
 Consistenza e congruenza-6.3

Linguaggi di Programmazione

Roberta Gori



Equivalenza operazionale



Equivalenza operazionale

terminazione and determinismo non hanno importanza:
l’equivalenza operazionale  e’ sempre ben definita

<latexit sha1_base64="ixDPX35WcYcbuSqgYTf7SxScTuE="></latexit>

a1 ⇠op a2 sse 8�, n. ( ha1,�i ! n , ha2,�i ! n )

<latexit sha1_base64="IsjQIETx1pKbseUP9ogK3uVEP4k="></latexit>

b1 ⇠op b2 sse 8�, v. ( hb1,�i ! v , hb2,�i ! v )

<latexit sha1_base64="NMygofWODmdQIrwaRSeywpM70+U="></latexit>

c1 ⇠op c2 sse 8�,�0. ( hc1,�i ! �0 , hc2,�i ! �0 )



Congruenza

prendiamo un qls contesto

e’ vero che ?

ovvero: possiamo rimpiazzare una sottoespressione
con una equivalente senza cambiare il risultato?

<latexit sha1_base64="qUm6nkN0JOhfRWz35Rqq7GEba+U=">AAACBXicbVC7TsNAEDyHVwgvB0qaExESVWQjBJQBGsogkYdkW9H5sgmnnB+6W4MiKzVfQQsVHaLlOyj4F2zjAhKmGs3samfHj6XQaFmfRmVpeWV1rbpe29jc2t4x67tdHSWKQ4dHMlJ9n2mQIoQOCpTQjxWwwJfQ8ydXud+7B6VFFN7iNAYvYONQjARnmEkDs+4GDO98P72YOS4fRugNzIbVtArQRWKXpEFKtAfmlzuMeBJAiFwyrR3bitFLmULBJcxqbqIhZnzCxuBkNGQBaC8tos/oYaIZRjQGRYWkhQi/N1IWaD0N/GwyD6rnvVz8z3MSHJ17qQjjBCHk+SEUEopDmiuRdQJ0KBQgsjw5UBFSzhRDBCUo4zwTk6ykWtaHPf/9IukeN+3Tpn1z0mhdls1UyT45IEfEJmekRa5Jm3QIJw/kiTyTF+PReDXejPef0YpR7uyRPzA+vgFUMJih</latexit>

A[·]
<latexit sha1_base64="MWP2YHHMCgcel/5OGULLAhTpunM="></latexit>

a1 ⇠op a2 ) A[a1] ⇠op A[a2]

<latexit sha1_base64="m7lRvSWaVB5VLIeQomcwsXvLfP4=">AAACB3icbVDLSsNAFJ3UV62vaJduBotQEUpSfC2LblxWsA9IQplMb+vQyYOZG6GUfoBf4VZX7sStn+HCfzGJWWj1rA7n3Mu59/ixFBot68MoLS2vrK6V1ysbm1vbO+buXldHieLQ4ZGMVN9nGqQIoYMCJfRjBSzwJfT8yVXm9+5BaRGFtziNwQvYOBQjwRmm0sCsNl0UAWhad1w+jNA7Pj0amDWrYeWgf4ldkBop0B6Yn+4w4kkAIXLJtHZsK0ZvxhQKLmFecRMNMeMTNgYnpSFLA71ZfvycHiaaYURjUFRImovwc2PGAq2ngZ9OBgzv9KKXif95ToKjC28mwjhBCHkWhEJCHqS5EmkrQIdCASLLLgcqQsqZYoigBGWcp2KS1lRJ+7AXv/9Lus2Gfdawb05qrcuimTLZJwekTmxyTlrkmrRJh3AyJY/kiTwbD8aL8Wq8fY+WjGKnSn7BeP8C2ROYMw==</latexit>

2⇥ ([·] + 5)p.e.

<latexit sha1_base64="ixDPX35WcYcbuSqgYTf7SxScTuE="></latexit>

a1 ⇠op a2 sse 8�, n. ( ha1,�i ! n , ha2,�i ! n )



55

Contesti
quali sono i contesti possibili per le espressioni aritmetiche?

[·] + 5

<latexit sha1_base64="yrJSUFOyrRqxG/xFXMIW9QA296Q=">AAAB/XicbVDLSsNAFJ3UV62vqks3g0UQhJJIiy6LblxWsA9IQ5lMb+vQSSbM3AglFL/Cra7ciVu/xYX/YhKz0NazOpxzL/fc40dSGLTtT6u0srq2vlHerGxt7+zuVfcPukbFmkOHK6l032cGpAihgwIl9CMNLPAl9Pzpdeb3HkAbocI7nEXgBWwSirHgDFPJdQd8pNCjZ7Q5rNbsup2DLhOnIDVSoD2sfg1GiscBhMglM8Z17Ai9hGkUXMK8MogNRIxP2QTclIYsAOMleeQ5PYkNQ0Uj0FRImovweyNhgTGzwE8nA4b3ZtHLxP88N8bxpZeIMIoRQp4dQiEhP2S4FmkXQEdCAyLLkgMVIeVMM0TQgjLOUzFOy6mkfTiL3y+T7nndadSbt41a66popkyOyDE5JQ65IC1yQ9qkQzhR5Ik8kxfr0Xq13qz3n9GSVewckj+wPr4Bk2uU0w==</latexit>

2⇥ ([·] + 5)

<latexit sha1_base64="UvltKiIgJhr77/f06Z6bAoWfKts=">AAACCXicbVDLSsNAFJ3UV62vqrhyM1iEilCS0qLLohuXFewDklAm09s6dPJg5kYooV/gV7jVlTtx61e48F9MYxbaelaHc+7l3Hu8SAqNpvlpFFZW19Y3ipulre2d3b3y/kFXh7Hi0OGhDFXfYxqkCKCDAiX0IwXM9yT0vMn13O89gNIiDO5wGoHrs3EgRoIzTKVB+ajuoPBB06rt8GGILj2nzbNBuWLWzAx0mVg5qZAc7UH5yxmGPPYhQC6Z1rZlRugmTKHgEmYlJ9YQMT5hY7BTGrA00k2y82f0NNYMQxqBokLSTITfGwnztZ76XjrpM7zXi95c/M+zYxxduokIohgh4PMgFBKyIM2VSHsBOhQKENn8cqAioJwphghKUMZ5KsZpUaW0D2vx+2XSrdesRq1526i0rvJmiuSYnJAqscgFaZEb0iYdwklCnsgzeTEejVfjzXj/GS0Y+c4h+QPj4xuUP5iJ</latexit>

