
Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

23 - Process Mining

 1

http://www.di.unipi.it/~bruni

Object

2

We overview the key principles of process mining

Chapters 1, 5, 7. Process Mining. W. van der Aalst

192 7 Conformance Checking

Fig. 7.1 Conformance checking: comparing observed behavior with modeled behavior. Global
conformance measures quantify the overall conformance of the model and log. Local diagnostics
are given by highlighting the nodes in the model where model and log disagree. Cases that do not
fit are highlighted in the visualization of the log

(e.g., 85% of the cases in the event log can be replayed by the model) and local
diagnostics (e.g., activity x was executed 15 times although this was not allowed
according to the model). The interpretation of non-conformance depends on the
purpose of the model. If the model is intended to be descriptive, then discrepancies
between model and log indicate that the model needs to be improved to capture re-
ality better. If the model is normative, then such discrepancies may be interpreted
in two ways. Some of the discrepancies found may expose undesirable deviations,
i.e., conformance checking signals the need for a better control of the process. Other
discrepancies may reveal desirable deviations. For instance, workers may deviate to
serve the customers better or to handle circumstances not foreseen by the process
model. In fact, flexibility and non-conformance often correlate positively. For exam-
ple, in some hospitals the phrase “breaking the glass” is used to refer to deviations
that are recorded but that actually save lives. Nevertheless, even if most deviations
are desired, it is important that stakeholders have insight into such discrepancies.

When checking conformance, it is important to view deviations from two an-
gles: (a) the model is “wrong” and does not reflect reality (“How to improve the
model?”), and (b) cases deviate from the model and corrective actions are needed
(“How to improve control to enforce a better conformance?”). Conformance check-
ing techniques should support both viewpoints. Therefore, Fig. 7.1 shows deviations
on both sides.

In Chap. 1, we related process mining to corporate governance, risk, compliance,
and legislation such as the Sarbanes-Oxley Act (SOX) and the Basel II Accord.
Corporate accounting scandals have triggered a series of new regulations. Although
country-specific, there is a large degree of commonality between Sarbanes-Oxley
(US), Basel II/III (EU), J-SOX (Japan), C-SOX (Canada), 8th EU Directive (EURO-
SOX), BilMoG (Germany), MiFID (EU), Law 262/05 (Italy), Code Lippens (Bel-

Process Mining

3

Process mining is a relative young research discipline
that sits between

machine learning and data mining on the one hand

and process modeling and analysis on the other hand.

The idea is to discover, monitor and improve real processes
by extracting knowledge from event logs

readily available in today’s systems.

Process Mining Scheme1.3 Process Mining 9

Fig. 1.4 Positioning of the three main types of process mining: discovery, conformance, and en-
hancement

However, most information systems store such information in unstructured form,
e.g., event data is scattered over many tables or needs to be tapped off from sub-
systems exchanging messages. In such cases, event data exist but some efforts are
needed to extract them. Data extraction is an integral part of any process mining
effort.

Let us assume that it is possible to sequentially record events such that each
event refers to an activity (i.e., a well-defined step in the process) and is related to
a particular case (i.e., a process instance). Consider, for example, the handling of
requests for compensation modeled in Fig. 1.1. The cases are individual requests
and per case a trace of events can be recorded. An example of a possible trace
is ⟨register request, examine casually, check ticket, decide, reinitiate request, check
ticket, examine thoroughly, decide, pay compensation⟩. Here activity names are used
to identify events. However, there are two decide events that occurred at different
times (the fourth and eighth event of the trace), produced different results, and may
have been conducted by different people. Obviously, it is important to distinguish
these two decisions. Therefore, most event logs store additional information about
events. In fact, whenever possible, process mining techniques use extra information
such as the resource (i.e., person or device) executing or initiating the activity, the
timestamp of the event, or data elements recorded with the event (e.g., the size of an
order).

Event logs can be used to conduct three types of process mining as shown in
Fig. 1.4.

Process Mining Scheme1.3 Process Mining 9

Fig. 1.4 Positioning of the three main types of process mining: discovery, conformance, and en-
hancement

However, most information systems store such information in unstructured form,
e.g., event data is scattered over many tables or needs to be tapped off from sub-
systems exchanging messages. In such cases, event data exist but some efforts are
needed to extract them. Data extraction is an integral part of any process mining
effort.

Let us assume that it is possible to sequentially record events such that each
event refers to an activity (i.e., a well-defined step in the process) and is related to
a particular case (i.e., a process instance). Consider, for example, the handling of
requests for compensation modeled in Fig. 1.1. The cases are individual requests
and per case a trace of events can be recorded. An example of a possible trace
is ⟨register request, examine casually, check ticket, decide, reinitiate request, check
ticket, examine thoroughly, decide, pay compensation⟩. Here activity names are used
to identify events. However, there are two decide events that occurred at different
times (the fourth and eighth event of the trace), produced different results, and may
have been conducted by different people. Obviously, it is important to distinguish
these two decisions. Therefore, most event logs store additional information about
events. In fact, whenever possible, process mining techniques use extra information
such as the resource (i.e., person or device) executing or initiating the activity, the
timestamp of the event, or data elements recorded with the event (e.g., the size of an
order).

Event logs can be used to conduct three types of process mining as shown in
Fig. 1.4.

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

Process Mining Scheme1.3 Process Mining 9

Fig. 1.4 Positioning of the three main types of process mining: discovery, conformance, and en-
hancement

However, most information systems store such information in unstructured form,
e.g., event data is scattered over many tables or needs to be tapped off from sub-
systems exchanging messages. In such cases, event data exist but some efforts are
needed to extract them. Data extraction is an integral part of any process mining
effort.

Let us assume that it is possible to sequentially record events such that each
event refers to an activity (i.e., a well-defined step in the process) and is related to
a particular case (i.e., a process instance). Consider, for example, the handling of
requests for compensation modeled in Fig. 1.1. The cases are individual requests
and per case a trace of events can be recorded. An example of a possible trace
is ⟨register request, examine casually, check ticket, decide, reinitiate request, check
ticket, examine thoroughly, decide, pay compensation⟩. Here activity names are used
to identify events. However, there are two decide events that occurred at different
times (the fourth and eighth event of the trace), produced different results, and may
have been conducted by different people. Obviously, it is important to distinguish
these two decisions. Therefore, most event logs store additional information about
events. In fact, whenever possible, process mining techniques use extra information
such as the resource (i.e., person or device) executing or initiating the activity, the
timestamp of the event, or data elements recorded with the event (e.g., the size of an
order).

Event logs can be used to conduct three types of process mining as shown in
Fig. 1.4.

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

Process Mining Scheme1.3 Process Mining 9

Fig. 1.4 Positioning of the three main types of process mining: discovery, conformance, and en-
hancement

However, most information systems store such information in unstructured form,
e.g., event data is scattered over many tables or needs to be tapped off from sub-
systems exchanging messages. In such cases, event data exist but some efforts are
needed to extract them. Data extraction is an integral part of any process mining
effort.

Let us assume that it is possible to sequentially record events such that each
event refers to an activity (i.e., a well-defined step in the process) and is related to
a particular case (i.e., a process instance). Consider, for example, the handling of
requests for compensation modeled in Fig. 1.1. The cases are individual requests
and per case a trace of events can be recorded. An example of a possible trace
is ⟨register request, examine casually, check ticket, decide, reinitiate request, check
ticket, examine thoroughly, decide, pay compensation⟩. Here activity names are used
to identify events. However, there are two decide events that occurred at different
times (the fourth and eighth event of the trace), produced different results, and may
have been conducted by different people. Obviously, it is important to distinguish
these two decisions. Therefore, most event logs store additional information about
events. In fact, whenever possible, process mining techniques use extra information
such as the resource (i.e., person or device) executing or initiating the activity, the
timestamp of the event, or data elements recorded with the event (e.g., the size of an
order).

Event logs can be used to conduct three types of process mining as shown in
Fig. 1.4.

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

Processes, Cases,
Events, Attributes

8

A process consists of cases.

A case consists of events such that each event relates to
precisely one case.

Events within a case are ordered in time.

Events can have attributes.

Examples of typical attribute names are
activity, time, cost, and resource.

Event Logs

9

Let us assume that it is possible
to sequentially record events of a process

such that each event:

refers to an activity
(i.e., a well-defined step in the process)

and is related to a particular case
(i.e., a process instance).

Process Mining Scheme1.3 Process Mining 9

Fig. 1.4 Positioning of the three main types of process mining: discovery, conformance, and en-
hancement

However, most information systems store such information in unstructured form,
e.g., event data is scattered over many tables or needs to be tapped off from sub-
systems exchanging messages. In such cases, event data exist but some efforts are
needed to extract them. Data extraction is an integral part of any process mining
effort.

Let us assume that it is possible to sequentially record events such that each
event refers to an activity (i.e., a well-defined step in the process) and is related to
a particular case (i.e., a process instance). Consider, for example, the handling of
requests for compensation modeled in Fig. 1.1. The cases are individual requests
and per case a trace of events can be recorded. An example of a possible trace
is ⟨register request, examine casually, check ticket, decide, reinitiate request, check
ticket, examine thoroughly, decide, pay compensation⟩. Here activity names are used
to identify events. However, there are two decide events that occurred at different
times (the fourth and eighth event of the trace), produced different results, and may
have been conducted by different people. Obviously, it is important to distinguish
these two decisions. Therefore, most event logs store additional information about
events. In fact, whenever possible, process mining techniques use extra information
such as the resource (i.e., person or device) executing or initiating the activity, the
timestamp of the event, or data elements recorded with the event (e.g., the size of an
order).

Event logs can be used to conduct three types of process mining as shown in
Fig. 1.4.

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

Process Mining Scheme1.3 Process Mining 9

Fig. 1.4 Positioning of the three main types of process mining: discovery, conformance, and en-
hancement

However, most information systems store such information in unstructured form,
e.g., event data is scattered over many tables or needs to be tapped off from sub-
systems exchanging messages. In such cases, event data exist but some efforts are
needed to extract them. Data extraction is an integral part of any process mining
effort.

Let us assume that it is possible to sequentially record events such that each
event refers to an activity (i.e., a well-defined step in the process) and is related to
a particular case (i.e., a process instance). Consider, for example, the handling of
requests for compensation modeled in Fig. 1.1. The cases are individual requests
and per case a trace of events can be recorded. An example of a possible trace
is ⟨register request, examine casually, check ticket, decide, reinitiate request, check
ticket, examine thoroughly, decide, pay compensation⟩. Here activity names are used
to identify events. However, there are two decide events that occurred at different
times (the fourth and eighth event of the trace), produced different results, and may
have been conducted by different people. Obviously, it is important to distinguish
these two decisions. Therefore, most event logs store additional information about
events. In fact, whenever possible, process mining techniques use extra information
such as the resource (i.e., person or device) executing or initiating the activity, the
timestamp of the event, or data elements recorded with the event (e.g., the size of an
order).

Event logs can be used to conduct three types of process mining as shown in
Fig. 1.4.

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

Event Log Example

12

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

ordered by Timestamp

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

2
2

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

1

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

2

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

1
1
1

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

2

Event Log Example

13

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

grouped by Case id,
ordered by Timestamp

Process Mining Scheme1.3 Process Mining 9

Fig. 1.4 Positioning of the three main types of process mining: discovery, conformance, and en-
hancement

However, most information systems store such information in unstructured form,
e.g., event data is scattered over many tables or needs to be tapped off from sub-
systems exchanging messages. In such cases, event data exist but some efforts are
needed to extract them. Data extraction is an integral part of any process mining
effort.

Let us assume that it is possible to sequentially record events such that each
event refers to an activity (i.e., a well-defined step in the process) and is related to
a particular case (i.e., a process instance). Consider, for example, the handling of
requests for compensation modeled in Fig. 1.1. The cases are individual requests
and per case a trace of events can be recorded. An example of a possible trace
is ⟨register request, examine casually, check ticket, decide, reinitiate request, check
ticket, examine thoroughly, decide, pay compensation⟩. Here activity names are used
to identify events. However, there are two decide events that occurred at different
times (the fourth and eighth event of the trace), produced different results, and may
have been conducted by different people. Obviously, it is important to distinguish
these two decisions. Therefore, most event logs store additional information about
events. In fact, whenever possible, process mining techniques use extra information
such as the resource (i.e., person or device) executing or initiating the activity, the
timestamp of the event, or data elements recorded with the event (e.g., the size of an
order).

Event logs can be used to conduct three types of process mining as shown in
Fig. 1.4.

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

Discovery

15

A discovery technique
takes an event log and produces a model

(without using any a-priori information)

If the event log contains information about resources,
one can also discover resource-related models,

e.g., a social network
showing how people work together in an organization.

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

social network

Conformance

16

Conformance checking measures
how reality, as recorded in the log,

conforms to the process model, and vice versa.

An existing process model is compared with an event log.

Conformance checking may be used
to detect, locate and explain deviations, and
to measure the severity of these deviations.

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

Enhancement

17

Whereas conformance checking
measures the alignment between a model and reality

enhancement aims to
extend/improve existing models/systems
using information about the actual process

recorded in some event log.
1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

18

First viewpoint (the model is supposed to be descriptive):
the model does not capture the real behavior

(“the model is wrong, how to improve it?”)

Second viewpoint (the model is normative)
reality deviates from the desired model

(“the event log is wrong, how to control execution?”).

Enhancement:
Two angles

Enhancement:
Model Repair

19

One type of enhancement is repair,
i.e., modifying the model to better reflect reality.

For example, if two activities are modeled sequentially
but in reality can happen in any order,

then the model may be corrected to reflect this.

Three Strategies

20

Play-in

21

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

Mining
Discovery

Replay

22

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

Conformance checking
Performance analysis
Bottlenecks detection

Predictive models (based on past)
Operational support (deviation detection)

Play-out

23

1.5 Play-in, Play-out, and Replay 19

Fig. 1.8 Three ways of relating event logs (or other sources of information containing example
behavior) and process models: Play-in, Play-out, and Replay

than 56 cigarettes tend to die young”) and association rules (“people that buy di-
apers also buy beer”). Unfortunately, it is not possible to use conventional data
mining techniques to Play-in process models. Only recently, process mining tech-
niques have become readily available to discover process models based on event
logs.

Replay uses an event log and a process model as input. The event log is “re-
played” on top of the process model. As shown earlier it is possible to replay trace
⟨a, b, d, e,h⟩ on the Petri net in Fig. 1.5; simply “play the token game” by forc-
ing the transitions to fire (if possible) in the order indicated. An event log may be
replayed for different purposes:

• Conformance checking. Discrepancies between the log and the model can be
detected and quantified by replaying the log. For instance, replaying trace
⟨a, b, e,h⟩ on the Petri net in Fig. 1.5 will show that d should have happened
but did not.

behavior

Workflow engine
Simulation engine
Trace generation
Model checking

Discovery and conformance:
an example

24

Event Log Fragment

25

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

Two cases Ten (ordered) eventsTwo traces

Event Log Fragment

26

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

Event Log Fragment

27

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

a
b
d
e
h
a
d
c
e
g

Event Log Fragment

28

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

a
b
d
e
h
a
d
c
e
g

Event Log Fragment

29

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

⟨ a b d e h ⟩

⟨ a d c e g ⟩

Event Log Example

30

1.4 Analyzing an Example Log 13

Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

Discovery Example

31

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

Discovery Example

32

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

All cases start with a

Discovery Example

33

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

All cases start with a

a

Discovery Example

34

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

All cases start with a
and end with either g or h.

a

Discovery Example

35

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

All cases start with a
and end with either g or h.

a

g

h

Discovery Example

36

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

Every e is preceded by
d and one of the examination

activities (b or c).

a

g

h

Discovery Example

37

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

Every e is preceded by
d and one of the examination

activities (b or c).

a

g

h

e

b

c

d

Discovery Example

38

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

Moreover, e is always
followed by f, g, or h.

a

g

h

e

b

c

d

f

Discovery Example

39

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

b/c and d
are executed in any order

(bd,db,cd,dc)
which suggests they are

executed in parallel

a

g

h

e

b

c

d

f

Discovery Example

40

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

The repeated execution
of b/c, d, and e suggests the
presence of a loop (over f).

a

g

h

e

b

c

d

f

Discovery Example

41

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

Replay:
log features are

adequately captured by
the net

L(N) ∋
L(N) ∋
L(N) ∋
L(N) ∋
L(N) ∋
L(N) ∋

Replay:

Discussion

42

The discovered net also allows for traces not in the log, e.g.
⟨ a, d, c, e, f, b, d, e, g ⟩

⟨ a, c, d, e, f, c, d, e, f, c, d, e, f, c, d, e, f, b, d, e, g ⟩

This is a desired phenomenon:
 the goal of a discovery procedure is not to represent

exactly the particular set of sample traces in the event log.

Process mining algorithms must generalize the behavior
contained in the log to show the most likely underlying

model that is not invalidated by the next set of observations

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

Overfitting and
Underfitting

43

One of the challenges of process mining is
to balance between

overfitting:
the model is too specific

it only allows for the accidental behavior observed

and

underfitting:
the model is too general

it allows for behavior unrelated to the behavior observed

Discovery Example

44

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

When comparing the event
log and the model, there

seems to be a good
balance between
“overfitting” and
“underfitting”.

Another Discovery
Example

45

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

1.4 Analyzing an Example Log 15

Fig. 1.6 The process model discovered by the α-algorithm based on Cases 1 and 4, i.e., the set of
traces {⟨a, b, d, e,h⟩, ⟨a, d, b, e,h⟩}

The Petri net shown in Fig. 1.5 also allows for traces not present in Table 1.2. For
example, the traces ⟨a, d, c, e, f, b, d, e, g⟩ and ⟨a, c, d, e, f, c, d, e, f, c, d, e, f, c,
d, e, f, b, d, e, g⟩ are also possible. This is a desired phenomenon as the goal is
not to represent just the particular set of example traces in the event log. Process
mining algorithms need to generalize the behavior contained in the log to show the
most likely underlying model that is not invalidated by the next set of observations.
One of the challenges of process mining is to balance between “overfitting” (the
model is too specific and only allows for the “accidental behavior” observed) and
“underfitting” (the model is too general and allows for behavior unrelated to the
behavior observed).

When comparing the event log and the model, there seems to be a good balance
between “overfitting” and “underfitting”. All cases start with a and end with either
g or h. Every e is preceded by d and one of the examination activities (b or c).
Moreover, e is followed by f , g, or h. The repeated execution of b or c, d , and e
suggests the presence of a loop. These characteristics are adequately captured by
the net of Fig. 1.5.

Let us now consider an event log consisting of only two traces ⟨a, b, d, e,h⟩ and
⟨a, d, b, e,h⟩, i.e., Cases 1 and 4 of the original log. For this log, the α-algorithm
constructs the Petri net shown in Fig. 1.6. This model only allows for two traces
and these are exactly the ones in the small event log. b and d are modeled as being
concurrent because they can be executed in any order. For larger and more complex
models, it is important to discover concurrency. Not modeling concurrency typi-
cally results in large “Spaghetti-like” models in which the same activity needs to be
duplicated.1

The α-algorithm is just one of many possible process discovery algorithms. For
real-life logs, more advanced algorithms are needed to better balance between “over-
fitting” and “underfitting” and to deal with “incompleteness” (i.e., logs containing
only a small fraction of the possible behavior due to the large number of alternatives)
and “noise” (i.e., logs containing exceptional/infrequent behavior that should not au-
tomatically be incorporated in the model). This book will describe several of such
algorithms and guide the reader in selecting one. In this section, we used Petri nets

1See, for example, Figs.12.1 and 12.10 to understand why we use the term “Spaghetti” to refer to
models that are difficult to comprehend.

Another net could
fail to replay some traces

Another Discovery
Example

46

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

Another net could allow
for too many other traces

(nets of this kind are
called flower nets)

and deliver little
information about the
underlying process

154 5 Process Discovery: An Introduction

Fig. 5.24 Four alternative models for the same log

cess mining such a difficult problem? There are obvious reasons that also apply to
many other data mining and machine learning problems, e.g., dealing with noise and
a complex and large search space. However, there are also some specific problems:

• There are no negative examples (i.e., a log shows what has happened but does not
show what could not happen).

Conformance Example

47

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

16 1 Introduction

Table 1.3 Another event log:
Cases 7, 8, and 10 are not
possible according to Fig. 1.5

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
7 ⟨a,b, e,g⟩
8 ⟨a,b,d, e⟩
9 ⟨a, d, c, e, f, d, c, e, f, b, d, e,h⟩

10 ⟨a, c,d, e, f,b,d,g⟩

to represent the discovered process models, because Petri nets are a succinct way
of representing processes and have unambiguous and simple semantics. However,
most mining techniques are independent of the desired representation. For instance,
the discovered Petri net model shown in Fig. 1.5 can be (automatically) transformed
into the BPMN model shown in Fig. 1.2.

As explained in Sect. 1.3, process mining is not limited to process discovery.
Event logs can be used to check conformance and enhance existing models. More-
over, different perspectives may be taken into account. To illustrate this, let us first
consider the event log shown in Table 1.3. The first six cases are as before. It is easy
to see that Case 7 with trace ⟨a, b, e, g⟩ is not possible according to the model in
Fig. 1.5. The model requires the execution of d before e, but d did not occur. This
means that the ticket was not checked at all before making a decision and paying
compensation. Conformance checking techniques aim at discovering such discrep-
ancies [80]. When checking the conformance of the remainder of the event log, it
can also be noted that Cases 8 and 10 do not conform either. Case 9 conforms al-
though it is not identical to one of the earlier traces. Trace ⟨a, b, d, e⟩ (i.e., Case 8)
has the problem that no concluding action was taken (rejection or payment). Trace
⟨a, c, d, e, f, b, d, g⟩ (Case 10) has the problem that the airline paid compensation
without making a final decision. Note that conformance can be viewed from two
angles: (a) the model does not capture the real behavior (“the model is wrong”)
and (b) reality deviates from the desired model (“the event log is wrong”). The first
viewpoint is taken when the model is supposed to be descriptive, i.e., capture or pre-
dict reality. The second viewpoint is taken when the model is normative, i.e., used
to influence or control reality.

