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The classification/concept learning problem

e X = (W, C) where W are predictive features and C class, with support(C) ={0,1,...,nc — 1}
® Xi,...,X, are observations (training set), with x; = (w;,¢;) fori=1,....n

® ) € © with © hypothesis space (parameters of ML model) with fp joint density of W, C

Classification/concept learning: which hypothesis is the most probable given the observed data?

Omie = arg maxg £(0) = arg ming —((0) = arg ming > _;_, — log fa(x;)
fo(xi) = fo(wi, i) = fo(ci|wi)fo(wi)

Omie = arg ming Y7, — log fo(cilw;) — Y74 log fo(w;)

Assuming 6 1 W, we have fy, (w;) = fy,(w;), and then:

v vy VvYy

n
0 = i —log fy(ci|w;
MLE afgmelnz; og fa(ci|w;)
=

» How to compute 6y ? Closed form, brute force enumeration of 6 € ©, heuristic search, ...
® fo(clw) = P(C = c|W = w,0) is called a probabilistic classifier learned/trained from x, ..., x,
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Probabilistic classifiers: examples

A A
. . u e - A
® |ogistic regression u
® k-Nearest Neighbors (k-NN) [ I |
.. " i
® Decision trees
® Neural networks
® Naive Bayes P(C = q|W = w) = P(C = ) [[; P(W; = w;|C = o) /P(W = w)
assuming P(W — W‘C — CO) — Hi P(VV, — W,‘C — CO) Survival of passengers on the Titanic
gender
® Ensembles o
male female
® Gradient boosting n e
R Py
died bsp
. pe . . L. 017, 61%
® More classifiers at the Machine Learning and Data Mining courses ocesiey Shepe
~ S
died survived
0.02; 2% 089, 2%
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MLE and KL divergence/Cross-Entropy

Omie = i — log fo(ci|wi
MLE = arg meln ; og fo(cilw;)
® Assume data is generated from fy,,., i.e., (W, C) ~ fy o)

® \We compute:

n 1 n f . .
e = rg min (g ) +10 (el ) = arg i 3l e 0

i=1
fGTRUE ( C| W)

2%, i arg min E [log—RE— =
LLN 3rg AN E(W, )~y g LO8 f,(CIW)

| =arg mgin D1 (O1rue || 0) = arg mein H(01ruE; 0)

® Asymptotically: ML maximization = KL divergence minimization = Cross-entropy minimization
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The classification/concept prediction problem

Question: which is the most probable class value given w and 67
® Problem: given § € © and W = w, what is the most probable C = c? i.e.:
arg max P(C=c,W=wl|d)
which is equivalent, assuming 6 1. W, to:

argmax P(C = c|W = w,0) - P(W = w|f) = arg max f(c|w)
Cc c

® Bayes decision rule y;(w) = arg max. fp(c|w) [or simply, y*]

Theorem (Bayes decision rule is optimal)

Fix 6 € ©. For any decision rule y, : RWI - {0,...,nc — 1}:

P(ys (W) # C) < Py, (W) # C)

Proof. P(y; (W)= C) = E[L-(w)=c| = E[Ec[Ly:(w)=c|W = w]] >
> E[Ec[Lysw)—cIW = w]] = E[L,: (w)-c] = P(yy (W) = C) O
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Decision boundary
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® A decision boundary for a decision rule y, () is the region w € RIW! such that y, (w)
could admit as possible answers two or more classes

® For y;, it is the region w € RIWI such that arg max. fy(c|w) is not unique.

® For y; and nc = 2, it is the region w € RI"! such that fy(1jw) = 0.5.
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Bayes optimal predictions

Question: which is the most probable class value given w only (i.e., without fixing the parameters)?

® Possible answer: the prediction of the most probable model, i.e., arg max. P(C = c|W = w, Opap)

® No, we can do better
> Let © = {91,92,93} and
O P(6'1|X1 = X1y-.- ,X,, = X,,) =04
m] P(92|X1 = Xly... 7)(,7 = Xn) = P(93|X1 = Xly... 7)(,7 = Xn) =0.3
» Hence Opjap = 01
» Assume fp, (1|lw) =1 and fy,(0|w) = f5,(0|lw) =1
» Hence, class 0 has the largest probability (over the hypothesis space), whilst Oy ap predicts 1
® Problem: given W = w, what is the most probable C = ¢? i.e.:

arg max P(C = c|W = w, Xy = x1,.. ., Xo = 1)
c

Bayes optimal prediction

arg max Z fo(clw)P(0| X1 = X1, ..., Xp = Xn)
€O
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No-Free-Lunch theorem

® A learner A is a computable function that maps a training set xi, ..., x, into a decision rule yy()

Question: Is there a learner A that always maps a training set into a decision rule with zero error?

