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We overview the key principles of process mining

Chapters 1,5, 7. Process Mining. W. van der Aalst
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Process Mining

Process mining is a relative young research discipline
that sits between

machine learning and data mining on the one hand
and process modeling and analysis on the other hand.
The idea Is to discover, monitor and improve real processes

by extracting knowledge from event logs
readily available in today’'s systems.
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Processes, Cases,
Events, Attributes

A process consists of cases.

A case consists of events such that each event relates to
precisely one case.

Events within a case are ordered in time.
Events can have attributes.

Examples of typical attribute names are
activity, time, cost, and resource.
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Event Logs

Let us assume that it is possible
to sequentially record events of a process
such that each event:

refers to an activity
(i.e., a well-defined step in the process)

and Is related to a particular case
(i.e., a process instance).
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Event Log Example

Caseid  Eventid Properties
Timestamp Activity Resource  Cost

1 35654423  30-12-2010:11.02  Register request Pete 50
2 35654483  30-12-2010:11.32  Register request Mike 50
2 35654485  30-12-2010:12.12  Check ticket Mike 100
2 35654487  30-12-2010:14.16  Examine casually Pete 400
1 35654424  31-12-2010:10.06  Examine thoroughly  Sue 400
2 35654488  05-01-2011:11.22  Decide Sara 200
1 35654425  05-01-2011:15.12  Check ticket Mike 100
1 35654426  06-01-2011:11.18  Decide Sara 200
1 35654427  07-01-2011:14.24  Reject request Pete 200
2 35654489  08-01-2011:12.05  Pay compensation Ellen 200

ordered by Timestamp



Event Log Example

Caseid  Eventid Properties
Timestamp Activity Resource  Cost
1 35654423  30-12-2010:11.02  Register request Pete 50
35654424  31-12-2010:10.06 = Examine thoroughly  Sue 400
35654425  05-01-2011:15.12  Check ticket Mike 100
35654426  06-01-2011:11.18  Decide Sara 200
35654427  07-01-2011:14.24  Reject request Pete 200
2 35654483  30-12-2010:11.32  Register request Mike 50
35654485  30-12-2010:12.12  Check ticket Mike 100
35654487  30-12-2010:14.16  Examine casually Pete 400
35654488  05-01-2011:11.22  Decide Sara 200
034480 QR-01-2011:12.05  Pay compensation Ellen 200

grouped by Case id,
ordered by Timestamp
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Discovery

A discovery technique
takes an event log and produces a model
(without using any a-priori information)

If the event log contains information about resources,
one can also discover resource-related models,
e.g., a social network
showing how people work together in an organization.
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Conformance

Conformance checking measures
how reality, as recorded in the log,
conforms to the process model, and vice versa.

An existing process model is compared with an event log.
Conformance checking may be used

to detect, locate and explain deviations, and
to measure the severity of these deviations.
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Enhancement

Whereas conformance checking
measures the alignment between a model and reality

enhancement aims to
extend/improve existing models/systems
using information about the actual process
recorded in some event log.
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Enhancement:
Two angles

First viewpoint (the model is supposed to be descriptive):
the model does not capture the real behavior
(“the model is wrong, how to improve it?”)

Second viewpoint (the model is normative)
reality deviates from the desired model
(“the event log Is wrong, how to control execution?”).



Enhancement:
Model Repair

One type of enhancement is repair,
l.e., modifying the model to better reflect reality.

For example, if two activities are modeled sequentially
but in reality can happen in any order,
then the model may be corrected to reflect this.



Three Strategies
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Replay

Replay

_ dQE FD(—) e extended model
I S showing times,
—_ | ' ’ frequencies, etc.
S \5‘/ « ) e diagnostics

— e predictions

e recommendations
event log process model

Conformance checking
Performance analysis
Bottlenecks detection

Predictive models (based on past)
Operational support (deviation detection)
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process model behavior

Workflow engine

Simulation engine

Trace generation
Model checking
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Discovery and conformance:
an example



Event Log Fragment

Caseid  Eventid Properties

Timestamp Activity Resource  Cost

35654423  30-12-2010:11.02
35654424  31-12-2010:10.06
35654425  05-01-2011:15.12
35654426  06-01-2011:11.18
35654427  07-01-2011:14.24

35654483  30-12-2010:11.32 /f{(Register request
35654485  30-12-2010:12.12 | (Check ticket
35654487  30-12-2010:14.16 | (Examine casually
35654488  05-01-2011:11.22 | (Decide

35654489  08-01-2011:12.05 \(Pay compensation

Two cases Two traces Ten (ordered) events
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Event Log Fragment

Caseid  Eventid Properties

Timestamp Activity Resource  Cost

Register request

Examine thoroughly

Check ticket
Decide

Reject request

Register request
Check ticket
Examine casually

Decide

Pay compensation
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Event Log Fragment

Caseid  Eventid Properties

Timestamp Activity Resource  Cost

Examine thoroughly

Check ticket

Reject request

Check ticket

Examine casually

Pay compensation

QOOQOI5TD QT D
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Event Log Fragment

Caseid  Eventid Properties

Timestamp Activity Resource  Cost ...

1

QOOQOI5TD QT D
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Event Log Fragment

Caseid  Eventid Properties
Timestamp Activity Resource  Cost
1
(abdeh)
2

(adceg)
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Caseid  Eventid Properties Case id Event id Properties
Timestamp Activity Resource  Cost Timestamp Activity Resource  Cost
! 35654423 30-12-2010:11.02 Register request Pete >0 6 35654871  06-01-2011:15.02  Registerrequest ~ Mike 50
35654424  31-12-2010:1 Exammfe thoroughly ~ Sue 400 654873 06-01-2011:16.06 mine casually Ellen 400
sostas o020 e Nl n I Mike 100
-Ul- . c A
35 Ol 2 Sara 200
35654427  07-01-2011:14% Refect re P®e ) )
35654877 16-01-2011:11. Pay compensatlon Mike 200
2 35654483  30-12-2010:11.32  Register request Mike 50 e
35654485  30-12-2010:12.12  Check ticket Mike 100
35654487  30-12-2010:14.16 ~ Examine casually Pete 400
35654488  05-01-2011:11.22  Decide Sara 200
35654489  08-01-2011:12.05  Pay compensation Ellen 200 Table 1.2 A more compact
3 35654521  30-12-2010:14.32  Register request Pete 50 representation of log shown
35654522  30-12-2010:15.06  Examine casually Mike 400 mnTable 1.1: a = regi ster
35654524  30-12-2010:16.34  Check ticket Ellen 100 reauest. b = examine
35654525  06-01-2011:09.18  Decide Sara 200 q > .
35654526 06-01-2011:12.18  Reinitiate request Sara 200 thoroughly, C = examine
35654527  06-01-2011:13.06  Examine thoroughly  Sean 400 Casually, d — Check l‘icket,
35654530  08-01-2011:11.43  Check ticket Pete 100 . . e
‘ e = decide, f = reinitiate
35654531 09-01-2011:09.55 Decide Sara 200
35654533 15-01-2011:10.45  Pay compensation Ellen 200 request, § = pay
4 35654641  06-01-2011:15.02  Register request Pete 50 COmpensatlon, and h = 7'€]€Ct
35654643  07-01-2011:12.06  Check ticket Mike 100 request
35654644  08-01-2011:14.43  Examine thoroughly =~ Sean 400
35654645  09-01-2011:12.02  Decide Sara 200 Case 1d Trace
35654647 12-01-2011:15.44  Reject request Ellen 200
5 35654711 06-01-2011:09.02  Register request Ellen 50 1 b d h
35654712 07-01-2011:10.16  Examine casually Mike 400 (a,b,d, e, h)
35654714  08-01-2011:11.22 Che‘ck ticket Pete 100 9) (a,d,c, e, g)
35654715  10-01-2011:13.28  Decide Sara 200
35654716 11-01-2011:16.18  Reinitiate request Sara 200 3 (a,c,d,e, f,b,d, e, g)
35654718  14-01-2011:14.33  Check ticket Ellen 100
35654719 16-01-2011:15.50  Examine casually ~ Mike 400 4 (a,d,b,e, h)
35654720  19-01-2011:11.18  Decide Sara 200 5 (a,c,d,e, f,d,c,e, f,c,d, e, h)
35654721 20-01-2011:12.48  Reinitiate request Sara 200
35654722 21-01-2011:09.06  Examine casually Sue 400 6 (a,c,d,e, g)
35654724  21-01-2011:11.34  Check ticket Pete 100
35654725  23-01-2011:13.12  Decide Sara 200
35654726  24-01-2011:14.56  Reject request Mike 200 30
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Discovery Example

