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Functions of two or more random variables: expectation

• V = πHR2 be the volume of a vase of height H and radius R
• g(H,R) = πHR2 is a random variable (function of random variables)
• PV (V = 3) = PHR(πHR

2 = 3)
• How to calculate E [V ]?

If H ⊥⊥ R:

E [V ] = E [πHR2] =

∫ ∞

−∞

∫ ∞

−∞
πhr2fH(h)fR(r)dhdr
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Linearity of expectations
Theorem. For X and Y random variables, and s, t ∈ R:

E [rX + sY + t] = rE [X ] + sE [Y ] + t

Proof. (discrete case)

E [rX + Ys + t] =
∑
a

∑
b

(ra+ sb + t)P(X = a,Y = b)

=

(
r
∑
a

∑
b

aP(X = a,Y = b)

)
+

(
s
∑
a

∑
b

bP(X = a,Y = b)

)
+

(
t
∑
a

∑
b

P(X = a,Y = b)

)

=

(
r
∑
a

aP(X = a)

)
+

(
s
∑
b

bP(Y = b)

)
+ t = rE [X ] + sE [Y ] + t

Corollary. E [a0 +
∑n

i=1 aiXi ] = ao +
∑n

i=1 aiE [Xi ]

Corollary. X ≤ Y implies E [X ] ≤ E [Y ]
Proof. Z = Y − X ≥ 0 implies E [Z ] = E [Y ]− E [X ] ≥ 0, i.e., E [Y ] ≥ E [X ].
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Applications

• Expectation of some discrete distributions
▶ X ∼ Ber(p) E [X ] = p
▶ X ∼ Bin(n, p) E [X ] = n · p

□ Because X =
∑n

i=1 Xi for X1, . . . ,Xn ∼ Ber(p)

▶ X ∼ Geo(p) E [X ] = 1
p

▶ X ∼ NBin(n, p) E [X ] = n·(1−p)
p

□ Because X =
∑n

i=1 Xi − n for X1, . . . ,Xn ∼ Geo(p)

• Expectation of some continuous distributions
▶ X ∼ Exp(λ) E [X ] = 1/λ
▶ X ∼ Erl(n, λ) E [X ] = n

λ
□ Because X =

∑n
i=1 Xi for X1, . . . ,Xn ∼ Exp(λ)
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Expectation of product and quotients

Theorem. For X ⊥⊥ Y , we have: E [XY ] = E [X ]E [Y ] Prove it!

Corollary. For X ⊥⊥ Y and Y > 0, we have: E [X/Y ] ≥ E [X ]/E [Y ]
Proof. X ⊥⊥ Y implies X ⊥⊥ 1/Y . By theorem above:

E [X/Y ] = E [X · 1/Y ] = E [X ]E [1/Y ] ≥ E [X ]/E [Y ]

because by Jensen’s inequality E [1/Y ] ≥ 1/E [Y ] since 1/y is convex for y 0. □

Exercise at home. Show that E [X/Y ] = E [X ]/E [Y ] is a false claim.
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Law of iterated/total expectation

Conditional expectation

E [X |Y = b] =
∑
i

aip(ai |b) E [X |Y = y ] =

∫ ∞

−∞
xf (x |y)dx

Theorem. (Law of iterated/total expectation)

EY [E [X |Y ]] = E [X ]

Proof. (for X ,Y discrete random variables)

EY [E [X |Y ]] =
∑
j

∑
i

aipX |Y (ai |bj)pY (bj) =
∑
j

∑
i

aipXY (ai , bj) =
∑
i

aipX (ai ) = E [X ]

Example (cfr the example from Lesson 1 on the Law of total probability)

• Factory 1’s light bulbs working hours ∼ Exp(1/1000)

• Factory 2’s light bulbs working hours ∼ Exp(1/2000)

• Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it.

• What is the average work hour of a light bulb on the market?
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Variance of the sum and covariance
Var(X + Y ) = E [(X + Y − E [X + Y ])2] = E [((X − E [X ]) + (Y − E [Y ]))2]

= E [(X − E [X ])2] + E [(Y − E [Y ])2] + 2E [(X − E [X ])(Y − E [Y ])]

= Var(X ) + Var(Y ) + 2Cov(X ,Y )

Covariance

The covariance Cov(X ,Y ) of two random variables X and Y is the number:

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]
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Covariance

Theorem. Cov(X ,Y ) = E [XY ]− E [X ]E [Y ] Prove it!
• If X and Y are independent (X ⊥⊥ Y ):

Cov(X ,Y ) = 0 Var(X + Y ) = Var(X ) + Var(Y )