The original event log shown in Table 1.1 also contains information about re-
sources, timestamps and costs. Such information can be used to discover other per-
spectives, check the conformance of models that are not pure control-flow models,
and to extend models with additional information. For example, one could derive
a social network based on the interaction patterns between individuals. The social
network can be based on the “handover of work” metric, i.e., the more frequent in-

We would like to measure the
``conformance’’ between a net

and en event log
(how well they pair together)

7 ok out of 10

√

√

√

√

√

√

√

Conformance Example

48

1.4 Analyzing an Example Log 15

Fig. 1.6 The process model discovered by the α-algorithm based on Cases 1 and 4, i.e., the set of
traces {⟨a, b, d, e,h⟩, ⟨a, d, b, e,h⟩}

The Petri net shown in Fig. 1.5 also allows for traces not present in Table 1.2. For
example, the traces ⟨a, d, c, e, f, b, d, e, g⟩ and ⟨a, c, d, e, f, c, d, e, f, c, d, e, f, c,
d, e, f, b, d, e, g⟩ are also possible. This is a desired phenomenon as the goal is
not to represent just the particular set of example traces in the event log. Process
mining algorithms need to generalize the behavior contained in the log to show the
most likely underlying model that is not invalidated by the next set of observations.
One of the challenges of process mining is to balance between “overfitting” (the
model is too specific and only allows for the “accidental behavior” observed) and
“underfitting” (the model is too general and allows for behavior unrelated to the
behavior observed).

When comparing the event log and the model, there seems to be a good balance
between “overfitting” and “underfitting”. All cases start with a and end with either
g or h. Every e is preceded by d and one of the examination activities (b or c).
Moreover, e is followed by f , g, or h. The repeated execution of b or c, d , and e
suggests the presence of a loop. These characteristics are adequately captured by
the net of Fig. 1.5.

Let us now consider an event log consisting of only two traces ⟨a, b, d, e,h⟩ and
⟨a, d, b, e,h⟩, i.e., Cases 1 and 4 of the original log. For this log, the α-algorithm
constructs the Petri net shown in Fig. 1.6. This model only allows for two traces
and these are exactly the ones in the small event log. b and d are modeled as being
concurrent because they can be executed in any order. For larger and more complex
models, it is important to discover concurrency. Not modeling concurrency typi-
cally results in large “Spaghetti-like” models in which the same activity needs to be
duplicated.1

The α-algorithm is just one of many possible process discovery algorithms. For
real-life logs, more advanced algorithms are needed to better balance between “over-
fitting” and “underfitting” and to deal with “incompleteness” (i.e., logs containing
only a small fraction of the possible behavior due to the large number of alternatives)
and “noise” (i.e., logs containing exceptional/infrequent behavior that should not au-
tomatically be incorporated in the model). This book will describe several of such
algorithms and guide the reader in selecting one. In this section, we used Petri nets

1See, for example, Figs.12.1 and 12.10 to understand why we use the term “Spaghetti” to refer to
models that are difficult to comprehend.

14 1 Introduction

Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
.

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{⟨a, b, d, e,h⟩, ⟨a, d, c, e, g⟩, ⟨a, c, d, e, f, b, d, e, g⟩, ⟨a, d, b, e,h⟩, ⟨a, c, d, e, f, d, c, e, f, c, d,
e,h⟩, ⟨a, c, d, e, g⟩}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.

16 1 Introduction

Table 1.3 Another event log:
Cases 7, 8, and 10 are not
possible according to Fig. 1.5

Case id Trace

1 ⟨a, b, d, e,h⟩
2 ⟨a, d, c, e, g⟩
3 ⟨a, c, d, e, f, b, d, e, g⟩
4 ⟨a, d, b, e,h⟩
5 ⟨a, c, d, e, f, d, c, e, f, c, d, e,h⟩
6 ⟨a, c, d, e, g⟩
7 ⟨a,b, e,g⟩
8 ⟨a,b,d, e⟩
9 ⟨a, d, c, e, f, d, c, e, f, b, d, e,h⟩

10 ⟨a, c,d, e, f,b,d,g⟩

to represent the discovered process models, because Petri nets are a succinct way
of representing processes and have unambiguous and simple semantics. However,
most mining techniques are independent of the desired representation. For instance,
the discovered Petri net model shown in Fig. 1.5 can be (automatically) transformed
into the BPMN model shown in Fig. 1.2.

As explained in Sect. 1.3, process mining is not limited to process discovery.
Event logs can be used to check conformance and enhance existing models. More-
over, different perspectives may be taken into account. To illustrate this, let us first
consider the event log shown in Table 1.3. The first six cases are as before. It is easy
to see that Case 7 with trace ⟨a, b, e, g⟩ is not possible according to the model in
Fig. 1.5. The model requires the execution of d before e, but d did not occur. This
means that the ticket was not checked at all before making a decision and paying
compensation. Conformance checking techniques aim at discovering such discrep-
ancies [80]. When checking the conformance of the remainder of the event log, it
can also be noted that Cases 8 and 10 do not conform either. Case 9 conforms al-
though it is not identical to one of the earlier traces. Trace ⟨a, b, d, e⟩ (i.e., Case 8)
has the problem that no concluding action was taken (rejection or payment). Trace
⟨a, c, d, e, f, b, d, g⟩ (Case 10) has the problem that the airline paid compensation
without making a final decision. Note that conformance can be viewed from two
angles: (a) the model does not capture the real behavior (“the model is wrong”)
and (b) reality deviates from the desired model (“the event log is wrong”). The first
viewpoint is taken when the model is supposed to be descriptive, i.e., capture or pre-
dict reality. The second viewpoint is taken when the model is normative, i.e., used
to influence or control reality.

The original event log shown in Table 1.1 also contains information about re-
sources, timestamps and costs. Such information can be used to discover other per-
spectives, check the conformance of models that are not pure control-flow models,
and to extend models with additional information. For example, one could derive
a social network based on the interaction patterns between individuals. The social
network can be based on the “handover of work” metric, i.e., the more frequent in-

We would like to measure the
``conformance’’ between a net

and en event log
(how well they pair together)

7 ok out of 10

2 ok out of 10 √

√

49

Question time
Suppose you are given a log with:

#6 traces of the form ⟨ a , c , d ⟩
#3 traces of the form ⟨ b , c , e ⟩

Which model (i.e., Petri net) would you infer?

The Petri net you derive must have exactly
five transitions named a, b, c, d, e

(and the places / arcs you like)

50

Question time

⟨ a , c , d ⟩
⟨ b , c , e ⟩

can start with a or b

can end with d or e

c is always executed in between

51

Question time

⟨ a , c , d ⟩
⟨ b , c , e ⟩

also allowed:
⟨ a , c , e ⟩
⟨ b , c , d ⟩

52

Question time

⟨ a , c , d ⟩
⟨ b , c , e ⟩

nothing else
allowed!

53

Question time
Suppose you are given a log with:

#3 traces of the form ⟨ a , b , c , d ⟩
#1 traces of the form ⟨ a , e , d ⟩
#2 traces of the form ⟨ a , c , b , d ⟩

Which model (i.e., Petri net) would you infer?

The Petri net you derive must have exactly
five transitions named a, b, c, d, e

(and the places / arcs you like)

54

Question time

⟨ a , b , c , d ⟩
⟨ a , e , d ⟩
⟨ a , c , b , d ⟩

must start with a

must end with d

b/c in any order OR just e

55

Question time

⟨ a , b , c , d ⟩
⟨ a , e , d ⟩
⟨ a , c , b , d ⟩

contains events
that are not

present in the log

56

Question time

⟨ a , b , c , d ⟩
⟨ a , e , d ⟩
⟨ a , c , b , d ⟩

Mining Other Models

57

We used Petri nets to represent the discovered process
models, because Petri nets are a succinct way

of representing processes and have unambiguous but
intuitive semantics.

However, some mining techniques can apply to other
representations as well. 1.2 Limitations of Modeling 5

Fig. 1.2 The same process modeled in terms of BPMN

currence of examine casually will disable examine thoroughly. In other words, there
is a choice between these two activities. Transition examine thoroughly is executed
for requests that are suspicious or complex. Straightforward requests only need a
casual examination. Firing check ticket does not disable any other transition, i.e.,
it can occur concurrently with examine thoroughly or examine casually. Transition
decide is only enabled if both input places contain a token. The ticket needs to be
checked (token in place c4) and the casual or thorough examination of the request
has been conducted (token in place c3). Hence, the process synchronizes before
making a decision. Transition decide consumes two tokens and produces one token
for c5. Three transitions share c5 as an input place, thus modeling the three pos-
sible outcomes of the decision. The requested compensation is paid (transition pay
compensation fires), the request is declined (transition reject request fires), or fur-
ther processing is needed (transition reinitiate request fires). In the latter case, the
process returns to the state marking places c1 and c2: transition reinitiate request
consumes a token from c5 and produces a token for each of its output places. This
was the marking directly following the occurrence of register request. In principle,
several iterations are possible. The process ends after paying the compensation or
rejecting the request.

Figure 1.1 models the process as a Petri net. There exist many different notations
for process models. Figure 1.2 models the same process in terms of a so-called
BPMN diagram [72, 127]. The Business Process Modeling Notation (BPMN) uses
explicit gateways rather than places to model the control-flow logic. The diamonds
with a “×” sign denote XOR split/join gateways, whereas diamonds with a “+” sign
denote AND split/join gateways. The diamond directly following activity register
request is an XOR-join gateway. This gateway is used to be able to “jump back”
after making the decision to reinitiate the request. After this XOR-join gateway,
there is an AND-split gateway to model that the checking of the ticket can be done
in parallel with the selected examination type (thorough or casual). The remainder
of the BPMN diagram is self explanatory as the behavior is identical to the Petri net
described before.

Figures 1.1 and 1.2 show only the control-flow, i.e., the ordering of activities
for the process described earlier. This is a rather limited view on business processes.
Therefore, most modeling languages offer notations for modeling other perspectives
such as the organizational or resource perspective (“The decision needs to be made
by a manager”), the data perspective (“After four iteration always a decision is made

Process Discovery:
-Algorithmα

58

Process Discovery

59

Process discovery is the activity that combines
Discovery with the Control-flow Perspective.

The general problem:
A process discovery algorithm is a function

that maps an event log L onto a process model M
such that the model M is “representative”
for the behaviour seen in the event log L.

We focus on simple event logs and Petri net models
(possibly sound workflow nets).

Simple Event Log

60

Let A be a set of activities.

A simple trace over A is a finite sequence of activities.

A simple event log L over A is a multiset of traces.

σ

126 5 Process Discovery: An Introduction

Fig. 5.1 WF-net N1 discovered for L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩]

ments. To make things more concrete, we define the target to be a Petri net model.
Moreover, we use a simple event log as input (cf. Definition 4.4). A simple event
log L is a multi-set of traces over some set of activities A , i.e., L ∈ B(A ∗). For
example,

L1 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩

]

L1 is a simple log describing the history of six cases. The goal is now to discover a
Petri net that can “replay” event log L1. Ideally, the Petri net is a sound WF-net as
defined in Sect. 2.2.3. Based on these choices, we reformulate the process discovery
problem and make it more concrete.

Definition 5.2 (Specific process discovery problem) A process discovery algorithm
is a function γ that maps a log L ∈ B(A ∗) onto a marked Petri net γ (L) = (N,M).
Ideally, N is a sound WF-net and all traces in L correspond to possible firing se-
quences of (N,M).

Function γ defines a so-called “Play-in” technique as described in Chap. 1. Based
on L1, a process discovery algorithm γ could discover the WF-net shown in Fig. 5.1,
i.e., γ (L1) = (N1, [start]). Each trace in L1 corresponds to a possible firing se-
quence of WF-net N1 shown in Fig. 5.1. Therefore, it is easy to see that the WF-net
can indeed replay all traces in the event log. In fact, each of the three possible firing
sequences of WF-net N1 appears in L1.

Let us now consider another event log:

L2 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4, ⟨a, b, c, e, f, b, c, d⟩2, ⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2, ⟨a, c, b, e, f, b, c, e, f, c, b, d⟩

]

L2 is a simple event log consisting of 13 cases represented by 6 different traces.
Based on event log L2, some γ could discover WF-net N2 shown in Fig. 5.2. This
WF-net can indeed replay all traces in the log. However, not all firing sequences of
N2 correspond to traces in L2. For example, the firing sequence ⟨a, c, b, e, f, c, b, d⟩
does not appear in L2. In fact, there are infinitely many firing sequences because of
the loop construct in N2. Clearly, these cannot all appear in the event log. Therefore,
Definition 5.2 does not require all firing sequences of (N,M) to be traces in L.

126 5 Process Discovery: An Introduction

Fig. 5.1 WF-net N1 discovered for L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩]

ments. To make things more concrete, we define the target to be a Petri net model.
Moreover, we use a simple event log as input (cf. Definition 4.4). A simple event
log L is a multi-set of traces over some set of activities A , i.e., L ∈ B(A ∗). For
example,

L1 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩

]

L1 is a simple log describing the history of six cases. The goal is now to discover a
Petri net that can “replay” event log L1. Ideally, the Petri net is a sound WF-net as
defined in Sect. 2.2.3. Based on these choices, we reformulate the process discovery
problem and make it more concrete.

Definition 5.2 (Specific process discovery problem) A process discovery algorithm
is a function γ that maps a log L ∈ B(A ∗) onto a marked Petri net γ (L) = (N,M).
Ideally, N is a sound WF-net and all traces in L correspond to possible firing se-
quences of (N,M).

Function γ defines a so-called “Play-in” technique as described in Chap. 1. Based
on L1, a process discovery algorithm γ could discover the WF-net shown in Fig. 5.1,
i.e., γ (L1) = (N1, [start]). Each trace in L1 corresponds to a possible firing se-
quence of WF-net N1 shown in Fig. 5.1. Therefore, it is easy to see that the WF-net
can indeed replay all traces in the event log. In fact, each of the three possible firing
sequences of WF-net N1 appears in L1.

Let us now consider another event log:

L2 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4, ⟨a, b, c, e, f, b, c, d⟩2, ⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2, ⟨a, c, b, e, f, b, c, e, f, c, b, d⟩

]

L2 is a simple event log consisting of 13 cases represented by 6 different traces.
Based on event log L2, some γ could discover WF-net N2 shown in Fig. 5.2. This
WF-net can indeed replay all traces in the log. However, not all firing sequences of
N2 correspond to traces in L2. For example, the firing sequence ⟨a, c, b, e, f, c, b, d⟩
does not appear in L2. In fact, there are infinitely many firing sequences because of
the loop construct in N2. Clearly, these cannot all appear in the event log. Therefore,
Definition 5.2 does not require all firing sequences of (N,M) to be traces in L.

trace multiplicity multiplicity 1

Quality Criteria

61

5.4 Challenges 151

Fig. 5.22 Balancing the four quality dimensions: fitness, simplicity, precision, and generalization

made. For example: What is the penalty if a step needs to be skipped and what is
the penalty if tokens remain in the WF-net after replay? Later, we will give concrete
definitions for fitness.

In Sect. 3.6.1, we defined performance measures like error, accuracy, tp-rate,
fp-rate, precision, recall, and F1 score. Recall, also known as the tp-rate, measures
the proportion of positive instances indeed classified as positive (tp/p). The traces
in the log are positive instances. When such an instance can be replayed by the
model, then the instance is indeed classified as positive. Hence, the various notions
of fitness can be seen as variants of the recall measure. Most of the notions defined
in Sect. 3.6.1 cannot be used because there are no negative examples, i.e., fp and tn
are unknown (see Fig. 3.14). Since the event log does not contain information about
events that could not happen at a particular point in time, other notations are needed.

The simplicity dimension refers to Occam’s Razor. This principle was already
discussed in Sect. 3.6.3. In the context of process discovery, this means that the
simplest model that can explain the behavior seen in the log, is the best model.
The complexity of the model could be defined by the number of nodes and arcs
in the underlying graph. Also more sophisticated metrics can be used, e.g., metrics
that take the “structuredness” or “entropy” of the model into account. See [66] for
an empirical evaluation of the model complexity metrics defined in literature. In
Sect. 3.6.3, we also mentioned that this principle can be operationalized using the
Minimal Description Length (MDL) principle [47, 129].

Fitness and simplicity alone are not adequate. This is illustrated by the so-called
“flower model” shown in Fig. 5.23. The “flower Petri net” allows for any sequence
starting with start and ending with end and containing any ordering of activities
in between. Clearly, this model allows for all event logs used to introduce the
α-algorithm. The added start and end activities in Fig. 5.23 are just a technicality to
turn the “flower model” into a WF-net. Surprisingly, all event logs shown thus far
(L1,L2, . . . ,L11) can be replayed by this single model. This shows that the model
is not very useful. In fact, the “flower model” does not contain any knowledge other
than the activities in the event log. The “flower model” can be constructed based on
the occurrences of activities only. The resulting model is simple and has a perfect
fitness. Based on the first two quality dimensions, this model is acceptable. This
shows that the fitness and simplicity criteria are necessary, but not sufficient.

No completely unrelated behaviorOther behaviors allowed

Simple structure

62

154 5 Process Discovery: An Introduction

Fig. 5.24 Four alternative models for the same log

cess mining such a difficult problem? There are obvious reasons that also apply to
many other data mining and machine learning problems, e.g., dealing with noise and
a complex and large search space. However, there are also some specific problems:

• There are no negative examples (i.e., a log shows what has happened but does not
show what could not happen).

5.4 Challenges 151

Fig. 5.22 Balancing the four quality dimensions: fitness, simplicity, precision, and generalization

made. For example: What is the penalty if a step needs to be skipped and what is
the penalty if tokens remain in the WF-net after replay? Later, we will give concrete
definitions for fitness.

In Sect. 3.6.1, we defined performance measures like error, accuracy, tp-rate,
fp-rate, precision, recall, and F1 score. Recall, also known as the tp-rate, measures
the proportion of positive instances indeed classified as positive (tp/p). The traces
in the log are positive instances. When such an instance can be replayed by the
model, then the instance is indeed classified as positive. Hence, the various notions
of fitness can be seen as variants of the recall measure. Most of the notions defined
in Sect. 3.6.1 cannot be used because there are no negative examples, i.e., fp and tn
are unknown (see Fig. 3.14). Since the event log does not contain information about
events that could not happen at a particular point in time, other notations are needed.

The simplicity dimension refers to Occam’s Razor. This principle was already
discussed in Sect. 3.6.3. In the context of process discovery, this means that the
simplest model that can explain the behavior seen in the log, is the best model.
The complexity of the model could be defined by the number of nodes and arcs
in the underlying graph. Also more sophisticated metrics can be used, e.g., metrics
that take the “structuredness” or “entropy” of the model into account. See [66] for
an empirical evaluation of the model complexity metrics defined in literature. In
Sect. 3.6.3, we also mentioned that this principle can be operationalized using the
Minimal Description Length (MDL) principle [47, 129].

Fitness and simplicity alone are not adequate. This is illustrated by the so-called
“flower model” shown in Fig. 5.23. The “flower Petri net” allows for any sequence
starting with start and ending with end and containing any ordering of activities
in between. Clearly, this model allows for all event logs used to introduce the
α-algorithm. The added start and end activities in Fig. 5.23 are just a technicality to
turn the “flower model” into a WF-net. Surprisingly, all event logs shown thus far
(L1,L2, . . . ,L11) can be replayed by this single model. This shows that the model
is not very useful. In fact, the “flower model” does not contain any knowledge other
than the activities in the event log. The “flower model” can be constructed based on
the occurrences of activities only. The resulting model is simple and has a perfect
fitness. Based on the first two quality dimensions, this model is acceptable. This
shows that the fitness and simplicity criteria are necessary, but not sufficient.

154 5 Process Discovery: An Introduction

Fig. 5.24 Four alternative models for the same log

cess mining such a difficult problem? There are obvious reasons that also apply to
many other data mining and machine learning problems, e.g., dealing with noise and
a complex and large search space. However, there are also some specific problems:

• There are no negative examples (i.e., a log shows what has happened but does not
show what could not happen).

63

154 5 Process Discovery: An Introduction

Fig. 5.24 Four alternative models for the same log

cess mining such a difficult problem? There are obvious reasons that also apply to
many other data mining and machine learning problems, e.g., dealing with noise and
a complex and large search space. However, there are also some specific problems:

• There are no negative examples (i.e., a log shows what has happened but does not
show what could not happen).

5.4 Challenges 151

Fig. 5.22 Balancing the four quality dimensions: fitness, simplicity, precision, and generalization

made. For example: What is the penalty if a step needs to be skipped and what is
the penalty if tokens remain in the WF-net after replay? Later, we will give concrete
definitions for fitness.