All cases start with a

O

Case 1d Trace
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Discovery Example

Ok O

All cases start with a Case id Trace
and end with either g or h. a,b,d,
ald,c,el g)

alc,d,e, f,b,d,e

(
{
{
(a)d, b, e
(a c,d,e,f,d,c,e,f,c,d,e
(

a c,d,e
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Discovery Example

Onk /Q

All cases start with a Case id Trace
and end with either g or h.

1 (ayb,d, e} h)

2 (a,a’,c,

3 (afc,d, e, f,b,d,e

4 (afd, b, e

5 (a c,d,e,f,d,c,e,f,c,d,e
6 (a)c,d, e




Discovery Example

Ok /;)

Every e is preceded by Case id Trace
d and one of the examination
activities (b or c).
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Every e is preceded by
d and one of the examination
activities (b or c).
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Discovery Example

Case id Trace

1 (a, Kk d, e)h)

2 (a,d.c,e)g)

3 (a,dd. e} f. bld.e)e)

4 (a,d b, e)h)

5 a, dd_e) . d(c.e)r, Ld_h)
6 (a, d d. e)g)
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Moreover, e Iis always
followed by f, g, or h.
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Discovery Example

L0 B
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b/c and d Case id Trace

Q

are executed in any order
(bd,db,cd,dc)
which suggests they are
executed in parallel
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Discovery Example
N
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The repeated execution Case id Trace

of b/c, d, and e suggests the
presence of a loop (over f).

a,b,d,e, h)
a,d,c,e, g)

aa g)
d,b,e, h)
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Discovery Example

examine
thoroughly

pay
compensation

C

(@)1 a

examine

start register casually decide end
request h
d reject
check ticket request
f -
reinitiate
request
Case id Trace
1 L(N)> {a,b,d,e,h)
2 L(N)> {a,d,c,e,g)
Replay; 3 LIN)S {a,c,d,e, f,b,d,e,g)
4 L(N)> {a,d,b,e,h)
|Og features are 5 L(N)> ({a,c,d,e, f,d,c,e, f,c,d,e, h)
adequately captured by 6 L) (a,c.d,e,g)

the net o
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pay
e compensation o [ )
decide ¢5 end
h
reject
request

ues

reinitiate
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The discovered net also allows for traces not in the log, e.qg.
(a,d,c,e, f,b,d, e g’
(a,c,d,e f,c,d e fc,defc,def b de g

This is a desired phenomenon:
the goal of a discovery procedure is not to represent
exactly the particular set of sample traces in the event log.

Process mining algorithms must generalize the behavior
contained in the log to show the most likely underlying
model that is not invalidated by the next set of observations
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Overfitting and
Underfitting

One of the challenges of process mining is
to balance between

overfitting:
the model is too specific
it only allows for the accidental behavior observed

and

underfitting:
the model is too general
it allows for behavior unrelated to the behavior observed
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Discovery Example

examine
thoroughly

pay
compensation

C

(0)—]a

start register

examine
casually

decide end

request h
d reject
check ticket request
f reinitiate
request
When comparing the event = Caseid Trace
log and the model, there I (@.b.d.e.h)
seems to be a good 2 (a.d.c.e.g)
3 a,c,d,e, f,b,d,e,
balance between ) e oo
“overfitting” and 5 (a,c.d,e, f.d,c.e, f.c.d e, h)
6 (a,c,d,e, g)

“underfitting”.




Another Discovery
Example

(@) a

start regist

Another net could

b
c1 examine c3
thoroughly
er
request d
c2 check ticket c4

fail to replay some traces

e > )y n ()

decide ch5 reject end
request
Case id Trace
1 (a,b,d,e, h)
4 (a,d,b,e,h)
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Another Discovery
Example

morougiy | P | | d | ket 9
pay
: compensation
a
start register examine C end
request casually reinitiate . h
decide| € request rgzjt?g;t
Another net could allow Case id Trace
for too many other traces | (a.b.d,e.h)
(nets of this kind are 2 (@.d,,¢.¢)
3 (a,c,d,e, f,b,d,e, g)
called flower nets) 4 (a.d,b, e, h)
and deliver little 2 pooeldoeoden
a,c,ad,e, g

information about the
underlying process 46




Conformance Example

We would like to measure the
““conformance” between a net
and en event log
(how well they pair together)

Case id Trace

examine
thoroughly

c3

Cc

examine
casually

start register
request

d

check ticket

c4

a,b,e g

a,b,d,e) j
a,d,c,e, f,d,c,e, f,b,d, e, h)

a,cdefb,d g )

reinitiate 9

< @ | <<= =<
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Conformance Example

b
c1 Xami c3
t

e ine
horoughly

e—»@—»h—»@

start register decide c5 reject end
request d request

We would like to measure the
““conformance” between a net

and en event log
(how well they pair together)

c2 check ticket c4 Case 1d Trace

2 ok out of 10

examine
thoroughly

c c3 pay 5
a e compensation
examine 6
start register casually decide ¢5 end
request 7
d c4
check ticket p request 8
reinitiate 9

a,d,c,e, f,d,c,e, f,b,d,e,h)

a,cdefb,d g

.