2⇥ ([·] + 5)  50

<latexit sha1_base64="tocYqLMyEW/rss62sixPI9PhYQw=">AAACEXicbVDLSgNBEJyNrxhfqx5FGAxCRAi7IUGPQS8eI5gHZJcwO+nEIbMPZ3qFEHLyE/wKr3ryJl79Ag/+i7trDppYp6Kqm+ouL5JCo2V9Grml5ZXVtfx6YWNza3vH3N1r6TBWHJo8lKHqeEyDFAE0UaCETqSA+Z6Etje6TP32PSgtwuAGxxG4PhsGYiA4w0TqmYcVB4UPmpa6Du+H6NJTWjuhjoQ7WrN6ZtEqWxnoIrFnpEhmaPTML6cf8tiHALlkWndtK0J3whQKLmFacGINEeMjNoRuQgOWRLuT7I0pPY41w5BGoKiQNBPh98aE+VqPfS+Z9Bne6nkvFf/zujEOzt2JCKIYIeBpEAoJWZDmSiT9AO0LBYgsvRyoCChniiGCEpRxnohxUlgh6cOe/36RtCplu1quXVeL9YtZM3lyQI5IidjkjNTJFWmQJuHkgTyRZ/JiPBqvxpvx/jOaM2Y7++QPjI9vgVebHA==</latexit>

(2⇥ ([·] + 5)  50) ^ x = y

<latexit sha1_base64="TfFFZPfn81G1irWRzcjfW0HbL9g=">AAACHnicbVDLTgJBEJzFF+IL9ehlIjFBTcgugejFhOjFIybySNgNmR0anDj7cKZXJYR/8BP8Cq968ma86sF/cUAOCtapUtWdri4/lkKjbX9aqbn5hcWl9HJmZXVtfSO7uVXXUaI41HgkI9X0mQYpQqihQAnNWAELfAkN//ps5DduQWkRhZfYj8ELWC8UXcEZGqmdPcgXXRQBaJpvubwToUcPaXmfuhJuaNk25A46PaD3J/12NmcX7DHoLHEmJEcmqLazX24n4kkAIXLJtG45dozegCkUXMIw4yYaYsavWQ9ahobMxPAG45+GdC/RDCMag6JC0rEIvzcGLNC6H/hmMmB4pae9kfif10qwe+wNRBgnCCEfHUIhYXxIcyVMWUA7QgEiGyUHKkLKmWKIoARlnBsxMe1lTB/O9PezpF4sOKVC+aKUq5xOmkmTHbJL8sQhR6RCzkmV1AgnD+SJPJMX69F6td6s95/RlDXZ2SZ/YH18A2OHn8U=</latexit>

x := 2⇥ ([·] + 5)

<latexit sha1_base64="Xj3C46+QW3DTYtKVss3fjZxEGa8=">AAACDXicbVDLSgNBEJyNrxhfq57Ey2AQIkLYDQmKIAS9eIxgHpAsYXbSiUNmH8z0imEJfoJf4VVP3sSr3+DBf3Gz5qCJdSqquqnuckMpNFrWp5FZWFxaXsmu5tbWNza3zO2dhg4ixaHOAxmolss0SOFDHQVKaIUKmOdKaLrDy4nfvAOlReDf4CgEx2MDX/QFZ5hIXXPv/uycljooPNC00O7wXoAOPaaVo66Zt4pWCjpP7CnJkylqXfOr0wt45IGPXDKt27YVohMzhYJLGOc6kYaQ8SEbQDuhPksinTh9YUwPI80woCEoKiRNRfi9ETNP65HnJpMew1s9603E/7x2hP1TJxZ+GCH4fBKEQkIapLkSSTdAe0IBIptcDlT4lDPFEEEJyjhPxCgpK5f0Yc9+P08apaJdLlauy/nqxbSZLNknB6RAbHJCquSK1EidcPJAnsgzeTEejVfjzXj/Gc0Y051d8gfGxzfn9pnA</latexit>

while x  100 do x := 2⇥ ([·] + 5)

<latexit sha1_base64="aIWVoGwF+90fUoTOWyGOriToyGg=">AAACNXicbVDLSgNBEJyN7/iKevQyGISIEHZFUQQh6sWjgjGB7BJmJ51kyOzDmV41LH6Pn+BXeFU8eBOv/oKzMYIm9qmo6qaqy4+l0Gjbr1ZuYnJqemZ2Lj+/sLi0XFhZvdJRojhUeSQjVfeZBilCqKJACfVYAQt8CTW/d5rptRtQWkThJfZj8ALWCUVbcIaGahaO3YBh12+nt10h4d6ld66Ea+rYtkt/pFaU8YdHdMdFEYCmpY bLWxF6dJvubTULRbtsD4aOA2cIimQ4583Cm9uKeBJAiFwyrRuOHaOXMoWCmwh5N9EQM95jHWgYGDJj6aWDV+/pZqIZRjQGRYWkAxJ+X6Qs0Lof+GYzS69HtYz8T2sk2D7wUhHGCULIMyM0hQyMNFfCdAi0JRQgsiw5UBFSzhRDBCUo49yQiSk1b/pwRr8fB1c7ZWe3vHexW6ycDJuZJetkg5SIQ/ZJhZyRc1IlnDyQJ/JMXqxH6816tz6+V3PW8GaN/Bnr8wtBl6oD</latexit>



Contesti

C[·] ::= x := A[·]
| C[·]; c
| c;C[·]
| if B[·] then c else c
| if b then C[·] else c
| if b then c else C[·]
| while B[·] do c
| while b do C[·]

