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The classification/concept learning problem

• X = (W ,C ) where W are predictive features and C class, with support(C ) = {0, 1, . . . , nC − 1}
• x1, . . . , xn are observations (training set), with xi = (wi , ci ) for i = 1, . . . , n

• θ ∈ Θ with Θ hypothesis space (parameters of ML model) with fθ joint density of W ,C

Classification/concept learning: which hypothesis is the most probable given the observed data?

▶ θMLE = arg maxθ ℓ(θ) = arg minθ −ℓ(θ) = arg minθ
∑n

i=1 − log fθ(xi )
▶ fθ(xi ) = fθ(wi , ci ) = fθ(ci |wi )fθ(wi )
▶ θMLE = arg minθ

∑n
i=1 − log fθ(ci |wi )−

∑n
i=1 log fθ(wi )

▶ Assuming θ ⊥⊥ W , we have fθ1(wi ) = fθ2(wi ), and then:

θMLE = arg min
θ

n∑
i=1

− log fθ(ci |wi )

▶ How to compute θMLE? Closed form, brute force enumeration of θ ∈ Θ, heuristic search, . . .

• fθ(c |w) = P(C = c |W = w , θ) is called a probabilistic classifier learned/trained from x1, . . . , xn
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Probabilistic classifiers: examples

• Logistic regression

• k-Nearest Neighbors (k-NN)

• Decision trees

• Neural networks

• Naive Bayes P(C = c0|W = w) = P(C = c0)
∏

i P(Wi = wi |C = c0)/P(W = w)

assuming P(W = w |C = c0) =
∏

i P(Wi = wi |C = c0)

• Ensembles

• Gradient boosting

• . . .

• More classifiers at the Machine Learning and Data Mining courses
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MLE and KL divergence/Cross-Entropy

θMLE = arg min
θ

n∑
i=1

− log fθ(ci |wi )

• Assume data is generated from fθTRUE , i.e., (W ,C ) ∼ fθTRUE

• We compute:

θMLE = arg min
θ

n∑
i=1

(− log fθ(ci |wi ) + log fθTRUE (ci |wi )) = arg min
θ

1

n

n∑
i=1

log
fθTRUE (ci |wi )

fθ(ci |wi )

n→∞−−−→LLN arg min
θ

E(W ,C)∼fθTRUE
[log

fθTRUE (C |W )

fθ(C |W )
] = arg min

θ
DKL(θTRUE ∥ θ) = arg min

θ
H(θTRUE ; θ)

• Asymptotically: ML maximization = KL divergence minimization = Cross-entropy minimization
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The classification/concept prediction problem
Question: which is the most probable class value given w and θ?

• Problem: given θ ∈ Θ and W = w , what is the most probable C = c? i.e.:

arg max
c

P(C = c ,W = w |θ)

which is equivalent, assuming θ ⊥⊥ W , to:

arg max
c

P(C = c |W = w , θ) · P(W = w |θ) = arg max
c

fθ(c |w)

• Bayes decision rule y∗
θ (w) = arg maxc fθ(c |w) [or simply, y∗]

Theorem (Bayes decision rule is optimal)

Fix θ ∈ Θ. For any decision rule y+
θ : R|W | → {0, . . . , nC − 1}:

P(y∗
θ (W ) ̸= C ) ≤ P(y+

θ (W ) ̸= C )

Proof. P(y∗
θ (W ) = C ) = E [1y∗

θ (W )=C ] = E [EC [1y∗
θ (W )=C |W = w ]] ≥

≥ E [EC [1y+
θ (W )=C |W = w ]] = E [1y+

θ (W )=C ] = P(y+
θ (W ) = C )
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Decision boundary

• A decision boundary for a decision rule y+θ () is the region w ∈ R|W | such that y+θ (w)
could admit as possible answers two or more classes

• For y∗θ , it is the region w ∈ R|W | such that arg maxc fθ(c |w) is not unique.

• For y∗θ and nC = 2, it is the region w ∈ R|W | such that fθ(1|w) = 0.5.
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Bayes optimal predictions

Question: which is the most probable class value given w only (i.e., without fixing the parameters)?

• Possible answer: the prediction of the most probable model, i.e., arg maxc P(C = c |W = w , θMAP)

• No, we can do better
▶ Let Θ = {θ1, θ2, θ3} and

□ P(θ1|X1 = x1, . . . ,Xn = xn) = 0.4
□ P(θ2|X1 = x1, . . . ,Xn = xn) = P(θ3|X1 = x1, . . . ,Xn = xn) = 0.3

▶ Hence θMAP = θ1
▶ Assume fθ1(1|w) = 1 and fθ2(0|w) = fθ3(0|w) = 1
▶ Hence, class 0 has the largest probability (over the hypothesis space), whilst θMAP predicts 1

• Problem: given W = w , what is the most probable C = c? i.e.:

arg max
c

P(C = c |W = w ,X1 = x1, . . . ,Xn = xn)

Bayes optimal prediction

arg max
c

∑
θ∈Θ

fθ(c |w)P(θ|X1 = x1, . . . ,Xn = xn)
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No-Free-Lunch theorem
• A learner A is a computable function that maps a training set x1, . . . , xn into a decision rule yθ()

Question: Is there a learner A that always maps a training set into a decision rule with zero error?

