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Functions of two or more random variables: expectation

V = mHR? be the volume of a vase of height H and radius R
g(H,R) = mHR? is a random variable (function of random variables)
Py(V = 3) = Pugr(mHR? = 3)

How to calculate E[V]?

TWO-DIMENSIONAL CHANGE-OF-VARIABLE FORMULA. Let X and
Y be random variables, and let g : R — R be a function.

If X and Y are discrete random variables with values a1, as,... and
by, ba, . .., respectively, then

B, V)] = 33 glaib))PX = @i, =by).

If X and Y are continuous random variables with joint probability
density function f, then

Q(XY]—/ / ) [z, y) do dy.

If H AL R: e
E[V]:E[WHRZ]:/ / mhr?fy(h)fr(r)dhdr
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Linearity of expectations

Theorem. For X and Y random variables, and s, t € R:
E[rX +sY +t] = rE[X] + sE[Y] + t

Proof. (discrete case)

ElrX+Ys+t]=Y ) (ra+sb+t)P(X =a,Y = b)
a b

= (rZZaP(Xz;:,Yzb)) + (sZZbP(X:a,Y:b)) + (tZZP(Xz;:,Yzb))
a b a b
= (ZaP ) ( > bP(Y >+t—rE[X]+sE[Y]+t

a
Corollary. Efag+ >, a;Xi] = a0 + > i, aiE[X]]

Corollary. X < Y implies E[X] < E[Y]
Proof. Z=Y — X > 0 implies E[Z] = E[Y] — E[X] > 0, i.e., E[Y] > E[X].
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Applications

® Expectation of some discrete distributions
» X~ Ber(p) E[X]=p
» X ~ Bin(n,p) E[X]=n-p
O Because X =Y, X; for X1,..., X, ~ Ber(p)
_1
» X ~ Geo(p) E[X]=3
> X ~ NBin(n,p) ~ E[X] = =12
O Because X = > ", Xi — n for Xi,..., X, ~ Geo(p)
® Expectation of some continuous distributions
» X ~ Exp(\)  E[X]=1x
» X~ Erl(n,\)  E[X]=%
O Because X =) 7, X; for Xi,..., X, ~ Exp(\)
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Expectation of product and quotients

Theorem. For X I Y, we have: E[XY] = E[X]E[Y] Prove it!

PROPAGATION OF INDEPENDENCE. Let Xy, Xo,..., X, be indepen-
dent random variables. For each i, let h; : R — R be a function and
define the random variable

Then Y;,Ys,...,Y,, are also independent.

Corollary. For X 1L Y and Y > 0, we have: E[X/Y] > E[X]/E[Y]
Proof. X 1L Y implies X 1L 1/y. By theorem above:

E[X/Y] = E[X-Y/v] = E[X]E[/¥] > E[X]/E[Y]

because by Jensen's inequality E[t/y] > 1/E[Y] since 1/y is convex for y 0. O
Exercise at home. Show that E[X/Y] = E[X]/E[Y] is a false claim.
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Law of iterated/total expectation

Conditional expectation

oo

E[X|Y = b] = Za;p(a,-|b) EX|Y =y] = / xf(x|y)dx

— 00

Theorem. (Law of iterated/total expectation)
Ey[E[X|Y]] = E[X]
Proof. (for X, Y discrete random variables)
Ev[E[X|Y]] = Zza px|v(ailbj)py (b Zza pxv(ai, bj) = Zaipx(ai) = E[X]
J i i

Example (cfr the example from Lesson 1 on the Law of total probability)

® Factory 1's light bulbs working hours ~ Exp(/1000)

® Factory 2's light bulbs working hours ~ Exp(/2000)

® Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it.

What is the average work hour of a light bulb on the market? 635



Variance of the sum and covariance

Var(X + Y) = E[(X 4+ Y — E[X + Y])?] = E[((X — E[X]) + (Y — E[Y]))?]
E[(X — E[X])’] + E[(Y — E[Y])*] + 2E[(X — E[X])(Y — E[Y])]
Var(X) + Var(Y) + 2Cov(X, Y)

Covariance

The covariance Cov(X, Y) of two random variables X and Y is the number:

Cov(X,Y) = E[(X — EIX])(Y — E[Y])]

Uncorrelated Positively correlated Negatively correlated
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Covariance

Theorem. Cov(X,Y) = E[XY]|— E[X]E[Y] Prove it!
e If X and Y are independent (X 1L Y):
Cov(X,Y)=0 Var(X +Y) = Var(X) + Var(Y)