<latexit sha1_base64="obMn5bEVQ1yrivZ0YMcvdtA8Ndk="></latexit>

B[·] ::= A[·] cmp a
| a cmp A[·]
| ¬B[·]
| B[·] bop b
| b bop B[·]

<latexit sha1_base64="Ts1A2ym3PIsmrjFNe8zdz7rM8aQ="></latexit>

A[·] ::= [·]
| A[·] op a
| a op A[·]

<latexit sha1_base64="cvLiGXTPsZKp2/DB9qEi/Gu3el8=">AAACj3icbVHLbtNAFB2bR4t5pbBkMyJqYBXZqKhVpaIAG9gVqWkrZazoenwTRh2PrZnrSpHlL+HLuui/MHGNVJLe1Zlzzp37yiqtHMXxTRA+evzk6c7us+j5i5evXg/23py7srYSp7LUpb3MwKFWBqekSONlZRGKTONFdvV9rV9co3WqNGe0qjAtYGnUQkkgT80Hf0SGS2UasBZWbWOlbiNRAP3OsuZrOxMyLynlI358fMJH0b+3ENGIi0LlnttyC95RbtGUVSs43DfDhriVHAk0ed/NfDCMx3EXfBskPRiyPk7ng1uRl7Iu0JDU4NwsiStK/W+kpEY/WO2wAnkFS5x5aKBAlzbdElu+XzugkldoudK8I/F+RgOFc6si885ugk1tTT6kzWpaHKWNMlVNaOS6ECmNXSEnrfLXQZ4ri0Sw7hy5MlyCBSK0ioOUnqz9uSK/j2Rz+m1w/mmcHIw//zoYTr71m9ll79h79pEl7JBN2A92yqZMBkHwIYiDJNwLD8Mv4eTOGgZ9zlv2X4Q//wKyW8VA</latexit>

quali sono i contesti possibili per le espressioni aritmetiche?



Proof obligation
dobbiamo trattare molte proof obligation:

<latexit sha1_base64="Rd6IRJM1ph5MthKWEy0PwG9Kf2E="></latexit>

8a, a1, a2. ( a1 ⇠op a2 ) a1 op a ⇠op a2 op a )
<latexit sha1_base64="j+qt/kICx/XWAop0mQS2QC3di/8="></latexit>

8a, a1, a2. ( a1 ⇠op a2 ) a op a1 ⇠op a op a2 )

<latexit sha1_base64="VXlZezPo+bhdzk/hRSVY2zTzwdY="></latexit>

8a, a1, a2. ( a1 ⇠op a2 ) a cmp a1 ⇠op a cmp a2 )

<latexit sha1_base64="IuvVaNqFopSZETU2lE6KzlqvpSI="></latexit>

8a, a1, a2. ( a1 ⇠op a2 ) a1 cmp a ⇠op a2 cmp a )
<latexit sha1_base64="6iWDqS3qSBo1cQuoLC/+Kdh9wHY="></latexit>

8x, a1, a2. ( a1 ⇠op a2 ) x :=a1 ⇠op x :=a2 )

la stessa cosa per espressioni booleane e comandi



Equivalenza denotazionale



Equivalenza denotazionale

(due funzioni sono la stessa se 
coincidono su tutti gli argomenti)

<latexit sha1_base64="4+HcP0gkblyKkU9FnJUOO7B3TP4="></latexit>

a1 ⇠den a2 sse AJa1K = AJa2K
<latexit sha1_base64="LoaOpX5PBjWUJ3fD5PK6Hm9nCzo=">AAAChXicdVHLTtxAEBw7JGxMHgs55jJihcSFlb1akVxQELlwJFIWkNYrq2fckBEzY2emjbJy/KG55hPyBdiODzySPlVXVz9ULUqtPMXxryB8tvH8xeboZbT16vWbt+PtnXNfVE7iQha6cJcCPGplcUGKNF6WDsEIjRfi5nNXv7hF51Vhv9K6xJWBa6uulARqqWz8U2RJ6pXJ6tQAfXOmztE2DRfZjEfp9wry1IjiR+09Nn0a9ToJuj5pUq2FA3mDxLsxzg1ZdPRf1eyeKsrGk3ga98GfgmQAEzbEWTb+k+aFrAxakhq8XyZxSasaHCmpsYnSymPZDodrXLbQgkG/qnuXGr5XeaCCl+i40rwn8X5HDcb7tRGtsjveP6515L9qy4quPq5qZcuK0MpuESmN/SIvnWrtR54rh0TQXY5cWS7BARE6xUHKlqzafzxY6MmAW7u8aU1KHlvyFJzPpsnhdP5lPjk+Gewasfdsl+2zhH1gx+yUnbEFk+x3MAq2g51wMzwI5+HhX2kYDD3v2IMIP90BPbrF6A==</latexit>

b1 ⇠den b2 sse BJb1K = BJb2K
<latexit sha1_base64="LNunXKZKcGgmqT/F7WjWgCsSTbE="></latexit>

c1 ⇠den c2 sse CJc1K = CJc2K



Principio di Composizionalita’

e’ vero che ?

SI, è garantito dal principio di composizionalita’
della semantica denotazionale:

il significato di un'espressione composta è unicamente
determinato dal significato dei suoi costituenti

prendiamo un qls contesto
<latexit sha1_base64="qUm6nkN0JOhfRWz35Rqq7GEba+U=">AAACBXicbVC7TsNAEDyHVwgvB0qaExESVWQjBJQBGsogkYdkW9H5sgmnnB+6W4MiKzVfQQsVHaLlOyj4F2zjAhKmGs3samfHj6XQaFmfRmVpeWV1rbpe29jc2t4x67tdHSWKQ4dHMlJ9n2mQIoQOCpTQjxWwwJfQ8ydXud+7B6VFFN7iNAYvYONQjARnmEkDs+4GDO98P72YOS4fRugNzIbVtArQRWKXpEFKtAfmlzuMeBJAiFwyrR3bitFLmULBJcxqbqIhZnzCxuBkNGQBaC8tos/oYaIZRjQGRYWkhQi/N1IWaD0N/GwyD6rnvVz8z3MSHJ17qQjjBCHk+SEUEopDmiuRdQJ0KBQgsjw5UBFSzhRDBCUo4zwTk6ykWtaHPf/9IukeN+3Tpn1z0mhdls1UyT45IEfEJmekRa5Jm3QIJw/kiTyTF+PReDXejPef0YpR7uyRPzA+vgFUMJih</latexit>