7 ok out of 10 \
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Question time

Suppose you are given a log with:
#6 traces of the form (a,c,d)

#3 traces of theform (b ,c, e)

Which model (i.e., Petri net) would you infer?
The Petri net you derive must have exactly

five transitions named a, b, ¢, d, e
(and the places / arcs you like)
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Question time

can start with a or b
can end with d or e

c Is always executed in between

(a,c,d)
(b,c,e)
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Question time

a d
o c
start p2 p3 end
. e
also allowed:
(a,c,d) (a,c,e)

(b,c,e) (b,c,d)
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Question time

(a,c,d)
(b,c,e)

52

nothing else
allowed!



Question time

Suppose you are given a log with:
#3 traces of the form<{(a,b,c,d)

#1 traces of the form (a, e, d)
#2 traces of the form<{(a,c,b,d)

Which model (i.e., Petri net) would you infer?
The Petri net you derive must have exactly

five transitions named a, b, ¢, d, e
(and the places / arcs you like)
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Question time

must start with a
must end with d

b/c in any order OR just e

(a,b,c,d)>
(a,e,d)>
(a,c,b,d>
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Question time

AND split

_,,O

start pl p4 pS p6 d end
(a,b,c,d) contains events
(a,e,d) that are not

(a,c,b,d) present in the log
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Question time

start

(a,b,c,d>
(a,e,d)>
(a,c,b,d>
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Mining Other Models

We used Petri nets to represent the discovered process
models, because Petri nets are a succinct way
of representing processes and have unambiguous but
intuitive semantics.

However, some mining techniques can apply to other
representations as well.

examine
thoroughly

\
examine pay
casually compensation

register

decide
request

start reject end

check ticket
request

’ ( reinitiate
L request
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Process Discovery:
a-Algorithm



Process Discovery

Process discovery is the activity that combines
Discovery with the Control-flow Perspective.

The general problem:

A process discovery algorithm is a function
that maps an event log L onto a process model M
such that the model M is “representative’
for the behaviour seen in the event log L.

We focus on simple event logs and Petri net models
(possibly sound workflow nets).
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Simple Event Log

Let A be a set of activities.

A simple trace o over A is a finite sequence of activities.

A simple event log L over A is a multiset of traces.

trace multiplicity multiplicity 1

A\

L= [(a, b, c, d)3, (a,c, b, d)z, (a, e, d)]

L,=[{a,b,c,d), (a,c,b,d)*, (a,b,c,e, f,b,c,d)? (a,b,c,e, f,c,b,d),
(d,c,b,e, f’b’C7d>29 <a9c’bﬁe9 f’bSCQeQ f?CQb9d>]
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Quality Criteria

“able to replay event log”

fitness

process
discovery

generalization

‘not overfitting the log”

Other behaviors allowed

61

Simple structure
“Occam’s razor”

simplicity

precision
“not underfitting the log”

No completely unrelated behavior
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register
request

examine
thoroughly

Cc

check ticket

g

pay

e

compensation

examine
casually decide
h
d

f

reject
request
reinitiate
request

end

N, : fitness = +, precision = +, generalization = +, simplicity = +

trace

455
191
177
144
111
82
56
47
38
33
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acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh
acdefdbeh
adbeg
acdefbdeh
acdefbdeg
acdefdbeg
adcefcdeh
adcefdbeh
adcefbdeg
acdefbdefdbeg
adcefdbeg
adcefbdefbdeg
adcefdbefbdeh
adbefbdefdbeg
adcefdbefcdefdbeg

1391
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“able to replay event log”

fitness

process
discovery

generalization

“not overfitting the log”

“Occam’s razor”

simplicity

precision

“not underfitting the log”



b
examine
thoroughly
g
c pay
compensation

a examine e
start register casually decide end
request h
d reject
check ticket request
f w
reinitiate
request

N, : fitness = +, precision = +, generalization = +, simplicity = +

© L] O-{a OO0

start  register examine check decide reject end

[ casually request
N, ( fitness = -} precision = +{ generalization = -} simplicity = +

trace
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“able to replay event log”

fitness

process
discovery

generalization

“not overfitting the log”

“Occam’s razor”

simplicity

precision

“not underfitting the log”



b
examine
thoroughly
g
c pay
compensation

a examine e
start register casually decide end
request h
d reject
check ticket request
f w
reinitiate
request

N, : fitness = +, precision = +, generalization = +, simplicity = +

© L] O-{a OO0

start  register examine check decide reject end
[ casually iz request
N, ( fitness = -} precision = +{ generalization = -} simplicity = +
examine b d check
thoroughly ticket g
pay
compensation
da
start register examine c end
request casually reinitiate h

reject
request

generalization = +, simplicity = +

request

N; : fithness = +

precision = -

trace
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191
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“able to replay event log”

fitness

process
discovery

generalization

“not overfitting the log”

“Occam’s razor”

simplicity

precision

“not underfitting the log”



b
examine
thoroughly
g
C pay
compensation

a - e
examine
start  register casually decide end # |trace
request h
d 455]acdeh
reject
check ticket " request 191|abdeg
initiat
reitate 177 |adceh
N, : fitness = +, precision = +, generalization = +, simplicity = +
1 y P e ’ P y 144 |abdeh
111]acdeg
@[] <O OAT O OO
2 © d © _ 82|adceg
start  register examine check decide reject end
pawes casually | y o ,__request 56|adbeh
N, ( fitness = -} precision = +{ generalization = -} simplicity = +
47 |acdefdbeh “able to replay event log” “Occam’s razor”
38|adbe ' implici
examine [0 ] check g fitness simplicity
thoroughly ticket g 33|acdefbdeh
pay
. process
" compensation 14 acdefbdeg discovery
i i end 11|acdefdbeg
request  casually reiniate > h generalization precision
request r:;]]jg;t 9[adcefcdeh
. . . ; .. “not overfitting the log” “not underfitting the log”
N; : fitness = + generalization = +, simplicity = + 8|adcefdben vering e b9
5|adcefbdeg
, : _ 9 3|acdefbdefdbeg
register check examine decide pay
request ticket casually compensation 2 adcefdbeg
a [—{(_)—{ ¢ ()| d e ()19 2 |adcefbdefodeg
register examine check decide pay
request casually ticket compensation 1adcefdbefbdeh
a—~(_ ld = e e ()l h 1|adbefbdefdbeg
register check examine decide reject
request ticket casually request 1 adcefdbefcdefdbeg
ol a]~{ e (- df-(O-fe (b 1391
start register examine check decide reject end
request casually ticket request

" EEm (all 21 variants seen in the loqg)

N, : fitness = +, precision = + simplicity = - 65




start register

request

check ticket

b
examin>>\
thoroughly
g
c pay

compensation

examine
casually decide
h
d

e

reject

reinitiate

request

request

end

N, : fitness = +, precision = +, generalization = +, simplicity = +

© L] -O{e]-O

start  register

ra

N, ( fitness = -} precision = +

examine
casually

check

OO

some events

h are missing
decide reject end in the model
request

generalization = -} simplicity = +

examine
thoroughly

da
start register examine c
request casually

N; : fithness = +

register
request
o a
start register
request
N

NQEE

ROSE

o -Ofe}O

check
ticket

examine

check
ticket

examine
casually

: fitness = +, precision = +

ROSE
ROSE

¢

check
ticket g
pay
compensation
reinitiate _ h
request reject
request

end

generalization = +, simplicity = +

examine decide pay
casually compensation
e > 19
check decide pay
ticket compensation
e 4>©—> h
examine decide reject some events
casually request are repeated
in the model
check decide reject end
ticket request