No-Free-Lunch theorem (Wolpert, 1996)

Consider binary classification, i.e., nC = 2, and a finite domain dom(W ) < ∞. For any
learner A, there exists a distribution F with (W ,C ) ∼ F such that:

▶ for at least 1/7 of the training sets x1, . . . , xn (realizations of F n) with
n < |dom(W )|/2, the decision rule y+

θ in output by A has an error of at least 1/8, i.e.:

PF (y
+
θ (W ) ̸= C ) ≥ 1/8

▶ and there exists an error-free decision rule y⋆
θ s.t. PF (y

⋆
θ (W ) ̸= C ) = 0.

See here for an accessible proof
• A universal learner does no exist! No learner can succeed on all learning tasks: every learner has

tasks on which it fails whereas other learners succeed.

• The learnt y+
θ is likely to have a large error for F , whereas there exists another learner that will

output a decision rule y⋆
θ with no error. 8 / 22
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Probabilistic classifiers

• Probabilistic classifier: fθ(c |w) ∈ [0, 1] with
∑

c fθ(c|w) = 1:
▶ learned from x1, . . . , xn
▶ predicted probabilities (p0, . . . , pnC−1) with pi = fθ(i |w)
▶ most probable class y∗

θ = arg maxc fθ(c |w)
▶ confidence (of most probable class) p∗θ = maxc fθ(c |w)

• Unnormalized classifier: ucθ(c |w) ∈ R
▶ unnormalized values (v0, . . . , vnC−1) with vi = ucθ(i |w)
▶ normalization using softmax:

softmax((v0, . . . , vnC−1)) = (
ev0∑
i e

vi
, . . . ,

evnC−1∑
i e

vi
)

▶ binary classes (v0 = 0, v1):

softmax((0, v1)) = (1− z , z) where z = sigmoid(v1) = inv .logit(v1) =
1

1 + e−v1

▶ softmax(v + c) = softmax(v)
▶ d

dv softmax(v) = softmax(v)(1− softmax(v))
9 / 22

https://en.wikipedia.org/wiki/Softmax_function


Example: Perceptron with sigmoid activation

Activation
function

∑
α2w2

...
...

αdwd

α1w1

α01

inputs weights

θ = (α0, α1, . . . , αd)

w = (w1, . . . ,wd)

z = sigmoid(θ · (1,w)T ) = sigmoid(α0 +
d∑

i=1

αi · wi )

y∗θ = arg max (1− z , z)

• Difference with logistic regression?
▶ Weights calculated differently (MLE vs gradient descent)
▶ Perceptron is parametric to activation functions
▶ Perceptron with sigmoid activation = Logistic regression
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Binary classification/concept learning
• X = (W ,C ) where W are predictive features and C class, with support(C ) = {0, 1}
• x1, . . . , xn are observations (training set), with xi = (wi , ci )

• Definition. Score function: sθ(w) = fθ(1|w) = P(C = 1|W = w , θ)
▶ predicted probabilities (1− sθ(w), sθ(w))
▶ confidence (of most probable class): max{1− sθ(w), sθ(w)}
▶ fθ(ci |wi ) = sθ(wi )

ci (1− sθ(wi ))
(1−ci )

• MLE estimation

θMLE = arg min
θ

n∑
i=1

− log fθ(ci |wi ) = arg min
θ

1

n

n∑
i=1

−ci log sθ(wi )− (1− ci ) log (1− sθ(wi ))

• Cross-entropy loss or log-loss:

ℓθ(c ,w) =

{
− log sθ(w) if c = 1
− log (1− sθ(w)) if c = 0

• MLE maximization = Log-loss minimization

θMLE = arg min
θ

1

n

n∑
i=1

ℓθ(ci ,wi )
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MLE and ERM for classification/concept learning

Empirical risk minimization

Let ℓθ : {0, . . . , nC − 1} × R|W | → R≥0 be a loss function.