No-Free-Lunch theorem ( )

Consider binary classification, i.e., nc = 2, and a finite domain dom(W) < co. For any
learner A, there exists a distribution F with (W, C) ~ F such that:

> for at least 1/7 of the training sets xi, ..., x, (realizations of F") with
n < |dom(W)|/2, the decision rule y; in output by A has an error of at least 1/8, i.e.:

Pr(ys (W) # C) >1/8

> and there exists an error-free decision rule yj s.t. Pe(y;(W) # C) = 0.

v

See here for an accessible proof
® A universal learner does no exist! No learner can succeed on all learning tasks: every learner has

tasks on which it fails whereas other learners succeed.

® The learnt yg is likely to have a large error for F, whereas there exists another learner that will
output a decision rule v* with no error. 8/22


https://doi.org/10.1162/neco.1996.8.7.1341
https://pdfs.semanticscholar.org/daa7/140e3884a661ffe7d42b24d699996b3e605a.pdf

Probabilistic classifiers

® Probabilistic classifier: fy(c|w) € [0,1] with > _fy(c|lw) = 1:
> learned from xi,..., X,
» predicted probabilities (po, .. ., Pnc—1) With p; = fy(ijw)
» most probable class y; = arg max. fy(c|w)
» confidence (of most probable class) pj; = max. fy(c|w)
® Unnormalized classifier: ucy(c|w) € R
» unnormalized values (vo, ..., Vy—1) with v; = ucy(i|w)
» normalization using softmax:

eV eVnc—1

softmax((Vo, -+ Vae—1)) = (Z, oS ev,-)
» binary classes (vp = 0, v1):
1
softmax((0,v1)) = (1 — z, z) where z = sigmoid(vy) = inv.logit(v1) = Trew

» softmax(v + ¢) = softmax(v)
» Lsoftmax(v) = softmax(v)(1 — softmax(v))
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https://en.wikipedia.org/wiki/Softmax_function

Example: Perceptron with sigmoid activation

= (QO,al? cee aad)
w=(wi,...,wy)
d
e @—7 = sigmoid(0 - (1, w) ") = sigmoid(ag + Z Q- wp)
i=1
Activation « I
function Yp = arg max (1 - Z7Z)

inputs weights
® Difference with logistic regression?
» Weights calculated differently (MLE vs gradient descent)
» Perceptron is parametric to activation functions
> Perceptron with sigmoid activation = Logistic regression
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https://en.wikipedia.org/wiki/Activation_function

Binary classification/concept learning

o X = (W, C) where W are predictive features and C class, with support(C) = {0,1}
® Xxi,...,X, are observations (training set), with x; = (w;, ¢;)
® Definition. Score function: sp(w) = fp(1|jw) = P(C = 1|W = w, 0)
» predicted probabilities (1 — sp(w), sp(w))
» confidence (of most probable class): max{l — sp(w), sp(w)}
> fy(cilwi) = so(wi) (1 — sp(wi)) =)
® MLE estimation

Omie = arg m|n Z log fy(cilw;) = arg m|n = Z cilogsp(w;) — (1 — ¢;) log (1 — sg(w;))
i=1

Cross-entropy loss or log-loss: )
to(c, w) = — log sp(w) ifc=1
RETI= —log(1—sg(w)) ifc=0
® MLE maximization = Log-loss minimization

OmLe = arg m|n - ng Ciy W;)
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MLE and ERM for classification/concept learning

Empirical risk minimization

Let £y : {0,...,nc — 1} x RIWI — R4 be a loss function.