® But there are X and Y uncorrelated (ie., Cov(X, Y) = 0) that are dependent!
® Variances of some discrete distributions
> X ~ Ber(p) Var(X)=p(1-p)
» X ~ Bin(n,p) Var(X)=np(l—p)
O Because X = »_" | X; for Xi,..., X, ~ Ber(p) and independent
» X ~ Geo(p) Var(X)= 1;—2"
» X ~ NBin(n,p) Var(X)= nl;—f
O Because X = Y7, X; — n for X1, ..., X, ~ Geo(p) and independent
® Variances of some continuous distributions
» X ~ Exp(\) Var(X) =1
» X~ Erl(n,A)  Var(X) =
O Because X =) ", X for Xi,..., X, ~ Exp()\) and independent
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Covariance and covariance matrix

COVARIANCE UNDER CHANGE OF UNITS. Let X and Y be two
random variables. Then

Cov(rX + s,tY +u) = rt Cov(X,Y)

for all numbers 7, s,t, and u.

® Hence, Var(rX +sY +t) = r?Var(X) + s*Var(Y) + 2rsCov(X, Y)
® Bivariate Normal/Gaussian distribution:

CRORRY (N (A

oxy Oy

» where marginals are X ~ N (ux,0%), Y ~ N(uy,0%), and Cov(X,Y) = oxy
» Covariance matrix Xj; = Cov(Xi, X;) for a vector X = (Xq,..., X,) of r.v.'s

® Covariance depends on the unit of measure!
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https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Correlation coefficient

DEFINITION. Let X and Y be two random variables. The correlation
coefficient p(X,Y) is defined to be 0 if Var(X) = 0 or Var(Y) = 0,

and otherwise
Cov(X,Y)

pPXT) = v/ Var(X) Var(Y)
® Correlation coefficient is dimensionless (not affected by change of units)

» E.g., if X and Y are in Km, then Cov(X, Y), Var(X) and Var(Y) are in Km?
® Moreover: —1 < p(X,Y) <1

» The bounds are derived from the Cauchy—Schwarz’s inequality:

E[IXY[] < VE[X?]VE[Y?]
Proof. For any u, w € R, we have 2|uw| < u? + w?. Therefore, 2|UW| < U? + W2 for r.v.’s
U and V. By defining U = X/,\/E[x?] and W = Y/\/E[v3] *), we have
2 - IXYI/\JEX3/JE[Y?] < X*/E[x?] + Y*/E[v?]. Taking the expectations, we conclude:
2. E“XY”/\/ E[X2]\/E[Y?] < 2. (*) The case E[X?] = 0 or E[Y?] = 0 is left as an exercise. [l
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https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality

Bivariate Normal /Gaussian distribution

0 9) ~ M) (7% ))

oxy Oy

where marginals are X ~ N(ux,0%), Y ~ N(uy,0%), and Cov(X,Y) = oxy
® Since oxy = p(X, Y) O0X -0y

0'2 (X Y) Ox 0y
X, Y)~ X
Y~ M) (i oy T )
® Density of N((0,0),(1,0xy,0xy,1)):
Floy) = — L gy 2y

S o2my/1-— %y
e Useful facts for (X, Y') bivariate Normal:

» for (X, Y) bivariate Normal: p(X, Y) =0 iff X 1L Y, i.e., uncorrelation equals independence
» (X, Y) bivariate Normal iff aX + bY is Normal for any a, b € R
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Sum of independent Normal random variables

® See Lesson 04 and Lesson 08 for convolution formulas

ADDING TWO INDEPENDENT CONTINUOUS RANDOM VARIABLES.
Let X and Y be two independent continuous random variables, with
probability density functions fx and fy. Then the probability den-
sity function fz of Z = X + Y is given by

falz) = / Fx(z — 9P ) dy
for —o00 < 2 < 0.

Theorem. If X ~ N (ux,0%) and Y ~ N (uy,0%) and X 1L Y, then:
Z=X+Y ~N(ux +py,o% +0%)
Proof. See [T, Sect. 11.2] O

® Ingeneral: Z=rX+sY +t~N(rux+suy +t, rPoy + s>o%)
® The converse of the theorem also holds: [Lévy-Cramér theorem|
» If X 1L Y and Z = X+ Y is normally distributed, then X and Y follow a normal distribution.
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https://arxiv.org/pdf/1810.01768.pdf

Extremes of independent random variables

THE DISTRIBUTION OF THE MAXIMUM. Let Xy, Xo,.... X, be n
independent random variables with the same distribution function
F, and let Z = max{Xy, Xo,...,X,}. Then