(all 21 variants seen in the loqg)

generalization = -,

simplicity = -

trace

455
191
177
144
111

- =_2 W W P~ O
© -~ B W 00O N ODN

e ) " I ) * 2 CS TN & ) B @ o)

acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh
acdefdbeh
adbeg
acdefbdeh
acdefbdeg
acdefdbeg
adcefcdeh
adcefdbeh
adcefbdeg
acdefbdefdbeg
adcefdbeg
adcefbdefbdeg
adcefdbefbdeh
adbefbdefdbeg

adcefdbefcdefdbeg
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“able to replay event log”

fitness

process
discovery

generalization

“not overfitting the log”

“Occam’s razor”

simplicity

precision

“not underfitting the log”



Quality Measures

We have seen four quality criteria:
fitness, precision, generalization, and simplicity.

In the example, for each of these models, a subjective
judgment is given with respect to the four quality criteria.
As the models are rather extreme, the scores +/- for the

various quality criteria are easy to assign.

However, in a more realistic setting it would be much more
difficult to judge the quality of a model.

We will discuss how the notion of fitness can be quantified.
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a-Algorithm

The a-algorithm was one of the first process discovery
algorithms that could adequately deal with concurrency.

It has several limitations,
but it provides a good introduction into the topic:

The a-algorithm is simple and many of its ideas have been
embedded in more complex and robust techniques.

The a-algorithm uses the play-in strategy
to scan the event log for particular patterns,
called log-based ordering relations,
to create a footprint matrix of the log.
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Log-based Ordering
Relations

a is (sometimes) immediately followed by b

ifand only if there 1s a trace o = (t1,1,13,...,t;) andi €{l,...,n — 1}

suchthato e Landt; =aandt;1 1 =b

Example: L={<a,c,d),(b,c,e)}
a>; b>; c
c>; d C>pe

a >; d No!
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Log-based Ordering
Relations

a is (sometimes) immediately followed by b

ifand only if there 1s a trace o = (t1,1,13,...,t;) andi €{l,...,n — 1}

suchthato e Landt; =aandt;1 1 =b

o if andonlyifa >; band b #1 a (causalty)
® if and only if a ;4 L b and b ;4 [, @ (mutual exclusion)
o lf and Only 1f a >T b and b =] d (concurrency)

x—>Ly,y—>Lx,x

70
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Log-based Ordering
Relations: Example

1_[ﬂcd (a,c,b,d)?, (a, e, d)]

}
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Log-based Ordering
Relations: Example

L1 =[{a,b,c,d) (a,c,b,d)?, (a,e, d)]

>, =1{(a,b), (a,c), (a,e), (b,c), (c,b), (b,d), (c,d), (e,d)]
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Log-based Ordering
Relations: Example

e a—bifandonlyifa>; bandb # a
e a#. b nlyifa #;, band b #; a
e allLb nlyifa >y band b >y a

if and o
if and o

Ly =1[{a,b,c d), (a,c,b,d)?, (a,e, d)]

>r, = {(a,b)|(a,c),(a,e),|b,c), (c,b) (b,d), (c,d), (e, d)}

_>L1:{ ’ ) ’ ’ ’ }

73



Log-based Ordering
Relations: Example

e a—bifandonlyifa>; bandb # a
e a#fy bifandonlyifa #; band b # a
e alpbifandonlyifa >y band b > a

L1 =[{a,b,c,d) (a,c,b,d)?, (a,e, d)]

{(a,b), (a,c), (a,e), (b,c),(c,b), (b,d), (c,d), (e,d)]

{(a,b), (a,c), (a,e), (b,d), (c,d), (e,d)}

{(a,a), (a,d), (b,D), (b,e),(c,c), (c,e),(d,a),(d,d), (e, b), (e c),(ee)]
{(b c), (c, b)}

||L1
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Footprint Matrix

We can record all information about
log-based ordering relations
INn a concise way as a matrix:

one row for each event
one column for each event

the entry in row a and column b tells us their relation
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Footprint Matrix:

Example
L1 =1[{(a,b,-c, d)3, (a,c, b, d)z, (a,e,d)]

o S Q

N9

a b C d e
#Ll —>L1 —>L1 #Ll —>L1
<L #L1 ||L1 — L, #L1
<L ||L1 #L1 — L, #L1
#Ll <—L1 <—L1 #Ll <—L1
<L #L1 #L1 — L #L1
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Footprint Matrix:
Example

Note the symmetry w.r.t. the diagonal

o S Q

N9

5 .
o
o
Ly <Ly <L #Le , .
o
<L #L1 #L1 — L
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Patterns

Footprints are useful to discover typical patterns of activities
In the corresponding process model

a) sequence pattern: a—b
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Patterns

Footprints are useful to discover typical patterns of activities
In the corresponding process model

el
b
~SA
A
a
- ad
C
SA

(b) XOR-split pattern:
a—b, a—c, and b#c
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Patterns

Footprints are useful to discover typical patterns of activities
In the corresponding process model

LY ™A
b a
A Rl ad
a C
red ¥y - ~SA
C b
~S Y
(b) XOR-split pattern: (c) XOR-join pattern:

a—b, a—c, and b#c a—c, b—c, and a#tb
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Patterns

Footprints are useful to discover typical patterns of activities
In the corresponding process model

\

v

/

\

\

SO
(d) AND-split pattern:
a—b, a—c, and b||c

v
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Patterns

Footprints are useful to discover typical patterns of activities
In the corresponding process model

Forn®n=oN
C
SO O
(d) AND-split pattern: (e) AND-join pattern:
a—b, a—c, and b||c a—cC, b—c, and al|b

\
/

v
Y

/
X

Y
v

X
Y

v
Y
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The a-Algorithm

T ={teT | doer t €0} transitions
Tr={teT | d,er t= first(o) } start events

To=4{teT | dycr t =last(c) } end events

( ABCT, AN AB#0 A )
. X, =< (A, B) | :aGAibjB leiabg 2 > decision points
\ Vb, boeB b1# 1.b2 )

(A", B") = (A, B)
A,B)eYr }U{ir,or } places

ACA NBCUE
Yo =4 (A, B) € X |V Byex, = max. dec. points
1
{ | (A,B)eYr, Nac A} U

1

1

1

: Of(L) = (PL,TL,FL,iL) net 83



The a-Algorithm

one transition for each event in the log

1. T, ={teT | dyer, t €0 } transitions
2. Tr={teT | dyer t = first(c) } start events

3. To=4{teT | doer t=last(c) } end events

transitions that start/end at least one trace
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Steps 1-3: Example