A[·]

<latexit sha1_base64="Ve5tIFQ1AVzX4TDTYLi2Nuux3Ps=">AAACTHicbVA9b9RAEF1fIDmOryOUNCtOSFQn+4QCZSBNygPlPiTbssZ7k8squ2trd0x0svzX+AnpU6RLCxUdQoptXJBcXvX03jzNzEtzJR35/pXX23n0eHev/2Tw9NnzFy+Hr/bnLiuswJnIVGaXKThU0uCMJClc5hZBpwoX6flR4y++o3UyMye0yTHWsDbyVAqgWkqGS0iCyEmdlJEGOrO6XKGpKg7JhEff5PqMwNrsgrdumpafq7BOxA9E7kxM4mQ48sd+C75Ngo6MWIdpMryOVpkoNBoSCpwLAz+nuARLUiisBlHhMAdxDmsMa2pAo4vLtoGKvyscUMZztFwq3or4f6IE7dxGp/Vkc6a77zXiQ15Y0OmnuJQmLwiNaBaRVNgucsLKulrkK2mRCJrLkUvDBVggQis5CFGLRd31oO4juP/9NplPxsHBOPj6YXT4pWumz96wt+w9C9hHdsiO2ZTNmGA/2A37yX55l95v74/3999oz+syr9kd9HZvASj4teg=</latexit>

a1 ⇠den a2 ) A[a1] ⇠den A[a2]

<latexit sha1_base64="4+HcP0gkblyKkU9FnJUOO7B3TP4="></latexit>

a1 ⇠den a2 sse AJa1K = AJa2K



Consistenza
se garantiamo la coerenza tra
la semantica operazionale e
la semantica denotazionale
allora la proprietà di congruenza è garantita
anche per la semantica operazionale

<latexit sha1_base64="tOY4AkkZSDMODn9w1FJwm38j4E0="></latexit>

8a1, a2. ( a1 ⇠op a2
?, a1 ⇠den a2 )

<latexit sha1_base64="8juBRkFZsGlQkLKAHRcIJY3UWAA="></latexit>

8b1, b2. ( b1 ⇠op b2
?, b1 ⇠den b2 )

<latexit sha1_base64="qnT6PxXL+YbGjHl7GWwJoe6NsPw="></latexit>

8c1, c2. ( c1 ⇠op c2
?, c1 ⇠den c2 )



Consistenza: espressioni

6.3 Equivalence Between Operational and Denotational Semantics 141

sx < 0) Then sx 6= 0 and sx < 1 are true, thus jn+1s =
?.

sx = 0) Then sx 6= 0 is false and thus jn+1s = s =
s [0/x].

1  sx < n+1) Then sx 6= 0 and 1  sx < n+1 are true, thus
jn+1s = s [0/x].

sx � n+1) Then sx 6= 0 is true, but 1  sx < n+1 is false,
thus jn+1s = ?.

Summarising,

sx < 0

jn+1s = ?

sx = 0

jn+1s = s [0/x]

1  sx < n+1

jn+1s = s [0/x]

sx � n+1

jn+1s = ?

Then
jn+1 = ls . 0  sx < n+1 ! s [0/x] , ?

which proves P(n+1).

Finally we have

C JcK = fix G =
G

n2N
G n? =

G

n2N
jn = ls . 0  sx ! s [0/x] , ?

6.3 Equivalence Between Operational and Denotational
Semantics

This section deals with the issue of equivalence between the two semantics of IMP
introduced up to now. As we will show, the denotational and operational semantics
agree. As usual we will handle first arithmetic and boolean expressions, then as-
suming the proved equivalences we will show that the operational and denotational
semantics agree also on commands.

6.3.1 Equivalence Proofs for Expressions

We start by considering arithmetic expressions. We want to prove that the operational
and denotational semantics coincide, that is, the results of evaluating an arithmetic
expression both by operational and denotational semantics are the same. If we
regard the operational semantics as an interpreter and the denotational semantics
as a compiler we are proving that interpreting an IMP program and executing its
compiled version starting from the same memory leads to the same result.

Theorem 6.1. For all arithmetic expressions a 2 Aexp, the predicate P(a) holds,
where

142 6 Denotational Semantics of IMP

P(a)
def
= 8s 2 S . ha,si ! A JaKs

Proof. The proof is by structural induction on arithmetic expressions.

Const: P(n)
def
= 8s . hn,si ! A JnKs holds because, given a generic s , we have

hn,si ! n and A JnKs = n.
Vars: P(x) def

= 8s . hx,si ! A JxKs holds because, given a generic s , we have
hx,si ! sx and A JxKs = sx.

Ops: Let us generalise the proof for the binary operations of arithmetic expres-
sions. Consider two arithmetic expressions a0 and a1 and a binary operator
� 2 {+,�,⇥} of IMP, whose corresponding semantic operator is ·. We
assume

P(a0)
def
= ha0,si ! A Ja0Ks

P(a1)
def
= ha1,si ! A Ja1Ks

and we want to prove

P(a0 �a1)
def
= ha0 �a1,si ! A Ja0 �a1Ks

By using the inductive hypothesis we derive

ha0 �a1,si ! A Ja0Ks ·A Ja1Ks

Finally, by definition of A

A Ja0Ks ·A Ja1Ks = A Ja0 �a1Ks

ut

The case of boolean expressions is completely similar to that of arithmetic expres-
sions, so we leave the proof as an exercise (see Problem 6.2).

Theorem 6.2. For all boolean expressions b 2 Bexp, the predicate P(b) holds, where

P(b)
def
= 8s 2 S . hb,si ! B JbKs

From now on we will assume the equivalence between denotational and opera-
tional semantics for boolean and arithmetic expressions.