P(Z<a)=P(Xi<a,....,X,<a)=[[, P(X; <a)=((F(a))"

Example: maximum water level over 365 days assuming water level on a day is U(0,1)

Example: maximum of two rolls of a die with 4 sides

THE DISTRIBUTION OF THE MINIMUM. Let Xy, Xs,..., X, be n
independent random variables with the same distribution function
F, and let V = min{ X, X,..., X,,}. Then

Fy(a) =1-(1— F(a))™

o P(V<a)=1-P(Xy>a ... Xp>23)=1—[]",(1— P(X; < a)=1—((1— F(a))"
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https://en.wikipedia.org/wiki/Four-sided_die

Product and quotient of independent random variables

PRODUCT OF INDEPENDENT CONTINUOUS RANDOM VARIABLES. Let
X and Y be two independent continuous random variables with prob-
ability densities fx and fy. Then the probability density function
fz of Z = XY is given by

fz(z) = /"; fr (f) fx(T)ﬁ dx

for —o00 < 2 < 0.

QUOTIENT OF INDEPENDENT CONTINUOUS RANDOM VARIABLES.
Let X and Y be two independent, continuous random variables with
probability densities fx and fy. Then the probability density func-
tion fz of Z = X/Y is given by

f20) = [ fxtea)iv(aialdo

for —oco < z < 0.

* X,Y ~N(0,1) independent, Z = X/Y ~ Cau(0,1) where:

1

fz(x) = 013
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Distances and Metrics

A numerical measurement of how far apart two objects are.

Distances and Metrics

A distance over a set A is a function d : A x A — R such that:

® d(x,y)>0 non-negativity
® d(x,y)=0iffx=y identity of indiscernibles
* d(x,y) =d(y,x) symmetry

Moreover, d is called a metric if in addition:

® d(x,z) <d(x,y)+d(y,z) triangle inequality

Examples over A = R":
® Manhattan or L; distance di(x,y) = |[x —y[l1 = >, [xi — yil
e Euclidian or L, distance da(x,y) = [[x —y|l2 = /> (xi — ¥i)?
® Chebyshev or L, distance dyo(X,y) = [|X — ¥|lcc = max}_; |x; — yi]
We aim at defining distances and metrics over probability distributions, i.e., when

A={F|F:R—[0,1] is a CDF}
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Distances over probability distributions

A numerical measurement of how far apart two probability distributions are.

® ML/DM models are supposed to be applied on the same distribution as the training set:

» How far is the test data distribution from the one of the training data? [Transfer learning
» Is the data changing over time, thus my model is inadequate? [Dataset shift]

® ML/DM algorithms are supposed to choose the best hypothesis:

» What is the split in a DT which best distinguish the distribution of classes?
» Is my model separating positive and negatives as much as possible?
» Is my clustering separating groups with different distributions?

® Data preprocessing looks at feature distribution:

» Are these two features conveying the same information?
» Can this feature be predictive to the class feature?

® ... and many other applications in Data Science
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Total variation distance and KS distance

Let X, Y be random variables:

® Total Variation (TV) distance (discrete and continuous case):

1
dru(X, Y) 2Z|px a)-prla)l (X Y) =5 [ 1)~ (0l

» dry is a metric with drv(X, Y) € [0, 1]

e Kolmogorov-Smirnov (KS) distance:

S
)

dks(X, Y)ZSI)J(P\FX(X)—FY(X” £ os
» dks is a metric with dks(X, Y) € [0,1] % 06 J/fry
® dry and dks have no closed forms in general % 04 /;‘J
® dys can be estimated from samples of the distributions 3 02 (,,PAJ
% 2 0 2 4



Entropy H(X) of a random variable X

® The Shannon’s information entropy is the average level of “information” (or “surprise”,
“uncertainty”, “unpredictability” ) inherent to the variable's possible outcomes

» Information is inversely proportional to probability
O Highly likely/unlikely events carry less/more new information
» Information content ic() of two independent events should sum up log ﬁ
5 ic(p(A N B)) = ic(p(A)) + ic(p(B)) = ic(p(A)p(B))
5 ic(p(Q)) = ic(1) = 0
o ic(p(A)) > 0

® H(X) = E[—log p(X)] (discrete) H(X) = E[—log f(X)] (continuous)
Zp )log p(a H(X) = 7/7 f(x) log f(x)dx

» For X discrete, H(X) > 0 since — log p(X) = log/p(x) > 0
O zero reached when p(a1) =1 and p(a;) =0 for i # 1

