Fxercise 24.2-4

(Give an efficient algorithm to count the total number of paths in a directed acyclic graph.
Analyze your algorithm.

2 :
IZMPERT" is an acronym for "program evaluation and review technique."

24.3 Dijkstra's algorithm

Dijkstra's algorithim solves the single-source shortest-paths problem on a weighted, directed
graph G = (¥, E) for the case in which all edge weights are nonnegative. In this section,
therelore, we assume thal w(u, v) = 0 [or cach cdge (i1, v) — £. As we shall sce, with a good
implementation, the ranning time of Dijkstra's algorithm 1s lower than that of the Bellman-
Ford algorithm.

Dijkstra’s algorithm mamtains a set S of vertices whose final shortest-path weights from the
source ¥ have already been determined. The algorithm repeatedly seleets the vertex o J V-8
with the minimum shortest-path estimate, adds « to S, and relaxes all edges leaving . In the
following implementation, we use 4 min-priority queue (2 of vertices, keyed by their values.

SIJESTRA (G, w, S)
INITIAZ ZZE-SINGLE-SOURCZ (G, 3}

Z 5 @

5 0= Y[

1
;
4 while O + &
i

do u . EXTRACT-MINIQ}
g = 85 L{ul

for each vertex v 71 Adilu]
5 do R T.2X{u, v, !

L.
4

Dijkstra’s algorithm rclaxes edges as shown in Figure 24.6. Line | performs the usual
initialization of ¢ and x values, and line 2 mitializes the set 5 to the empty set. 'T'he algorithm
maintains the invariant that @ = ¥ - § at the start of each iteration of the while loop of lines 4-
8. Linc 3 initializes the min-priority queuc (2 to contain all the vertices in ¥; sinee §'= @ at
that time, the invariant is true atter ling 3. Each time through the while loop of lines 4-8, a
vertex # is extracted trom O = F- S and added to set S, thereby maintaining the invariant.
(The first time through this loop, ¥ = s.) Vertex u, therefore, has the smallest shortest-path
cstimate of any vertex in ¥ - S. Then, lines 7-8 relax cach edge (u, v) lcaving », thus updating
the estimate d[v] and the predecessor n[v] if the shortest path to v can be improved by going
through 4. Observe that vertices are never inserted into (F after line 3 and that each vertex is
cxtracted from O and added to S cxactly once, so that the while loop of lines 4-8 itcrates
exactly |F] times.

uls) M

Figure 24.6: The execution of Dijkstra's algorithm. The source s is the leftmost vertex. The
shortest-path estimates are shown within the vertices, and shaded edges indicate predecessor
valucs. Black vertices arc in the set S, and white vertices are in the min-priority queue @ — V-
S. (a) The simation just before the first iteration of the while loop of lines 4-8. 'I'he shaded
vertex has the minimum o value and is chosen as vertex u in line 5. (b)-(1) The situation atter
cach successive iteration of the while loop. The shaded veriex in cach part is chosen as verlex
¢ in line 5 of the next iteration. The d and « values shown in part (f) are the final values.

Because Dijkstra's algorithm always choases the "lightest" or "closest” vertex in V- § to add
to set S, we suy that it uses u greedy strutegy. Greedy strutegies ure presented in detail in
Chapter 16, but vou nced not have rcad that chapter to understand Dijkstra's algorithm.
Greedy strategies do not alwawvs vield optimal results in general, but as the following theorem
and its corollary show, Dijkstra’s algorithm does indeed compute shortest paths. The key is to
show that each time a vertex w15 added to set S, we have d[i] — (s, u).

Theorem 24.6: (Correctness of Dijkstra's algorithm

Dijkstra's algorithm, run on a weighted, directed graph G = (¥, E) with non-negative weight
function w and source s, termunates with d|u| = d(s, u) for all vertices u _ V.