6.3.2 Equivalence Proof for Commands

Central to the proof of equivalence between denotational and operational semantics
is the case of commands. Operational and denotational semantics are defined in

142 6 Denotational Semantics of IMP

P(a)
def
= 8s 2 S . ha,si ! A JaKs

Proof. The proof is by structural induction on arithmetic expressions.

Const: P(n)
def
= 8s . hn,si ! A JnKs holds because, given a generic s , we have

hn,si ! n and A JnKs = n.
Vars: P(x) def

= 8s . hx,si ! A JxKs holds because, given a generic s , we have
hx,si ! sx and A JxKs = sx.

Ops: Let us generalise the proof for the binary operations of arithmetic expres-
sions. Consider two arithmetic expressions a0 and a1 and a binary operator
� 2 {+,�,⇥} of IMP, whose corresponding semantic operator is ·. We
assume

P(a0)
def
= ha0,si ! A Ja0Ks

P(a1)
def
= ha1,si ! A Ja1Ks

and we want to prove

P(a0 �a1)
def
= ha0 �a1,si ! A Ja0 �a1Ks

By using the inductive hypothesis we derive

ha0 �a1,si ! A Ja0Ks ·A Ja1Ks

Finally, by definition of A

A Ja0Ks ·A Ja1Ks = A Ja0 �a1Ks

ut

The case of boolean expressions is completely similar to that of arithmetic expres-
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very different formalisms: on the one hand we have an inference rule system which
allows us to calculate the execution of each command; on the other hand we have a
function which associates with each command its functional meaning. So to show
the equivalence between the two semantics we will prove the following property.

Theorem 6.3. 8c 2 Com. 8s ,s 0 2 S . hc,si ! s 0 , C JcKs = s 0.

As usual we divide the proof into two parts:

Correctness: 8c 2 Com, 8s ,s 0 2 S we prove

P(hc,si ! s 0)
def
= C JcKs = s 0

Completeness: 8c 2 Com we prove

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Notice that in this way the undefined cases are also handled for the equivalence: for
instance we have as a corollary that

hc,si 6! ) C JcKs = ?S?

since otherwise, assuming C JcKs = s 0 for some s 0 2 S , it would follow that
hc,si ! s 0. Similarly in the opposite direction:

C JcKs = ?S? ) hc,si 6!

6.3.2.1 Correctness

Let us prove the first part of Theorem 6.3. We let

P
�
hc,si ! s 0� def

= C JcKs = s 0

and prove that P(hc,si ! s 0) holds for any c 2 Com and s ,s 0 2 S .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for the skip:

hskip,si ! s

We want to prove

P(hskip,si ! s)
def
= C JskipKs = s

Obviously the proposition is true by the definition of the denotational
semantics.
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Theorem 6.3. 8c 2 Com. 8s ,s 0 2 S . hc,si ! s 0 , C JcKs = s 0.

As usual we divide the proof into two parts:

Correctness: 8c 2 Com, 8s ,s 0 2 S we prove

P(hc,si ! s 0)
def
= C JcKs = s 0

Completeness: 8c 2 Com we prove

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Notice that in this way the undefined cases are also handled for the equivalence: for
instance we have as a corollary that

hc,si 6! ) C JcKs = ?S?

since otherwise, assuming C JcKs = s 0 for some s 0 2 S , it would follow that
hc,si ! s 0. Similarly in the opposite direction:

C JcKs = ?S? ) hc,si 6!

6.3.2.1 Correctness

Let us prove the first part of Theorem 6.3. We let

P
�
hc,si ! s 0� def

= C JcKs = s 0

and prove that P(hc,si ! s 0) holds for any c 2 Com and s ,s 0 2 S .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for the skip:

hskip,si ! s

We want to prove

P(hskip,si ! s)
def
= C JskipKs = s

Obviously the proposition is true by the definition of the denotational
semantics.
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and prove that P(hc,si ! s 0) holds for any c 2 Com and s ,s 0 2 S .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for the skip:

hskip,si ! s

We want to prove

P(hskip,si ! s)
def
= C JskipKs = s

Obviously the proposition is true by the definition of the denotational
semantics.

per induzione sulle regole
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We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for the skip:

hskip,si ! s

We want to prove

P(hskip,si ! s)
def
= C JskipKs = s
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Vogliamo   provare

Ovviamente la preposizione e’ vera per definizione della semantica 
denotazionale 
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assign: Let us consider the rule for the assignment command:

ha,si ! m

hx := a,si ! s [m/x]

We assume ha,si ! m and hence A JaKs = m by the equivalence of the
operational and denotational semantics of arithmetic expressions.
We want to prove

P(hx := a,si ! s [m/x])
def
= C Jx := aKs = s [m/x]

By the definition of the denotational semantics

C Jx := aKs = s [A JaKs /x] = s [m/x]

seq: Let us consider the concatenation rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

We assume

P(hc0,si ! s 00)
def
= C Jc0Ks = s 00

P(
⌦
c1,s 00↵ ! s 0)

def
= C Jc1Ks 00 = s 0

We want to prove

P(hc0;c1,si ! s 0)
def
= C Jc0;c1Ks = s 0

By the denotational semantics definition and the inductive hypotheses

C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = C Jc1K⇤ s 00 = C Jc1Ks 00 = s 0

Note that the lifting operator can be removed because s 00 6= ? by the
inductive hypothesis.

iftt: Let us consider the rule

hb,si ! true hc0,si ! s 0

hif b then c0 else c1,si ! s 0

We assume

• hb,si ! true and therefore B JbKs = true by the correspondence
between the operational and denotational semantics for boolean ex-
pressions;

• P(hc0,si ! s 0)
def
= C Jc0Ks = s 0

Assumiamo e quindi pper equivalenza  della

psemantica operazionale   e denotazionale delle espressioni aritmetiche.