Ly =[{a,b,c,d)’, (a,c,b,d)*, (a,e,d)]

1. T, ={teT | J,e t €0} transitions

2. Tr={teT | Joer t=first(c) } start events
3. To={teT | dyer t=last(c) } end events

I, ={a,b,c,d, e}
1; = La}
To — {d}
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The a-Algorithm

we collect pairs of sets of events with certain features

A BCT, N AB#0 A
A XL: (A,B) ‘ \V/aEA\V/bEB a%Lb A

Vai,az€A a1 71,09 A
vblabQEB bl#LbQ

decision points

each event in A causes all events in B

all events in A are mutually exclusive
all events in B are mutually exclusive
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The Core of the
a-Algorithm: Steps 4, 5

N
P

L

A={a1,a2, am} B={b1,b2, bn}

we are going to insert a place for each pair (A,B)
to represent some sort of decision point
87



The Core of the
a-Algorithm: Steps 4, 5

\V/aEA\V/bEB a %L
Val az€EA a17F a2
\V/blabQEB bl#LbQ




The Core of the
a-Algorithm: Step 5

VoeVoer @ —p b If (A.,B) i,s a delcisio,n poin,t
Va,ased 17103 any pair (A,B’) with AcA, B'cB
Vbiben  Di#frbe is also a decision point

az # # —> — —>
Am # # —> —> —>
b1 <« <« # # #
b> <« <« # # #




The Core of the
a-Algorithm: Step 5

VacaVoen @ —p b If (A,B) is a decision point
Varased 1310 any pair (A’,B’) with AcA, B’cB

Ybiben  bi7fLb is also a decision point
1 2 m 1 b b
L # # # — —
,  # # # — -
- # # # — —




The Core of the
a-Algorithm: Step 5

VoeVoer @ —p b If (A_,B) i§ a delcisio,n poin,t
Va,ased 17103 any pair (A,B’) with AcA, B'cB
Vbiben  Di#frbe is also a decision point

an —> —>
" — —
b> < < # #




The a-Algorithm

We take only the largest pairs (A,B)

ACA " N BCH

5. Y =< (A, B) € X1, | Y4 Bex, = max. dec. points
(AlvB/) — (A7B)

Y; contains all pairs in X; that are not dominated by other pairs
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Steps 4-5: Example

a b c d e
a #Ll —>L1 —>L1 #Ll —>L1
b <L #1, Iz, L Ly
¢ <L Iz, #1, L, #1,
d #1, <, <, #1, <~
e <~ #L #L — L, #L

X1, = {({a}, (b)), ({a}, {c}), ({a}. {e}), ({a}, {b, €}), ({a}, {c, e}),
(16}, {d}), ({c}, {d}), ({e}, {d}), ({b, e}, {@}), (fc, e}, {d}) ]
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STeps 4-5: Example

c d e
b ||L1 — L #Ll
C ||L1 #1, — L #L
d #1, <—L1 <, #1, <~
e #L —7 #L

= {(fa}, {b}) {a}, {c}). ({a}, fe}), ({a}, (D, e}) (fa}, {c, e}),
(16}, {d}), ({c}, {d}), ({e}, {d}), ({b, e}, {@}), (fc, e}, {d}) ]
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Steps 4-5: Example

a b C d e
a #Ll —>L1 —>L1 #Ll —>L1
b <~ #1, Iz, —L #L,
C ||L1 #L1 —L #L1
d I <L <L #L1 <L
e <~ #L #L —7 #L
X1, ={({a}, (b)) |({a}. {c)] ({a}. {e}), ({a}, {b. €}), ({a}, {c. €}).
({b}, {d}), ({c}, {d}), ({e}. {d}). ({b, e}, {d}), ({c. e}, {d}) }
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Steps 4-5: Example

a b c d e
a #Ll —>L1 —>L1 #Ll —>L1
b <L #1, Iz, L Ly
¢ <L Iz, #1, L, #1,
d #1, <, <, #1, <~
e

X1, = {({a}, (b)), ({a}, {c}){({a}, {e})] ({a}. {B, €}), ({a}, {c, e}),
(16}, {d}), ({c}, {d}), ({e}, {d}), ({b, e}, {@}), (fc, e}, {d}) ]
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Steps 4-5: Example

a b c d e
a #Ll —>L1 —>L1 #Ll —>L1
b <L #1, Iz, L L
¢ <L Iz, #1, L, #1,
d #1, <, <, #1, <~
e <~ #L #L — I, #L

X1, = {({a}, (B}), ({a}, {c}), ({a}. {e}), ({a}., (b, €}). ({a}, {c, e}),
(16}, {d}), ({c}, {d}), ({e}, {d}), ({b, e}, {@}), (fc, e}, {d}) ]

97



Steps 4-5: Example

a b C d e
#Ll —>L1 —>L1 #Ll —>L1
<, #L, L, — L #1,

i3 <~ <L #r <L

1

X1, = (({a}, {b}), ({a}, {c}), ({a}, {e}), ({a}, {b, &}), {{a}, {c, }),
(16}, {d}), ({c}, {d}), ({e}, {d}), ({b, e}, {@}), (fc, e}, {d}) ]

XN QL & & Q
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Steps 4-5: Example

a b c d e
a #Ll —>L1 —>L1 #Ll —>L1
b <L #1, Iz, L Ly
¢ <L Iz, #1, L, #1,
d #1, <, <, #1, <~
e <~ #L #L — L, #L

X1, = {({a}, (b)), ({a}, {c}), ({a}. {e}), ({a}, {b, €}), ({a}, {c, e}),
(16}, {d}), ({c}, {d}), ({e}, {d}), ({b, e}, {@}), (fc, e}, {d}) ]

and so on for the other pairs

99



Steps 4-5: Example

a b c d e
a #Ll —>L1 —>L1 #Ll —>L1
b <L #1, Iz, L Ly
¢ <L Iz, #1, L, #1,
d #1, <, <, #1, <~
e <~ #L #L — I, #L

X1, = {[{a}, (B}), ({a}. {c}), ({a}. {e})}, ({a}. {b, e}), ({a}, {c, e}),
(16}, {d}), ({c}, {d}), ({e}, {d}), ({b, e}, {@}), (fc, e}, {d}) ]

Yr, = {{{a}), (b, e}), ({a}, {c, €}), (b e}, {d}), ({c, e}, {d}) }

We take only the largest pairs
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Steps 4-5: Example

a b c d e
a #Ll —>L1 —>L1 #Ll —>L1
b <L #1, Iz, L Ly
¢ <L Iz, #1, L, #1,
d #1, <, <, #1, <~
e <~ #L #L — I, #L

X1, = {({a}, (B}).|({a}, {c}). ({a}, {e})}, ({a}, (b, €}). [{a}, {c, e}),
(16}, {d}), ({c}, {d}), ({e}, {d}), ({b, e}, {@}), (fc, e}, {d}) ]

Yr, ={({a}, (b, e}), ({a}, {c, e}), (b, e}, {d}), ({c, e}, {d}) ]