» For X ~ Ber(p), H(X) = —plogp— (1 — p)log (1 — p) [binary entropy function]
O for X ~ Ber(0.5) : H(X) = —2-12logl/2=1 |unit of entropy is called a bit]
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https://en.wikipedia.org/wiki/Entropy_(information_theory)

Cross entropy

® X, Y discrete random variables with p.m.f. px and py:

Cross entropy of X w.r.t. Y: H(X;Y) = Ex[—logp(Y)]

Z px(a;) log py (ar)

0 if px(a;) =0

with px(aogpv(a) = { ©  FPAIT0

H(X;Y) is the “information” or “uncertainty” or “loss” when using Y to encode X

The closer px and py, the lower is H(X;Y)
The lower bound is for Y = X, for which H(X; Y) = H(X)
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Kullback-Leibler divergence

KL divergence

For X, Y discrete random variables with p.m.f. px and py:

Dit(X || Y) pr ) log pxg i = H(X: Y) — H(X)

® Measure how distribution of Y (model) can reconstruct the distribution of X (data)

» Also called: relative entropy or information gain of X w.rt. Y

® Properties

» Di(X [ Y)>0 [Gibbs’ inequality]
> DKL(X || Y) =0 iff FX = Fy
» Dt (X ||Y) # Drc(Y || X) [not a distance!]

® For X, Y continuous: Dk (X || Y) = [ fx(x)log fxgxg dx
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https://en.wikipedia.org/wiki/Gibbs%27_inequality

® X, Y discrete random variables with p.m.f. px and py:

® Joint p.m.f. pxy. Joint entropy of (X, Y):

H((X,Y)) ZPXY ai, aj) log pxv (ai, a))

ij
e |[f X 1L Y, then:

pr )Py (a)(log px(a;) + log py (7)) =

:_(ZPX ZPY(QJ log py (a))) — ZPY aj) ZPX )log px(ai)) = H(X) + H(Y)
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Mutual information

Mutual information

For X, Y discrete random variables with p.m.f. px and py and joint p.m.f. pxy:

aj,a
I(X,Y) = Di(pxy || pxpy) =Y _ pxv(ai, 3j) log pxv(2:,3)

r ox(@)py(ay) - TXFHY)=H(X, Y)

® MI measures how dependent two distributions are
» Measure how product of marginals can reconstruct the joint distribution

® Properties

» 1(X,Y) = I(Y,X), and I(X,Y) >0
> I(X,Y)=0iff X 1LY
» NMI = % €10,1] [Normaiized mutual information]

® For X, Y continuous: /(X,Y) f f fxy (x,y) log foX(;()f(yy dxdy

22/35



The data processing inequality

Let X be unknown, and assume to observe a noisy version Y of it

Let Z = f(Y) be a data processing to improve the “quality” of Y

® Z does not increase the information about X, i.e.: [Data processing inequality]

I(X,Y) > I(X,2)

If I(X,Y)=1(X,Z)and Z is a summary of Y, we call it a sufficient statistics
» Let X ~ Ber(f) and Y =(Yq,...,Y,) ~ Ber(6)" modelling i.i.d. observations
» Z=5",Y:~ Binom(n,0) is a sufficient statistics
» Proof (sketch): use Dy (pxy || pxpy) and:
p(Vi=yl....Ya=y) = [[07(1 -0 = gZ0i(1—0)E = p(Z =3 y,)
i

1
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Earth mover's distance / Wasserstein metric

® The minimum cost to transform one distribution to another

® Cost = amount of mass to move x distance to move it

® X,Y discrete random variables:

Zi,j Fij-lai — al

EMD(X,Y) =
(X, Y) S F

where F is the flow which minimizes the numerator (total cost) subject to some constraints.
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https://en.wikipedia.org/wiki/Earth_mover%27s_distance#EMD_between_signatures

Earth mover's distance / Wasserstein metric

® The minimum cost to transform one distribution to another

® Solution of the transportation problem for X, Y multivariate (version from Ramdas et al. 2015):

EMD(X, Y) = /0 1Fc (p) — F(p)]l dp

For X, Y univariate, this simplifies to:
EMD(X,Y) Z |Fx(a (a))] EMD(X,Y) = / |Fx(x) — Fy(x)|dx

® For empirical distributions from ordered samples xi,...,x, and y1,..., yu:

1
EMD(X,Y) = n Z Ixi — yil

i
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https://arxiv.org/abs/1509.02237

Not all problems can be solved with calculus!
® Complex interactions among random variables can be simulated
® Generated random values are called realizations
Basic issue: how to generate realizations?
» The Galton Board
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https://en.wikipedia.org/wiki/Galton_board
https://upload.wikimedia.org/wikipedia/commons/transcoded/d/dc/Galton_box.webm/Galton_box.webm.360p.vp9.webm

Not all problems can be solved with calculus!