Vogliamo provare che

Per definizione della semantica denotazionale abbiamo che

N.B. Possiamo assumere solo che la 
semantica operazionale delle 

espressioni aritmetiche mi dia m: non 
abbiamo nessuna ipotesi induttiva 

sulle espressioni aritmetiche!
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assign: Let us consider the rule for the assignment command:

ha,si ! m

hx := a,si ! s [m/x]

We assume ha,si ! m and hence A JaKs = m by the equivalence of the
operational and denotational semantics of arithmetic expressions.
We want to prove

P(hx := a,si ! s [m/x])
def
= C Jx := aKs = s [m/x]

By the definition of the denotational semantics
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = C Jc1K⇤ s 00 = C Jc1Ks 00 = s 0

Note that the lifting operator can be removed because s 00 6= ? by the
inductive hypothesis.

iftt: Let us consider the rule

hb,si ! true hc0,si ! s 0

hif b then c0 else c1,si ! s 0

We assume

• hb,si ! true and therefore B JbKs = true by the correspondence
between the operational and denotational semantics for boolean ex-
pressions;

• P(hc0,si ! s 0)
def
= C Jc0Ks = s 0

Assumiamo

Vogliamo provare

Per la definizione di semantica denotazionale e per ipotesi induttiva

Notare che l’operatore di lifting puo’ essere rimosso perche’
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assign: Let us consider the rule for the assignment command:

ha,si ! m

hx := a,si ! s [m/x]

We assume ha,si ! m and hence A JaKs = m by the equivalence of the
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We want to prove

P(hx := a,si ! s [m/x])
def
= C Jx := aKs = s [m/x]
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C Jx := aKs = s [A JaKs /x] = s [m/x]
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P(hc0,si ! s 00)
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= C Jc0Ks = s 00
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= C Jc1Ks 00 = s 0

We want to prove

P(hc0;c1,si ! s 0)
def
= C Jc0;c1Ks = s 0

By the denotational semantics definition and the inductive hypotheses

C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = C Jc1K⇤ s 00 = C Jc1Ks 00 = s 0

Note that the lifting operator can be removed because s 00 6= ? by the
inductive hypothesis.

iftt: Let us consider the rule

hb,si ! true hc0,si ! s 0

hif b then c0 else c1,si ! s 0

We assume

• hb,si ! true and therefore B JbKs = true by the correspondence
between the operational and denotational semantics for boolean ex-
pressions;

• P(hc0,si ! s 0)
def
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We want to prove

P(hif b then c0 else c1,si ! s 0)
def
= C Jif b then c0 else c1Ks = s 0

In fact, we have

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks
= true ! s 0,C Jc1Ks
= s 0

ifff: The proof for the second rule of the conditional command is completely
analogous to the previous one and thus omitted.

whff: Let us consider the rule

hb,si ! false

hwhile b do c,si ! s

We assume hb,si ! false and therefore B JbKs = false.
We want to prove

P(hwhile b do c,si ! s)
def
= C Jwhile b do cKs = s

By the fixpoint property of the denotational semantics

C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs),s
= false ! C Jwhile b do cK⇤ (C JcKs),s
= s

whtt: At last we consider the second rule of the while command:

hb,si ! true hc,si ! s 00 ⌦
while b do c,s 00↵ ! s 0

hwhile b do c,si ! s 0

We assume

• hb,si ! true and therefore B JbKs = true
• P(hc,si ! s 00)

def
= C JcKs = s 00

• P(hwhile b do c,s 00i ! s 0)
def
= C Jwhile b do cKs 00 = s 0

We want to prove

P(hwhile b do c,si ! s 0)
def
= C Jwhile b do cKs = s 0

By the definition of the denotational semantics and the inductive hypotheses

Assumiamo

e percio’
per

per la corrispondenza 

pertra semantica denotazionale e operazionale  per le espressioni booleane

pervogliamo provare

perinfatti abbiamo
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We want to prove

P(hif b then c0 else c1,si ! s 0)
def
= C Jif b then c0 else c1Ks = s 0

In fact, we have

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks
= true ! s 0,C Jc1Ks
= s 0

ifff: The proof for the second rule of the conditional command is completely
analogous to the previous one and thus omitted.

whff: Let us consider the rule

hb,si ! false

hwhile b do c,si ! s

We assume hb,si ! false and therefore B JbKs = false.
We want to prove

P(hwhile b do c,si ! s)
def
= C Jwhile b do cKs = s

By the fixpoint property of the denotational semantics

C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs),s
= false ! C Jwhile b do cK⇤ (C JcKs),s
= s

whtt: At last we consider the second rule of the while command:

hb,si ! true hc,si ! s 00 ⌦
while b do c,s 00↵ ! s 0

hwhile b do c,si ! s 0

We assume

• hb,si ! true and therefore B JbKs = true
• P(hc,si ! s 00)

def
= C JcKs = s 00

• P(hwhile b do c,s 00i ! s 0)
def
= C Jwhile b do cKs 00 = s 0

We want to prove

P(hwhile b do c,si ! s 0)
def
= C Jwhile b do cKs = s 0

By the definition of the denotational semantics and the inductive hypotheses

Assumiamo e percio’

Vogliamo provare

Per la proprieta’ della semantica denotazionale
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We want to prove

P(hif b then c0 else c1,si ! s 0)
def
= C Jif b then c0 else c1Ks = s 0

In fact, we have

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks
= true ! s 0,C Jc1Ks
= s 0

ifff: The proof for the second rule of the conditional command is completely
analogous to the previous one and thus omitted.

whff: Let us consider the rule

hb,si ! false

hwhile b do c,si ! s

We assume hb,si ! false and therefore B JbKs = false.
We want to prove

P(hwhile b do c,si ! s)
def
= C Jwhile b do cKs = s

By the fixpoint property of the denotational semantics

C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs),s
= false ! C Jwhile b do cK⇤ (C JcKs),s
= s

whtt: At last we consider the second rule of the while command:

hb,si ! true hc,si ! s 00 ⌦
while b do c,s 00↵ ! s 0

hwhile b do c,si ! s 0

We assume

• hb,si ! true and therefore B JbKs = true
• P(hc,si ! s 00)

def
= C JcKs = s 00

• P(hwhile b do c,s 00i ! s 0)
def
= C Jwhile b do cKs 00 = s 0

We want to prove

P(hwhile b do c,si ! s 0)
def
= C Jwhile b do cKs = s 0

By the definition of the denotational semantics and the inductive hypotheses146 6 Denotational Semantics of IMP

C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have

Assumiamo
e percio’

Vogliamo provare

L’operatore di lifting puo’ essere rimosso
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very different formalisms: on the one hand we have an inference rule system which
allows us to calculate the execution of each command; on the other hand we have a
function which associates with each command its functional meaning. So to show
the equivalence between the two semantics we will prove the following property.