We take only the largest pairs
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Steps 4-5: Example

a b c d e
a #Ll —>L1 —>L1 #Ll —>L1
b <L #1, Iz, L Ly
¢ <L Iz, #1, L, #1,
d #1, <, <, #1, <~
e <~ #L #L — I, #L

= {({a}, (8}), ({a}, {c}), ({a}, {e}), ({a}, {b, €}), ({a}, {c, e}),
(b}, {d}), ({c}, {d}), [({e}, {d}), [{B, e}, {@}), (fc, e}, {d}) ]

={(la}, (b, e}), (la}. {c, &}), [{b, e}, {a}), ({c, e}, {d}) }

We take only the largest pairs
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Steps 4-5: Example

a b c d e
a #Ll —>L1 —>L1 #Ll —>L1
b <L #1, Iz, L Ly
¢ <L Iz, #1, L, #1,
d #1, <, <, #1, <~
e <~ #L #L — I, #L

= {({a), (B}), ({a}. e}), (a}, {e}). (ta}, (b, e}), ({a} (c.e}),
(OREHR ENT) N (R AR TN (CRNT) |

= {({a}, (b, &}), ({a}. {c, e}), ({b, e}, {d}), |{c, e}, {d}) }

We take only the largest pairs
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The a-Algorithm

One place for each pair Initial Final

6. P ={pun | (4,B)eY, jU{ir, o} places

l. FL:{(a,p(A,B)) ‘ (A,B)EYL A\ CLEA}U
L (pia.B),b) | (A, B)eYr, Nbe B} U

{(ZL, ) ‘ tET[}U
{ (t,or) | t€Tp } arcs

3. CV(L) = (PL,TL,FL,iL) net

|04



Steps 6-7: Example

Ly =[{a,b,c,d)’, {(a,c,b,d)?*, (a,e,d)]
Vi, = {((@h (b, ). (ta}. (e e}). (ib. e}. (). (fc. e}, )]

0L1

P({a},{c,e}) P({c,e},{d})
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Steps 6-7: Example

Ly =[{a,b,c,d)’, {(a,c,b,d)?*, (a,e,d)]
Vi, = {((a}. (b, ). (1@} (e &), ({b. e} (). (fc. e). )]

P({a},{b,e}) ~ b P({b,e},{d})

0L1
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Steps 6-7: Example

Ly =[{a,b,c,d)’, {(a,c,b,d)?*, (a,e,d)]
Vi, = {({a}. (b, e)). (ta}. (c. e}). (- e} (@), (fc. e}, )]

ZLl

P({a},{c,e}) P({c,e},{d})

|07



Steps 6-7: Example

Ly =[{a,b,c,d)’, {(a,c,b,d)?*, (a,e,d)]
Vi, = {({a}. (b, e)). (ta}. {c. e}). ({b. ). (). [ic. e} 1))

P({a},{b,e}) ~ b P({b,e},{d})

ZLl
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Another Example

L5: [(a,b,ea f)za (aabaeacadaba f>3? (d,b,c,e,d,b, f>2

(a,b,c,d,e,b, f)*, (a,e,b,c,d,b, )]

e f Tp={a,b,c,d,e, f}
57 Og i
C # #
p n . " ! ) X1 ={({a}, {B}), ({a}. {e}), (b}, {c}), ({B}, {/}), ({c}, {d}),
¢ = @ || l " = (d}, 1), ({e}, 1)), (ta, d}, (1Y), (1B}, {c, f}))
# <~ # # “— #
/ ={({a}, {e}), ({c}. {d}). ({e}. {f}). ({a, d}, {B}), ({}. {c. })}
© PL = {Pda).teh)s Pe).(dD)s Ple). £ Plda.d).ib))s P(ib).te.f))» IL» OL
({C}{d}) Fr ={(a, pay.ten)s (Pday.ten) €)» (€, P(icrtan)s (Plclta)» ),
b (e, Pde). (D) (Pdebirhs )y (@5 Pa.dy o))y (s Plaa). (b))
‘L@—’ a [ Peow P f 4’@‘% (Pda.ay.ibh)> D)5 (D P(by.Ae. )5 (PibY.e. 15 € (PLAe. 1D )
© HQ/ (ir,a), (f,o0)}
P({a} {e}) P}t

Ot(IL89= (Pr,Tr, Fr)



Ly=[{a,c,d)® (b,c,d)*, (a,c,e)®, (b, c,e)?]

Exercises

b

# FH T F F*

= F T F F

T T % | |

* H* ) F* I
# F* ) F F*

Check in full autonomy
that the footprint matrix
corresponds to the log
and that the net below
IS the one discovered

by the alpha-algorithm

Pa,b}{c)

Pchd.eh

pe




Exercises

Ly=[(a,b,c,d,e, f,b,d,c,e,g),(a,b,d,c,e, g),

(a,b,c,d,e, f,b,c,d,e, f,b,d,c,e,g)]

Check in full autonomy
that the footprint matrix
corresponds to the log
and that the net below
IS the one discovered
by the alpha-algorithm

a b c d e f g
a # — # # # # #
b <« # — — # <« #
c # <« # | — # #
d # <« I # — # #
e # # — <~ # — —
f # — # # <« # #
g # # # # <« # #

A

Pby.ich)

P{a,n.ib})

O

3

P(b}.{d})
11

P(dy.{e})

P(enif.an o]}



Exercises

Ly=[(a,b,c,d)’ (a,c,b,d)* (a,b,c,e, f,b,c,d) (a,b,c,e, f,c,b,d),

(a,c,b,e, f,b,c,d)*, (a,c,b,e, f,b,c,e, f,c,b,d)]

Check in full autonomy

f that the footprint matrix

a b C d e
a # — — # # #
b <« # | — — «
C <« | # — — <~
d # « “— # # #
e # — <~ # # —
f # — — # <« #

corresponds to the log
and that the net below
IS the one discovered
by the alpha-algorithm

@—»a f<—©<—e d"@

start
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Limitation:
Implicit Dependencies

Lo=[(a,c,e,g)* (a,e,c,g),(b.d, f 8" (b, f.d, g)"]

p1 and p2 are redundant

113



Limitation: Short Loop

Ly =[(a.0) a,b.c)* (a,b.b,c)*, (@, b, b, b,b,c)']

b

@—>a—>©—>c—>©

b Is disconnected from the model

Expected net: (@) - H%—» c

| 14



Limitation: Short Loop

Ls=[(a,b,d)’, (a,b,c,b,d)*, (a,b,c,b,c,b,d)]

a—rg. b,
Lg .

b—>L8d

angc.’ (@—L2 O (O O

c IS disconnected from the model

b
Expected net: (@) - ﬁC< >} d

|15



Limitation: Noise
We use the term “noise” to refer to rare and infrequent

behaviour rather than errors related to event logging.