1 n
0 = in — g lo(ci, w;
ERM argmgln "2 o(ci, w;)

® MLE is ERM with Log-loss {s(c, w) = —log fy(c|w) = log 1y

® 0-1loss lo(c, w) = Lyt ()4 Where vg (w) € {0,...,nc — 1} is a decision rule
» not convex, not differentiable, optimization problem is NP-hard

® [, error loss for binary classifiers £y(c, w) = |sp(w) — c|?

» absolute error loss or Ly: |sp(w) — c|
» squared error loss or Ly or Brier score: (sp(w) — c)?
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| oss functions and classifiers

Forward Pass
[ >

Actual
output

Input Output
T Error E

Loss
Function y

N da dz_ 7\ dE_ |perivative
\\_’/" of Loss

1
<: Backward Pass

® Gradient of loss function determines updates of weights ayg, ..., aq in the direction of improving
the loss (Backpropagation)

® Similar idea in ensemble of decision trees, where each one improves on the error of the previous
one (Gradient boosting trees)
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MSE and the bias-variance trade-off

® Squared error loss Ogry = arg ming MSE, where the Mean Squared Error is:

n

MSE = % > (so(wi) — ci)?

i=1

> Why named MSE? Because MSE “—/;n E(w,c)~s,., [(so(W) — C)?]

» MSE approximates the Mean Squared-Error over the population

» Notice: in MSE for estimators C was a constant (parameter) [See Lesson 18]
® Assumes that C = D + ¢, where E[¢] =0

» Observed class labels ¢; include some noise w.r.t. true labels, i.e., ¢; = d; + ¢;

® Decomposition of MSE:
E(ch)NfeTRUE [(so(W) — C)Z] = Var(sp(W)) + E[ss(W) — C]2 + Var(e)

» Var(e) irreducible error (would require better curated class values in the training set)
» E[se(W) — C]? is Bias®>. Minimized by interpolating training data, but with high variance.
» Var(sy(W)) variance of the scores. Minimized by a constant score, but with high bias.

See R script
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Loss functions and risk

Squared error loss minimization on training set generalizes to the population:
1 n
. . 2 n—oo . 2
Oerm = arg min — Z(sa(w) —¢)s —— N arg min EW,C)mfy e [(56(W) — C)7]
i=1

Risk (or Expected Prediction Error EPE)

The risk w.r.t. a loss function £y is R(07rue,0) = E(w,c) [£o(C, W)].

)~forrue

Definition. A loss function is a proper scoring rule if:

OTrUE = arg mgin R(O1ruE, 8)

® For log-loss, R(GTRUE79) = DKL(QTRUE H 9) >0 and DKL(QTRUE || 9) =0 iff 0 = Orrue
® Log-loss, squared error (Ly) and 0-1 loss are proper scoring rules, whilst L; is not

. n— .
» For proper scoring rules, gy 2 Orrue — recall we assume such (W, C) ~ forpye Xists
» Still, 0-1 loss is discontinuous and can be harmful!
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https://www.fharrell.com/post/class-damage/

Best classifier for 0-1 loss

Question: what is the decision rule with the smallest 0-1 risk? I.e., arg min E(WvC)NfGTRUE[ILYJ(W#C]?

Binary class Bayes optimal classifier (or Bayes rule):

\ 1 if n(w) > 1/
Yirsue(W) = { 0 if 7TZ(W) < 1/2

where n(w) = Py (C = 1|W = w).

E W, 00~ forpe [Ly (W)l = EwlEc[y wysc|WII
= Ew[P(C = 1/W) - 1y: (w0 + P(C = O|W) - 1 (0]
= Ew[n(W) - Lyrwy—o + (1L =n(W)) - L+ ()l
> Ew[min {n(W),1—n(W)}]
= Ew[n(W) - ]1ygTRUE(W):o +(1=n(W))-1

= EW,C)~ o [ILVJTRUE(W#C] Bayes error rate

yeTRUE(W):l]
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Bayes optimal classifier

W(W) = P9TRUE(C = 1|W = W)

® 7() is unknown! (unless we are controlling data generation)

® Plug-in rule: use 7j(w) = fy(c|w) = Py(C = 1|W = w) as an estimate of n(w)

® Naive Bayes P(C = q|W =w) = P(C = o) [[; P(W; = w;|C = )/ P(W = w)
assuming P(W = w|C = ) = [[; P(W; = wi|C = )

» Naive Bayes estimates n(w) from empirical distribution of xi, ..., x,
» and assuming independence of features

® 1-NN asymptotically converges (|6] — oo) to risk: [Cover and Hart (1967)]

1 ;"V’V(W);&C] <2r(l-r)<2r

r< E(W’C)Nf9TRUE[ Y
where r is the Bayes error rate.