Proof We usc the following loop invariant;

s At the start of each iteration of the while loop of lines 4-8, d[v] = é(s, v} for each
vertex v || S

It sullices to show for cach vertex v — V, we have dlu] — d(s, ©) at the time when # 18 added to
set 5. Once we show that d[u] = 4(s. 1), we rely on the upper-bound property to show that the
equality holds at all times thereafter.

« [Initialization: Initially, S = &, and so the invariant is trivially truc.

= Maintenance: We wish 1o show that in each iteration, d[u] = d(s, u) lor the vertex
added to set 5. For the purpose of contradiction, let # be the first vertex for which d[u]
(s, u) when it 1s added to set §. We shall focus our attention on the situation at the
beginning of the iteration of the while loop in which 1 is added o 8 and derive the
contradiction that d[u] = d(s, #) at that time by examining a shortest path from s to .
We must have u # 5 because s is the first vertex added to set 5 and d[s] = d(s, s) =0 at
that time. Becanse u £ 5, we also have that 8 # @ just before # is added to 8. There
must be some path from s to u, for otherwisc du] = d(s, #) = == by the no-path
property, which would violate our assumption that &[u] # d(s,). Because there is at
least one path, there is a shortest path p trom s to #. Prior to adding « to S, path p

connects a vertex in S, namely s, to a vertex in V- §, namely «. Let us consider the
first vertex y along p such that v _ - 5, und letx | S be v's predecessor. Thus, as
shown in Figure 24.7, path p can be decomposed as #% & — 3 Fa_(Fither of paths p; or
2 may have no edges.)

Figure 24.7: The proof of Theorem 24.6. Sct §'is nonempty just before vertex u is
added to it. A shortest path p from source & to vertex u can be decomposed into s
3%y~ 5 %« where y is the first vertex on the path that is notin Sand x | S
immediately precedes v. Vertiees x and y are distinet, but we may have s =xor v =u.
Path p, may or may not rcenter sct S,

We claim that d[y] — (v, ¥) when u is added to S. T'o prove this claim, observe that x
_I §. Then, because u is chosen as the first vertex for which d[u] # 8(s, #) when it is
added to S, we had d[x] = (s, x) when x was added to S. TEdge (x, y) was relaxed at
that time, 50 the ¢laim follows from the convergence property.,

We can now obtain a contradiction to prove that d[u] = d(s,). Because y occurs
hefore i on a shortest path from s to # and all edge weights are nonnegative (notably
those on path p2), we have 8(s,) < (s, u), and thus

(24.2)dlyl = s ¥)
= A%, a2}
= dfuy] (by 1he upper-bound property) .

But because both vertices # and v were in F- S when « was chosen in line 5, we have
dlu] < d[y]. Thus, the two incqualitics in (24.2) arc in fact cqualitics, giving

dlv] = o(s,) = d(s, w) = d[u].
Consequently, d[u] = d(s, &), which contradicts our choice of 4. We conclude that d[u]
= d(s, u) when u is added to S, and that this equality is maintained at all times

therealler.

« Termination: At termination, @ = ¢J which, along with our earlier invariant that O =
F - S, implies that S = V. Thus, d[u] = (s,) for all vertices » 71 V.

Corollary 24.7

If we run Dijkstra's algorithm on a weighted, directed graph & — (¥, E) with nonnegative
welght function w and source 5, then at termination, the predecessor subgraph G is a shortest-
paths tree rooted at 5.

Proof Immediate from Theorem 24.6 and the predecessor-subgraph property.

Analysis

How fast is Dijkstra's algorithm? It maintains the min-priority queue (2 by calling three
priority-queuc operations: INSERT (implicit in line 3), EXTRACT-MIN {lLinc 5}, and
DLECREASLE-KLY (implicit in RELAX, which 15 called in line 8). INSERT 1s invoked once
per vertex, as is EXTRACT-MIN. Because each vertex v ~ Fis added to set § exactly once,
each edge in the adjacency list Adf[v] 1s examined in the for loop of lines 7-8 exactly once
during the course ol the algorithm. Since the tolal number of cdges in all the adjacency lists 1s
|£], there are a total of |£] iterations of this for loop, and thus a total of at most |£]
DECREASE-KEY operations, (Observe once again that we are using aggregate analysis.)