In Sect. 3.6.1, we defined performance measures like error, accuracy, tp-rate,
fp-rate, precision, recall, and F1 score. Recall, also known as the tp-rate, measures
the proportion of positive instances indeed classified as positive (tp/p). The traces
in the log are positive instances. When such an instance can be replayed by the
model, then the instance is indeed classified as positive. Hence, the various notions
of fitness can be seen as variants of the recall measure. Most of the notions defined
in Sect. 3.6.1 cannot be used because there are no negative examples, i.e., fp and tn
are unknown (see Fig. 3.14). Since the event log does not contain information about
events that could not happen at a particular point in time, other notations are needed.

The simplicity dimension refers to Occam’s Razor. This principle was already
discussed in Sect. 3.6.3. In the context of process discovery, this means that the
simplest model that can explain the behavior seen in the log, is the best model.
The complexity of the model could be defined by the number of nodes and arcs
in the underlying graph. Also more sophisticated metrics can be used, e.g., metrics
that take the “structuredness” or “entropy” of the model into account. See [66] for
an empirical evaluation of the model complexity metrics defined in literature. In
Sect. 3.6.3, we also mentioned that this principle can be operationalized using the
Minimal Description Length (MDL) principle [47, 129].

Fitness and simplicity alone are not adequate. This is illustrated by the so-called
“flower model” shown in Fig. 5.23. The “flower Petri net” allows for any sequence
starting with start and ending with end and containing any ordering of activities
in between. Clearly, this model allows for all event logs used to introduce the
α-algorithm. The added start and end activities in Fig. 5.23 are just a technicality to
turn the “flower model” into a WF-net. Surprisingly, all event logs shown thus far
(L1,L2, . . . ,L11) can be replayed by this single model. This shows that the model
is not very useful. In fact, the “flower model” does not contain any knowledge other
than the activities in the event log. The “flower model” can be constructed based on
the occurrences of activities only. The resulting model is simple and has a perfect
fitness. Based on the first two quality dimensions, this model is acceptable. This
shows that the fitness and simplicity criteria are necessary, but not sufficient.

154 5 Process Discovery: An Introduction

Fig. 5.24 Four alternative models for the same log

cess mining such a difficult problem? There are obvious reasons that also apply to
many other data mining and machine learning problems, e.g., dealing with noise and
a complex and large search space. However, there are also some specific problems:

• There are no negative examples (i.e., a log shows what has happened but does not
show what could not happen).

64

154 5 Process Discovery: An Introduction

Fig. 5.24 Four alternative models for the same log

cess mining such a difficult problem? There are obvious reasons that also apply to
many other data mining and machine learning problems, e.g., dealing with noise and
a complex and large search space. However, there are also some specific problems:

• There are no negative examples (i.e., a log shows what has happened but does not
show what could not happen).

5.4 Challenges 151

Fig. 5.22 Balancing the four quality dimensions: fitness, simplicity, precision, and generalization

made. For example: What is the penalty if a step needs to be skipped and what is
the penalty if tokens remain in the WF-net after replay? Later, we will give concrete
definitions for fitness.

In Sect. 3.6.1, we defined performance measures like error, accuracy, tp-rate,
fp-rate, precision, recall, and F1 score. Recall, also known as the tp-rate, measures
the proportion of positive instances indeed classified as positive (tp/p). The traces
in the log are positive instances. When such an instance can be replayed by the
model, then the instance is indeed classified as positive. Hence, the various notions
of fitness can be seen as variants of the recall measure. Most of the notions defined
in Sect. 3.6.1 cannot be used because there are no negative examples, i.e., fp and tn
are unknown (see Fig. 3.14). Since the event log does not contain information about
events that could not happen at a particular point in time, other notations are needed.

The simplicity dimension refers to Occam’s Razor. This principle was already
discussed in Sect. 3.6.3. In the context of process discovery, this means that the
simplest model that can explain the behavior seen in the log, is the best model.
The complexity of the model could be defined by the number of nodes and arcs
in the underlying graph. Also more sophisticated metrics can be used, e.g., metrics
that take the “structuredness” or “entropy” of the model into account. See [66] for
an empirical evaluation of the model complexity metrics defined in literature. In
Sect. 3.6.3, we also mentioned that this principle can be operationalized using the
Minimal Description Length (MDL) principle [47, 129].

Fitness and simplicity alone are not adequate. This is illustrated by the so-called
“flower model” shown in Fig. 5.23. The “flower Petri net” allows for any sequence
starting with start and ending with end and containing any ordering of activities
in between. Clearly, this model allows for all event logs used to introduce the
α-algorithm. The added start and end activities in Fig. 5.23 are just a technicality to
turn the “flower model” into a WF-net. Surprisingly, all event logs shown thus far
(L1,L2, . . . ,L11) can be replayed by this single model. This shows that the model
is not very useful. In fact, the “flower model” does not contain any knowledge other
than the activities in the event log. The “flower model” can be constructed based on
the occurrences of activities only. The resulting model is simple and has a perfect
fitness. Based on the first two quality dimensions, this model is acceptable. This
shows that the fitness and simplicity criteria are necessary, but not sufficient.

154 5 Process Discovery: An Introduction

Fig. 5.24 Four alternative models for the same log

cess mining such a difficult problem? There are obvious reasons that also apply to
many other data mining and machine learning problems, e.g., dealing with noise and
a complex and large search space. However, there are also some specific problems:

• There are no negative examples (i.e., a log shows what has happened but does not
show what could not happen).

65

154 5 Process Discovery: An Introduction

Fig. 5.24 Four alternative models for the same log

cess mining such a difficult problem? There are obvious reasons that also apply to
many other data mining and machine learning problems, e.g., dealing with noise and
a complex and large search space. However, there are also some specific problems:

• There are no negative examples (i.e., a log shows what has happened but does not
show what could not happen).

5.4 Challenges 151

Fig. 5.22 Balancing the four quality dimensions: fitness, simplicity, precision, and generalization

made. For example: What is the penalty if a step needs to be skipped and what is
the penalty if tokens remain in the WF-net after replay? Later, we will give concrete
definitions for fitness.

In Sect. 3.6.1, we defined performance measures like error, accuracy, tp-rate,
fp-rate, precision, recall, and F1 score. Recall, also known as the tp-rate, measures
the proportion of positive instances indeed classified as positive (tp/p). The traces
in the log are positive instances. When such an instance can be replayed by the
model, then the instance is indeed classified as positive. Hence, the various notions
of fitness can be seen as variants of the recall measure. Most of the notions defined
in Sect. 3.6.1 cannot be used because there are no negative examples, i.e., fp and tn
are unknown (see Fig. 3.14). Since the event log does not contain information about
events that could not happen at a particular point in time, other notations are needed.

The simplicity dimension refers to Occam’s Razor. This principle was already
discussed in Sect. 3.6.3. In the context of process discovery, this means that the
simplest model that can explain the behavior seen in the log, is the best model.
The complexity of the model could be defined by the number of nodes and arcs
in the underlying graph. Also more sophisticated metrics can be used, e.g., metrics
that take the “structuredness” or “entropy” of the model into account. See [66] for
an empirical evaluation of the model complexity metrics defined in literature. In
Sect. 3.6.3, we also mentioned that this principle can be operationalized using the
Minimal Description Length (MDL) principle [47, 129].

Fitness and simplicity alone are not adequate. This is illustrated by the so-called
“flower model” shown in Fig. 5.23. The “flower Petri net” allows for any sequence
starting with start and ending with end and containing any ordering of activities
in between. Clearly, this model allows for all event logs used to introduce the
α-algorithm. The added start and end activities in Fig. 5.23 are just a technicality to
turn the “flower model” into a WF-net. Surprisingly, all event logs shown thus far
(L1,L2, . . . ,L11) can be replayed by this single model. This shows that the model
is not very useful. In fact, the “flower model” does not contain any knowledge other
than the activities in the event log. The “flower model” can be constructed based on
the occurrences of activities only. The resulting model is simple and has a perfect
fitness. Based on the first two quality dimensions, this model is acceptable. This
shows that the fitness and simplicity criteria are necessary, but not sufficient.

154 5 Process Discovery: An Introduction

Fig. 5.24 Four alternative models for the same log

cess mining such a difficult problem? There are obvious reasons that also apply to
many other data mining and machine learning problems, e.g., dealing with noise and
a complex and large search space. However, there are also some specific problems:

• There are no negative examples (i.e., a log shows what has happened but does not
show what could not happen).

66

154 5 Process Discovery: An Introduction

Fig. 5.24 Four alternative models for the same log

cess mining such a difficult problem? There are obvious reasons that also apply to
many other data mining and machine learning problems, e.g., dealing with noise and
a complex and large search space. However, there are also some specific problems:

• There are no negative examples (i.e., a log shows what has happened but does not
show what could not happen).

5.4 Challenges 151

Fig. 5.22 Balancing the four quality dimensions: fitness, simplicity, precision, and generalization

made. For example: What is the penalty if a step needs to be skipped and what is
the penalty if tokens remain in the WF-net after replay? Later, we will give concrete
definitions for fitness.

In Sect. 3.6.1, we defined performance measures like error, accuracy, tp-rate,
fp-rate, precision, recall, and F1 score. Recall, also known as the tp-rate, measures
the proportion of positive instances indeed classified as positive (tp/p). The traces
in the log are positive instances. When such an instance can be replayed by the
model, then the instance is indeed classified as positive. Hence, the various notions
of fitness can be seen as variants of the recall measure. Most of the notions defined
in Sect. 3.6.1 cannot be used because there are no negative examples, i.e., fp and tn
are unknown (see Fig. 3.14). Since the event log does not contain information about
events that could not happen at a particular point in time, other notations are needed.

The simplicity dimension refers to Occam’s Razor. This principle was already
discussed in Sect. 3.6.3. In the context of process discovery, this means that the
simplest model that can explain the behavior seen in the log, is the best model.
The complexity of the model could be defined by the number of nodes and arcs
in the underlying graph. Also more sophisticated metrics can be used, e.g., metrics
that take the “structuredness” or “entropy” of the model into account. See [66] for
an empirical evaluation of the model complexity metrics defined in literature. In
Sect. 3.6.3, we also mentioned that this principle can be operationalized using the
Minimal Description Length (MDL) principle [47, 129].

Fitness and simplicity alone are not adequate. This is illustrated by the so-called
“flower model” shown in Fig. 5.23. The “flower Petri net” allows for any sequence
starting with start and ending with end and containing any ordering of activities
in between. Clearly, this model allows for all event logs used to introduce the
α-algorithm. The added start and end activities in Fig. 5.23 are just a technicality to
turn the “flower model” into a WF-net. Surprisingly, all event logs shown thus far
(L1,L2, . . . ,L11) can be replayed by this single model. This shows that the model
is not very useful. In fact, the “flower model” does not contain any knowledge other
than the activities in the event log. The “flower model” can be constructed based on
the occurrences of activities only. The resulting model is simple and has a perfect
fitness. Based on the first two quality dimensions, this model is acceptable. This
shows that the fitness and simplicity criteria are necessary, but not sufficient.

154 5 Process Discovery: An Introduction

Fig. 5.24 Four alternative models for the same log

cess mining such a difficult problem? There are obvious reasons that also apply to
many other data mining and machine learning problems, e.g., dealing with noise and
a complex and large search space. However, there are also some specific problems:

• There are no negative examples (i.e., a log shows what has happened but does not
show what could not happen).

some events
are missing
in the model

some events
are repeated
in the model

Quality Measures

67

We have seen four quality criteria:
fitness, precision, generalization, and simplicity.

In the example, for each of these models, a subjective
judgment is given with respect to the four quality criteria.
As the models are rather extreme, the scores +/- for the

various quality criteria are easy to assign.

However, in a more realistic setting it would be much more
difficult to judge the quality of a model.

We will discuss how the notion of fitness can be quantified.

-Algorithmα

68

The -algorithm was one of the first process discovery
algorithms that could adequately deal with concurrency.

 It has several limitations,
but it provides a good introduction into the topic:

The -algorithm is simple and many of its ideas have been
embedded in more complex and robust techniques.

The -algorithm uses the play-in strategy
to scan the event log for particular patterns,

called log-based ordering relations,
to create a footprint matrix of the log.

α

α

α

Log-based Ordering
Relations

69

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

a is (sometimes) immediately followed by b

L = { ⟨ , , ⟩ , ⟨ , , ⟩ }a c d b c e
a >L c

Example:

c >L d
b >L c

c >L e

a >L d No!

Log-based Ordering
Relations

70

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

(causality)

(mutual exclusion)

(concurrency)

a is (sometimes) immediately followed by b

Log-based Ordering
Relations: Example

71

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

Log-based Ordering
Relations: Example

72

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

Log-based Ordering
Relations: Example

73

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

Log-based Ordering
Relations: Example

74

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

Footprint Matrix

75

We can record all information about
log-based ordering relations
in a concise way as a matrix:

one row for each event
one column for each event

the entry in row and column tells us their relationa b

Footprint Matrix:
Example

76

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

Footprint Matrix:
Example

77

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

Note the symmetry w.r.t. the diagonal

Patterns

78

Footprints are useful to discover typical patterns of activities
in the corresponding process model

5.2 A Simple Algorithm for Process Discovery 131

Table 5.2 Footprint of L2 =
[⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4,
⟨a, b, c, e, f, b, c, d⟩2,
⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2,
⟨a, c, b, e, f, b, c, e, f, c,
b, d⟩]

a b c d e f

a # → → # # #

b ← # ∥ → → ←
c ← ∥ # → → ←
d # ← ← # # #

e # ← ← # # →
f # → → # ← #

Fig. 5.4 Typical process patterns and the footprints they leave in the event log

pattern is the XOR-join pattern as shown in Fig. 5.4(b–c). If a →L c, b →L c, and
a #L b, then this suggests that after the occurrence of either a or b, c should happen.
Figure 5.4(d–e) shows the so-called AND-split and AND-join patterns. If a →L b,
a →L c, and b ∥L c, then it appears that after a both b and c can be executed in
parallel (AND-split pattern). If a →L c, b →L c, and a ∥L b, then the log suggests
that c needs to synchronize a and b (AND-join pattern).

Figure 5.4 only shows simple patterns and does not present the additional condi-
tions needed to extract the patterns. However, the figure nicely illustrates the basic
idea.

Consider, for example, WF-net N3 depicted in Fig. 5.5 and the event log L3
describing four cases

Patterns

79

Footprints are useful to discover typical patterns of activities
in the corresponding process model

5.2 A Simple Algorithm for Process Discovery 131

Table 5.2 Footprint of L2 =
[⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4,
⟨a, b, c, e, f, b, c, d⟩2,
⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2,
⟨a, c, b, e, f, b, c, e, f, c,
b, d⟩]

a b c d e f

a # → → # # #

b ← # ∥ → → ←
c ← ∥ # → → ←
d # ← ← # # #

e # ← ← # # →
f # → → # ← #

Fig. 5.4 Typical process patterns and the footprints they leave in the event log

pattern is the XOR-join pattern as shown in Fig. 5.4(b–c). If a →L c, b →L c, and
a #L b, then this suggests that after the occurrence of either a or b, c should happen.
Figure 5.4(d–e) shows the so-called AND-split and AND-join patterns. If a →L b,
a →L c, and b ∥L c, then it appears that after a both b and c can be executed in
parallel (AND-split pattern). If a →L c, b →L c, and a ∥L b, then the log suggests
that c needs to synchronize a and b (AND-join pattern).

Figure 5.4 only shows simple patterns and does not present the additional condi-
tions needed to extract the patterns. However, the figure nicely illustrates the basic
idea.

Consider, for example, WF-net N3 depicted in Fig. 5.5 and the event log L3
describing four cases

Patterns

80

Footprints are useful to discover typical patterns of activities
in the corresponding process model

5.2 A Simple Algorithm for Process Discovery 131

Table 5.2 Footprint of L2 =
[⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4,
⟨a, b, c, e, f, b, c, d⟩2,
⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2,
⟨a, c, b, e, f, b, c, e, f, c,
b, d⟩]

a b c d e f

a # → → # # #

b ← # ∥ → → ←
c ← ∥ # → → ←
d # ← ← # # #

e # ← ← # # →
f # → → # ← #

Fig. 5.4 Typical process patterns and the footprints they leave in the event log

pattern is the XOR-join pattern as shown in Fig. 5.4(b–c). If a →L c, b →L c, and
a #L b, then this suggests that after the occurrence of either a or b, c should happen.
Figure 5.4(d–e) shows the so-called AND-split and AND-join patterns. If a →L b,
a →L c, and b ∥L c, then it appears that after a both b and c can be executed in
parallel (AND-split pattern). If a →L c, b →L c, and a ∥L b, then the log suggests
that c needs to synchronize a and b (AND-join pattern).

Figure 5.4 only shows simple patterns and does not present the additional condi-
tions needed to extract the patterns. However, the figure nicely illustrates the basic
idea.

Consider, for example, WF-net N3 depicted in Fig. 5.5 and the event log L3
describing four cases

Patterns

81

Footprints are useful to discover typical patterns of activities
in the corresponding process model

5.2 A Simple Algorithm for Process Discovery 131

Table 5.2 Footprint of L2 =
[⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4,
⟨a, b, c, e, f, b, c, d⟩2,
⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2,
⟨a, c, b, e, f, b, c, e, f, c,
b, d⟩]

a b c d e f

a # → → # # #

b ← # ∥ → → ←
c ← ∥ # → → ←
d # ← ← # # #

e # ← ← # # →
f # → → # ← #

Fig. 5.4 Typical process patterns and the footprints they leave in the event log

pattern is the XOR-join pattern as shown in Fig. 5.4(b–c). If a →L c, b →L c, and
a #L b, then this suggests that after the occurrence of either a or b, c should happen.
Figure 5.4(d–e) shows the so-called AND-split and AND-join patterns. If a →L b,
a →L c, and b ∥L c, then it appears that after a both b and c can be executed in
parallel (AND-split pattern). If a →L c, b →L c, and a ∥L b, then the log suggests
that c needs to synchronize a and b (AND-join pattern).

Figure 5.4 only shows simple patterns and does not present the additional condi-
tions needed to extract the patterns. However, the figure nicely illustrates the basic
idea.

Consider, for example, WF-net N3 depicted in Fig. 5.5 and the event log L3
describing four cases

Patterns

82

Footprints are useful to discover typical patterns of activities
in the corresponding process model

5.2 A Simple Algorithm for Process Discovery 131

Table 5.2 Footprint of L2 =
[⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4,
⟨a, b, c, e, f, b, c, d⟩2,
⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2,
⟨a, c, b, e, f, b, c, e, f, c,
b, d⟩]

a b c d e f

a # → → # # #

b ← # ∥ → → ←
c ← ∥ # → → ←
d # ← ← # # #

e # ← ← # # →
f # → → # ← #

Fig. 5.4 Typical process patterns and the footprints they leave in the event log

pattern is the XOR-join pattern as shown in Fig. 5.4(b–c). If a →L c, b →L c, and
a #L b, then this suggests that after the occurrence of either a or b, c should happen.
Figure 5.4(d–e) shows the so-called AND-split and AND-join patterns. If a →L b,
a →L c, and b ∥L c, then it appears that after a both b and c can be executed in
parallel (AND-split pattern). If a →L c, b →L c, and a ∥L b, then the log suggests
that c needs to synchronize a and b (AND-join pattern).

Figure 5.4 only shows simple patterns and does not present the additional condi-
tions needed to extract the patterns. However, the figure nicely illustrates the basic
idea.