θERM = arg min
θ

1

n

n∑
i=1

ℓθ(ci ,wi )

• MLE is ERM with Log-loss ℓθ(c ,w) = − log fθ(c |w) = log 1
P(c|w ,θ)

• 0-1 loss ℓθ(c ,w) = 1y+
θ (w) ̸=c where y+

θ (w) ∈ {0, . . . , nC − 1} is a decision rule

▶ not convex, not differentiable, optimization problem is NP-hard

• Lp error loss for binary classifiers ℓθ(c ,w) = |sθ(w)− c |p

▶ absolute error loss or L1: |sθ(w)− c |
▶ squared error loss or L2 or Brier score: (sθ(w)− c)2
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Loss functions and classifiers

• Gradient of loss function determines updates of weights α0, . . . , αd in the direction of improving
the loss (Backpropagation)

• Similar idea in ensemble of decision trees, where each one improves on the error of the previous
one (Gradient boosting trees)
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MSE and the bias-variance trade-off

• Squared error loss θERM = arg minθ MSE , where the Mean Squared Error is:

MSE =
1

n

n∑
i=1

(sθ(wi )− ci )
2

▶ Why named MSE? Because MSE
n→∞−−−→LLN E(W ,C)∼fθTRUE

[(sθ(W )− C )2]
▶ MSE approximates the Mean Squared-Error over the population
▶ Notice: in MSE for estimators C was a constant (parameter) [See Lesson 18]

• Assumes that C = D + ϵ, where E [ϵ] = 0
▶ Observed class labels ci include some noise w.r.t. true labels, i.e., ci = di + ϵi

• Decomposition of MSE:

E(W ,C)∼fθTRUE
[(sθ(W )− C )2] = Var(sθ(W )) + E [sθ(W )− C ]2 + Var(ϵ)

▶ Var(ϵ) irreducible error (would require better curated class values in the training set)
▶ E [sθ(W )− C ]2 is Bias2. Minimized by interpolating training data, but with high variance.
▶ Var(sθ(W )) variance of the scores. Minimized by a constant score, but with high bias.

See R script
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Loss functions and risk

Squared error loss minimization on training set generalizes to the population:

θERM = arg min
θ

1

n

n∑
i=1

(sθ(w)− ci )
2 n→∞−−−→LLN arg min

θ
E(W ,C)∼fθTRUE

[(sθ(W )− C )2]

Risk (or Expected Prediction Error EPE)

The risk w.r.t. a loss function ℓθ is R(θTRUE , θ) = E(W ,C)∼fθTRUE
[ℓθ(C ,W )].

Definition. A loss function is a proper scoring rule if:

θTRUE = arg min
θ

R(θTRUE , θ)

• For log-loss, R(θTRUE , θ) = DKL(θTRUE ∥ θ) ≥ 0 and DKL(θTRUE ∥ θ) = 0 iff θ = θTRUE

• Log-loss, squared error (L2) and 0-1 loss are proper scoring rules, whilst L1 is not

▶ For proper scoring rules, θERM
n→∞−−−→ θTRUE – recall we assume such (W ,C ) ∼ fθTRUE exists

▶ Still, 0-1 loss is discontinuous and can be harmful!
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Best classifier for 0-1 loss

Question: what is the decision rule with the smallest 0-1 risk? I.e., arg miny+
θ
E(W ,C)∼fθTRUE

[1y+
θ (W )̸=C ]?

Binary class Bayes optimal classifier (or Bayes rule):

y∗
θTRUE

(w) =

{
1 if η(w) ≥ 1/2
0 if η(w) < 1/2

where η(w) = PθTRUE (C = 1|W = w).

E(W ,C)∼fθTRUE
[1y+

θ (W ) ̸=C ] = EW [EC [1y+
θ (W )̸=C |W ]]

= EW [P(C = 1|W ) · 1y+
θ (W ) ̸=1 + P(C = 0|W ) · 1y+

θ (W )̸=0]

= EW [η(W ) · 1y+
θ (W )=0 + (1− η(W )) · 1y+

θ (W )=1]

≥ EW [min {η(W ), 1− η(W )}]
= EW [η(W ) · 1y∗

θTRUE
(W )=0 + (1− η(W )) · 1y∗

θTRUE
(W )=1]

= E(W ,C)∼fθTRUE
[1y∗

θTRUE
(W ) ̸=C ] Bayes error rate
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Bayes optimal classifier

η(w) = PθTRUE (C = 1|W = w)

• η() is unknown! (unless we are controlling data generation)

• Plug-in rule: use η̂(w) = fθ(c |w) = Pθ(C = 1|W = w) as an estimate of η(w)

• Naive Bayes P(C = c0|W = w) = P(C = c0)
∏

i P(Wi = wi |C = c0)/P(W = w)

assuming P(W = w |C = c0) =
∏

i P(Wi = wi |C = c0)

▶ Naive Bayes estimates η(w) from empirical distribution of x1, . . . , xn
▶ and assuming independence of features

• 1-NN asymptotically converges (|θ| → ∞) to risk: [Cover and Hart (1967)]

r ≤ E(W ,C)∼fθTRUE
[1y1-NN

θ (W )̸=C ] ≤ 2r(1− r) ≤ 2r

where r is the Bayes error rate.