The running time of Dijkstra's algorithm depends on how the min-priority queue is
implemented. Consider first the case m which we maintain (he mim-priorily queuc by taking
advantage of the vertices being numbered | to |¥]. We simply store 4[v] in the vth entry of an
array. Bach INSERT und DECREASE-KEY operation takes (O(1) time, and each EXTRACT-
MIN operation takes O(F) time (since we have to scarch through the entire array), for a total
time of O(V+E) = O(V).

If the graph is sufficiently sparse-in particular, E = o */ g ¥)-it is practical to implement the
min-priority qucuc with a binary min-heap. (As discussed in Scetion 6.5, an imporlant
implementation detail is that vertices and corresponding heap elements must maintain handles
to each other.) Each EXTRACT-MIN operation then takes time (Xlg V). As before, there are
[¥] such operations. The time to build the binary min-heap is O(F). Each DECREASE-KEY
opcration takes time O(lg ¥), and there are still at most |£] such operations, The total ranning
time is therefore O((V — E) Ig V), which is O(E g V) it all vertices are reachable from the
source. This running time is un improvement over the straightforward O(P7)-time
implementation if E = o(¥/ Ig 7).

We can in fact achicve a running ume of O(V g V' + £) by implementing the min-priority
queue with a Fibanacei heap (see Chapter 20). The amortized cost of each of the |F]
EXTRACT-MIN operations is O(lg V), and each DECREASE-KEY call, of which there are ut
most |£], takes only O(1) amortized time. Historically, the development of Fibonacci heaps
was motivated by the observation that in Dijkstra's algorithm there are typically many more
DECREASLE-KLY calls than EXTRACT-MIN calls, so any method of reducing the amortized
time of cach DECREASE-KEY operation to o(lg V) without increasing the amortized time of
EXTRACT-MIN would vield an asymptotically faster implementation than with binary hcaps.,

Dijkstra's algorithm bears some similarity to both breadth-first search (see Section 22.2) and
Prim's algorithm for computing minimum spunning trees (see Section 23.2). Tt is like breadth-
[irst scarch in that sct .S corresponds (o the set of black vertices in a breadih-lirst scarch; just
as vertices in 8 have their final shortest-path weights, so do black vertices in a breadth-first

search have their correct breadth-first distances. Dijkstra's algorithm is like Prim's algorithm
in that both algorithms use a min-priority queue to find the "lightest” vertex outside a given
sct (the sct .S in Dijkstra's algorithm and the tree being grown in Prim's algorithm), add this
vertex into the set, and adjust the weights of the remaining vertices outside the set
accordingly.

i S

r-
e
]
[
-
o
L)
e
o
=
s
&

Run Dijkstra's algorithm on the directed graph of Figure 24.2, first using vertex s as the
sourcc and then using vertex z as the source. In the style of Figure 24.6, show the ¢ and n
values and the vertices in set S aller each ileration of the while loop.

Excreiscs 24.3-2

Give a simple example of a directed graph with negative-weight edges for which Dijlkstra's
algorithm produces incorrect unswers. Why doesn't the proof of Theorem 24.6 go through
when negative-weight cdges are allowed?

Excrcises 24.3-3

Suppose we change line 4 of Dijkstra's algorithm to the following.
4 while |Q] > 1

This change causes the while loop to exceute |V - | times instcad of |F] times. 1s this
proposcd algorithm corrcet?

Exercises 24.3-4

We are given a directed graph & = (¥, E) on which each edge (&, v) _| E has an associated
valuc #{z, v), which is a real number in the range 0 < #(x, v) < 1 that represents the reliability
of a communication channel from vertex u to vertex v. We interpret #{x, v} as the probability
that the channel from « to v will not fail, and we assume that these probabilities are
independent. Give an efficient algorithm to find the most reliable path between two given
vertices.

Exereiscs 24.3-5