Consider, for example, WF-net N3 depicted in Fig. 5.5 and the event log L3
describing four cases

The -Algorithmα

83

1. TL = { t 2 T | 9�2L t 2 � } transitions

2. TI = { t 2 T | 9�2L t = first(�) } start events

3. TO = { t 2 T | 9�2L t = last(�) } end events

4. XL =

8
>><

>>:
(A,B) |

A,B ✓ TL ^ A,B 6= ; ^
8a2A8b2B a !L b ^
8a1,a22A a1#La2 ^
8b1,b22B b1#Lb2

9
>>=

>>;
decision points

5. YL =

8
<

: (A,B) 2 XL | 8(A0,B0)2XL

A ✓ A0 ^ B ✓ B0

)
(A0, B0) = (A,B)

9
=

;max. dec. points

6. PL = { p(A,B) | (A,B) 2 YL } [{ iL, oL } places

7. FL = { (a, p(A,B)) | (A,B) 2 YL ^ a 2 A } [
{ (p(A,B), b) | (A,B) 2 YL ^ b 2 B } [
{ (iL, t) | t 2 TI } [
{ (t, oL) | t 2 TO } arcs

8. ↵(L) = (PL, TL, FL, iL) net

The -Algorithmα

84

1. TL = { t 2 T | 9�2L t 2 � } transitions

2. TI = { t 2 T | 9�2L t = first(�) } start events

3. TO = { t 2 T | 9�2L t = last(�) } end events

4. XL =

8
>><

>>:
(A,B) |

A,B ✓ TL ^ A,B 6= ; ^
8a2A8b2B a !L b ^
8a1,a22A a1#La2 ^
8b1,b22B b1#Lb2

9
>>=

>>;
decision points

5. YL =

8
<

: (A,B) 2 XL | 8(A0,B0)2XL

A ✓ A0 ^ B ✓ B0

)
(A0, B0) = (A,B)

9
=

;max. dec. points

6. PL = { p(A,B) | (A,B) 2 YL } [{ iL, oL } places

7. FL = { (a, p(A,B)) | (A,B) 2 YL ^ a 2 A } [
{ (p(A,B), b) | (A,B) 2 YL ^ b 2 B } [
{ (iL, t) | t 2 TI } [
{ (t, oL) | t 2 TO } arcs

8. ↵(L) = (PL, TL, FL, iL) net

one transition for each event in the log

transitions that start/end at least one trace

Steps 1-3: Example

85

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

1. TL = { t 2 T | 9�2L t 2 � } transitions

2. TI = { t 2 T | 9�2L t = first(�) } start events

3. TO = { t 2 T | 9�2L t = last(�) } end events

4. XL =

8
>><

>>:
(A,B) |

A,B ✓ TL ^ A,B 6= ; ^
8a2A8b2B a !L b ^
8a1,a22A a1#La2 ^
8b1,b22B b1#Lb2

9
>>=

>>;
decision points

5. YL =

8
<

: (A,B) 2 XL | 8(A0,B0)2XL

A ✓ A0 ^ B ✓ B0

)
(A0, B0) = (A,B)

9
=

;max. dec. points

6. PL = { p(A,B) | (A,B) 2 YL } [{ iL, oL } places

7. FL = { (a, p(A,B)) | (A,B) 2 YL ^ a 2 A } [
{ (p(A,B), b) | (A,B) 2 YL ^ b 2 B } [
{ (iL, t) | t 2 TI } [
{ (t, oL) | t 2 TO } arcs

8. ↵(L) = (PL, TL, FL, iL) net

TL = {a, b, c, d, e}

TI = {a}

TO = {d}

The -Algorithmα

86

1. TL = { t 2 T | 9�2L t 2 � } transitions

2. TI = { t 2 T | 9�2L t = first(�) } start events

3. TO = { t 2 T | 9�2L t = last(�) } end events

4. XL =

8
>><

>>:
(A,B) |

A,B ✓ TL ^ A,B 6= ; ^
8a2A8b2B a !L b ^
8a1,a22A a1#La2 ^
8b1,b22B b1#Lb2

9
>>=

>>;
decision points

5. YL =

8
<

: (A,B) 2 XL | 8(A0,B0)2XL

A ✓ A0 ^ B ✓ B0

)
(A0, B0) = (A,B)

9
=

;max. dec. points

6. PL = { p(A,B) | (A,B) 2 YL } [{ iL, oL } places

7. FL = { (a, p(A,B)) | (A,B) 2 YL ^ a 2 A } [
{ (p(A,B), b) | (A,B) 2 YL ^ b 2 B } [
{ (iL, t) | t 2 TI } [
{ (t, oL) | t 2 TO } arcs

8. ↵(L) = (PL, TL, FL, iL) net

we collect pairs of sets of events with certain features

each event in causes all events in
all events in are mutually exclusive
all events in are mutually exclusive

A B
A
B

The Core of the
-Algorithm: Steps 4, 5α

87

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

we are going to insert a place for each pair (A,B)
to represent some sort of decision point

1. TL = { t 2 T | 9�2L t 2 � } transitions

2. TI = { t 2 T | 9�2L t = first(�) } start events

3. TO = { t 2 T | 9�2L t = last(�) } end events

4. XL =

8
>><

>>:
(A,B) |

A,B ✓ TL ^ A,B 6= ; ^
8a2A8b2B a !L b ^
8a1,a22A a1#La2 ^
8b1,b22B b1#Lb2

9
>>=

>>;
decision points

5. YL =

8
<

: (A,B) 2 XL | 8(A0,B0)2XL

A ✓ A0 ^ B ✓ B0

)
(A0, B0) = (A,B)

9
=

;max. dec. points

6. PL = { p(A,B) | (A,B) 2 YL } [{ iL, oL } places

7. FL = { (a, p(A,B)) | (A,B) 2 YL ^ a 2 A } [
{ (p(A,B), b) | (A,B) 2 YL ^ b 2 B } [
{ (iL, t) | t 2 TI } [
{ (t, oL) | t 2 TO } arcs

8. ↵(L) = (PL, TL, FL, iL) net88

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

The Core of the
-Algorithm: Steps 4, 5α

A

B

The Core of the
-Algorithm: Step 5α

89

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

1. TL = { t 2 T | 9�2L t 2 � } transitions

2. TI = { t 2 T | 9�2L t = first(�) } start events

3. TO = { t 2 T | 9�2L t = last(�) } end events

4. XL =

8
>><

>>:
(A,B) |

A,B ✓ TL ^ A,B 6= ; ^
8a2A8b2B a !L b ^
8a1,a22A a1#La2 ^
8b1,b22B b1#Lb2

9
>>=

>>;
decision points

5. YL =

8
<

: (A,B) 2 XL | 8(A0,B0)2XL

A ✓ A0 ^ B ✓ B0

)
(A0, B0) = (A,B)

9
=

;max. dec. points

6. PL = { p(A,B) | (A,B) 2 YL } [{ iL, oL } places

7. FL = { (a, p(A,B)) | (A,B) 2 YL ^ a 2 A } [
{ (p(A,B), b) | (A,B) 2 YL ^ b 2 B } [
{ (iL, t) | t 2 TI } [
{ (t, oL) | t 2 TO } arcs

8. ↵(L) = (PL, TL, FL, iL) net

If (A,B) is a decision point
any pair (A’,B’) with A’⊆A, B’⊆B

is also a decision point

90

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

1. TL = { t 2 T | 9�2L t 2 � } transitions

2. TI = { t 2 T | 9�2L t = first(�) } start events

3. TO = { t 2 T | 9�2L t = last(�) } end events

4. XL =

8
>><

>>:
(A,B) |

A,B ✓ TL ^ A,B 6= ; ^
8a2A8b2B a !L b ^
8a1,a22A a1#La2 ^
8b1,b22B b1#Lb2

9
>>=

>>;
decision points

5. YL =

8
<

: (A,B) 2 XL | 8(A0,B0)2XL

A ✓ A0 ^ B ✓ B0

)
(A0, B0) = (A,B)

9
=

;max. dec. points

6. PL = { p(A,B) | (A,B) 2 YL } [{ iL, oL } places

7. FL = { (a, p(A,B)) | (A,B) 2 YL ^ a 2 A } [
{ (p(A,B), b) | (A,B) 2 YL ^ b 2 B } [
{ (iL, t) | t 2 TI } [
{ (t, oL) | t 2 TO } arcs

8. ↵(L) = (PL, TL, FL, iL) net

If (A,B) is a decision point
any pair (A’,B’) with A’⊆A, B’⊆B

is also a decision point

The Core of the
-Algorithm: Step 5α

91

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

1. TL = { t 2 T | 9�2L t 2 � } transitions

2. TI = { t 2 T | 9�2L t = first(�) } start events

3. TO = { t 2 T | 9�2L t = last(�) } end events

4. XL =

8
>><

>>:
(A,B) |

A,B ✓ TL ^ A,B 6= ; ^
8a2A8b2B a !L b ^
8a1,a22A a1#La2 ^
8b1,b22B b1#Lb2

9
>>=

>>;
decision points

5. YL =

8
<

: (A,B) 2 XL | 8(A0,B0)2XL

A ✓ A0 ^ B ✓ B0

)
(A0, B0) = (A,B)

9
=

;max. dec. points

6. PL = { p(A,B) | (A,B) 2 YL } [{ iL, oL } places

7. FL = { (a, p(A,B)) | (A,B) 2 YL ^ a 2 A } [
{ (p(A,B), b) | (A,B) 2 YL ^ b 2 B } [
{ (iL, t) | t 2 TI } [
{ (t, oL) | t 2 TO } arcs

8. ↵(L) = (PL, TL, FL, iL) net

If (A,B) is a decision point
any pair (A’,B’) with A’⊆A, B’⊆B

is also a decision point

The Core of the
-Algorithm: Step 5α

The -Algorithmα

92

1. TL = { t 2 T | 9�2L t 2 � } transitions

2. TI = { t 2 T | 9�2L t = first(�) } start events

3. TO = { t 2 T | 9�2L t = last(�) } end events

4. XL =

8
>><

>>:
(A,B) |

A,B ✓ TL ^ A,B 6= ; ^
8a2A8b2B a !L b ^
8a1,a22A a1#La2 ^
8b1,b22B b1#Lb2

9
>>=

>>;
decision points

5. YL =

8
<

: (A,B) 2 XL | 8(A0,B0)2XL

A ✓ A0 ^ B ✓ B0

)
(A0, B0) = (A,B)

9
=

;max. dec. points

6. PL = { p(A,B) | (A,B) 2 YL } [{ iL, oL } places

7. FL = { (a, p(A,B)) | (A,B) 2 YL ^ a 2 A } [
{ (p(A,B), b) | (A,B) 2 YL ^ b 2 B } [
{ (iL, t) | t 2 TI } [
{ (t, oL) | t 2 TO } arcs

8. ↵(L) = (PL, TL, FL, iL) net

We take only the largest pairs (A,B)

 contains all pairs in that are not dominated by other pairsYL XL

Steps 4-5: Example

93

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

94

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

Steps 4-5: Example

95

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

Steps 4-5: Example

96

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

Steps 4-5: Example

97

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

Steps 4-5: Example

98

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

Steps 4-5: Example

99

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

and so on for the other pairs

Steps 4-5: Example

100

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

We take only the largest pairs

Steps 4-5: Example

101

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

We take only the largest pairs

Steps 4-5: Example

102

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

We take only the largest pairs

Steps 4-5: Example

103

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

We take only the largest pairs

Steps 4-5: Example

104

1. TL = { t 2 T | 9�2L t 2 � } transitions

2. TI = { t 2 T | 9�2L t = first(�) } start events

3. TO = { t 2 T | 9�2L t = last(�) } end events

4. XL =

8
>><

>>:
(A,B) |

A,B ✓ TL ^ A,B 6= ; ^
8a2A8b2B a !L b ^
8a1,a22A a1#La2 ^
8b1,b22B b1#Lb2

9
>>=

>>;
decision points

5. YL =

8
<

: (A,B) 2 XL | 8(A0,B0)2XL

A ✓ A0 ^ B ✓ B0

)
(A0, B0) = (A,B)

9
=

;max. dec. points

6. PL = { p(A,B) | (A,B) 2 YL } [{ iL, oL } places

7. FL = { (a, p(A,B)) | (A,B) 2 YL ^ a 2 A } [
{ (p(A,B), b) | (A,B) 2 YL ^ b 2 B } [
{ (iL, t) | t 2 TI } [
{ (t, oL) | t 2 TO } arcs

8. ↵(L) = (PL, TL, FL, iL) net

One place for each pair Initial Final

The -Algorithmα

105

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

126 5 Process Discovery: An Introduction

Fig. 5.1 WF-net N1 discovered for L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩]

ments. To make things more concrete, we define the target to be a Petri net model.
Moreover, we use a simple event log as input (cf. Definition 4.4). A simple event
log L is a multi-set of traces over some set of activities A , i.e., L ∈ B(A ∗). For
example,

L1 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩

]

L1 is a simple log describing the history of six cases. The goal is now to discover a
Petri net that can “replay” event log L1. Ideally, the Petri net is a sound WF-net as
defined in Sect. 2.2.3. Based on these choices, we reformulate the process discovery
problem and make it more concrete.

Definition 5.2 (Specific process discovery problem) A process discovery algorithm
is a function γ that maps a log L ∈ B(A ∗) onto a marked Petri net γ (L) = (N,M).
Ideally, N is a sound WF-net and all traces in L correspond to possible firing se-
quences of (N,M).

Function γ defines a so-called “Play-in” technique as described in Chap. 1. Based
on L1, a process discovery algorithm γ could discover the WF-net shown in Fig. 5.1,
i.e., γ (L1) = (N1, [start]). Each trace in L1 corresponds to a possible firing se-
quence of WF-net N1 shown in Fig. 5.1. Therefore, it is easy to see that the WF-net
can indeed replay all traces in the event log. In fact, each of the three possible firing
sequences of WF-net N1 appears in L1.

Let us now consider another event log:

L2 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4, ⟨a, b, c, e, f, b, c, d⟩2, ⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2, ⟨a, c, b, e, f, b, c, e, f, c, b, d⟩

]

L2 is a simple event log consisting of 13 cases represented by 6 different traces.
Based on event log L2, some γ could discover WF-net N2 shown in Fig. 5.2. This
WF-net can indeed replay all traces in the log. However, not all firing sequences of
N2 correspond to traces in L2. For example, the firing sequence ⟨a, c, b, e, f, c, b, d⟩
does not appear in L2. In fact, there are infinitely many firing sequences because of
the loop construct in N2. Clearly, these cannot all appear in the event log. Therefore,
Definition 5.2 does not require all firing sequences of (N,M) to be traces in L.

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

iL1
oL1

p({a},{b,e})

p({a},{c,e}) p({c,e},{d})

p({b,e},{d})

Steps 6-7: Example

106

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

126 5 Process Discovery: An Introduction

Fig. 5.1 WF-net N1 discovered for L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩]

ments. To make things more concrete, we define the target to be a Petri net model.
Moreover, we use a simple event log as input (cf. Definition 4.4). A simple event
log L is a multi-set of traces over some set of activities A , i.e., L ∈ B(A ∗). For
example,

L1 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩

]

L1 is a simple log describing the history of six cases. The goal is now to discover a
Petri net that can “replay” event log L1. Ideally, the Petri net is a sound WF-net as
defined in Sect. 2.2.3. Based on these choices, we reformulate the process discovery
problem and make it more concrete.

Definition 5.2 (Specific process discovery problem) A process discovery algorithm
is a function γ that maps a log L ∈ B(A ∗) onto a marked Petri net γ (L) = (N,M).
Ideally, N is a sound WF-net and all traces in L correspond to possible firing se-
quences of (N,M).

Function γ defines a so-called “Play-in” technique as described in Chap. 1. Based
on L1, a process discovery algorithm γ could discover the WF-net shown in Fig. 5.1,
i.e., γ (L1) = (N1, [start]). Each trace in L1 corresponds to a possible firing se-
quence of WF-net N1 shown in Fig. 5.1. Therefore, it is easy to see that the WF-net
can indeed replay all traces in the event log. In fact, each of the three possible firing
sequences of WF-net N1 appears in L1.

Let us now consider another event log:

L2 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4, ⟨a, b, c, e, f, b, c, d⟩2, ⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2, ⟨a, c, b, e, f, b, c, e, f, c, b, d⟩

]

L2 is a simple event log consisting of 13 cases represented by 6 different traces.
Based on event log L2, some γ could discover WF-net N2 shown in Fig. 5.2. This
WF-net can indeed replay all traces in the log. However, not all firing sequences of
N2 correspond to traces in L2. For example, the firing sequence ⟨a, c, b, e, f, c, b, d⟩
does not appear in L2. In fact, there are infinitely many firing sequences because of
the loop construct in N2. Clearly, these cannot all appear in the event log. Therefore,
Definition 5.2 does not require all firing sequences of (N,M) to be traces in L.

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

iL1
oL1

p({a},{b,e})

p({a},{c,e}) p({c,e},{d})

p({b,e},{d})

Steps 6-7: Example

107

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

126 5 Process Discovery: An Introduction

Fig. 5.1 WF-net N1 discovered for L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩]

ments. To make things more concrete, we define the target to be a Petri net model.
Moreover, we use a simple event log as input (cf. Definition 4.4). A simple event
log L is a multi-set of traces over some set of activities A , i.e., L ∈ B(A ∗). For
example,

L1 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩

]

L1 is a simple log describing the history of six cases. The goal is now to discover a
Petri net that can “replay” event log L1. Ideally, the Petri net is a sound WF-net as
defined in Sect. 2.2.3. Based on these choices, we reformulate the process discovery
problem and make it more concrete.

Definition 5.2 (Specific process discovery problem) A process discovery algorithm
is a function γ that maps a log L ∈ B(A ∗) onto a marked Petri net γ (L) = (N,M).
Ideally, N is a sound WF-net and all traces in L correspond to possible firing se-
quences of (N,M).

Function γ defines a so-called “Play-in” technique as described in Chap. 1. Based
on L1, a process discovery algorithm γ could discover the WF-net shown in Fig. 5.1,
i.e., γ (L1) = (N1, [start]). Each trace in L1 corresponds to a possible firing se-
quence of WF-net N1 shown in Fig. 5.1. Therefore, it is easy to see that the WF-net
can indeed replay all traces in the event log. In fact, each of the three possible firing
sequences of WF-net N1 appears in L1.

Let us now consider another event log:

L2 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4, ⟨a, b, c, e, f, b, c, d⟩2, ⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2, ⟨a, c, b, e, f, b, c, e, f, c, b, d⟩

]

L2 is a simple event log consisting of 13 cases represented by 6 different traces.
Based on event log L2, some γ could discover WF-net N2 shown in Fig. 5.2. This
WF-net can indeed replay all traces in the log. However, not all firing sequences of
N2 correspond to traces in L2. For example, the firing sequence ⟨a, c, b, e, f, c, b, d⟩
does not appear in L2. In fact, there are infinitely many firing sequences because of
the loop construct in N2. Clearly, these cannot all appear in the event log. Therefore,
Definition 5.2 does not require all firing sequences of (N,M) to be traces in L.

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

iL1
oL1

p({a},{b,e})

p({a},{c,e}) p({c,e},{d})

p({b,e},{d})

Steps 6-7: Example

108

134 5 Process Discovery: An Introduction

Fig. 5.7 Place p(A,B)

connects the transitions in set
A to the transitions in set B

Table 5.4 How to identify
(A,B) ∈ XL? Rearrange the
rows and columns
corresponding to
A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn} and
remove the other rows and
columns from the footprint

a1 a2 . . . am b1 b2 . . . bn

a1 # # . . . # → → . . . →
a2 # # . . . # → → . . . →
. .

am # # . . . # → → . . . →
b1 ← ← . . . ← # # . . . #

b2 ← ← . . . ← # # . . . #

. .

bn ← ← . . . ← # # . . . #

Let us consider L1 again. Clearly, A = {a} and B = {b, e} meet the requirements
stated in Step 4. Also A′ = {a} and B ′ = {b} meet the same requirements. XL is the
set of all such pairs that meet the requirements just mentioned. In this case:

XL1 =
{(

{a}, {b}
)
,
(
{a}, {c}

)
,
(
{a}, {e}

)
,
(
{a}, {b, e}

)
,
(
{a}, {c, e}

)
,

(
{b}, {d}

)
,
(
{c}, {d}

)
,
(
{e}, {d}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

If one would insert a place for any element in XL1 , there would be too many places.
Therefore, only the “maximal pairs” (A,B) should be included. Note that for any
pair (A,B) ∈ XL, nonempty set A′ ⊆ A, and nonempty set B ′ ⊆ B , it is implied
that (A′,B ′) ∈ XL. In Step 5, all nonmaximal pairs are removed, thus yielding:

YL1 =
{(

{a}, {b, e}
)
,
(
{a}, {c, e}

)
,
(
{b, e}, {d}

)
,
(
{c, e}, {d}

)}

Step 5 can also be understood in terms the footprint matrix. Consider Table 5.4
and let A′ and B ′ be such that ∅ ⊂ A′ ⊆ A and ∅ ⊂ B ′ ⊆ B . Removing rows and
columns A ∪ B \ (A′ ∪ B ′) results in a matrix still having the pattern shown in
Table 5.4. Therefore, we only consider maximal matrices for constructing YL.

126 5 Process Discovery: An Introduction

Fig. 5.1 WF-net N1 discovered for L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩]

ments. To make things more concrete, we define the target to be a Petri net model.
Moreover, we use a simple event log as input (cf. Definition 4.4). A simple event
log L is a multi-set of traces over some set of activities A , i.e., L ∈ B(A ∗). For
example,

L1 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩

]

L1 is a simple log describing the history of six cases. The goal is now to discover a
Petri net that can “replay” event log L1. Ideally, the Petri net is a sound WF-net as
defined in Sect. 2.2.3. Based on these choices, we reformulate the process discovery
problem and make it more concrete.

Definition 5.2 (Specific process discovery problem) A process discovery algorithm
is a function γ that maps a log L ∈ B(A ∗) onto a marked Petri net γ (L) = (N,M).
Ideally, N is a sound WF-net and all traces in L correspond to possible firing se-
quences of (N,M).

Function γ defines a so-called “Play-in” technique as described in Chap. 1. Based
on L1, a process discovery algorithm γ could discover the WF-net shown in Fig. 5.1,
i.e., γ (L1) = (N1, [start]). Each trace in L1 corresponds to a possible firing se-
quence of WF-net N1 shown in Fig. 5.1. Therefore, it is easy to see that the WF-net
can indeed replay all traces in the event log. In fact, each of the three possible firing
sequences of WF-net N1 appears in L1.

Let us now consider another event log:

L2 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4, ⟨a, b, c, e, f, b, c, d⟩2, ⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2, ⟨a, c, b, e, f, b, c, e, f, c, b, d⟩

]

L2 is a simple event log consisting of 13 cases represented by 6 different traces.
Based on event log L2, some γ could discover WF-net N2 shown in Fig. 5.2. This
WF-net can indeed replay all traces in the log. However, not all firing sequences of
N2 correspond to traces in L2. For example, the firing sequence ⟨a, c, b, e, f, c, b, d⟩
does not appear in L2. In fact, there are infinitely many firing sequences because of
the loop construct in N2. Clearly, these cannot all appear in the event log. Therefore,
Definition 5.2 does not require all firing sequences of (N,M) to be traces in L.