For example, frequencies are not taken into account
by the a-algorithm
(should we disregard less frequent traces?).
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Limitation: Noise

frequent all behavior
behavior trace in (including noise)

target model

event log y
oy — \

— e e e e —— —

\—————————————/ \—————————————-’

117
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Limitation: Noise

non-fitting model

overfitting model




Conformance Checking:
fithess measures



Measures and
Diaghostic

global local
local conformance diagnostics
diagnostics measures

Z

g 11 > o

Fig. 7.1 Conformance checking: comparing observed behavior with modeled behavior. Global
conformance measures quantify the overall conformance of the model and log. Local diagnostics
are given by highlighting the nodes in the model where model and log disagree. Cases that do not
fit are highlighted in the visualization of the log 120

?

event log

process model



Measuring Fitness

Fithess measures “the proportion of behaviour in the event
log possible according to the model”.

Of the four quality criteria,
fitness is the closest to conformance.

A nalve approach toward conformance checking would be to
count the fraction of cases that can be “replayed”
(.e., the proportion of cases corresponding to firing
sequences leading from [start] to [end]).
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Ability to replay

Can the net N replay the trace ¢ ?

IS equivalent to ask if

doesoc € L(N) ?
(is o in the language of N ?)

when o & L(/N) we say that
o is non-fitting for V
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1391 cases

Table 7.1 Event log Ls: a = register request, b = examine thoroughly, c = examine casually,
d = check ticket, e = decide, | = reinitiate request, g = pay compensation, and h = reject request

Frequency E Reference Trace
455 (a,c,d,e, h

)
191 (a,b,d,e, g)
177 03 (a,d,c,e,h)
144 o4 (a,b,d,e,h)
111 o5 (a,c,d,e, g)
82 06 (a,d,c,e, g)
56 o7 (a,d,b,e,h)
47 o3 (a,c,d,e, f,d,b,e,h)
38 09 (a,d,b,e,g)
33 010 (a,c,d,e, f,b,d,e,h)
14 o11 (a,c,d,e, f,b,d, e, g)
11 o12 (a,c,d,e, f,d,b,e, g)
9 013 (a,d,c,e, f,c,d,e, h)
8 014 (a,d,c,e, f,d,b,e,h)
5 015 (a,d,c,e, f,b,d,e, g)
3 o016 (a,c,d,e, f,b,d,e, f,d,b,e,g)
2 o017 (a,d,c,e, f,d,b,e, g)
2 o18 (a,d,c,e, f,b,d,e, f,b,d,e, g)
1 019 (a,d,c,e, f,d,b,e, f,b,d,e,h)
1 020 (a,d,b,e, f,b,d,e, f,d,b,e,g)
1 021 123 (a,d,c,e, f,d,b,e, f,c,d,e, f,d,b,e, g)




Example N1

examine

thoroughly
g
C pay
compensation
a examine
start register casually decide p5 end
request
) h
d p4 reject
check ticket request
f .
/ reinitiate
request

naive fithess gg% — ] The net can “‘replay” any trace
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(@) a

start register p1
request

443 cases do not correspond to a firing sequence

naive fithess

Example N2

b pay
. compensation
examine
thoroughly
C dr—> )j—>e
examine  p2 check p3 decide end
casually ticket

943

1391

.I:

reinitiate request

= 0.6815

125

reject request

r

(a,d,c,e, h)17
<a7 d? C? 67 g>82
(a,d,b,e, h)°°

o

~




Example N3

C

(@) a

N3
p1 examine
casually

start register
request

d

P2 check

759 cases do not correspond to a firing sequence

632

naive fithess 307 —

ticket

pP3
IO ®
decide p5 reject end
request
p4
-

0.4543

126

~
<a7 b? d7 67 g>191
(a,b,d, e, h)*
<a7 C? d7 67 g>111

o

v,




Example N4

N4 examine b d check
thoroughly ticket g

pay

compensation

: a
start reqgister examine c end
request casually reinitiate . h
decide request reject
request

“flower model” (poorly structured)

naive fithess gg% — ] The net can “‘replay” any trace
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Almost Fitting Traces

This nalve fithess notion seems to be too strict as traces can
differ only slightly and not be counted at all.

G — <a19 a27 *** alOO)
Consider a model N1 that cannot replay o,
but that can replay 99 of the 100 events in ©.

Then, consider another model N2 that can only replay
10 of the 100 events in o.

Using the naive fithess metric, the trace would simply be
classified as non-fitting for both models without
acknowledging that o was almost fitting
in N1 and in complete disagreement with N2.
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Missing and Remaining
Tokens

We next introduce a more accurate fithess notion.

When computing the naive fitness,
we stop replaying a trace as soon as we find a problem
(and tag that trace as non-fitting).

Let us instead just continue replaying the trace on the model
but record all situations where a transition is
forced to fire without being enabled,
l.e., we count all missing tokens.
Moreover, we record the tokens that remain at the end.
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Four Counters

p (produced tokens) r (remaining tokens)

c (consumed tokens) m (missing tokens)

equally weighted

/ ide\ally m=r=0
m

| | r
— 1 - — ] — —
2 ( / 2 ( / p)
proportions of misplacement

fitness(o, N) =




Example: none missing,
hone remaining

the environment produces a
token for place start

p=0( |p=1 b
c=0|_,| c=0
m=0| [m=0
=0 r=0 g
p1 C p3
ORE :
start pS end
3 h
p2 p4
f
—




Example: none missing,
hone remaining

replaying a is possible
one token is consumed, two produced

p=1] [p=3 b
c=0[_,|c=1
m=0 m=0
r=0 r=0 g
p1 C p3
O3 e
start pS - end
p2 d p4
_— f




Example: none missing,
hone remaining

replaying c is possible
one token is consumed, one produced

p=3| [p=4 b
c=1[_,|c=2
m=0 m=0
r=0 r=0 Jd
p1 C pP3
O[3 e
start pS end
. h
p2 p4
f
—




Example: none missing,
hone remaining

replaying d is possible
one token is consumed, one produced

p=4| [p=5 b
c=2|_,|Cc=3
m=0 m=0
r=0 =0 g
p1 C p3
Oz ;
start poS end
3 h
f
/




Example: none missing,
hone remaining

replaying e is possible
two tokens are consumed, one produced

p=5 p=6 b
c=3[_,|Cc=5
m=0 m=0
r=0 r=0 g
p1 C p3
O e
start pS - end
p2 d p4




Example: none missing,
hone remaining

replaying h is possible
one token is consumed, one produced

p=6] [p=7 b
c=5([_,|c=6
m=0 m=0
r=0 r=0 g
p1 C p3
0Lz ;
start po - end
p2 d p4




Example: none missing,
<o NONE FEemaining

the environment consumes
a token from place end.

