nov, Dec } a month with ‘r’
▶ P(L) = 7/12 P(R) = 8/12

• Anna is born in a long month. What is the probability she is born in a month with ‘r’?

P(R|L) = P(L ∩ R)

P(L)
=

P({Jan, Mar, Oct, Dec})
P(L)

=
4/12
7/12

=
4

7

• Intuition: probability of an event in the restricted sample space Ω ∩ L
▶ a-priori probability P(R) = 8/12
▶ a-posteriori probability P(R|L) = 4/7 < 8/12
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Conditional probability

Properties:
• P(A|C ) ̸= P(C |A), in general
• P(Ω|C ) = 1
• if A ∩ B = ∅ then P(A ∪ B|C ) = P(A|C ) + P(B|C ) P(·|C ) is a probability function

More generally, the Chain Rule:

P(A1 ∩ A2 ∩ A3 . . . ∩ An) = P(A1) · P(A2|A1) · P(A3|A1 ∩ A2) · . . . · P(An| ∩n−1
i=1 Ai )
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Example: no coincident birthdays

• Bn = {n different birthdays}
• For n = 1, P(B1) = 1
• For n > 1,

P(Bn) = P(Bn−1) · P({the n-th person’s birthday differs from the other n − 1}|Bn−1)

= P(Bn−1) · (1−
n − 1

365
) = . . . =

n−1∏
i=1

(1− i

365
)
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The law of total probability

• Intuition: case-based reasoning
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Example: case-based reasoning

Factory 1’s light bulbs work for over 5000 hours in 99% of cases.
Factory 2’s bulbs work for over 5000 hours in 95% of cases.
Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it.
Question: What is the chance that a purchased bulb will work for longer than 5000 hours?

• A = {bulbs working for longer than 5000 hours}
• C1 = {bulbs made by Factory 1}, hence C2 = {bulbs made by Factory 2}
• Since Ω = C1 ∪ C2 and C1 ∩ C2 = ∅, by the multiplication rule:

P(A) = P(A|C1) · P(C1) + P(A|C2) · P(C2)

Answer: P(A) = 0.99 · 0.6 + 0.95 · 0.4 = 0.974
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Independence of events

Intuition: whether one event provides any information about another.

Independence

An event A is independent of B, if P(B) = 0 or

P(A|B) = P(A)

• For P(R|L) = 4/7 ̸= 8/12 = PR(R) - knowing Anna was born in a long month change the
probability she was born in a month with ’r’ !

• Tossing 2 coins:
▶ A1 is “H on toss 1” and A2 is “H on toss 2”
▶ P(A1) = P(A2) = 1/2
▶ P(A2|A1) = P(A2 ∩ A1)/P(A1) = 1/4/1/2 = 1/2 = P(A1)

• Properties:
▶ A independent of B iff P(A ∩ B) = P(A) · P(B)
▶ A independent of B iff B independent of A [Symmetry]
▶ A independent of B iff Ac independent of B

14 / 22



Physical independence and stochastic independence

Independence

An event A is independent of B, if P(B) = 0 or

P(A|B) = P(A)

• Physical independence implies stochastic independence
▶ However, physical independence is quite a subtle matter (see the butterfly effect)

• But there are stochastic independent events that are physically dependent
▶ Suppose a fair die is rolled twice.
▶ A = “a three is obtained on the second roll”
▶ B = “the sum of the two numbers obtained is less than or equal to 4”
▶ Exercise at home. Prove that P(A|B) = P(A)
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https://en.wikipedia.org/wiki/Butterfly_effect


Conditional independence of events

Intuition: whether one event provides any information about another given a third event
occurred. Technically, consider P(·|C ) in independence.

Conditional independence

An event A is conditionally independent of B given C such
that P(C ) > 0, if P(B|C ) = 0 or

P(A|B ∩ C ) = P(A|C )

• Properties:
▶ A conditionally independent of B iff P(A ∩ B|C ) = P(A|C ) · P(B|C )
▶ A conditionally independent of B iff B conditionally independent of A [Symmetry]

• Exercise at home. Prove or disprove:
▶ If A is independent of B then A is conditionally independent of B given C
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Independence of two or more events

Alternative definition

Events A1,A2, . . . ,Am are called independent if for every J ⊆ {1, . . . ,m}:

P(
⋂
i∈J

Ai ) =
∏
i∈J

P(Ai )

• Exercise at home: show the two definitions are equivalent
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Independence of two or more events

Alternative definition

Events A1,A2, . . . ,Am are called independent if for every J ⊆ {1, . . . ,m}:

P(
⋂
i∈J

Ai ) =
∏
i∈J

P(Ai )

• It is stronger than pairwise independence

P(Ai ∩ Aj) = P(Ai ) · P(Aj) for i ̸= j ∈ {1, . . . ,m}

• Example: what is the probability of at least one head in the first 10 tosses of a coin?
Ai = {head in i-th toss}

P(
10⋃
i=1

Ai ) = 1− P(
10⋂
i=1

Ac
i ) = 1−

10∏
i=1

P(Ac
i ) = 1−

10∏
i=1

(1− P(Ai ))
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Bayes’ Rule

• It follows from P(Ci |A) = P(A|Ci )·P(Ci )
P(A) and the law of total probability

• Useful when:
▶ P(Ci |A) not easy to calculate
▶ while P(A|Cj) and P(Cj) are known for j = 1, . . . ,m
▶ E.g., in classification problems (see Bayesian classifiers from Data Mining)

• P(Ci ) is called the prior probability

• P(Ci |A) is called the posterior probability (after seeing event A)
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Testing for Covid-19

A new test for Covid-19 (or Mad-Cow desease, or drug use) has been developed.

• Ω = { people aged 18 or higher }
• + = { people tested positive } − = { people tested negative } = +c

• C = { people with Covid-19 } C c = { people without Covid-19 }
In lab experiments, a sample of people with and without Covid-19 tested

• P(+|C ) = 0.99 [Sensitivity/Recall/True Positive Rate]

• P(−|C c) = 0.99 [Specificity/True Negative Rate]

What is the probability I really have Covid-19 given that I tested positive? [Precision]

P(C |+) =
P(C ∩+)

P(+)
=

P(+|C ) · P(C )

P(+)
=

P(+|C ) · P(C )

P(+|C ) · P(C ) + P(+|C c) · P(C c)

P(C |+) =
0.99 · P(C )

0.99 · P(C ) + 0.01 · (1− P(C ))

P(C ) is unknown!
20 / 22



Testing for Covid-19

P(C ), the probability of having Covid-19, is unknown. Let’s plot P(C |+) over P(C ):
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• For P(C ) = 0.02, P(C |+) = .67

• For P(C ) = 0.06, P(C |+) = .86

• For P(C ) = 0.10, P(C |+) = .92
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Optional references

Optional readings:

• [Sipka et al., 2022] survey methods for prior-shift adaptation (also when γ is unknown!).

• [Pozzolo et al., 2015] apply correction to the study of effectiveness of undersampling.

,

Tomáš Šipka, Milan Šulc, and Jǐŕı Matas (2022)

The Hitchhiker’s Guide to Prior-Shift Adaptation.

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 1516-1524.

https://arxiv.org/abs/2106.11695

Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi (2015)

When is Undersampling Effective in Unbalanced Classification Tasks?

ECML/PKDD (1) 200–215.

Lecture Notes in Computer Science, volume 9284.

https://doi.org/10.1007/978-3-319-23528-8 13
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