130 5 Process Discovery: An Introduction

Table 5.1 Footprint of L1:
a #L1 a, a →L1 b, a →L1 c,
etc.

a b c d e

a #L1 →L1 →L1 #L1 →L1

b ←L1 #L1 ∥L1 →L1 #L1

c ←L1 ∥L1 #L1 →L1 #L1

d #L1 ←L1 ←L1 #L1 ←L1

e ←L1 #L1 #L1 →L1 #L1

Definition 5.3 (Log-based ordering relations) Let L be an event log over A , i.e.,
L ∈ B(A ∗). Let a, b ∈ A :

• a >L b if and only if there is a trace σ = ⟨t1, t2, t3, . . . , tn⟩ and i ∈ {1, . . . , n − 1}
such that σ ∈ L and ti = a and ti+1 = b

• a →L b if and only if a >L b and b ≯L a

• a #L b if and only if a ≯L b and b ≯L a

• a ∥L b if and only if a >L b and b >L a

Consider for instance L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩] again. For this
event log, the following log-based ordering relations can be found

>L1 =
{
(a, b), (a, c), (a, e), (b, c), (c, b), (b, d), (c, d), (e, d)

}

→L1 =
{
(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)

}

#L1 =
{
(a, a), (a, d), (b, b), (b, e), (c, c), (c, e), (d, a), (d, d), (e, b), (e, c), (e, e)

}

∥L1 =
{
(b, c), (c, b)

}

Relation >L1 contains all pairs of activities in a “directly follows” relation. c >L1 d

because d directly follows c in trace ⟨a, b, c, d⟩. However, d ≯L1 c because c never
directly follows d in any trace in the log. →L1 contains all pairs of activities in
a “causality” relation, e.g., c →L1 d because sometimes d directly follows c and
never the other way around (c >L1 d and d ≯L1 c). b ∥L1 c because b >L1 c and
c >L1 b, i.e., sometimes c follows b and sometimes the other way around. b #L1 e

because b ≯L1 e and e ≯L1 b.
For any log L over A and x, y ∈ A : x →L y, y →L x, x #L y, or x ∥L y,

i.e., precisely one of these relations holds for any pair of activities. Therefore, the
footprint of a log can be captured in a matrix as shown in Table 5.1.

The footprint of event log L2 is shown in Table 5.2. The subscripts have been
removed to not clutter the table. When comparing the footprints of L1 and L2, one
can see that only the e and f columns and rows differ.

The log-based ordering relations can be used to discover patterns in the corre-
sponding process model as is illustrated in Fig. 5.4. If a and b are in sequence, the
log will show a →L b. If after a there is a choice between b and c, the log will show
a →L b, a →L c, and b #L c because a can be followed by b and c, but b will not
be followed by c and vice versa. The logical counterpart of this so-called XOR-split

iL1
oL1

p({a},{b,e})

p({a},{c,e}) p({c,e},{d})

p({b,e},{d})

Steps 6-7: Example

Another Example

109

5.2 A Simple Algorithm for Process Discovery 135

Table 5.5 Footprint of L5
a b c d e f

a # → # # → #

b ← # → ← ∥ →
c # ← # → ∥ #

d # → ← # ∥ #

e ← ∥ ∥ ∥ # →
f # ← # # ← #

Every element of (A,B) ∈ YL corresponds to a place p(A,B) connecting transi-
tions A to transitions B . In addition, PL also contains a unique source place iL and
a unique sink place oL (cf. Step 6). Remember that the goal is to create a WF-net.1

In Step 7, the arcs of the WF-net are generated. All start transitions in TI have
iL as an input place and all end transitions TO have oL as output place. All places
p(A,B) have A as input nodes and B as output nodes. The result is a Petri net α(L) =
(PL,TL,FL) that describes the behavior seen in event log L.

Thus far, we presented four logs and four WF-nets. Application of the α-algorithm
shows that indeed α(L3) = N3 and α(L4) = N4. In Figs. 5.5 and 5.6, the places are
named based on the sets YL3 and YL4 . Moreover, α(L1) = N1 and α(L2) = N2 mod-
ulo renaming of places (because different place names are used in Figs. 5.1 and 5.2).
These examples show that the α-algorithm is indeed able to discover WF-nets based
on event logs.

Let us now consider event log L5:

L5 =
[
⟨a, b, e, f ⟩2, ⟨a, b, e, c, d, b, f ⟩3, ⟨a, b, c, e, d, b, f ⟩2,

⟨a, b, c, d, e, b, f ⟩4, ⟨a, e, b, c, d, b, f ⟩3]

Table 5.5 shows the footprint of the log.
Let us now apply the 8 steps of the algorithm for L = L5:

TL = {a, b, c, d, e, f }
TI = {a}
TI = {f }

XL =
{(

{a}, {b}
)
,
(
{a}, {e}

)
,
(
{b}, {c}

)
,
(
{b}, {f }

)
,
(
{c}, {d}

)
,

(
{d}, {b}

)
,
(
{e}, {f }

)
,
(
{a, d}, {b}

)
,
(
{b}, {c, f }

)}

YL =
{(

{a}, {e}
)
,
(
{c}, {d}

)
,
(
{e}, {f }

)
,
(
{a, d}, {b}

)
,
(
{b}, {c, f }

)}

PL =
{
p({a},{e}), p({c},{d}), p({e},{f }), p({a,d},{b}), p({b},{c,f }), iL, oL

}

1Nevertheless, the α-algorithm may construct a Petri net that is not a WF-net (see, for instance,
Fig. 5.12). Later, we will discuss such problems in detail.

5.2 A Simple Algorithm for Process Discovery 135

Table 5.5 Footprint of L5
a b c d e f

a # → # # → #

b ← # → ← ∥ →
c # ← # → ∥ #

d # → ← # ∥ #

e ← ∥ ∥ ∥ # →
f # ← # # ← #

Every element of (A,B) ∈ YL corresponds to a place p(A,B) connecting transi-
tions A to transitions B . In addition, PL also contains a unique source place iL and
a unique sink place oL (cf. Step 6). Remember that the goal is to create a WF-net.1

In Step 7, the arcs of the WF-net are generated. All start transitions in TI have
iL as an input place and all end transitions TO have oL as output place. All places
p(A,B) have A as input nodes and B as output nodes. The result is a Petri net α(L) =
(PL,TL,FL) that describes the behavior seen in event log L.

Thus far, we presented four logs and four WF-nets. Application of the α-algorithm
shows that indeed α(L3) = N3 and α(L4) = N4. In Figs. 5.5 and 5.6, the places are
named based on the sets YL3 and YL4 . Moreover, α(L1) = N1 and α(L2) = N2 mod-
ulo renaming of places (because different place names are used in Figs. 5.1 and 5.2).
These examples show that the α-algorithm is indeed able to discover WF-nets based
on event logs.

Let us now consider event log L5:

L5 =
[
⟨a, b, e, f ⟩2, ⟨a, b, e, c, d, b, f ⟩3, ⟨a, b, c, e, d, b, f ⟩2,

⟨a, b, c, d, e, b, f ⟩4, ⟨a, e, b, c, d, b, f ⟩3]

Table 5.5 shows the footprint of the log.
Let us now apply the 8 steps of the algorithm for L = L5:

TL = {a, b, c, d, e, f }
TI = {a}
TI = {f }

XL =
{(

{a}, {b}
)
,
(
{a}, {e}

)
,
(
{b}, {c}

)
,
(
{b}, {f }

)
,
(
{c}, {d}

)
,

(
{d}, {b}

)
,
(
{e}, {f }

)
,
(
{a, d}, {b}

)
,
(
{b}, {c, f }

)}

YL =
{(

{a}, {e}
)
,
(
{c}, {d}

)
,
(
{e}, {f }

)
,
(
{a, d}, {b}

)
,
(
{b}, {c, f }

)}

PL =
{
p({a},{e}), p({c},{d}), p({e},{f }), p({a,d},{b}), p({b},{c,f }), iL, oL

}

1Nevertheless, the α-algorithm may construct a Petri net that is not a WF-net (see, for instance,
Fig. 5.12). Later, we will discuss such problems in detail.

136 5 Process Discovery: An Introduction

Fig. 5.8 WF-net N5 derived from L5 = [⟨a, b, e, f ⟩2, ⟨a, b, e, c, d, b, f ⟩3, ⟨a, b, c, e, d, b, f ⟩2,
⟨a, b, c, d, e, b, f ⟩4, ⟨a, e, b, c, d, b, f ⟩3]

FL =
{
(a,p({a},{e})), (p({a},{e}), e), (c,p({c},{d})), (p({c},{d}), d),

(e,p({e},{f })), (p({e},{f }), f), (a,p({a,d},{b})), (d,p({a,d},{b})),

(p({a,d},{b}), b), (b,p({b},{c,f })), (p({b},{c,f }), c), (p({b},{c,f }), f),

(iL, a), (f, oL)
}

α(L) = (PL,TL,FL)

Figure 5.8 shows N5 = α(L5), i.e., the model just computed. N5 can indeed
replay the traces in L5. Place names are not shown in Fig. 5.8, and we will also
not show them in later WF-nets, because they can be derived from the surrounding
transition names and just clutter the diagram.

5.2.3 Limitations of the α-Algorithm

In [103], it was shown that the α-algorithm can discover a large class of WF-nets if
one assumes that the log is complete with respect to the log-based ordering relation
>L. This assumption implies that, for any complete event log L, a >L b if a can be
directly followed by b. Consequently, a footprint like the one shown in Table 5.5 is
assumed to be valid. We revisit the notion of completeness later in this chapter.

Even if we assume that the log is complete, the α-algorithm has some problems.
There are many different WF-nets that have the same possible behavior, i.e., two
models can be structurally different but trace equivalent. Consider, for instance, the
following event log:

L6 =
[
⟨a, c, e, g⟩2, ⟨a, e, c, g⟩3, ⟨b, d,f, g⟩2, ⟨b,f, d, g⟩4]

α(L6) is shown in Fig. 5.9. Although the model is able to generate the observed
behavior, the resulting WF-net is needlessly complex. Two of the input places of g
are redundant, i.e., they can be removed without changing the behavior. The places
denoted as p1 and p2 are so-called implicit places and can be removed without

136 5 Process Discovery: An Introduction

Fig. 5.8 WF-net N5 derived from L5 = [⟨a, b, e, f ⟩2, ⟨a, b, e, c, d, b, f ⟩3, ⟨a, b, c, e, d, b, f ⟩2,
⟨a, b, c, d, e, b, f ⟩4, ⟨a, e, b, c, d, b, f ⟩3]

FL =
{
(a,p({a},{e})), (p({a},{e}), e), (c,p({c},{d})), (p({c},{d}), d),

(e,p({e},{f })), (p({e},{f }), f), (a,p({a,d},{b})), (d,p({a,d},{b})),

(p({a,d},{b}), b), (b,p({b},{c,f })), (p({b},{c,f }), c), (p({b},{c,f }), f),

(iL, a), (f, oL)
}

α(L) = (PL,TL,FL)

Figure 5.8 shows N5 = α(L5), i.e., the model just computed. N5 can indeed
replay the traces in L5. Place names are not shown in Fig. 5.8, and we will also
not show them in later WF-nets, because they can be derived from the surrounding
transition names and just clutter the diagram.

5.2.3 Limitations of the α-Algorithm

In [103], it was shown that the α-algorithm can discover a large class of WF-nets if
one assumes that the log is complete with respect to the log-based ordering relation
>L. This assumption implies that, for any complete event log L, a >L b if a can be
directly followed by b. Consequently, a footprint like the one shown in Table 5.5 is
assumed to be valid. We revisit the notion of completeness later in this chapter.

Even if we assume that the log is complete, the α-algorithm has some problems.
There are many different WF-nets that have the same possible behavior, i.e., two
models can be structurally different but trace equivalent. Consider, for instance, the
following event log:

L6 =
[
⟨a, c, e, g⟩2, ⟨a, e, c, g⟩3, ⟨b, d,f, g⟩2, ⟨b,f, d, g⟩4]

α(L6) is shown in Fig. 5.9. Although the model is able to generate the observed
behavior, the resulting WF-net is needlessly complex. Two of the input places of g
are redundant, i.e., they can be removed without changing the behavior. The places
denoted as p1 and p2 are so-called implicit places and can be removed without

5.2 A Simple Algorithm for Process Discovery 135

Table 5.5 Footprint of L5
a b c d e f

a # → # # → #

b ← # → ← ∥ →
c # ← # → ∥ #

d # → ← # ∥ #

e ← ∥ ∥ ∥ # →
f # ← # # ← #

Every element of (A,B) ∈ YL corresponds to a place p(A,B) connecting transi-
tions A to transitions B . In addition, PL also contains a unique source place iL and
a unique sink place oL (cf. Step 6). Remember that the goal is to create a WF-net.1

In Step 7, the arcs of the WF-net are generated. All start transitions in TI have
iL as an input place and all end transitions TO have oL as output place. All places
p(A,B) have A as input nodes and B as output nodes. The result is a Petri net α(L) =
(PL,TL,FL) that describes the behavior seen in event log L.

Thus far, we presented four logs and four WF-nets. Application of the α-algorithm
shows that indeed α(L3) = N3 and α(L4) = N4. In Figs. 5.5 and 5.6, the places are
named based on the sets YL3 and YL4 . Moreover, α(L1) = N1 and α(L2) = N2 mod-
ulo renaming of places (because different place names are used in Figs. 5.1 and 5.2).
These examples show that the α-algorithm is indeed able to discover WF-nets based
on event logs.

Let us now consider event log L5:

L5 =
[
⟨a, b, e, f ⟩2, ⟨a, b, e, c, d, b, f ⟩3, ⟨a, b, c, e, d, b, f ⟩2,

⟨a, b, c, d, e, b, f ⟩4, ⟨a, e, b, c, d, b, f ⟩3]

Table 5.5 shows the footprint of the log.
Let us now apply the 8 steps of the algorithm for L = L5:

TL = {a, b, c, d, e, f }
TI = {a}
TI = {f }

XL =
{(

{a}, {b}
)
,
(
{a}, {e}

)
,
(
{b}, {c}

)
,
(
{b}, {f }

)
,
(
{c}, {d}

)
,

(
{d}, {b}

)
,
(
{e}, {f }

)
,
(
{a, d}, {b}

)
,
(
{b}, {c, f }

)}

YL =
{(

{a}, {e}
)
,
(
{c}, {d}

)
,
(
{e}, {f }

)
,
(
{a, d}, {b}

)
,
(
{b}, {c, f }

)}

PL =
{
p({a},{e}), p({c},{d}), p({e},{f }), p({a,d},{b}), p({b},{c,f }), iL, oL

}

1Nevertheless, the α-algorithm may construct a Petri net that is not a WF-net (see, for instance,
Fig. 5.12). Later, we will discuss such problems in detail.

O

Exercises

110

132 5 Process Discovery: An Introduction

Fig. 5.5 WF-net N3 derived from L3 = [⟨a, b, c, d, e, f, b, d, c, e, g⟩, ⟨a, b, d, c, e, g⟩2, ⟨a, b, c,
d, e, f, b, c, d, e, f, b, d, c, e, g⟩]

Table 5.3 Footprint of L3
a b c d e f g

a # → # # # # #

b ← # → → # ← #

c # ← # ∥ → # #

d # ← ∥ # → # #

e # # ← ← # → →
f # → # # ← # #

g # # # # ← # #

Fig. 5.6 WF-net N4 derived from L4 = [⟨a, c, d⟩45, ⟨b, c, d⟩42, ⟨a, c, e⟩38, ⟨b, c, e⟩22]

L3 =
[
⟨a, b, c, d, e, f, b, d, c, e, g⟩, ⟨a, b, d, c, e, g⟩2,

⟨a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g⟩
]

The α-algorithm constructs WF-net N3 based on L3 (see Fig. 5.5).
Table 5.3 shows the footprint of L3. Note that the patterns in the model indeed

match the log-based ordering relations extracted from the event log. Consider, for
example, the process fragment involving b, c, d , and e. Obviously, this fragment
can be constructed based on b →L3 c, b →L3 d , c ∥L3 d , c →L3 e, and d →L3 e.
The choice following e is revealed by e →L3 f , e →L3 g, and f #L3 g. Etc.

Another example is shown in Fig. 5.6. WF-net N4 can be derived from L4

L4 =
[
⟨a, c, d⟩45, ⟨b, c, d⟩42, ⟨a, c, e⟩38, ⟨b, c, e⟩22]

132 5 Process Discovery: An Introduction

Fig. 5.5 WF-net N3 derived from L3 = [⟨a, b, c, d, e, f, b, d, c, e, g⟩, ⟨a, b, d, c, e, g⟩2, ⟨a, b, c,
d, e, f, b, c, d, e, f, b, d, c, e, g⟩]

Table 5.3 Footprint of L3
a b c d e f g

a # → # # # # #

b ← # → → # ← #

c # ← # ∥ → # #

d # ← ∥ # → # #

e # # ← ← # → →
f # → # # ← # #

g # # # # ← # #

Fig. 5.6 WF-net N4 derived from L4 = [⟨a, c, d⟩45, ⟨b, c, d⟩42, ⟨a, c, e⟩38, ⟨b, c, e⟩22]

L3 =
[
⟨a, b, c, d, e, f, b, d, c, e, g⟩, ⟨a, b, d, c, e, g⟩2,

⟨a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g⟩
]

The α-algorithm constructs WF-net N3 based on L3 (see Fig. 5.5).
Table 5.3 shows the footprint of L3. Note that the patterns in the model indeed

match the log-based ordering relations extracted from the event log. Consider, for
example, the process fragment involving b, c, d , and e. Obviously, this fragment
can be constructed based on b →L3 c, b →L3 d , c ∥L3 d , c →L3 e, and d →L3 e.
The choice following e is revealed by e →L3 f , e →L3 g, and f #L3 g. Etc.

Another example is shown in Fig. 5.6. WF-net N4 can be derived from L4

L4 =
[
⟨a, c, d⟩45, ⟨b, c, d⟩42, ⟨a, c, e⟩38, ⟨b, c, e⟩22]

a b c d e

a # # ⇥ # #

b # # ⇥ # #

c � � # ⇥ ⇥

d # # � # #

e # # � # #

Check in full autonomy
that the footprint matrix
corresponds to the log
and that the net below
is the one discovered
by the alpha-algorithm

111

132 5 Process Discovery: An Introduction

Fig. 5.5 WF-net N3 derived from L3 = [⟨a, b, c, d, e, f, b, d, c, e, g⟩, ⟨a, b, d, c, e, g⟩2, ⟨a, b, c,
d, e, f, b, c, d, e, f, b, d, c, e, g⟩]

Table 5.3 Footprint of L3
a b c d e f g

a # → # # # # #

b ← # → → # ← #

c # ← # ∥ → # #

d # ← ∥ # → # #

e # # ← ← # → →
f # → # # ← # #

g # # # # ← # #

Fig. 5.6 WF-net N4 derived from L4 = [⟨a, c, d⟩45, ⟨b, c, d⟩42, ⟨a, c, e⟩38, ⟨b, c, e⟩22]

L3 =
[
⟨a, b, c, d, e, f, b, d, c, e, g⟩, ⟨a, b, d, c, e, g⟩2,

⟨a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g⟩
]

The α-algorithm constructs WF-net N3 based on L3 (see Fig. 5.5).
Table 5.3 shows the footprint of L3. Note that the patterns in the model indeed

match the log-based ordering relations extracted from the event log. Consider, for
example, the process fragment involving b, c, d , and e. Obviously, this fragment
can be constructed based on b →L3 c, b →L3 d , c ∥L3 d , c →L3 e, and d →L3 e.
The choice following e is revealed by e →L3 f , e →L3 g, and f #L3 g. Etc.

Another example is shown in Fig. 5.6. WF-net N4 can be derived from L4

L4 =
[
⟨a, c, d⟩45, ⟨b, c, d⟩42, ⟨a, c, e⟩38, ⟨b, c, e⟩22]

132 5 Process Discovery: An Introduction

Fig. 5.5 WF-net N3 derived from L3 = [⟨a, b, c, d, e, f, b, d, c, e, g⟩, ⟨a, b, d, c, e, g⟩2, ⟨a, b, c,
d, e, f, b, c, d, e, f, b, d, c, e, g⟩]

Table 5.3 Footprint of L3
a b c d e f g

a # → # # # # #

b ← # → → # ← #

c # ← # ∥ → # #

d # ← ∥ # → # #

e # # ← ← # → →
f # → # # ← # #

g # # # # ← # #

Fig. 5.6 WF-net N4 derived from L4 = [⟨a, c, d⟩45, ⟨b, c, d⟩42, ⟨a, c, e⟩38, ⟨b, c, e⟩22]

L3 =
[
⟨a, b, c, d, e, f, b, d, c, e, g⟩, ⟨a, b, d, c, e, g⟩2,

⟨a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g⟩
]

The α-algorithm constructs WF-net N3 based on L3 (see Fig. 5.5).
Table 5.3 shows the footprint of L3. Note that the patterns in the model indeed

match the log-based ordering relations extracted from the event log. Consider, for
example, the process fragment involving b, c, d , and e. Obviously, this fragment
can be constructed based on b →L3 c, b →L3 d , c ∥L3 d , c →L3 e, and d →L3 e.
The choice following e is revealed by e →L3 f , e →L3 g, and f #L3 g. Etc.