• Bayes optimal classifier is optimal also for squared loss

▶ Squared loss is convex and differentiable (good for optimization solving)
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Loss functions and margin

• Binary classes C = {−1, 1}, unnormalized scores sθ(w) ∈ R
▶ Bayes decision rule becomes: y∗

θ = sgn(sθ(w))

• Margin for (w , c) defined as
m = c · sθ(w)

▶ Margin > 0 if prediction is correct (i..e, sθ(w) ≥ 0 and c = 1, or if sθ(w) < 0 and c = −1)
▶ Loss minimization equivalent to margin maximization

• Margin-based loss: Loss function ℓθ(c ,w) that can be written as ϕ(m):
▶ 0-1 loss: ϕ(m) = 1m≤0

▶ Logistic log-loss: ϕ(m) = log2 (1 + e−m)
▶ L2 loss: ϕ(m) = (1−m)2

▶ SVM/Hinge loss: ϕ(m) = max{0, 1−m}
▶ AdaBoost/Exponential loss: ϕ(m) = e−m

• Methods for margin maximization exists for a convex margin-based loss
▶ that also provide bounds on 0-1 loss
▶ that encode regularizations in the margin-based loss

See R script
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Reject option in binary classification

η(w) = PθTRUE (C = 1|W = w)

Bayes optimal classifier (or Bayes rule):

y∗
θTRUE

(w) =

{
1 if η(w) ≥ 1/2
0 if η(w) < 1/2

• If η(w) ≈ 1/2, we might just as well toss a coin to make a decision

• This motivates the introduction of a reject option for classifiers

▶ reject, or abstain, expressing doubt or uncertainty in decisions
▶ relevant in practice (e.g., to understand the cases where a classifier performs poorly),
▶ relevant ethically for socially sensitive decision tasks (e.g., credit scoring, disease prediction,

CV screeening, etc.)
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Reject option in binary classification

η(w) = PθTRUE (C = 1|W = w)

Bayes optimal classifier (with reject option):

y∗,d
θTRUE

(w) =

 1 if η(w) > 1− d
0 if η(w) < d
abstain otherwise, i.e., d ≤ min{η(w), 1− η(w)}

where d ∈ [0, 1/2] is the reject cost.

▶ If y∗,d
θTRUE

(w) ̸= abstain [d upper bound on misclassification error]

d > min {η(w), 1− η(w)} = PθTRUE (y
∗
θ (w) ̸= C ) [error of Bayes optimal]

Theorem (Chow 1970).

arg min
y+
θ

E(W ,C)∼fθTRUE
[d1y+

θ (W )=abstain + 1y+
θ (W ) ̸=C ,y+

θ (W )̸=abstain] = y∗,d
θTRUE
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Selective binary classification
A selective binary classifier (score) is a pair (sθ, gθ), where sθ() is a classifier (score) and
gθ : R|W | → {0, 1} is a selection function, which determines when to accept/abstain from using sθ:

(sθ, gθ)(w) =

{
sθ(w) if gθ(w) = 1

abstain otherwise

Support and Risk

The coverage of a selective classifier is ϕ(gθ) = E(W ,C)∼fθTRUE
[gθ(W )], i.e., the expected

probability of the accepted region.
The risk w.r.t. a loss function ℓθ is R(sθ, gθ) = E(W ,C)∼fθTRUE

[ℓθ(C ,W )gθ(W )]/ϕ(gθ).

• Empirical coverage and empirical selective risk:

ϕ̂(gθ) =

∑n
i=1 gθ(wi )

n
r̂(sθ, gθ) =

1
n

∑n
i=1 ℓθ(ci ,wi )gθ(wi )

ϕ̂(gθ)

• Selective classification problem: minimize risk while guaranteeing a minimum support c

arg min
θ

R(sθ, gθ) s.t. ϕ(gθ) ≥ c
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Soft selective binary classification
A soft selective binary classifier :

(sθ, gθ)(w) =

{
sθ(w) if kθ(w) ≥ τ

abstain otherwise

• kθ(w) is called the confidence function
▶ A good confidence function should rank instances based on descending loss, i.e., if

k(w) ≤ k(w ′) then E [ℓθ(C ,w)] ≥ E [ℓθ(C ,w ′)].

• Confidence of the classifier (see slide 9) and τ ∈ [1/2, 1]:

kθ(w) = max{sθ(w), 1− sθ(w)}
• The inherent trade-off between risk and coverage is summarized by the risk-coverage curve
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