S. Rinzivillo – rinzivillo@isti.cnr.it

DATA VISUALIZATION AND VISUAL ANALYTICS

Relational Structures: Networks

Networks, networks everywhere

Networks, networks everywhere

Human Brain has between 10-100-billion neurons.

Financial network

Internet

Human Gene

Complex systems

Ó

Made of many non-identical **elements** connected by diverse **interactions**.

Networks

- Data main focus is relationship
- Study the patterns of connection among different parts of a complex system
- Visualization has a key roles to add insights to numerical analysis

GRAPH THEORY

The bridges of Konisberg

Can one walk across the seven bridges and never cross the same bridge twice?

The bridges of Konisberg

Can one walk across the seven bridges and never cross the same bridge twice?

- Solved by Leonard Euler in 1736
- Euler's Theorem: eulerian paths
 - If a graph has more than two nodes of odd degree, there in no path
 - If a graph is connected and has no odd degree nodes, it has at least one path

NETWORKS AND GRAPHS

Basic Elements

- components: nodes, vertices N
- interactions: links, edges
- system: network, graph (N,L)

Networks or graphs? A common language

Network refer to a real system Graph refers to mathematical representation of a network

Undirected vs Directed Networks

Undirected

Links: undirected (symmetrical)

Graph:

Undirected links : coauthorship links Actor network protein interactions

Directed

Links: directed (arcs).

Digraph = directed graph:

Directed links : URLs on the www phone calls metabolic reactions An undirected link is the superposition of two opposite directed links.

Adjacency Matrix

Note that for a directed graph (right) the matrix is not symmetric.

 $A_{ij} = 1$ if there is a link pointing from node *j* and *i* $A_{ij} = 0$ if there is no link pointing from *j* to *i*.

Node degree

Node degree: the number of links connected to the node.

$$k_A = 1$$
 $k_B = 4$

В

$$k_C^{in} = 2 \quad k_C^{out} = 1 \qquad k_C = 3$$

Adjacency Matrix and Node Degree

 $A_{ij} \neq A_{ji}$ $A_{ii} = 0$

$$k_j^{out} = \sum_{i=1}^N A_{ij}$$

$$L = \sum_{i=1}^{N} k_{i}^{in} = \sum_{j=1}^{N} k_{j}^{out} = \sum_{i,j}^{N} A_{ij}$$

Paths

A path is a sequence of nodes in which each node is adjacent to the next one

 $P_{i0,in}$ of length *n* between nodes i_0 and i_n is an ordered collection of *n+1* nodes and *n* links

• In a directed network, the path can follow only the direction of an arrow.

Distance in a Graph

The *distance (shortest path, geodesic path)* between two nodes is defined as the number of edges along the shortest path connecting them.

*If the two nodes are disconnected, the distance is infinity.

In directed graphs each path needs to follow the direction of the arrows.

Thus in a digraph the distance from node A to B (on an AB path) is generally different from the distance from node B to A (on a BCA path).

Connectedness

Connected (undirected) graph: any two vertices can be joined by a path. A disconnected graph is made up by two or more connected components.

Bridge: if we erase it, the graph becomes disconnected.

Clustering Coefficient

- Clustering coefficient:
 - what fraction of your neighbors are connected?
- Node i with degree k_i
- C_i in [0,1]

Watts & Strogatz, Nature 1998.

SUMMARY

Undirected vs Directed

Actor network, protein-protein interactions

WWW, citation networks

Unweighted vs Weighted

protein-protein interactions, www

$$L = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij}) \qquad < k >= \frac{2L}{N}$$

Call Graph, metabolic networks

Link properties

Protein interaction network, www

Social networks, collaboration networks

Network Visual Representation

- Three main methods
 - a) Adjacency Lists
 - b) Matrices
 - c) Node-link diagrams

Adjacency Matrix

- Each cell ij represents an edge from vertex i to vertex j
- Effectiveness of visualization depens on rows/columns ordering
- First example by Jacques bertin (with paper strips rearranged by hand)
- Effective also for highly connected graphs

https://bost.ocks.org/mike/miserables/

Bipartite Graphs

bipartite graph (or **bigraph**) is a <u>graph</u> whose nodes can be divided into two <u>disjoint sets</u> *U* and *V* such that every link connects a node in *U* to one in *V*; that is, *U* and *V* are <u>independent sets</u>.

Examples:

Hollywood actor network Collaboration networks Disease network (diseasome)

Gene Disease Network

Disease network

Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)

Node-link representation

http://bl.ocks.org/mbostock/4062045

- Symbolic elements for nodes
- Lines for connection among nodes
- Physical networks (roads, power grids) have a natural spatial encoding
- Abstract networks need layouts to infer a spatial position for nodes

Problems of Node-Link diagrams

- Occlusion of node and link crossings
- Large networks may produce hairball like networks
- Many algorithms to produce effective layouts to reduce cluttering

- Interaction to switch between different layouts
- Effective positioning of labels
 - Centered on nodes
 - Visualization based on interaction and mouse hover

http://projects.flowingdata.com/tut/interactive_network_demo/

 Collapsing nodes into clusters

http://www.theyrule.net/

 Zooming and context distortion

https://bost.ocks.org/mike/fisheye/

 Zooming and context distortion

http://www.nytimes.com/interactive/2008/05/05/science/20080506_DISEASE.html?_r=0

Case Study: Force Directed

http://projects.flowingdata.com/tut/interactive_network_demo/

Case Study: Information Flow

Circular Layout

http://www.eigenfactor.org/projects/well-formed/

Case Study: Sankey type diagrams