® Bayes optimal classifier is optimal also for squared loss
» Squared loss is convex and differentiable (good for optimization solving)
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https://doi.org/10.1109/TIT.1967.1053964

Loss functions and margin

® Binary classes C = {—1,1}, unnormalized scores sp(w) € R
» Bayes decision rule becomes: y; = sgn(sg(w))
® Margin for (w, ¢) defined as
m = c - sp(w)
» Margin > 0 if prediction is correct (i..e, sp(w) >0 and ¢ =1, or if sy(w) < 0 and ¢ = —1)
» Loss minimization equivalent to margin maximization
® Margin-based loss: Loss function ¢y(c, w) that can be written as ¢(m):
0-1 loss: ¢(m) = Lp<o
» Logistic log-loss: ¢(m) = log, (1 +e™™)
Ly loss: ¢p(m) = (1 — m)?
SVM/Hinge loss: ¢(m) = max{0,1 — m}
AdaBoost/Exponential loss: ¢(m) = e~ ™
® Methods for margin maximization exists for a convex margin-based loss
» that also provide bounds on 0-1 loss
» that encode regularizations in the margin-based loss

See R script

v

v

v

v
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Reject option in binary classification

W(W) = P9TRUE(C = 1|W = W)

Bayes optimal classifier (or Bayes rule):

. 1 if p(w) =1/
Vorsue (W) = { 0 if 7TZ(W) < 1/2

e If n(w) = 1/2, we might just as well toss a coin to make a decision
® This motivates the introduction of a reject option for classifiers

> reject, or abstain, expressing doubt or uncertainty in decisions
relevant in practice (e.g., to understand the cases where a classifier performs poorly),

relevant ethically for socially sensitive decision tasks (e.g., credit scoring, disease prediction,
CV screeening, etc.)
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Reject option in binary classification

N(w) = Poree(C = 1{W = w)
Bayes optimal classifier (with reject option):
1 if n(w)>1—-4d
Yol (w)=¢ 0 if n(w) < d
abstain otherwise, i.e., d < min{n(w),1 —n(w)}
where d € [0,1/2] is the reject cost.
> If yg;ZUE(W) # abstain [d upper bound on misclassification error]

d > min{n(w),1 —n(w)} = Py (v (w) # C) [error of Bayes optimal]
Theorem (Chow 1970).

arg min Ew,c) di,

*,d
n £(W)=abstain T Ly (W)£C .yt (W)abstainl = Yomue
0

~fo TRUE [

20/22


https://ieeexplore.ieee.org/document/1054406

Selective binary classification

A selective binary classifier (score) is a pair (sg, g9), where sp() is a classifier (score) and
g0 : RIWI — {0,1} is a selection function, which determines when to accept/abstain from using s:

(so,80)(w) = {SG(W) if go(w) =1

abstain otherwise

Support and Risk

The coverage of a selective classifier is ¢(gy) = Ew,c)~fy, . [86(W)], i.e., the expected
probability of the accepted region.
The risk w.r.t. a loss function ¢y is R(sg,gp) = E(W’C)NfeTRUE [o(C, W)go(W)]/d(gp)-

® Empirical coverage and empirical selective risk:

n 27:1 gQ(Wi)

o(go) = P9, 89) = = >oim lo(ci, wi)go(wi)

n o(go)

® Selective classification problem: minimize risk while guaranteeing a minimum support ¢

arg main R(so,80) st. o(go) >c
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Soft selective binary classification

A soft selective binary classifier: so(w)  if ke(w) > 7
(50, 80)(w) = : :
abstain otherwise

® ko(w) is called the confidence function

» A good confidence function should rank instances based on descending loss, i.e., if
k(w) < k(w') then E[£y(C,w)] > E[ly(C,w")].

® Confidence of the classifier (see slide 9) and 7 € [1/2,1]:
ko(w) = max{sp(w),1 — sp(w)}

® The inherent trade-off between risk and coverage is summarized by the risk-coverage curve
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