Another example is shown in Fig. 5.6. WF-net N4 can be derived from L4

L4 =
[
⟨a, c, d⟩45, ⟨b, c, d⟩42, ⟨a, c, e⟩38, ⟨b, c, e⟩22]

132 5 Process Discovery: An Introduction

Fig. 5.5 WF-net N3 derived from L3 = [⟨a, b, c, d, e, f, b, d, c, e, g⟩, ⟨a, b, d, c, e, g⟩2, ⟨a, b, c,
d, e, f, b, c, d, e, f, b, d, c, e, g⟩]

Table 5.3 Footprint of L3
a b c d e f g

a # → # # # # #

b ← # → → # ← #

c # ← # ∥ → # #

d # ← ∥ # → # #

e # # ← ← # → →
f # → # # ← # #

g # # # # ← # #

Fig. 5.6 WF-net N4 derived from L4 = [⟨a, c, d⟩45, ⟨b, c, d⟩42, ⟨a, c, e⟩38, ⟨b, c, e⟩22]

L3 =
[
⟨a, b, c, d, e, f, b, d, c, e, g⟩, ⟨a, b, d, c, e, g⟩2,

⟨a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g⟩
]

The α-algorithm constructs WF-net N3 based on L3 (see Fig. 5.5).
Table 5.3 shows the footprint of L3. Note that the patterns in the model indeed

match the log-based ordering relations extracted from the event log. Consider, for
example, the process fragment involving b, c, d , and e. Obviously, this fragment
can be constructed based on b →L3 c, b →L3 d , c ∥L3 d , c →L3 e, and d →L3 e.
The choice following e is revealed by e →L3 f , e →L3 g, and f #L3 g. Etc.

Another example is shown in Fig. 5.6. WF-net N4 can be derived from L4

L4 =
[
⟨a, c, d⟩45, ⟨b, c, d⟩42, ⟨a, c, e⟩38, ⟨b, c, e⟩22]

Exercises

Check in full autonomy
that the footprint matrix
corresponds to the log
and that the net below
is the one discovered
by the alpha-algorithm

112

126 5 Process Discovery: An Introduction

Fig. 5.1 WF-net N1 discovered for L1 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩]

ments. To make things more concrete, we define the target to be a Petri net model.
Moreover, we use a simple event log as input (cf. Definition 4.4). A simple event
log L is a multi-set of traces over some set of activities A , i.e., L ∈ B(A ∗). For
example,

L1 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩2, ⟨a, e, d⟩

]

L1 is a simple log describing the history of six cases. The goal is now to discover a
Petri net that can “replay” event log L1. Ideally, the Petri net is a sound WF-net as
defined in Sect. 2.2.3. Based on these choices, we reformulate the process discovery
problem and make it more concrete.

Definition 5.2 (Specific process discovery problem) A process discovery algorithm
is a function γ that maps a log L ∈ B(A ∗) onto a marked Petri net γ (L) = (N,M).
Ideally, N is a sound WF-net and all traces in L correspond to possible firing se-
quences of (N,M).

Function γ defines a so-called “Play-in” technique as described in Chap. 1. Based
on L1, a process discovery algorithm γ could discover the WF-net shown in Fig. 5.1,
i.e., γ (L1) = (N1, [start]). Each trace in L1 corresponds to a possible firing se-
quence of WF-net N1 shown in Fig. 5.1. Therefore, it is easy to see that the WF-net
can indeed replay all traces in the event log. In fact, each of the three possible firing
sequences of WF-net N1 appears in L1.

Let us now consider another event log:

L2 =
[
⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4, ⟨a, b, c, e, f, b, c, d⟩2, ⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2, ⟨a, c, b, e, f, b, c, e, f, c, b, d⟩

]

L2 is a simple event log consisting of 13 cases represented by 6 different traces.
Based on event log L2, some γ could discover WF-net N2 shown in Fig. 5.2. This
WF-net can indeed replay all traces in the log. However, not all firing sequences of
N2 correspond to traces in L2. For example, the firing sequence ⟨a, c, b, e, f, c, b, d⟩
does not appear in L2. In fact, there are infinitely many firing sequences because of
the loop construct in N2. Clearly, these cannot all appear in the event log. Therefore,
Definition 5.2 does not require all firing sequences of (N,M) to be traces in L.

5.1 Problem Statement 127

Fig. 5.2 WF-net N2 discovered for L2 = [⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4, ⟨a, b, c, e, f, b, c, d⟩2,
⟨a, b, c, e, f, c, b, d⟩, ⟨a, c, b, e, f, b, c, d⟩2, ⟨a, c, b, e, f, b, c, e, f, c, b, d⟩]

In this chapter, we focus on the discovery of Petri nets. The reason is that Petri
nets are simple and graphical while still allowing for the modeling of concurrency,
choices, and iteration. This is illustrated by Figs. 5.1 and 5.2. In both models, ac-
tivities b and c are concurrent. In N1, there is choice following a. In N2, there is
choice between d and e each time both b and c complete. Both N1 and N2 are sound
WF-nets. As explained in Chap. 2, WF-nets are a natural subclass of Petri nets tai-
lored toward the modeling and analysis of operational processes. A process model
describes the life-cycle of one case. Therefore, WF-nets explicitly model the cre-
ation and the completion of the cases. The creation is modeled by putting a token in
the unique source place i (place start in Figs. 5.1 and 5.2). The completion is mod-
eled by reaching the state marking the unique sink place o (place end in Figs. 5.1
and 5.2). Given a unique source place i and a unique sink place o, the soundness
requirement described in Definition 2.7 follows naturally. Recall that a WF-net N is
sound if and only if

• (N, [i]) is safe, i.e., places cannot hold multiple tokens at the same time.
• For any marking M ∈ [N, [i]⟩, o ∈ M implies M = [o], i.e., if the sink place is

marked, all other places should be empty (proper completion).
• For any marking M ∈ [N, [i]⟩, [o] ∈[N,M⟩, i.e., it is always possible to mark

the sink place (option to complete).
• (N, [i]) contains no dead transitions, i.e., all parts of the model are potentially

reachable.

Most process modeling notations use or assume correctness criteria similar to
soundness. For instance, deadlocks and livelocks are symptoms of a process that
cannot complete (properly). These phenomena are undesired, independent of the
notation used.

Although we use WF-nets in this chapter, this does not imply that discovered
process models cannot be presented using other notations. As discussed in Chap. 2,
there exist many translations from Petri nets into other notations and vice versa.
Compact formalisms with formal semantics like Petri nets are most suitable to de-
velop and explain process mining algorithms. The representation used to show re-
sults to end users is less relevant for the actual process discovery task. For example,
the WF-nets depicted in Figs. 5.1 and 5.2 can also be presented in terms of the

5.2 A Simple Algorithm for Process Discovery 131

Table 5.2 Footprint of L2 =
[⟨a, b, c, d⟩3, ⟨a, c, b, d⟩4,
⟨a, b, c, e, f, b, c, d⟩2,
⟨a, b, c, e, f, c, b, d⟩,
⟨a, c, b, e, f, b, c, d⟩2,
⟨a, c, b, e, f, b, c, e, f, c,
b, d⟩]

a b c d e f

a # → → # # #

b ← # ∥ → → ←
c ← ∥ # → → ←
d # ← ← # # #

e # ← ← # # →
f # → → # ← #

Fig. 5.4 Typical process patterns and the footprints they leave in the event log

pattern is the XOR-join pattern as shown in Fig. 5.4(b–c). If a →L c, b →L c, and
a #L b, then this suggests that after the occurrence of either a or b, c should happen.
Figure 5.4(d–e) shows the so-called AND-split and AND-join patterns. If a →L b,
a →L c, and b ∥L c, then it appears that after a both b and c can be executed in
parallel (AND-split pattern). If a →L c, b →L c, and a ∥L b, then the log suggests
that c needs to synchronize a and b (AND-join pattern).

Figure 5.4 only shows simple patterns and does not present the additional condi-
tions needed to extract the patterns. However, the figure nicely illustrates the basic
idea.

Consider, for example, WF-net N3 depicted in Fig. 5.5 and the event log L3
describing four cases

Exercises

Check in full autonomy
that the footprint matrix
corresponds to the log
and that the net below
is the one discovered
by the alpha-algorithm

Limitation:
Implicit Dependencies

113

136 5 Process Discovery: An Introduction

Fig. 5.8 WF-net N5 derived from L5 = [⟨a, b, e, f ⟩2, ⟨a, b, e, c, d, b, f ⟩3, ⟨a, b, c, e, d, b, f ⟩2,
⟨a, b, c, d, e, b, f ⟩4, ⟨a, e, b, c, d, b, f ⟩3]

FL =
{
(a,p({a},{e})), (p({a},{e}), e), (c,p({c},{d})), (p({c},{d}), d),

(e,p({e},{f })), (p({e},{f }), f), (a,p({a,d},{b})), (d,p({a,d},{b})),

(p({a,d},{b}), b), (b,p({b},{c,f })), (p({b},{c,f }), c), (p({b},{c,f }), f),

(iL, a), (f, oL)
}

α(L) = (PL,TL,FL)

Figure 5.8 shows N5 = α(L5), i.e., the model just computed. N5 can indeed
replay the traces in L5. Place names are not shown in Fig. 5.8, and we will also
not show them in later WF-nets, because they can be derived from the surrounding
transition names and just clutter the diagram.

5.2.3 Limitations of the α-Algorithm

In [103], it was shown that the α-algorithm can discover a large class of WF-nets if
one assumes that the log is complete with respect to the log-based ordering relation
>L. This assumption implies that, for any complete event log L, a >L b if a can be
directly followed by b. Consequently, a footprint like the one shown in Table 5.5 is
assumed to be valid. We revisit the notion of completeness later in this chapter.

Even if we assume that the log is complete, the α-algorithm has some problems.
There are many different WF-nets that have the same possible behavior, i.e., two
models can be structurally different but trace equivalent. Consider, for instance, the
following event log:

L6 =
[
⟨a, c, e, g⟩2, ⟨a, e, c, g⟩3, ⟨b, d,f, g⟩2, ⟨b,f, d, g⟩4]

α(L6) is shown in Fig. 5.9. Although the model is able to generate the observed
behavior, the resulting WF-net is needlessly complex. Two of the input places of g
are redundant, i.e., they can be removed without changing the behavior. The places
denoted as p1 and p2 are so-called implicit places and can be removed without

5.2 A Simple Algorithm for Process Discovery 137

Fig. 5.9 WF-net N6 derived from L6 = [⟨a, c, e, g⟩2, ⟨a, e, c, g⟩3, ⟨b, d,f, g⟩2, ⟨b,f, d, g⟩4]. The
two highlighted places are redundant, i.e., removing them will simplify the model without changing
its behavior

Fig. 5.10 Incorrect WF-net
N7 derived from
L7 = [⟨a, c⟩2, ⟨a, b, c⟩3,
⟨a, b, b, c⟩2, ⟨a, b, b,
b, b, c⟩1]

Fig. 5.11 WF-net N ′
7 having

a so-called “short-loop” of
length one

affecting the set of possible firing sequences. In fact, Fig. 5.9 shows only one of
many possible trace equivalent WF-nets.

The original α-algorithm (as presented in Sect. 5.2.2) has problems dealing with
short loops, i.e., loops of length one or two. For a loop of length one, this is il-
lustrated by WF-net N7 in Fig. 5.10, which shows the result of applying the basic
algorithm to L7.

L7 =
[
⟨a, c⟩2, ⟨a, b, c⟩3, ⟨a, b, b, c⟩2, ⟨a, b, b, b, b, c⟩1]

The resulting model is not a WF-net as transition b is disconnected from the rest
of the model. The models allows for the execution of b before a and after c. This is
not consistent with the event log. This problem can be addressed easily as shown in
[30]. Using an improved version of the α-algorithm, one can discover the WF-net
shown in Fig. 5.11.

The problem with loops of length two is illustrated by Petri net N8 in Fig. 5.12
which shows the result of applying the basic algorithm to L8.

L8 =
[
⟨a, b, d⟩3, ⟨a, b, c, b, d⟩2, ⟨a, b, c, b, c, b, d⟩

]

p1 and p2 are redundant

Limitation: Short Loop

114

b is disconnected from the model

5.2 A Simple Algorithm for Process Discovery 137

Fig. 5.9 WF-net N6 derived from L6 = [⟨a, c, e, g⟩2, ⟨a, e, c, g⟩3, ⟨b, d,f, g⟩2, ⟨b,f, d, g⟩4]. The
two highlighted places are redundant, i.e., removing them will simplify the model without changing
its behavior

Fig. 5.10 Incorrect WF-net
N7 derived from
L7 = [⟨a, c⟩2, ⟨a, b, c⟩3,
⟨a, b, b, c⟩2, ⟨a, b, b,
b, b, c⟩1]

Fig. 5.11 WF-net N ′
7 having

a so-called “short-loop” of
length one

affecting the set of possible firing sequences. In fact, Fig. 5.9 shows only one of
many possible trace equivalent WF-nets.

The original α-algorithm (as presented in Sect. 5.2.2) has problems dealing with
short loops, i.e., loops of length one or two. For a loop of length one, this is il-
lustrated by WF-net N7 in Fig. 5.10, which shows the result of applying the basic
algorithm to L7.

L7 =
[
⟨a, c⟩2, ⟨a, b, c⟩3, ⟨a, b, b, c⟩2, ⟨a, b, b, b, b, c⟩1]

The resulting model is not a WF-net as transition b is disconnected from the rest
of the model. The models allows for the execution of b before a and after c. This is
not consistent with the event log. This problem can be addressed easily as shown in
[30]. Using an improved version of the α-algorithm, one can discover the WF-net
shown in Fig. 5.11.

The problem with loops of length two is illustrated by Petri net N8 in Fig. 5.12
which shows the result of applying the basic algorithm to L8.

L8 =
[
⟨a, b, d⟩3, ⟨a, b, c, b, d⟩2, ⟨a, b, c, b, c, b, d⟩

]

5.2 A Simple Algorithm for Process Discovery 137

Fig. 5.9 WF-net N6 derived from L6 = [⟨a, c, e, g⟩2, ⟨a, e, c, g⟩3, ⟨b, d,f, g⟩2, ⟨b,f, d, g⟩4]. The
two highlighted places are redundant, i.e., removing them will simplify the model without changing
its behavior

Fig. 5.10 Incorrect WF-net
N7 derived from
L7 = [⟨a, c⟩2, ⟨a, b, c⟩3,
⟨a, b, b, c⟩2, ⟨a, b, b,
b, b, c⟩1]

Fig. 5.11 WF-net N ′
7 having

a so-called “short-loop” of
length one

affecting the set of possible firing sequences. In fact, Fig. 5.9 shows only one of
many possible trace equivalent WF-nets.

The original α-algorithm (as presented in Sect. 5.2.2) has problems dealing with
short loops, i.e., loops of length one or two. For a loop of length one, this is il-
lustrated by WF-net N7 in Fig. 5.10, which shows the result of applying the basic
algorithm to L7.

L7 =
[
⟨a, c⟩2, ⟨a, b, c⟩3, ⟨a, b, b, c⟩2, ⟨a, b, b, b, b, c⟩1]

The resulting model is not a WF-net as transition b is disconnected from the rest
of the model. The models allows for the execution of b before a and after c. This is
not consistent with the event log. This problem can be addressed easily as shown in
[30]. Using an improved version of the α-algorithm, one can discover the WF-net
shown in Fig. 5.11.

The problem with loops of length two is illustrated by Petri net N8 in Fig. 5.12
which shows the result of applying the basic algorithm to L8.

L8 =
[
⟨a, b, d⟩3, ⟨a, b, c, b, d⟩2, ⟨a, b, c, b, c, b, d⟩

]

5.2 A Simple Algorithm for Process Discovery 137

Fig. 5.9 WF-net N6 derived from L6 = [⟨a, c, e, g⟩2, ⟨a, e, c, g⟩3, ⟨b, d,f, g⟩2, ⟨b,f, d, g⟩4]. The
two highlighted places are redundant, i.e., removing them will simplify the model without changing
its behavior

Fig. 5.10 Incorrect WF-net
N7 derived from
L7 = [⟨a, c⟩2, ⟨a, b, c⟩3,
⟨a, b, b, c⟩2, ⟨a, b, b,
b, b, c⟩1]

Fig. 5.11 WF-net N ′
7 having

a so-called “short-loop” of
length one

affecting the set of possible firing sequences. In fact, Fig. 5.9 shows only one of
many possible trace equivalent WF-nets.

The original α-algorithm (as presented in Sect. 5.2.2) has problems dealing with
short loops, i.e., loops of length one or two. For a loop of length one, this is il-
lustrated by WF-net N7 in Fig. 5.10, which shows the result of applying the basic
algorithm to L7.

L7 =
[
⟨a, c⟩2, ⟨a, b, c⟩3, ⟨a, b, b, c⟩2, ⟨a, b, b, b, b, c⟩1]

The resulting model is not a WF-net as transition b is disconnected from the rest
of the model. The models allows for the execution of b before a and after c. This is
not consistent with the event log. This problem can be addressed easily as shown in
[30]. Using an improved version of the α-algorithm, one can discover the WF-net
shown in Fig. 5.11.

The problem with loops of length two is illustrated by Petri net N8 in Fig. 5.12
which shows the result of applying the basic algorithm to L8.

L8 =
[
⟨a, b, d⟩3, ⟨a, b, c, b, d⟩2, ⟨a, b, c, b, c, b, d⟩

]

Expected net:

Limitation: Short Loop

115

c is disconnected from the model

5.2 A Simple Algorithm for Process Discovery 137

Fig. 5.9 WF-net N6 derived from L6 = [⟨a, c, e, g⟩2, ⟨a, e, c, g⟩3, ⟨b, d,f, g⟩2, ⟨b,f, d, g⟩4]. The
two highlighted places are redundant, i.e., removing them will simplify the model without changing
its behavior

Fig. 5.10 Incorrect WF-net
N7 derived from
L7 = [⟨a, c⟩2, ⟨a, b, c⟩3,
⟨a, b, b, c⟩2, ⟨a, b, b,
b, b, c⟩1]

Fig. 5.11 WF-net N ′
7 having

a so-called “short-loop” of
length one

affecting the set of possible firing sequences. In fact, Fig. 5.9 shows only one of
many possible trace equivalent WF-nets.

The original α-algorithm (as presented in Sect. 5.2.2) has problems dealing with
short loops, i.e., loops of length one or two. For a loop of length one, this is il-
lustrated by WF-net N7 in Fig. 5.10, which shows the result of applying the basic
algorithm to L7.

L7 =
[
⟨a, c⟩2, ⟨a, b, c⟩3, ⟨a, b, b, c⟩2, ⟨a, b, b, b, b, c⟩1]

The resulting model is not a WF-net as transition b is disconnected from the rest
of the model. The models allows for the execution of b before a and after c. This is
not consistent with the event log. This problem can be addressed easily as shown in
[30]. Using an improved version of the α-algorithm, one can discover the WF-net
shown in Fig. 5.11.

The problem with loops of length two is illustrated by Petri net N8 in Fig. 5.12
which shows the result of applying the basic algorithm to L8.

L8 =
[
⟨a, b, d⟩3, ⟨a, b, c, b, d⟩2, ⟨a, b, c, b, c, b, d⟩

]
138 5 Process Discovery: An Introduction

Fig. 5.12 Incorrect WF-net N8 derived from L8 = [⟨a, b, d⟩3, ⟨a, b, c, b, d⟩2, ⟨a, b, c, b, c, b, d⟩]

Fig. 5.13 Corrected WF-net N ′
8 having a so-called “short-loop” of length two

The following log-based ordering relations are derived from this event log: a →L8 b,
b →L8 d , and b ∥L8 c. Hence, the basic algorithm incorrectly assumes that b and c
are in parallel because they follow one another. The model shown in Fig. 5.12 is not
even a WF-net, because c is not on a path from source to sink. Using the extension
described in [30], the improved α-algorithm correctly discovers the WF-net shown
in Fig. 5.13.

There are various ways to improve the basic α-algorithm to be able to deal
with loops. The α+-algorithm described in [30] is one of several alternatives to
address problems related to the original algorithm presented in Sect. 5.2.2. The
α+-algorithm uses a pre and postprocessing phase. The preprocessing phase deals
with loops of length two whereas the preprocessing phase inserts loops of length
one.

The basic algorithm has no problems mining loops of length three or more. For
a loop of involving at least three activities (say a, b, and c), concurrency can be
distinguished from loops using relation >L. For a loop, we find only a >L b, b >L c,
and c >L a. If the three activities are concurrent, we find a >L b, a >L c, b >L a,
b >L c, c >L a, and c >L b. Hence, it is easy to detect the difference. Note that
for a loop of length two this is not the case. For a loop involving a and b, we find
a >L b and b >L a. If a and b are concurrent, we find the same relations. Hence,
both constructs leave the same footprint in the event log.

A more difficult problem is the discovery of so-called nonlocal dependencies
resulting from non-free choice process constructs. An example is shown in Fig. 5.14.
This net would be a good candidate after observing the following event log:

L9 =
[
⟨a, c, d⟩45, ⟨b, c, e⟩42]

However, the α-algorithm will derive the WF-net without the places labeled p1
and p2. Hence, α(L9) = N4, as shown in Fig. 5.6, although the traces ⟨a, c, e⟩ and
⟨b, c, d⟩ do not appear in L9. Such problems can be (partially) resolved using refined
versions of the α-algorithm such as the one presented in [125].

Expected net:

138 5 Process Discovery: An Introduction

Fig. 5.12 Incorrect WF-net N8 derived from L8 = [⟨a, b, d⟩3, ⟨a, b, c, b, d⟩2, ⟨a, b, c, b, c, b, d⟩]

Fig. 5.13 Corrected WF-net N ′
8 having a so-called “short-loop” of length two

The following log-based ordering relations are derived from this event log: a →L8 b,
b →L8 d , and b ∥L8 c. Hence, the basic algorithm incorrectly assumes that b and c
are in parallel because they follow one another. The model shown in Fig. 5.12 is not
even a WF-net, because c is not on a path from source to sink. Using the extension
described in [30], the improved α-algorithm correctly discovers the WF-net shown
in Fig. 5.13.

