Statistical Methods for Data Science

Lesson 05 - Continuous random variables

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

Discrete random variables

DEFINITION. Let Ω be a sample space. A discrete random variable is a function $X : \Omega \to \mathbb{R}$ that takes on a finite number of values a_1, a_2, \ldots, a_n or an infinite number of values a_1, a_2, \ldots .

DEFINITION. The *probability mass function* p of a discrete random variable X is the function $p : \mathbb{R} \to [0, 1]$, defined by

p(a) = P(X = a) for $-\infty < a < \infty$.

- Support finite or countable $\{a_1, \ldots, a_n, \ldots\}$
 - $p(a_i) > 0$ for i = 1, 2, ...
 - p(a) = 0 if $a \notin \{a_1, a_2, \ldots\}$
 - $\sum_i p(a_i) = 1$
- What happens when the support is uncountable? E.g., [0,1] or \mathbb{R}^+ or \mathbb{R}
 - $p(a_i)$ must be 0 because $|\mathbb{R}| = 2^{\aleph_0} > \aleph_0 = |\mathbb{N}|$
 - hence, $\sum_i p(a_i) = 0$

Continuous random variables

• We cannot assign a "mass" to a real number, but we can assign it to an interval!

•
$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x) dx$$

[Cumulative Distribution Function]

Density function

$$P(X = a) \leq P(a - \epsilon \leq X \leq a + \epsilon) = \int_{a-\epsilon}^{a+\epsilon} f(x)dx = F(a + \epsilon) - F(a - \epsilon)$$

- for $\epsilon \to 0$, $P(a \epsilon \le X \le a + \epsilon) \to 0$, hence P(X = a) = 0
- What is the meaning of the density function f(x)?
- f(a) is a (relative) measure of how likely is X will be near a

$$X \sim U(\alpha, \beta)$$

DEFINITION. A continuous random variable has a *uniform distribution* on the interval $[\alpha, \beta]$ if its probability density function f is given by f(x) = 0 if x is not in $[\alpha, \beta]$ and

$$f(x) = \frac{1}{\beta - \alpha}$$
 for $\alpha \le x \le \beta$

We denote this distribution by $U(\alpha, \beta)$.

•
$$F(x) = \int_{-\infty}^{x} f(x) dx = \frac{1}{\beta - \alpha} \int_{\alpha}^{x} 1 dx = \frac{x - \alpha}{\beta - \alpha}$$
 for $\alpha \le x \le \beta$
See R script

$X \sim \textit{Exp}(\lambda)$

- For $X \sim Geo(p)$, we have: $F(x) = P(X \le x) = 1 (1 p)^{\lfloor x \rfloor}$
- extend to reals: $F(X) = P(X \le x) = 1 (1 p)^x = 1 e^{x \cdot \log(1 p)} = 1 e^{-\lambda x}$ for $\lambda = \log(\frac{1}{1 - p})^x$

•
$$f(x) = \frac{dF}{dx}(x) = \lambda e^{-\lambda x}$$

DEFINITION. A continuous random variable has an *exponential distribution* with parameter λ if its probability density function f is given by f(x) = 0 if x < 0 and

$$f(x) = \lambda e^{-\lambda x}$$
 for $x \ge 0$

We denote this distribution by $Exp(\lambda)$.

λ is the rate of events, e.g.,

• $\lambda = 1/10$ number of bus arrivals per minute, or $1/\lambda = 10$ minutes to wait for bus arrival

- ► $P(X > 1) = 1 P(X \le 1) = e^{-\lambda} = 0.9048$ probability of waiting more than 1 minute.
- Exponential is memoryless: $P(X > s + t | X > s) = e^{-\lambda \cdot (s+t)}/e^{-\lambda \cdot s} = e^{-\lambda \cdot t} = P(X > t)$

See R script and seeing-theory.brown.edu

 $X \sim N(\mu, \sigma^2)$

DEFINITION. A continuous random variable has a *normal distribu*tion with parameters μ and $\sigma^2 > 0$ if its probability density function f is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \quad \text{for } -\infty < x < \infty.$$

We denote this distribution by $N(\mu, \sigma^2)$.

- Also called Gaussian distribution
- Standard Normal/Gaussian is N(0,1)
 - $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ sometimes written as $\phi(x)$
 - No closed form for $F(a) = \Phi(a) = \int_{-\infty}^{a} \phi(x) dx$

CCDF of $Z \sim N(0,1)$

Table B.1. Right tail probabilities $1 - \Phi(a) = P(Z \ge a)$ for an N(0, 1) distributed random variable Z.

a	0	1	2	3	4	5	6	7	8	9
0.0	5000	4960	4920	4880	4840	4801	4761	4721	4681	4641
0.1	4602	4562	4522	4483	4443	4404	4364	4325	4286	4247
0.2	4207	4168	4129	4090	4052	4013	3974	3936	3897	3859
0.3	3821	3783	3745	3707	3669	3632	3594	3557	3520	3483
0.4	3446	3409	3372	3336	3300	3264	3228	3192	3156	3121
0.5	3085	3050	3015	2981	2946	2912	2877	2843	2810	2776
0.6	2743	2709	2676	2643	2611	2578	2546	2514	2483	2451
0.7	2420	2389	2358	2327	2296	2266	2236	2206	2177	2148
0.8	2119	2090	2061	2033	2005	1977	1949	1922	1894	1867
0.9	1841	1814	1788	1762	1736	1711	1685	1660	1635	1611
1.0	1587	1562	1539	1515	1492	1469	1446	1423	1401	1379

• E.g., P(Z > 1.04) = 0.1492

See R script

Quantiles

DEFINITION. Let X be a continuous random variable and let p be a number between 0 and 1. The pth *quantile* or 100pth *percentile* of the distribution of X is the smallest number q_p such that

$$F(q_p) = \mathcal{P}(X \le q_p) = p$$

The *median* of a distribution is its 50th percentile.

- If F() is strictly increasing, $q_p = F^{-1}(p)$
- E.g., for $Exp(\lambda)$, $F(a) = 1 e^{-\lambda x}$, hence $F^{-1}(p) = \frac{1}{\lambda} \log \frac{1}{(1-p)}$

See R script

Simulation

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called *realizations*
- Basic issue: how to generate realizations?
 - ▶ in R: *rnorm*(5), *rexp*(2), *rbinom*(...), ...
- Ok, but how do they work?
- Assumption: we are only given runif()!
- **Problem**: derive all the other random generators

Simulation: discrete distributions

Bernoulli random variables

Suppose U has a U(0,1) distribution. To construct a Ber(p) random variable for some 0 , we define

$$X = \begin{cases} 1 & \text{if } U < p, \\ 0 & \text{if } U \ge p \end{cases}$$

so that

$$P(X = 1) = P(U < p) = p,$$

 $P(X = 0) = P(U \ge p) = 1 - p.$

This random variable X has a Bernoulli distribution with parameter p.

Simulation: continuous distributions

- $F:\mathbb{R} \to [0,1]$ and $F^{-1}:[0,1] \to \mathbb{R}$
 - E.g., F strictly increasing
 - N.B., the textbook notation for F^{-1} is F^{inv}
- For $X \sim U(0,1)$ and $0 \le b \le 1$ $P(X \le b) = b$
- then, for b = F(x) $P(X \le F(x)) = F(x)$
- and then by inverting $P(F^{-1}(x) \le x) = F(x)$

• In summary: $F^{-1}(X) \sim F$ for $X \sim U(0,1)$

See R script

Common distributions

Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).