Theorem 6.3. 8c 2 Com. 8s ,s 0 2 S . hc,si ! s 0 , C JcKs = s 0.

As usual we divide the proof into two parts:

Correctness: 8c 2 Com, 8s ,s 0 2 S we prove

P(hc,si ! s 0)
def
= C JcKs = s 0

Completeness: 8c 2 Com we prove

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Notice that in this way the undefined cases are also handled for the equivalence: for
instance we have as a corollary that

hc,si 6! ) C JcKs = ?S?

since otherwise, assuming C JcKs = s 0 for some s 0 2 S , it would follow that
hc,si ! s 0. Similarly in the opposite direction:

C JcKs = ?S? ) hc,si 6!

6.3.2.1 Correctness

Let us prove the first part of Theorem 6.3. We let

P
�
hc,si ! s 0� def

= C JcKs = s 0

and prove that P(hc,si ! s 0) holds for any c 2 Com and s ,s 0 2 S .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for the skip:

hskip,si ! s

We want to prove

P(hskip,si ! s)
def
= C JskipKs = s

Obviously the proposition is true by the definition of the denotational
semantics.
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= C JcKs = s 0

Completeness: 8c 2 Com we prove

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Notice that in this way the undefined cases are also handled for the equivalence: for
instance we have as a corollary that
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since otherwise, assuming C JcKs = s 0 for some s 0 2 S , it would follow that
hc,si ! s 0. Similarly in the opposite direction:
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6.3.2.1 Correctness

Let us prove the first part of Theorem 6.3. We let

P
�
hc,si ! s 0� def

= C JcKs = s 0

and prove that P(hc,si ! s 0) holds for any c 2 Com and s ,s 0 2 S .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for the skip:

hskip,si ! s

We want to prove

P(hskip,si ! s)
def
= C JskipKs = s

Obviously the proposition is true by the definition of the denotational
semantics.

per induzione strutturale
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have

Assumiamo
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have

Allora
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We need to prove

P(while b do c) def
= 8s ,s 0. C Jwhile b do cKs = s 0

) hwhile b do c,si ! s 0

By definition C Jwhile b do cKs = fix Gb,c s =
⇣F

n2N G n
b,c?

⌘
s so

C Jwhile b do cKs = s 0 ) hwhile b do c,si ! s 0

,⇣F
n2N G n

b,c?
⌘

s = s 0 ) hwhile b do c,si ! s 0

,⇣
9n 2 N. (G n

b,c?)s = s 0
⌘

) hwhile b do c,si ! s 0

,
8n 2 N.

⇣
G n

b,c?s = s 0 ) hwhile b do c,si ! s 0
⌘

Let A(n)
def
= 8s ,s 0. G n

b,c?s = s 0 ) hwhile b do c,si ! s 0.
We prove that 8n 2 N. A(n) by mathematical induction.

Base case: We have to prove A(0), namely

8s ,s 0. G 0
b,c?s = s 0 ) hwhile b do c,si ! s 0

Since G 0
b,c?s = ?s = ? and s 0 6= ? the premise is false

and hence the implication is true.
Ind. case: Let us assume

A(n)
def
= 8s ,s 0. G n

b,c?s = s 0 ) hwhile b do c,si ! s 0

We want to show that

A(n+1)
def
= 8s ,s 0. G n+1

b,c ?s = s 0 ) hwhile b do c,si ! s 0

We assume G n+1
b,c ?s = Gb,c

⇣
G n

b,c?
⌘

s = s 0, that is

B JbKs !
�
G n

b,c?
�⇤

(C JcKs) ,s = s 0

Now either B JbKs = false or B JbKs = true.
• If B JbKs = false, we have hb,si ! false and s 0 = s .

Now by using the rule (whff)

hb,si ! false

hwhile b do c,si ! s

we conclude hwhile b do c,si ! s .

per la regola  (skip)

146 6 Denotational Semantics of IMP

C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

Vogliamo provare



Assumiamo
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have

Allora
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have

Per consistenza delle espressioni
Per la regola (asgn)
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

Proviamo
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have

Assumiamo

Vogliamo provare
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have

Assumiamo
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

Abbiamo
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

percio’
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

per qualche
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

e
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

per ipotesi induttiva
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

Per la regola  (seq)
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00



Assumiamo
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

proviamo
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

Assumiamo
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

abbiamo
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

e
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0
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• if B JbKs = true we have hb,si ! true and
�
G n

b,c?
�⇤

(C JcKs) = s 0

Since s 0 6= ? there must exist some s 00 6= ? with
C JcKs = s 00 and by structural induction hc,si ! s 00.
Since

⇣
G n

b,c?
⌘⇤

(C JcKs) =
⇣

G n
b,c?

⌘
s 00 = s 0 we have

by the mathematical induction hypothesis A(n) that
⌦
while b do c,s 00↵ ! s 0

Finally, by using the rule (whtt)

hb,si ! true hc,si ! s 00 ⌦
while b do c,s 00↵ ! s 0

hwhile b do c,si ! s 0

we conclude hwhile b do c,si ! s 0.

6.4 Computational Induction

How are we able to prove properties about fixpoints? To fill this gap we introduce
Scott’s computational induction, which applies to a class of properties corresponding
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G

n2N
dn 2 P
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�
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�⇤
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Now either B JbKs = false or B JbKs = true.
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hb,si ! false
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• if B JbKs = true we have hb,si ! true and
�
G n

b,c?
�⇤

(C JcKs) = s 0

Since s 0 6= ? there must exist some s 00 6= ? with
C JcKs = s 00 and by structural induction hc,si ! s 00.
Since

⇣
G n

b,c?
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(C JcKs) =
⇣

G n
b,c?