There are various ways to improve the basic α-algorithm to be able to deal
with loops. The α+-algorithm described in [30] is one of several alternatives to
address problems related to the original algorithm presented in Sect. 5.2.2. The
α+-algorithm uses a pre and postprocessing phase. The preprocessing phase deals
with loops of length two whereas the preprocessing phase inserts loops of length
one.

The basic algorithm has no problems mining loops of length three or more. For
a loop of involving at least three activities (say a, b, and c), concurrency can be
distinguished from loops using relation >L. For a loop, we find only a >L b, b >L c,
and c >L a. If the three activities are concurrent, we find a >L b, a >L c, b >L a,
b >L c, c >L a, and c >L b. Hence, it is easy to detect the difference. Note that
for a loop of length two this is not the case. For a loop involving a and b, we find
a >L b and b >L a. If a and b are concurrent, we find the same relations. Hence,
both constructs leave the same footprint in the event log.

A more difficult problem is the discovery of so-called nonlocal dependencies
resulting from non-free choice process constructs. An example is shown in Fig. 5.14.
This net would be a good candidate after observing the following event log:

L9 =
[
⟨a, c, d⟩45, ⟨b, c, e⟩42]

However, the α-algorithm will derive the WF-net without the places labeled p1
and p2. Hence, α(L9) = N4, as shown in Fig. 5.6, although the traces ⟨a, c, e⟩ and
⟨b, c, d⟩ do not appear in L9. Such problems can be (partially) resolved using refined
versions of the α-algorithm such as the one presented in [125].

138 5 Process Discovery: An Introduction

Fig. 5.12 Incorrect WF-net N8 derived from L8 = [⟨a, b, d⟩3, ⟨a, b, c, b, d⟩2, ⟨a, b, c, b, c, b, d⟩]

Fig. 5.13 Corrected WF-net N ′
8 having a so-called “short-loop” of length two

The following log-based ordering relations are derived from this event log: a →L8 b,
b →L8 d , and b ∥L8 c. Hence, the basic algorithm incorrectly assumes that b and c
are in parallel because they follow one another. The model shown in Fig. 5.12 is not
even a WF-net, because c is not on a path from source to sink. Using the extension
described in [30], the improved α-algorithm correctly discovers the WF-net shown
in Fig. 5.13.

There are various ways to improve the basic α-algorithm to be able to deal
with loops. The α+-algorithm described in [30] is one of several alternatives to
address problems related to the original algorithm presented in Sect. 5.2.2. The
α+-algorithm uses a pre and postprocessing phase. The preprocessing phase deals
with loops of length two whereas the preprocessing phase inserts loops of length
one.

The basic algorithm has no problems mining loops of length three or more. For
a loop of involving at least three activities (say a, b, and c), concurrency can be
distinguished from loops using relation >L. For a loop, we find only a >L b, b >L c,
and c >L a. If the three activities are concurrent, we find a >L b, a >L c, b >L a,
b >L c, c >L a, and c >L b. Hence, it is easy to detect the difference. Note that
for a loop of length two this is not the case. For a loop involving a and b, we find
a >L b and b >L a. If a and b are concurrent, we find the same relations. Hence,
both constructs leave the same footprint in the event log.

A more difficult problem is the discovery of so-called nonlocal dependencies
resulting from non-free choice process constructs. An example is shown in Fig. 5.14.
This net would be a good candidate after observing the following event log:

L9 =
[
⟨a, c, d⟩45, ⟨b, c, e⟩42]

However, the α-algorithm will derive the WF-net without the places labeled p1
and p2. Hence, α(L9) = N4, as shown in Fig. 5.6, although the traces ⟨a, c, e⟩ and
⟨b, c, d⟩ do not appear in L9. Such problems can be (partially) resolved using refined
versions of the α-algorithm such as the one presented in [125].

138 5 Process Discovery: An Introduction

Fig. 5.12 Incorrect WF-net N8 derived from L8 = [⟨a, b, d⟩3, ⟨a, b, c, b, d⟩2, ⟨a, b, c, b, c, b, d⟩]

Fig. 5.13 Corrected WF-net N ′
8 having a so-called “short-loop” of length two

The following log-based ordering relations are derived from this event log: a →L8 b,
b →L8 d , and b ∥L8 c. Hence, the basic algorithm incorrectly assumes that b and c
are in parallel because they follow one another. The model shown in Fig. 5.12 is not
even a WF-net, because c is not on a path from source to sink. Using the extension
described in [30], the improved α-algorithm correctly discovers the WF-net shown
in Fig. 5.13.

There are various ways to improve the basic α-algorithm to be able to deal
with loops. The α+-algorithm described in [30] is one of several alternatives to
address problems related to the original algorithm presented in Sect. 5.2.2. The
α+-algorithm uses a pre and postprocessing phase. The preprocessing phase deals
with loops of length two whereas the preprocessing phase inserts loops of length
one.

The basic algorithm has no problems mining loops of length three or more. For
a loop of involving at least three activities (say a, b, and c), concurrency can be
distinguished from loops using relation >L. For a loop, we find only a >L b, b >L c,
and c >L a. If the three activities are concurrent, we find a >L b, a >L c, b >L a,
b >L c, c >L a, and c >L b. Hence, it is easy to detect the difference. Note that
for a loop of length two this is not the case. For a loop involving a and b, we find
a >L b and b >L a. If a and b are concurrent, we find the same relations. Hence,
both constructs leave the same footprint in the event log.

A more difficult problem is the discovery of so-called nonlocal dependencies
resulting from non-free choice process constructs. An example is shown in Fig. 5.14.
This net would be a good candidate after observing the following event log:

L9 =
[
⟨a, c, d⟩45, ⟨b, c, e⟩42]

However, the α-algorithm will derive the WF-net without the places labeled p1
and p2. Hence, α(L9) = N4, as shown in Fig. 5.6, although the traces ⟨a, c, e⟩ and
⟨b, c, d⟩ do not appear in L9. Such problems can be (partially) resolved using refined
versions of the α-algorithm such as the one presented in [125].

138 5 Process Discovery: An Introduction

Fig. 5.12 Incorrect WF-net N8 derived from L8 = [⟨a, b, d⟩3, ⟨a, b, c, b, d⟩2, ⟨a, b, c, b, c, b, d⟩]

Fig. 5.13 Corrected WF-net N ′
8 having a so-called “short-loop” of length two

The following log-based ordering relations are derived from this event log: a →L8 b,
b →L8 d , and b ∥L8 c. Hence, the basic algorithm incorrectly assumes that b and c
are in parallel because they follow one another. The model shown in Fig. 5.12 is not
even a WF-net, because c is not on a path from source to sink. Using the extension
described in [30], the improved α-algorithm correctly discovers the WF-net shown
in Fig. 5.13.

There are various ways to improve the basic α-algorithm to be able to deal
with loops. The α+-algorithm described in [30] is one of several alternatives to
address problems related to the original algorithm presented in Sect. 5.2.2. The
α+-algorithm uses a pre and postprocessing phase. The preprocessing phase deals
with loops of length two whereas the preprocessing phase inserts loops of length
one.

The basic algorithm has no problems mining loops of length three or more. For
a loop of involving at least three activities (say a, b, and c), concurrency can be
distinguished from loops using relation >L. For a loop, we find only a >L b, b >L c,
and c >L a. If the three activities are concurrent, we find a >L b, a >L c, b >L a,
b >L c, c >L a, and c >L b. Hence, it is easy to detect the difference. Note that
for a loop of length two this is not the case. For a loop involving a and b, we find
a >L b and b >L a. If a and b are concurrent, we find the same relations. Hence,
both constructs leave the same footprint in the event log.

A more difficult problem is the discovery of so-called nonlocal dependencies
resulting from non-free choice process constructs. An example is shown in Fig. 5.14.
This net would be a good candidate after observing the following event log:

L9 =
[
⟨a, c, d⟩45, ⟨b, c, e⟩42]

However, the α-algorithm will derive the WF-net without the places labeled p1
and p2. Hence, α(L9) = N4, as shown in Fig. 5.6, although the traces ⟨a, c, e⟩ and
⟨b, c, d⟩ do not appear in L9. Such problems can be (partially) resolved using refined
versions of the α-algorithm such as the one presented in [125].

Limitation: Noise

116

We use the term “noise” to refer to rare and infrequent
behaviour rather than errors related to event logging.

 For example, frequencies are not taken into account
by the -algorithm

(should we disregard less frequent traces?).
α

Limitation: Noise

117

158 6 Advanced Process Discovery Techniques

Fig. 6.1 Overview of the challenges that process discovery techniques need to address

most frequently occurring traces. Earlier we mentioned the 80/20 model, i.e., the
process model that is able to describe 80% of the behavior seen in the log. This
model is typically relatively simple because the remaining 20% of the log may eas-
ily account for 80% of the variability in the process.

Let us assume that the two rectangles with rounded corners can be determined
by observing the process infinitely long and that the process does not change (i.e.,
no concept drift). Based on these assumptions, Fig. 6.1 sketches four discovered
models depicted by shaded rectangles. These discovered models are based on the
example traces in the log, i.e., the black dots. The “ideal process model” allows for
the behavior coinciding with the frequent behavior seen when the process would
be observed ad infinitum while being in steady state. The “non-fitting model” in

Limitation: Noise

118

158 6 Advanced Process Discovery Techniques

Fig. 6.1 Overview of the challenges that process discovery techniques need to address

most frequently occurring traces. Earlier we mentioned the 80/20 model, i.e., the
process model that is able to describe 80% of the behavior seen in the log. This
model is typically relatively simple because the remaining 20% of the log may eas-
ily account for 80% of the variability in the process.

Let us assume that the two rectangles with rounded corners can be determined
by observing the process infinitely long and that the process does not change (i.e.,
no concept drift). Based on these assumptions, Fig. 6.1 sketches four discovered
models depicted by shaded rectangles. These discovered models are based on the
example traces in the log, i.e., the black dots. The “ideal process model” allows for
the behavior coinciding with the frequent behavior seen when the process would
be observed ad infinitum while being in steady state. The “non-fitting model” in

Conformance Checking:
fitness measures

119

Measures and
Diagnostic

120

192 7 Conformance Checking

Fig. 7.1 Conformance checking: comparing observed behavior with modeled behavior. Global
conformance measures quantify the overall conformance of the model and log. Local diagnostics
are given by highlighting the nodes in the model where model and log disagree. Cases that do not
fit are highlighted in the visualization of the log

(e.g., 85% of the cases in the event log can be replayed by the model) and local
diagnostics (e.g., activity x was executed 15 times although this was not allowed
according to the model). The interpretation of non-conformance depends on the
purpose of the model. If the model is intended to be descriptive, then discrepancies
between model and log indicate that the model needs to be improved to capture re-
ality better. If the model is normative, then such discrepancies may be interpreted
in two ways. Some of the discrepancies found may expose undesirable deviations,
i.e., conformance checking signals the need for a better control of the process. Other
discrepancies may reveal desirable deviations. For instance, workers may deviate to
serve the customers better or to handle circumstances not foreseen by the process
model. In fact, flexibility and non-conformance often correlate positively. For exam-
ple, in some hospitals the phrase “breaking the glass” is used to refer to deviations
that are recorded but that actually save lives. Nevertheless, even if most deviations
are desired, it is important that stakeholders have insight into such discrepancies.

When checking conformance, it is important to view deviations from two an-
gles: (a) the model is “wrong” and does not reflect reality (“How to improve the
model?”), and (b) cases deviate from the model and corrective actions are needed
(“How to improve control to enforce a better conformance?”). Conformance check-
ing techniques should support both viewpoints. Therefore, Fig. 7.1 shows deviations
on both sides.

In Chap. 1, we related process mining to corporate governance, risk, compliance,
and legislation such as the Sarbanes-Oxley Act (SOX) and the Basel II Accord.
Corporate accounting scandals have triggered a series of new regulations. Although
country-specific, there is a large degree of commonality between Sarbanes-Oxley
(US), Basel II/III (EU), J-SOX (Japan), C-SOX (Canada), 8th EU Directive (EURO-
SOX), BilMoG (Germany), MiFID (EU), Law 262/05 (Italy), Code Lippens (Bel-

Measuring Fitness

121

Fitness measures “the proportion of behaviour in the event
log possible according to the model”.

Of the four quality criteria,
fitness is the closest to conformance.

A naïve approach toward conformance checking would be to
count the fraction of cases that can be “replayed”

(i.e., the proportion of cases corresponding to firing
sequences leading from [start] to [end]).

Ability to replay

122

Can the net replay the trace ?

is equivalent to ask if

does ?
(is in the language of ?)

when we say that
 is non-fitting for

N σ

σ ∈ L(N)
σ N

σ ∉ L(N)
σ N

Example

123

7.2 Token Replay 195

Table 7.1 Event log Lfull: a = register request, b = examine thoroughly, c = examine casually,
d = check ticket, e = decide, f = reinitiate request, g = pay compensation, and h = reject request

Frequency Reference Trace

455 σ1 ⟨a, c, d, e,h⟩
191 σ2 ⟨a, b, d, e, g⟩
177 σ3 ⟨a, d, c, e,h⟩
144 σ4 ⟨a, b, d, e,h⟩
111 σ5 ⟨a, c, d, e, g⟩
82 σ6 ⟨a, d, c, e, g⟩
56 σ7 ⟨a, d, b, e,h⟩
47 σ8 ⟨a, c, d, e, f, d, b, e,h⟩
38 σ9 ⟨a, d, b, e, g⟩
33 σ10 ⟨a, c, d, e, f, b, d, e,h⟩
14 σ11 ⟨a, c, d, e, f, b, d, e, g⟩
11 σ12 ⟨a, c, d, e, f, d, b, e, g⟩

9 σ13 ⟨a, d, c, e, f, c, d, e,h⟩
8 σ14 ⟨a, d, c, e, f, d, b, e,h⟩
5 σ15 ⟨a, d, c, e, f, b, d, e, g⟩
3 σ16 ⟨a, c, d, e, f, b, d, e, f, d, b, e, g⟩
2 σ17 ⟨a, d, c, e, f, d, b, e, g⟩
2 σ18 ⟨a, d, c, e, f, b, d, e, f, b, d, e, g⟩
1 σ19 ⟨a, d, c, e, f, d, b, e, f, b, d, e,h⟩
1 σ20 ⟨a, d, b, e, f, b, d, e, f, d, b, e, g⟩
1 σ21 ⟨a, d, c, e, f, d, b, e, f, c, d, e, f, d, b, e, g⟩

which places p1 and p2 are merged into a single place. Such a model will have a
fitness of 0

1391 = 0, because none of the traces can be replayed. This fitness notion
seems to be too strict as most of the model seems to be consistent with the event log.
This is especially the case for larger process models. Consider, for example, a trace
σ = ⟨a1, a2, . . . , a100⟩ in some log L. Now consider a model that cannot replay σ ,
but that can replay 99 of the 100 events in σ (i.e., the trace is “almost” fitting). Also
consider another model that can only replay 10 of the 100 events in σ (i.e., the trace
is not fitting at all). Using the naïve fitness metric, the trace would simply be classi-
fied as nonfitting for both models without acknowledging that σ was almost fitting
in one model and in complete disagreement with the other model. Therefore, we use
a fitness notion defined at the level of events rather than full traces.

In the naïve fitness computation just described, we stopped replaying a trace
once we encounter a problem and mark it as nonfitting. Let us now just continue
replaying the trace on the model but record is all situations where a transition is
forced to fire without being enabled, i.e., we count all missing tokens. Moreover,
we record the tokens that remain at the end. To explain the idea, we first replay
σ1 on top of WF-net N1. Note that σ1 can be replayed completely. However, we

1391 cases

Example N1

124

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

194 7 Conformance Checking

Therefore, it should no longer be acceptable to only check a small set of samples
off-line. Instead, all events in a business process can be evaluated and this can be
done while the process is still running. The availability of log data and advanced
process mining techniques enables new forms of auditing (also see the work done
in the PoSecCo project [74]). Process mining in general, and conformance checking
in particular, provide the means to do so.

7.2 Token Replay

In Sect. 5.4.3, we discussed four quality criteria: fitness, precision, generalization,
and simplicity. These were illustrated using Fig. 5.24. In this figure, one event log
is given and four process models are shown. For each of these models, a subjective
judgment is given with respect to the four quality criteria. As the models are rather
extreme, the scores for the various quality criteria are evident. However, in a more
realistic setting it is much more difficult to judge the quality of a model. This section
shows how the notion of fitness can be quantified. Fitness measures “the proportion
of behavior in the event log possible according to the model”. Of the four quality
criteria, fitness is most related to conformance.

To explain the various fitness notions, we use the event log Lfull described in
Table 7.1. This is the same event log as the one used in Fig. 5.24. There are 1391
cases in Lfull distributed over 21 different traces. For example, there are 455 cases
following trace σ1 = ⟨a, c, d, e,h⟩, 191 cases following trace σ2 = ⟨a, b, d, e, g⟩,
etc.

Figure 7.2 shows four models related to event log Lfull. WF-net N1 is the process
model discovered when applying the α-algorithm to Lfull. WF-net N2 is a sequential
model that, compared to N1, requires the examination (activity b or c) to take place
before checking the ticket (activity d). Clearly, N2 does not allow for all traces in
Table 7.1. For example, σ3 = ⟨a, d, c, e,h⟩ is not possible according to WF-net N2.
WF-net N3 has no choices, e.g., the request is always rejected. Many traces in Ta-
ble 7.1 cannot be replayed by this model, e.g., σ2 = ⟨a, b, d, e, g⟩ is not possible
according to WF-net N3. WF-net N4 is a variant of the “flower model”: the only
requirement is that traces need to start with a and end with g or h. Clearly, all traces
in Table 7.1 can be replayed by N4.

A naïve approach toward conformance checking would be to simply count the
fraction of cases that can be “parsed completely” (i.e., the proportion of cases corre-
sponding to firing sequences leading from [start] to [end]). Using this approach the
fitness of N1 is 1391

1391 = 1, i.e., all 1391 cases in Lfull correspond to a firing sequence
of N1 (“can be replayed”). The fitness of N2 is 948

1391 = 0.6815 because 948 cases
can be replayed correctly whereas 443 cases do not correspond to a firing sequence
of N2. The fitness of N3 is 632

1391 = 0.4543: only 632 cases have a trace correspond-
ing to a firing sequence of N2. The fitness of N4 is 1391

1391 = 1 because the “flower
model” is able to replay all traces in Table 7.1. This naïve fitness metric is less suit-
able for more realistic processes. Consider for instance a variant of WF-net N1 in

naïve fitness The net can ``replay’’ any trace

Example N2

125

naïve fitness

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

194 7 Conformance Checking

Therefore, it should no longer be acceptable to only check a small set of samples
off-line. Instead, all events in a business process can be evaluated and this can be
done while the process is still running. The availability of log data and advanced
process mining techniques enables new forms of auditing (also see the work done
in the PoSecCo project [74]). Process mining in general, and conformance checking
in particular, provide the means to do so.

7.2 Token Replay

In Sect. 5.4.3, we discussed four quality criteria: fitness, precision, generalization,
and simplicity. These were illustrated using Fig. 5.24. In this figure, one event log
is given and four process models are shown. For each of these models, a subjective
judgment is given with respect to the four quality criteria. As the models are rather
extreme, the scores for the various quality criteria are evident. However, in a more
realistic setting it is much more difficult to judge the quality of a model. This section
shows how the notion of fitness can be quantified. Fitness measures “the proportion
of behavior in the event log possible according to the model”. Of the four quality
criteria, fitness is most related to conformance.

To explain the various fitness notions, we use the event log Lfull described in
Table 7.1. This is the same event log as the one used in Fig. 5.24. There are 1391
cases in Lfull distributed over 21 different traces. For example, there are 455 cases
following trace σ1 = ⟨a, c, d, e,h⟩, 191 cases following trace σ2 = ⟨a, b, d, e, g⟩,
etc.

Figure 7.2 shows four models related to event log Lfull. WF-net N1 is the process
model discovered when applying the α-algorithm to Lfull. WF-net N2 is a sequential
model that, compared to N1, requires the examination (activity b or c) to take place
before checking the ticket (activity d). Clearly, N2 does not allow for all traces in
Table 7.1. For example, σ3 = ⟨a, d, c, e,h⟩ is not possible according to WF-net N2.
WF-net N3 has no choices, e.g., the request is always rejected. Many traces in Ta-
ble 7.1 cannot be replayed by this model, e.g., σ2 = ⟨a, b, d, e, g⟩ is not possible
according to WF-net N3. WF-net N4 is a variant of the “flower model”: the only
requirement is that traces need to start with a and end with g or h. Clearly, all traces
in Table 7.1 can be replayed by N4.

A naïve approach toward conformance checking would be to simply count the
fraction of cases that can be “parsed completely” (i.e., the proportion of cases corre-
sponding to firing sequences leading from [start] to [end]). Using this approach the
fitness of N1 is 1391

1391 = 1, i.e., all 1391 cases in Lfull correspond to a firing sequence
of N1 (“can be replayed”). The fitness of N2 is 948

1391 = 0.6815 because 948 cases
can be replayed correctly whereas 443 cases do not correspond to a firing sequence
of N2. The fitness of N3 is 632

1391 = 0.4543: only 632 cases have a trace correspond-
ing to a firing sequence of N2. The fitness of N4 is 1391

1391 = 1 because the “flower
model” is able to replay all traces in Table 7.1. This naïve fitness metric is less suit-
able for more realistic processes. Consider for instance a variant of WF-net N1 in

443 cases do not correspond to a firing sequence
�a, d, c, e, h⇥177
�a, d, c, e, g⇥82
�a, d, b, e, h⇥56
...