• But there are X and Y uncorrelated (ie., Cov(X ,Y ) = 0) that are dependent!
• Variances of some discrete distributions

▶ X ∼ Ber(p) Var(X ) = p(1− p)
▶ X ∼ Bin(n, p) Var(X ) = np(1− p)

□ Because X =
∑n

i=1 Xi for X1, . . . ,Xn ∼ Ber(p) and independent
▶ X ∼ Geo(p) Var(X ) = 1−p

p2

▶ X ∼ NBin(n, p) Var(X ) = n 1−p
p2

□ Because X =
∑n

i=1 Xi − n for X1, . . . ,Xn ∼ Geo(p) and independent
• Variances of some continuous distributions

▶ X ∼ Exp(λ) Var(X ) = 1/λ2

▶ X ∼ Erl(n, λ) Var(X ) = n
λ2

□ Because X =
∑n

i=1 Xi for X1, . . . ,Xn ∼ Exp(λ) and independent
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Covariance and covariance matrix

• Hence, Var(rX + sY + t) = r2Var(X ) + s2Var(Y ) + 2rsCov(X ,Y )

• Bivariate Normal/Gaussian distribution:

(X ,Y ) ∼ N ((µX , µX ),

(
σ2
X σXY

σXY σ2
Y

)
)

▶ where marginals are X ∼ N (µX , σ
2
X ), Y ∼ N (µY , σ

2
Y ), and Cov(X ,Y ) = σXY

▶ Covariance matrix Σij = Cov(Xi ,Xj) for a vector X = (X1, . . . ,Xn) of r.v.’s

• Covariance depends on the unit of measure!
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Correlation coefficient

• Correlation coefficient is dimensionless (not affected by change of units)

▶ E.g., if X and Y are in Km, then Cov(X ,Y ), Var(X ) and Var(Y ) are in Km2

• Moreover: −1 ≤ ρ(X ,Y ) ≤ 1

▶ The bounds are derived from the Cauchy–Schwarz’s inequality:

E [|XY |] ≤
√

E [X 2]
√
E [Y 2]

Proof. For any u,w ∈ R, we have 2|uw | ≤ u2 +w2. Therefore, 2|UW | ≤ U2 +W 2 for r.v.’s
U and V . By defining U = X/

√
E [X 2] and W = Y/

√
E [Y 2]

(∗), we have
2 · |XY |/

√
E [X 2]

√
E [Y 2] ≤ X 2

/E [X 2] + Y 2
/E [Y 2]. Taking the expectations, we conclude:

2 · E [|XY |]/
√

E [X 2]
√

E [Y 2] ≤ 2. (*) The case E [X 2] = 0 or E [Y 2] = 0 is left as an exercise. □
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Bivariate Normal/Gaussian distribution

(X ,Y ) ∼ N ((µX , µY ),

(
σ2
X σXY

σXY σ2
Y

)
)

where marginals are X ∼ N (µX , σ
2
X ), Y ∼ N (µY , σ

2
Y ), and Cov(X ,Y ) = σXY

• Since σXY = ρ(X ,Y ) · σX · σY :

(X ,Y ) ∼ N ((µX , µY ),

(
σ2
X ρ(X ,Y ) · σX · σY

ρ(X ,Y ) · σX · σY σ2
Y

)
)

• Density of N ((0, 0), (1, σXY , σXY , 1)):

f (x , y) =
1

2π
√
1− σ2

XY

e
− 1

2(1−σ2
XY

)
(x2+y2−2xyσXY )

• Useful facts for (X ,Y ) bivariate Normal:

▶ for (X ,Y ) bivariate Normal: ρ(X ,Y ) = 0 iff X ⊥⊥ Y , i.e., uncorrelation equals independence
▶ (X ,Y ) bivariate Normal iff aX + bY is Normal for any a, b ∈ R
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Sum of independent Normal random variables

• See Lesson 04 and Lesson 08 for convolution formulas

Theorem. If X ∼ N (µX , σ
2
X ) and Y ∼ N (µY , σ

2
Y ) and X ⊥⊥ Y , then:

Z = X + Y ∼ N (µX + µY , σ
2
X + σ2

Y )

Proof. See [T, Sect. 11.2] □

• In general: Z = rX + sY + t ∼ N (rµX + sµY + t, r2σ2
X + s2σ2

Y )

• The converse of the theorem also holds: [Lévy-Cramér theorem]
▶ If X ⊥⊥ Y and Z = X +Y is normally distributed, then X and Y follow a normal distribution.
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Extremes of independent random variables