⌘
s 00 = s 0 we have

by the mathematical induction hypothesis A(n) that
⌦
while b do c,s 00↵ ! s 0

Finally, by using the rule (whtt)

hb,si ! true hc,si ! s 00 ⌦
while b do c,s 00↵ ! s 0

hwhile b do c,si ! s 0

we conclude hwhile b do c,si ! s 0.

6.4 Computational Induction

How are we able to prove properties about fixpoints? To fill this gap we introduce
Scott’s computational induction, which applies to a class of properties corresponding
to inclusive sets.

Definition 6.10 (Inclusive property). Let (D,v) be a CPO, let P ✓ D be a set. We
say that P is an inclusive set if and only if

(8n 2 N. dn 2 P) )
G

n2N
dn 2 P

A property is inclusive if the set of values on which it holds is inclusive.

Intuitively, a set P is inclusive if whenever we form a chain out of elements in P,
then the limit of the chain is also in P, i.e., P is inclusive if and only if it forms a
CPO.

Example 6.9 (Non-inclusive property). Let ({a,b}⇤ [ {a,b}•,v) be a CPO where
a v b , 9g. b = ag . So the elements of the CPO are sequences of a and b and
a v b iff a = b or a is a finite prefix of b . Let us now define the following property:

• a 2 {a,b}⇤ [{a,b}• is fair iff 6 9b 2 {a,b}⇤. a = ba• _ a = bb•

Fairness is the property of an arbiter which does not favour one of two competitors
all the time from some point on. Fairness is not inclusive, indeed,

• the sequence an is finite and thus fair for any n 2 N;
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• if B JbKs = true we have hb,si ! true and
�
G n

b,c?
�⇤

(C JcKs) = s 0

Since s 0 6= ? there must exist some s 00 6= ? with
C JcKs = s 00 and by structural induction hc,si ! s 00.
Since

⇣
G n

b,c?
⌘⇤

(C JcKs) =
⇣

G n
b,c?

⌘
s 00 = s 0 we have

by the mathematical induction hypothesis A(n) that
⌦
while b do c,s 00↵ ! s 0

Finally, by using the rule (whtt)

hb,si ! true hc,si ! s 00 ⌦
while b do c,s 00↵ ! s 0

hwhile b do c,si ! s 0

we conclude hwhile b do c,si ! s 0.

6.4 Computational Induction

How are we able to prove properties about fixpoints? To fill this gap we introduce
Scott’s computational induction, which applies to a class of properties corresponding
to inclusive sets.

Definition 6.10 (Inclusive property). Let (D,v) be a CPO, let P ✓ D be a set. We
say that P is an inclusive set if and only if

(8n 2 N. dn 2 P) )
G

n2N
dn 2 P

A property is inclusive if the set of values on which it holds is inclusive.

Intuitively, a set P is inclusive if whenever we form a chain out of elements in P,
then the limit of the chain is also in P, i.e., P is inclusive if and only if it forms a
CPO.

Example 6.9 (Non-inclusive property). Let ({a,b}⇤ [ {a,b}•,v) be a CPO where
a v b , 9g. b = ag . So the elements of the CPO are sequences of a and b and
a v b iff a = b or a is a finite prefix of b . Let us now define the following property:

• a 2 {a,b}⇤ [{a,b}• is fair iff 6 9b 2 {a,b}⇤. a = ba• _ a = bb•

Fairness is the property of an arbiter which does not favour one of two competitors
all the time from some point on. Fairness is not inclusive, indeed,

• the sequence an is finite and thus fair for any n 2 N;
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per la regola(whtt)
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We need to prove

P(while b do c) def
= 8s ,s 0. C Jwhile b do cKs = s 0

) hwhile b do c,si ! s 0

By definition C Jwhile b do cKs = fix Gb,c s =
⇣F

n2N G n
b,c?

⌘
s so

C Jwhile b do cKs = s 0 ) hwhile b do c,si ! s 0

,⇣F
n2N G n

b,c?
⌘

s = s 0 ) hwhile b do c,si ! s 0

,⇣
9n 2 N. (G n

b,c?)s = s 0
⌘

) hwhile b do c,si ! s 0

,
8n 2 N.

⇣
G n

b,c?s = s 0 ) hwhile b do c,si ! s 0
⌘

Let A(n)
def
= 8s ,s 0. G n

b,c?s = s 0 ) hwhile b do c,si ! s 0.
We prove that 8n 2 N. A(n) by mathematical induction.

Base case: We have to prove A(0), namely

8s ,s 0. G 0
b,c?s = s 0 ) hwhile b do c,si ! s 0

Since G 0
b,c?s = ?s = ? and s 0 6= ? the premise is false

and hence the implication is true.
Ind. case: Let us assume

A(n)
def
= 8s ,s 0. G n

b,c?s = s 0 ) hwhile b do c,si ! s 0

We want to show that

A(n+1)
def
= 8s ,s 0. G n+1

b,c ?s = s 0 ) hwhile b do c,si ! s 0

We assume G n+1
b,c ?s = Gb,c

⇣
G n

b,c?
⌘

s = s 0, that is

B JbKs !
�
G n

b,c?
�⇤

(C JcKs) ,s = s 0

Now either B JbKs = false or B JbKs = true.
• If B JbKs = false, we have hb,si ! false and s 0 = s .

Now by using the rule (whff)

hb,si ! false

hwhile b do c,si ! s

we conclude hwhile b do c,si ! s .

Assumiamo

proviamo

proviamo

assumiamo



Considerazioni finali
Comandi

Semantica operazionale Big-step Semantica denotazionale

Terminazione

Determinismo

Equivalenza operazionale Equivalenza denotazionale
e’  una congruenza

Consistenza
(correttezza+ completezza)

 = Equivalenza denotazionaleEquivalenza operazionale
sono congruenze

(funzioni parziali)

induzione ben fondata teorema di punto fisso di Kleene