Complex interactions among random variables can be simulated

Generated random values are called realizations

® Basic issue: how to generate realizations?

Assumption: we are only given U(0, 1)

Problem: derive all the other random generators
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Simulation: discrete distributions

Bernoulli random variables

Suppose U has a U(0,1) distribution. To construct a Ber(p) random variable
for some 0 < p < 1, we define

Yo 1 if:U<p4
0 ifU>p
so that
1)=PWU < p) =p,
PX=0)=PU=p)=1-0p.

This random variable X has a Bernoulli distribution with parameter p.

® For Xi,...,X, ~ Ber(p) i.i.d., we have: Y7 ; X; ~ Binom(n, p)
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DEFINITION. A discrete random variable X has a Bernoulli distri-
bution with parameter p, where 0 < p < 1, if its probability mass
function is given by

px(1)=P(X=1)=p and px(0)=PX =0)=1-—p.

We denote this distribution by Ber(p).

e Alternative definition: px(a) = p?- (1 — p)!=2 for a € {0,1}
o Categorical distribution generalizes to nc > 2 possible values
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Categorical distribution

A discrete random variable X has a Categorical distribution with parameters
Po, - -, Pnc—1 Where >~ pi =1 and p; € [0,1] if its p.m.f. is given by:

px(i)=P(X=1i)=p; fori=0,...,nc—1

* Alternative definition: px(a) = [[; p; >~ for a € {0,...,nc — 1}

1 if o(x)

Notation. Indicator function: 1,(x) :{ 0 otherwise
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X ~ Mult(n, p)

X ~ Bin(n, p) models the number of successes in n Bernoulli trials

Intuition: for X1, Xa,..., X, i.i.d. X; ~ Ber(p): X =3__, X; ~ Bin(n, p)

X ~ Mult(n,p) models the number of categories in n Categorical trials

Intuition: for X1, Xy, ..., X, such that X; ~ Cat(p) and independent (i.i.d.), define:

= Z ]]-X,:O ~ Bin(n,po) . Y,,C = Z ]]-Xi:ﬂc*l ~ Bin(n, pncfl)

i=1 i=1

X =(Y1,..., Yn) ~ Mult(n,p)

Multinomial distribution

A discrete random variable X = (Yi,..., Y;.) has a Multinomial distribution with
parameters po, . .., pnc—1 Where 3. pi =1 and p; € [0, 1] if its p.m.f. is given by:

. . ) , n! .
pX(’Ov ocog Inc—l) — P(X - (IO7 ocog Inc—l)) — | pO pl . p(ng 11))
nc—1

iolin!.
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X ~ Mult(n, p)

® Example: student selection from a population with n¢c = 3:
» pg = 60% undergraduates
» p1 = 30% graduate
» po> = 10% PhD students
® Assume n = 20 students are randomly selected
o X ~ (Y17 Yz, Y3) where:
» Y1 number of undergraduate students selected
» Y2 number of graduate students selected
» Y3 number of PhD students selected

* P(X =(10,6,4)) = 132(0.6)1°(0.3)5(0.1)* = 9.6%
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Simulation: continuous distributions

® F(x)=Px(X <x)

F:R — [0,1] invertible as F~1:[0,1] - R
» E.g., F strictly increasing
» N.B., the textbook notation for F~1 is Finv

For Y ~ U(0,1)and 0 < b <1

Py(Y <b)=0b
then, for b = F(x)

Py(Y < F(x)) = F(x)
and then by inverting X = F~1(Y)

Px(X < x) = Py(F~Y(Y) < x) = F(x)
® |n summary:

X =F YY)~ F for Y ~ U(0,1)
Example: F(x) =1— e for Exp()\)

> F7i(y) = —%/alog (1 - y)
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Reference book chapter for this lesson

D Kevin P. Murphy (2022)
Probabilistic Machine Learning: An Introduction
Chapter 6: Information Theory
online book
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https://probml.github.io/pml-book/book1.html

Optional reference

D William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery (2007)
Numerical Recipes - The Art of Scientific Computing
Chapter 7: Random Numbers
online book
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http://numerical.recipes/