• P(Z ≤ a) = P(X1 ≤ a, . . . ,Xn ≤ a) =
∏n

i=1 P(Xi ≤ a) = ((F (a))n

• Example: maximum water level over 365 days assuming water level on a day is U(0, 1)

• Example: maximum of two rolls of a die with 4 sides

• P(V ≤ a) = 1− P(X1 > a, . . . ,Xn > a) = 1−
∏n

i=1(1− P(Xi ≤ a) = 1− ((1− F (a))n
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Product and quotient of independent random variables

• X ,Y ∼ N (0, 1) independent, Z = X/Y ∼ Cau(0, 1) where:

fZ (x) =
1

π(1 + x2)
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Distances and Metrics
A numerical measurement of how far apart two objects are.

Distances and Metrics

A distance over a set A is a function d : A×A → R such that:

• d(x , y) ≥ 0 non-negativity

• d(x , y) = 0 iff x = y identity of indiscernibles

• d(x , y) = d(y , x) symmetry

Moreover, d is called a metric if in addition:

• d(x , z) ≤ d(x , y) + d(y , z) triangle inequality

Examples over A = Rn:

• Manhattan or L1 distance d1(x, y) = ∥x− y∥1 =
∑n

i=1 |xi − yi |

• Euclidian or L2 distance d2(x, y) = ∥x− y∥2 =
√∑n

i=1(xi − yi )2

• Chebyshev or L∞ distance d∞(x, y) = ∥x− y∥∞ = maxni=1 |xi − yi |
We aim at defining distances and metrics over probability distributions, i.e., when

A = {F | F : R → [0, 1] is a CDF}
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Distances over probability distributions

A numerical measurement of how far apart two probability distributions are.

• ML/DM models are supposed to be applied on the same distribution as the training set:

▶ How far is the test data distribution from the one of the training data? [Transfer learning
▶ Is the data changing over time, thus my model is inadequate? [Dataset shift]

• ML/DM algorithms are supposed to choose the best hypothesis:

▶ What is the split in a DT which best distinguish the distribution of classes?
▶ Is my model separating positive and negatives as much as possible?
▶ Is my clustering separating groups with different distributions?

• Data preprocessing looks at feature distribution:

▶ Are these two features conveying the same information?
▶ Can this feature be predictive to the class feature?

• ... and many other applications in Data Science
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Total variation distance and KS distance
Let X , Y be random variables:

• Total Variation (TV) distance (discrete and continuous case):

dTV (X ,Y ) =
1

2

∑
i

|pX (ai )− pY (ai )| dTV (X ,Y ) =
1

2

∫
|fX (x)− fY (x)|dx

▶ dTV is a metric with dTV (X ,Y ) ∈ [0, 1]

• Kolmogorov-Smirnov (KS) distance:

dKS(X ,Y ) = sup
x

|FX (x)− FY (x)|

▶ dKS is a metric with dKS(X ,Y ) ∈ [0, 1]

• dTV and dKS have no closed forms in general

• dKS can be estimated from samples of the distributions
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Entropy H(X ) of a random variable X

• The Shannon’s information entropy is the average level of “information” (or “surprise”,
“uncertainty”, “unpredictability”) inherent to the variable’s possible outcomes

▶ Information is inversely proportional to probability 1
p(ai )

□ Highly likely/unlikely events carry less/more new information
▶ Information content ic() of two independent events should sum up log 1

p(ai )
□ ic(p(A ∩ B)) = ic(p(A)) + ic(p(B)) = ic(p(A)p(B))
□ ic(p(Ω)) = ic(1) = 0
□ ic(p(A)) ≥ 0

• H(X ) = E [− log p(X )] (discrete) H(X ) = E [− log f (X )] (continuous)

H(X ) = −
∑
i

p(ai ) log p(ai ) H(X ) = −
∫ ∞

−∞
f (x) log f (x)dx

▶ For X discrete, H(X ) ≥ 0 since − log p(X ) = log 1/p(X ) ≥ 0
□ zero reached when p(a1) = 1 and p(ai ) = 0 for i ̸= 1

▶ For X ∼ Ber(p), H(X ) = −p log p − (1− p) log (1− p) [binary entropy function]
□ for X ∼ Ber(0.5) : H(X ) = −2 · 1/2 log 1/2 = 1 [unit of entropy is called a bit]
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Cross entropy

• X ,Y discrete random variables with p.m.f. pX and pY :

• Cross entropy of X w.r.t. Y : H(X ;Y ) = EX [− log p(Y )]