p=7| [p=7 b
c=6|_,|c=7
m=0 m=0
r=0 r=0 g
p1 C p3
O ;
start po - end

f

finess(a1, N1) = 5(1 = 3) + 5(1 = ) =1

o1 = {a,c,d,e,h)
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Example: Missing Token

the environment produces a
token for place start

p=0 p=1

c=0 | | c=0 b

m=0 m=0

r=0 r=0

OO

start p1 end




Example: Missing Token

replaying a is possible
: end

one token is consumed, one produced

p:
» b

m:

r:
OO

start p1 p2

o= N

O%OA

= O O
||3 i

o




Example: Missing Token

replaying d is NOT possible
: end

one token is missing,
one produced, one consumed

p=2 p=3 o
c=1 c=2
m=0 | | m=1
r=0 r=0

orr :

start p1




Example: Missing Token

replaying c is possible
: end

one token is produced, one consumed

O O

b

(O :

start p1

=3
=2

0

3

- 3 0T
| T [
O A WwWwh

-




Example: Missing Token

replaying e is possible
: end

one token is produced, one consumed

TE e

start p1 p2

-sBO'CIJI
©C A WwWwhH
—130'CIJI
© b~




Example: Missing Token

replaying h is possible
one token is produced, one consumed

p=9 p=6
c=4 |__| c=5 b
m=1 m=1
r=0 r=0
OO
start p1 end




Example: Missing Token

At the end,
the environment consumes
a token from place end.

p=6 p=6

c=5 [ ,| c=6 b

m=1 m=1

r=0 r=1

OO0

start p1 end

f

1 1 | |
t Ny)=—(1— = —{1—-1=0.8333
fitness(o3, N») 2( 6) + 2( 6)

o3 ={a,d,c,e,h)

|44



Example: Event Removal

I
o o
O O
1.
O

33
T
© o
'I'i3
T
© o
'i; )
(@]
yo)
w

(@) 2 e - y—{n|—=()

start p5 end
d

events b and g are not present in the net
therefore we remove them from the trace

o ={a,b,d,e,g) 0, =(a,d,e)
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Example: Event Removal




Example: Event Removal




Example: Event Removal

T
ol N

O O
T 39




Example: Event Removal

p=5 *
c=5
m=2
r=2 c
p1 p3
O @ (P
start p5 end
d
p2 p4

fit (N)—112—|—112—O6
ness(os, 3—2 - > 5 ) =0

0, =(a,d,e)



Fitnhess of a Log

ﬁmeSS(L,N)Z%(l ZGELL(U) XmN’U) 1( ZaeLL(U) XrN,a)

+ =11
ZO’EL L(o) X CN,o 2 ZaeL L(o) x PN,o

L(o) is just the multiplicity of the trace o in the log L

fitness(Lg, N1) =1
fitness (L1, N2) = 0.9504
fitness(Lp, N3) = 0.8797
fitness(Lyi1, Ng) =1
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Diagnostic

o6

0

971
1391 1391
d
start register p1
request

problem
443 tokens remain in place p2,
because d did not occur although
the model expected d to happen

@ ,

problem

443 tokens were missing in place p2 during
replay, because d happened even though
this was not possible according to the model

Fig. 7.6 Diagnostic information showing the deviations (fitness(Lyy, N2) = 0.9504)

b

examine

thoroughly

C

examing
casydlly

@A

|51

Information

461

1537 1537
1537 1537
d e
check p3 decide
ticket

f

reinitiate
request

146

146

p4

930

461

reject request

compensatio

end

930




Diagnostic

problem
430 tokens remain in place p1,
because c¢ did not happen while
the model expected ¢ to happen

problem
10 tokens were missing in place p7 during
replay, because ¢ happened while this
was not possible according to the model

1391

o

start register

problem
146 tokens were missing in
place p2 during replay, because
d happened while this was not
possible according to the model

Information

problem
566 tokens were missing in
place p3 during replay,
because e happened
while this was not possible
according to the model

971 971
@ c 1537 | | 930 930
p1 examine p3
casually

h

reject

d request
check
ticket
1537
problem
problem 461 of the 1391

cases did not

607 tokens remain in place p5,
reach place end

because h did not happen while
the model expected h to happen

Fig. 7.7 Diagnostic information showing the deviations (fitness(Lfy, N3) = 0.8797)
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Drill Down

An event log can be split into two sublogs:
one event log containing only fitting cases and
one event log containing only non-fitting cases.

The second event log can be used to discover a different
process model.

Also other data and process mining technigues can be used.
For instance, it is interesting to know which people handled
the deviating cases and whether these cases took
longer or were more costly.

In case fraud is suspected, one may create a social
network based on the event log with deviating cases.
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Drill Down

replay
-
local
global diagnostics
conformance
measures

Dﬂﬁ

drill down new event log:
starting point for
process and data
| 54 mining techniques




Comparing Footprints
(optional reading)



Footprint from Play-out

Given a workflow net, the play-out technique can be used to
extract a local complete set of traces.

If we see the set of traces as an event log (without
multiplicities), then we can derive the relation >.

Then, we can construct the footprint (i.e. a matrix showing
causal dependencies between events) of the net model
based on such relation >.

(From the viewpoint of a footprint matrix, an event log is
complete if and only if all activities that
can follow one another do so at least once in the log.)
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Example: complete set

b

(abde g) (acdefbdeg)
(adbefdceh) (adbefcdeh)
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Footprint-based
Conformance

Footprints are available for logs and models (nets).
This allows for:

log vs model conformance
(do the log and the model agree?)

model vs model conformance
(quantification of their similarities)

log vs log comparison
(concept drift. how does the work changes in sub-logs?)
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Conformance based on
footprints

The conformance based on footprints can be computed by
taking:

n: total number of cells in the footprint matrix

d: number of cells in the same positions
but with different content between the two matrices

d

n

1
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(abdeg)

examine
thoroughly

pay
compensation

(adbefdceh)

examine

start register casually decide p5 end
request . (acdefbdeg)
d reject
check ticket request
f reinitiate <Cl db efC de h>
a b c d e f g h
a # — — —> # # # #
b < # # | —> < # #
C «— # # | — <« # #
d — | | # — <« # #
e # « <~ <« # —> — N
foo# - = = o« # # #
¢ ## ## < # o # Also
h o # # # # ~ # # # Footprint of Ly




Example

b pay
compensation

(abdefbdeg)

examine
thoroughly

c dﬂ©—>e

examine  p2 check p3 decide

(acdefcdeh)

(@) a

start register p1

end

request casually ticket h
f reject request
reinitiate request

a b C d e f g h
a # — — # # # # #
b <« # # > # <« # #
C <~ # # — # <~ # #
d # <« <« # —> # # #
e # # # “«— # — > —>
f # — — # <« # # #
g # # # # <« # # #
h # # # # “— # # #

oM



aa bb cc dd ee ff gg hh
aa ## >—> >—> ># H# # # # #H# ##
bb <<« ## #4# | - —># <«<« ## # #
cc <<« #H# ## | — —# «~—<« # # # #
dd <«# | <« || <« ## >— <# H# H# ##
e e #HH#H <«H <«H <<« #4# >—> >—> > —>
ffr ## >— @ —— —S# <<« #HH# #HH H#H
g g HH# #HH# HH# HH <<« HH H#HH# H#HH#
hh ##% #4# ## #HH# <« #H# #4H# # #
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