H(X ;Y ) = −
∑
i

pX (ai ) log pY (ai )

with pX (ai ) log pY (ai ) =

{
0 if pX (ai ) = 0
−∞ if pX (ai ) > 0 ∧ pY (ai ) = 0

• H(X ;Y ) is the “information” or “uncertainty” or “loss” when using Y to encode X

• The closer pX and pY , the lower is H(X ;Y )

• The lower bound is for Y = X , for which H(X ;Y ) = H(X )

19 / 35



Kullback-Leibler divergence

KL divergence

For X ,Y discrete random variables with p.m.f. pX and pY :

DKL(X ∥ Y ) =
∑
i

pX (ai ) log
pX (ai )

pY (ai )
= H(X ;Y )− H(X )

• Measure how distribution of Y (model) can reconstruct the distribution of X (data)

▶ Also called: relative entropy or information gain of X w.r.t. Y

• Properties

▶ DKL(X ∥ Y ) ≥ 0 [Gibbs’ inequality]
▶ DKL(X ∥ Y ) = 0 iff FX = FY

▶ DKL(X ∥ Y ) ̸= DKL(Y ∥ X ) [not a distance!]

• For X ,Y continuous: DKL(X ∥ Y ) =
∫∞
−∞ fX (x) log

fX (x)
fY (x)

dx
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Joint entropy

• X ,Y discrete random variables with p.m.f. pX and pY :

• Joint p.m.f. pXY . Joint entropy of (X ,Y ):

H((X ,Y )) = −
∑
i,j

pXY (ai , aj) log pXY (ai , aj)

• If X ⊥⊥ Y , then:

H((X ,Y )) = −
∑
i,j

pX (ai )pY (aj)(log pX (ai ) + log pY (aj)) =

= −(
∑
i

pX (ai ))(
∑
j

pY (aj) log pY (aj))− (
∑
j

pY (aj))(
∑
i

pX (ai ) log pX (ai )) = H(X ) + H(Y )
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Mutual information

Mutual information
For X ,Y discrete random variables with p.m.f. pX and pY and joint p.m.f. pXY :

I (X ,Y ) = DKL(pXY ∥ pXpY ) =
∑
i,j

pXY (ai , aj) log
pXY (ai , aj)

pX (ai )pY (aj)
= H(X )+H(Y )−H((X ,Y ))

• MI measures how dependent two distributions are

▶ Measure how product of marginals can reconstruct the joint distribution

• Properties

▶ I (X ,Y ) = I (Y ,X ), and I (X ,Y ) ≥ 0
▶ I (X ,Y ) = 0 iff X ⊥⊥ Y
▶ NMI = I (X ,Y )

min {H(X ),H(Y )} ∈ [0, 1] [Normalized mutual information]

• For X ,Y continuous: I (X ,Y ) =
∫∞
−∞

∫∞
−∞ fXY (x , y) log

fXY (x,y)
fX (x)fY (y)

dxdy
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The data processing inequality

• Let X be unknown, and assume to observe a noisy version Y of it

• Let Z = f (Y ) be a data processing to improve the “quality” of Y

• Z does not increase the information about X , i.e.: [Data processing inequality]

I (X ,Y ) ≥ I (X ,Z )

• If I (X ,Y ) = I (X ,Z ) and Z is a summary of Y , we call it a sufficient statistics

▶ Let X ∼ Ber(θ) and Y = (Y1, . . . ,Yn) ∼ Ber(θ)n modelling i.i.d. observations

▶ Z =
∑n

i=1 Yi ∼ Binom(n, θ) is a sufficient statistics

▶ Proof (sketch): use DKL(pXY ∥ pXpY ) and:

p(Y1 = y1, . . . ,Yn = yn) =
∏
i

θyi (1− θ)(1−yi ) = θ
∑

i yi (1− θ)n−
∑

i yi = p(Z =
∑
i

yi )
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Earth mover’s distance / Wasserstein metric

• The minimum cost to transform one distribution to another

• Cost = amount of mass to move × distance to move it

• X ,Y discrete random variables:

EMD(X ,Y ) =

∑
i,j Fi,j · |ai − aj |∑

i,j Fi,j

where F is the flow which minimizes the numerator (total cost) subject to some constraints.
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Earth mover’s distance / Wasserstein metric

• The minimum cost to transform one distribution to another

• Solution of the transportation problem for X ,Y multivariate (version from Ramdas et al. 2015):

EMD(X ,Y ) =

∫ 1

0

∥F−1
X (p)− F−1

Y (p)∥ dp

For X ,Y univariate, this simplifies to:

EMD(X ,Y ) =
∑
i

|FX (ai )− FY (ai )| EMD(X ,Y ) =

∫ ∞

−∞
|FX (x)− FY (x)|dx

• For empirical distributions from ordered samples x1, . . . , xn and y1, . . . , yn:

EMD(X ,Y ) =
1

n

∑
i

|xi − yi |
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Simulation

• Not all problems can be solved with calculus!
• Complex interactions among random variables can be simulated
• Generated random values are called realizations
• Basic issue: how to generate realizations?

▶ The Galton Board
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Simulation

• Not all problems can be solved with calculus!

• Complex interactions among random variables can be simulated

• Generated random values are called realizations

• Basic issue: how to generate realizations?

• Assumption: we are only given U(0, 1)

• Problem: derive all the other random generators
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Simulation: discrete distributions

• For X1, . . . ,Xn ∼ Ber(p) i.i.d., we have:
∑n

i=1 Xi ∼ Binom(n, p)
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X ∼ Cat(p)

• Alternative definition: pX (a) = pa · (1− p)1−a for a ∈ {0, 1}
• Categorical distribution generalizes to nC ≥ 2 possible values
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X ∼ Cat(p)

Categorical distribution

A discrete random variable X has a Categorical distribution with parameters
p0, . . . , pnC−1 where

∑
i pi = 1 and pi ∈ [0, 1] if its p.m.f. is given by:

pX (i) = P(X = i) = pi for i = 0, . . . , nC − 1

• Alternative definition: pX (a) =
∏

i p
1a=i
i for a ∈ {0, . . . , nC − 1}

Notation. Indicator function: 1φ(x) =

{
1 if φ(x)
0 otherwise
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X ∼ Mult(n,p)

• X ∼ Bin(n, p) models the number of successes in n Bernoulli trials
• Intuition: for X1,X2, . . . ,Xn i.i.d. Xi ∼ Ber(p): X =

∑n
i=1 Xi ∼ Bin(n, p)

• X ∼ Mult(n,p) models the number of categories in n Categorical trials
• Intuition: for X1,X2, . . . ,Xn such that Xi ∼ Cat(p) and independent (i.i.d.), define:

Y1 =
n∑

i=1

1Xi=0 ∼ Bin(n, p0) . . . YnC =
n∑

i=1

1Xi=nC−1 ∼ Bin(n, pnC−1)

X = (Y1, . . . ,YnC ) ∼ Mult(n,p)

Multinomial distribution

A discrete random variable X = (Y1, . . . ,YnC ) has a Multinomial distribution with
parameters p0, . . . , pnC−1 where

∑
i pi = 1 and pi ∈ [0, 1] if its p.m.f. is given by:

pX (i0, . . . , inC−1) = P(X = (i0, . . . , inC−1)) =
n!

i0!i1! . . . inC−1!
pi00 p

i1
1 . . . p

i(nC−1)

(nC−1)
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X ∼ Mult(n,p)

• Example: student selection from a population with nC = 3:
▶ p0 = 60% undergraduates
▶ p1 = 30% graduate
▶ p2 = 10% PhD students

• Assume n = 20 students are randomly selected

• X ∼ (Y1,Y2,Y3) where:
▶ Y1 number of undergraduate students selected
▶ Y2 number of graduate students selected
▶ Y3 number of PhD students selected

• P(X = (10, 6, 4)) = 20!
10!6!4! (0.6)

10(0.3)6(0.1)4 = 9.6%
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Simulation: continuous distributions

• F (x) = PX (X ≤ x)
• F : R → [0, 1] invertible as F−1 : [0, 1] → R

▶ E.g., F strictly increasing
▶ N.B., the textbook notation for F−1 is F inv

• For Y ∼ U(0, 1) and 0 ≤ b ≤ 1
PY (Y ≤ b) = b

then, for b = F (x)
PY (Y ≤ F (x)) = F (x)

and then by inverting X = F−1(Y )
PX (X ≤ x) = PY (F

−1(Y ) ≤ x) = F (x)

• In summary:
X = F−1(Y ) ∼ F for Y ∼ U(0, 1)

• Example: F (x) = 1− e−λx for Exp(λ)
▶ F−1(y) = −1/λ log (1− y)
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Reference book chapter for this lesson

Kevin P. Murphy (2022)

Probabilistic Machine Learning: An Introduction

Chapter 6: Information Theory

online book
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https://probml.github.io/pml-book/book1.html


Optional reference

William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery (2007)

Numerical Recipes - The Art of Scientific Computing

Chapter 7: Random Numbers

online book
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