Example N3

126

naïve fitness

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

194 7 Conformance Checking

Therefore, it should no longer be acceptable to only check a small set of samples
off-line. Instead, all events in a business process can be evaluated and this can be
done while the process is still running. The availability of log data and advanced
process mining techniques enables new forms of auditing (also see the work done
in the PoSecCo project [74]). Process mining in general, and conformance checking
in particular, provide the means to do so.

7.2 Token Replay

In Sect. 5.4.3, we discussed four quality criteria: fitness, precision, generalization,
and simplicity. These were illustrated using Fig. 5.24. In this figure, one event log
is given and four process models are shown. For each of these models, a subjective
judgment is given with respect to the four quality criteria. As the models are rather
extreme, the scores for the various quality criteria are evident. However, in a more
realistic setting it is much more difficult to judge the quality of a model. This section
shows how the notion of fitness can be quantified. Fitness measures “the proportion
of behavior in the event log possible according to the model”. Of the four quality
criteria, fitness is most related to conformance.

To explain the various fitness notions, we use the event log Lfull described in
Table 7.1. This is the same event log as the one used in Fig. 5.24. There are 1391
cases in Lfull distributed over 21 different traces. For example, there are 455 cases
following trace σ1 = ⟨a, c, d, e,h⟩, 191 cases following trace σ2 = ⟨a, b, d, e, g⟩,
etc.

Figure 7.2 shows four models related to event log Lfull. WF-net N1 is the process
model discovered when applying the α-algorithm to Lfull. WF-net N2 is a sequential
model that, compared to N1, requires the examination (activity b or c) to take place
before checking the ticket (activity d). Clearly, N2 does not allow for all traces in
Table 7.1. For example, σ3 = ⟨a, d, c, e,h⟩ is not possible according to WF-net N2.
WF-net N3 has no choices, e.g., the request is always rejected. Many traces in Ta-
ble 7.1 cannot be replayed by this model, e.g., σ2 = ⟨a, b, d, e, g⟩ is not possible
according to WF-net N3. WF-net N4 is a variant of the “flower model”: the only
requirement is that traces need to start with a and end with g or h. Clearly, all traces
in Table 7.1 can be replayed by N4.

A naïve approach toward conformance checking would be to simply count the
fraction of cases that can be “parsed completely” (i.e., the proportion of cases corre-
sponding to firing sequences leading from [start] to [end]). Using this approach the
fitness of N1 is 1391

1391 = 1, i.e., all 1391 cases in Lfull correspond to a firing sequence
of N1 (“can be replayed”). The fitness of N2 is 948

1391 = 0.6815 because 948 cases
can be replayed correctly whereas 443 cases do not correspond to a firing sequence
of N2. The fitness of N3 is 632

1391 = 0.4543: only 632 cases have a trace correspond-
ing to a firing sequence of N2. The fitness of N4 is 1391

1391 = 1 because the “flower
model” is able to replay all traces in Table 7.1. This naïve fitness metric is less suit-
able for more realistic processes. Consider for instance a variant of WF-net N1 in

759 cases do not correspond to a firing sequence
�a, b, d, e, g⇥191
�a, b, d, e, h⇥144
�a, c, d, e, g⇥111
...

Example N4

127

naïve fitness

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

194 7 Conformance Checking

Therefore, it should no longer be acceptable to only check a small set of samples
off-line. Instead, all events in a business process can be evaluated and this can be
done while the process is still running. The availability of log data and advanced
process mining techniques enables new forms of auditing (also see the work done
in the PoSecCo project [74]). Process mining in general, and conformance checking
in particular, provide the means to do so.

7.2 Token Replay

In Sect. 5.4.3, we discussed four quality criteria: fitness, precision, generalization,
and simplicity. These were illustrated using Fig. 5.24. In this figure, one event log
is given and four process models are shown. For each of these models, a subjective
judgment is given with respect to the four quality criteria. As the models are rather
extreme, the scores for the various quality criteria are evident. However, in a more
realistic setting it is much more difficult to judge the quality of a model. This section
shows how the notion of fitness can be quantified. Fitness measures “the proportion
of behavior in the event log possible according to the model”. Of the four quality
criteria, fitness is most related to conformance.

To explain the various fitness notions, we use the event log Lfull described in
Table 7.1. This is the same event log as the one used in Fig. 5.24. There are 1391
cases in Lfull distributed over 21 different traces. For example, there are 455 cases
following trace σ1 = ⟨a, c, d, e,h⟩, 191 cases following trace σ2 = ⟨a, b, d, e, g⟩,
etc.

Figure 7.2 shows four models related to event log Lfull. WF-net N1 is the process
model discovered when applying the α-algorithm to Lfull. WF-net N2 is a sequential
model that, compared to N1, requires the examination (activity b or c) to take place
before checking the ticket (activity d). Clearly, N2 does not allow for all traces in
Table 7.1. For example, σ3 = ⟨a, d, c, e,h⟩ is not possible according to WF-net N2.
WF-net N3 has no choices, e.g., the request is always rejected. Many traces in Ta-
ble 7.1 cannot be replayed by this model, e.g., σ2 = ⟨a, b, d, e, g⟩ is not possible
according to WF-net N3. WF-net N4 is a variant of the “flower model”: the only
requirement is that traces need to start with a and end with g or h. Clearly, all traces
in Table 7.1 can be replayed by N4.

A naïve approach toward conformance checking would be to simply count the
fraction of cases that can be “parsed completely” (i.e., the proportion of cases corre-
sponding to firing sequences leading from [start] to [end]). Using this approach the
fitness of N1 is 1391

1391 = 1, i.e., all 1391 cases in Lfull correspond to a firing sequence
of N1 (“can be replayed”). The fitness of N2 is 948

1391 = 0.6815 because 948 cases
can be replayed correctly whereas 443 cases do not correspond to a firing sequence
of N2. The fitness of N3 is 632

1391 = 0.4543: only 632 cases have a trace correspond-
ing to a firing sequence of N2. The fitness of N4 is 1391

1391 = 1 because the “flower
model” is able to replay all traces in Table 7.1. This naïve fitness metric is less suit-
able for more realistic processes. Consider for instance a variant of WF-net N1 in

“flower model” (poorly structured)

The net can ``replay’’ any trace

Almost Fitting Traces

128

This naïve fitness notion seems to be too strict as traces can
differ only slightly and not be counted at all.

Consider a model N1 that cannot replay σ ,
but that can replay 99 of the 100 events in σ.

Then, consider another model N2 that can only replay
10 of the 100 events in σ.

Using the naïve fitness metric, the trace would simply be
classified as non-fitting for both models without

acknowledging that σ was almost fitting
in N1 and in complete disagreement with N2.

7.2 Token Replay 195

Table 7.1 Event log Lfull: a = register request, b = examine thoroughly, c = examine casually,
d = check ticket, e = decide, f = reinitiate request, g = pay compensation, and h = reject request

Frequency Reference Trace

455 σ1 ⟨a, c, d, e,h⟩
191 σ2 ⟨a, b, d, e, g⟩
177 σ3 ⟨a, d, c, e,h⟩
144 σ4 ⟨a, b, d, e,h⟩
111 σ5 ⟨a, c, d, e, g⟩
82 σ6 ⟨a, d, c, e, g⟩
56 σ7 ⟨a, d, b, e,h⟩
47 σ8 ⟨a, c, d, e, f, d, b, e,h⟩
38 σ9 ⟨a, d, b, e, g⟩
33 σ10 ⟨a, c, d, e, f, b, d, e,h⟩
14 σ11 ⟨a, c, d, e, f, b, d, e, g⟩
11 σ12 ⟨a, c, d, e, f, d, b, e, g⟩
9 σ13 ⟨a, d, c, e, f, c, d, e,h⟩
8 σ14 ⟨a, d, c, e, f, d, b, e,h⟩
5 σ15 ⟨a, d, c, e, f, b, d, e, g⟩
3 σ16 ⟨a, c, d, e, f, b, d, e, f, d, b, e, g⟩
2 σ17 ⟨a, d, c, e, f, d, b, e, g⟩
2 σ18 ⟨a, d, c, e, f, b, d, e, f, b, d, e, g⟩
1 σ19 ⟨a, d, c, e, f, d, b, e, f, b, d, e,h⟩
1 σ20 ⟨a, d, b, e, f, b, d, e, f, d, b, e, g⟩
1 σ21 ⟨a, d, c, e, f, d, b, e, f, c, d, e, f, d, b, e, g⟩

which places p1 and p2 are merged into a single place. Such a model will have a
fitness of 0

1391 = 0, because none of the traces can be replayed. This fitness notion
seems to be too strict as most of the model seems to be consistent with the event log.
This is especially the case for larger process models. Consider, for example, a trace
σ = ⟨a1, a2, . . . , a100⟩ in some log L. Now consider a model that cannot replay σ ,
but that can replay 99 of the 100 events in σ (i.e., the trace is “almost” fitting). Also
consider another model that can only replay 10 of the 100 events in σ (i.e., the trace
is not fitting at all). Using the naïve fitness metric, the trace would simply be classi-
fied as nonfitting for both models without acknowledging that σ was almost fitting
in one model and in complete disagreement with the other model. Therefore, we use
a fitness notion defined at the level of events rather than full traces.

In the naïve fitness computation just described, we stopped replaying a trace
once we encounter a problem and mark it as nonfitting. Let us now just continue
replaying the trace on the model but record is all situations where a transition is
forced to fire without being enabled, i.e., we count all missing tokens. Moreover,
we record the tokens that remain at the end. To explain the idea, we first replay
σ1 on top of WF-net N1. Note that σ1 can be replayed completely. However, we

Missing and Remaining
Tokens

129

We next introduce a more accurate fitness notion.

When computing the naïve fitness,
we stop replaying a trace as soon as we find a problem

(and tag that trace as non-fitting).

Let us instead just continue replaying the trace on the model
but record all situations where a transition is

forced to fire without being enabled,
i.e., we count all missing tokens.

Moreover, we record the tokens that remain at the end.

Four Counters

130

p (produced tokens)

c (consumed tokens)

198 7 Conformance Checking

1 and the p counter is incremented by 2. Therefore, p = 3 and c = 1 after firing
transition a. Then we replay the second event (c). Firing transition c results in p = 4
and c = 2. After replaying the third event (i.e. d) p = 5 and c = 3. They we replay e.
Since e consumes two tokens and produces one, the result is p = 6 and c = 5. Then
we replay the last event (h). Firing h results in p = 7 and c = 6. At the end, the
environment consumes a token from place end. Hence the final result is p = c = 7
and m = r = 0. Clearly, there are no problems when replaying the σ1, i.e., there are
no missing or remaining tokens (m = r = 0).

The fitness of a case with trace σ on WF-net N is defined as follows:

fitness(σ,N) = 1
2

(
1 − m

c

)
+ 1

2

(
1 − r

p

)

The first parts computes the fraction of missing tokens relative to the number of
consumed tokens. 1 − m

c = 1 if there are no missing tokens (m = 0) and 1 − m
c = 0

if all tokens to be consumed were missing (m = c). Similarly, 1 − r
p = 1 if there

are no remaining tokens and 1 − r
p = 0 if none of the produced tokens was actually

consumed. We use an equal penalty for missing and remaining tokens. By definition:
0 ≤ fitness(σ,N) ≤ 1. In our example, fitness(σ1,N1) = 1

2(1 − 0
7) + 1

2 (1 − 0
7) = 1

because there are no missing or remaining tokens.
Let us now consider a trace that cannot be replayed properly. Figure 7.4 shows

the process of replaying σ3 = ⟨a, d, c, e,h⟩ on WF-net N2. Initially, p = c = 0 and
all places are empty. Then the environment produces a token for place start and the
p counter is updated: p = 1. The first event (a) can be replayed. After firing a, we
have p = 2, c = 1, m = 0, and r = 0. Now we try to replay the second event. This is
not possible, because transition d is not enabled. To fire d , we need to add a token
to place p2 and record the missing token, i.e., the m counter is incremented. The p
and c counter are updated as usual. Therefore, after firing d , we have p = 3, c = 2,
m = 1, and r = 0. We also tag place p2 to remember that a token was missing. Then
we replay the next three events (c, e, h). The corresponding transitions are enabled.
Therefore, we only need to update p and c counters. After replaying the last event,
we have p = 6, c = 5, m = 1, and r = 0. In the final state [p2, end], the environment
consumes the token from place end. A token remains in place p2. Therefore, place
p2 is tagged and the r counter is incremented. Hence, the final result is p = c = 6
and m = r = 1. Figure 7.4 shows diagnostic information that helps to understand
the nature of non-conformance. There was a situation in which d occurred but could
not happen according to the model (m-tag) and there was a situation in which d was
supposed to happen but did not occur according to the log (r-tag). Moreover, we can
compute the fitness of trace σ3 on WF-net N2 based on the values of p, c, m, and r :

fitness(σ3,N2) = 1
2

(
1 − 1

6

)
+ 1

2

(
1 − 1

6

)
= 0.8333

As a third example, we replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3. Now the
situation is slightly different because N3 does not contain all activities appearing in
the event log. In such a situation it seems reasonable to abstract from these events.
Hence, we effectively replay σ ′

2 = ⟨a, d, e⟩. Figure 7.5 shows the process of replay-
ing these three events. The first problem surfaces when replaying e. Since c did not

r (remaining tokens)

m (missing tokens)

equally weighted

ideally m=r=0

proportions of misplacement

Example: none missing,
none remaining

131

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

7.2 Token Replay 197

Fig. 7.3 Replaying
σ1 = ⟨a, c, d, e,h⟩ on top of
WF-net N1. There are four
counters: p (produced
tokens), c (consumed tokens),
m (missing tokens), and r
(remaining tokens)

the environment produces a
token for place start

132

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

replaying a is possible
one token is consumed, two produced

7.2 Token Replay 197

Fig. 7.3 Replaying
σ1 = ⟨a, c, d, e,h⟩ on top of
WF-net N1. There are four
counters: p (produced
tokens), c (consumed tokens),
m (missing tokens), and r
(remaining tokens)

7.2 Token Replay 197

Fig. 7.3 Replaying
σ1 = ⟨a, c, d, e,h⟩ on top of
WF-net N1. There are four
counters: p (produced
tokens), c (consumed tokens),
m (missing tokens), and r
(remaining tokens)

Example: none missing,
none remaining

133

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

replaying c is possible
one token is consumed, one produced

7.2 Token Replay 197

Fig. 7.3 Replaying
σ1 = ⟨a, c, d, e,h⟩ on top of
WF-net N1. There are four
counters: p (produced
tokens), c (consumed tokens),
m (missing tokens), and r
(remaining tokens)

7.2 Token Replay 197

Fig. 7.3 Replaying
σ1 = ⟨a, c, d, e,h⟩ on top of
WF-net N1. There are four
counters: p (produced
tokens), c (consumed tokens),
m (missing tokens), and r
(remaining tokens)

Example: none missing,
none remaining

134

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

replaying d is possible
one token is consumed, one produced

7.2 Token Replay 197

Fig. 7.3 Replaying
σ1 = ⟨a, c, d, e,h⟩ on top of
WF-net N1. There are four
counters: p (produced
tokens), c (consumed tokens),
m (missing tokens), and r
(remaining tokens)

7.2 Token Replay 197

Fig. 7.3 Replaying
σ1 = ⟨a, c, d, e,h⟩ on top of
WF-net N1. There are four
counters: p (produced
tokens), c (consumed tokens),
m (missing tokens), and r
(remaining tokens)

Example: none missing,
none remaining

135

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

replaying e is possible
two tokens are consumed, one produced

7.2 Token Replay 197

Fig. 7.3 Replaying
σ1 = ⟨a, c, d, e,h⟩ on top of
WF-net N1. There are four
counters: p (produced
tokens), c (consumed tokens),
m (missing tokens), and r
(remaining tokens)

7.2 Token Replay 197

Fig. 7.3 Replaying
σ1 = ⟨a, c, d, e,h⟩ on top of
WF-net N1. There are four
counters: p (produced
tokens), c (consumed tokens),
m (missing tokens), and r
(remaining tokens)

Example: none missing,
none remaining

136

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

replaying h is possible
one token is consumed, one produced

7.2 Token Replay 197

Fig. 7.3 Replaying
σ1 = ⟨a, c, d, e,h⟩ on top of
WF-net N1. There are four
counters: p (produced
tokens), c (consumed tokens),
m (missing tokens), and r
(remaining tokens)

7.2 Token Replay 197

Fig. 7.3 Replaying
σ1 = ⟨a, c, d, e,h⟩ on top of
WF-net N1. There are four
counters: p (produced
tokens), c (consumed tokens),
m (missing tokens), and r
(remaining tokens)

Example: none missing,
none remaining

137

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

7.2 Token Replay 197

Fig. 7.3 Replaying
σ1 = ⟨a, c, d, e,h⟩ on top of
WF-net N1. There are four
counters: p (produced
tokens), c (consumed tokens),
m (missing tokens), and r
(remaining tokens)

At the end,
the environment consumes

a token from place end.

198 7 Conformance Checking

1 and the p counter is incremented by 2. Therefore, p = 3 and c = 1 after firing
transition a. Then we replay the second event (c). Firing transition c results in p = 4
and c = 2. After replaying the third event (i.e. d) p = 5 and c = 3. They we replay e.
Since e consumes two tokens and produces one, the result is p = 6 and c = 5. Then
we replay the last event (h). Firing h results in p = 7 and c = 6. At the end, the
environment consumes a token from place end. Hence the final result is p = c = 7
and m = r = 0. Clearly, there are no problems when replaying the σ1, i.e., there are
no missing or remaining tokens (m = r = 0).

The fitness of a case with trace σ on WF-net N is defined as follows:

fitness(σ,N) = 1
2

(
1 − m

c

)
+ 1

2

(
1 − r

p

)

The first parts computes the fraction of missing tokens relative to the number of
consumed tokens. 1 − m

c = 1 if there are no missing tokens (m = 0) and 1 − m
c = 0

if all tokens to be consumed were missing (m = c). Similarly, 1 − r
p = 1 if there

are no remaining tokens and 1 − r
p = 0 if none of the produced tokens was actually

consumed. We use an equal penalty for missing and remaining tokens. By definition:
0 ≤ fitness(σ,N) ≤ 1. In our example, fitness(σ1,N1) = 1

2(1 − 0
7) + 1

2 (1 − 0
7) = 1

because there are no missing or remaining tokens.
Let us now consider a trace that cannot be replayed properly. Figure 7.4 shows

the process of replaying σ3 = ⟨a, d, c, e,h⟩ on WF-net N2. Initially, p = c = 0 and
all places are empty. Then the environment produces a token for place start and the
p counter is updated: p = 1. The first event (a) can be replayed. After firing a, we
have p = 2, c = 1, m = 0, and r = 0. Now we try to replay the second event. This is
not possible, because transition d is not enabled. To fire d , we need to add a token
to place p2 and record the missing token, i.e., the m counter is incremented. The p
and c counter are updated as usual. Therefore, after firing d , we have p = 3, c = 2,
m = 1, and r = 0. We also tag place p2 to remember that a token was missing. Then
we replay the next three events (c, e, h). The corresponding transitions are enabled.
Therefore, we only need to update p and c counters. After replaying the last event,
we have p = 6, c = 5, m = 1, and r = 0. In the final state [p2, end], the environment
consumes the token from place end. A token remains in place p2. Therefore, place
p2 is tagged and the r counter is incremented. Hence, the final result is p = c = 6
and m = r = 1. Figure 7.4 shows diagnostic information that helps to understand
the nature of non-conformance. There was a situation in which d occurred but could
not happen according to the model (m-tag) and there was a situation in which d was
supposed to happen but did not occur according to the log (r-tag). Moreover, we can
compute the fitness of trace σ3 on WF-net N2 based on the values of p, c, m, and r :

fitness(σ3,N2) = 1
2

(
1 − 1

6

)
+ 1

2

(
1 − 1

6

)
= 0.8333

As a third example, we replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3. Now the
situation is slightly different because N3 does not contain all activities appearing in
the event log. In such a situation it seems reasonable to abstract from these events.
Hence, we effectively replay σ ′

2 = ⟨a, d, e⟩. Figure 7.5 shows the process of replay-
ing these three events. The first problem surfaces when replaying e. Since c did not

Example: none missing,
none remaining

Example: Missing Token

138

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

the environment produces a
token for place start

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

Example: Missing Token

139

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

replaying a is possible
one token is consumed, one produced7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

Example: Missing Token

140

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

replaying d is NOT possible
one token is missing,

one produced, one consumed

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

Example: Missing Token

141

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

replaying c is possible
one token is produced, one consumed

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

Example: Missing Token

142

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

replaying e is possible
one token is produced, one consumed

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

Example: Missing Token

143

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

replaying h is possible
one token is produced, one consumed

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

Example: Missing Token

144

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

7.2 Token Replay 199

Fig. 7.4 Replaying σ3 = ⟨a, d, c, e,h⟩ on top of WF-net N2: one token is missing (m = 1) and
one token is remaining (r = 1). The r-tag and m-tag highlight the place where σ3 and the model
diverge

At the end,
the environment consumes

a token from place end.

198 7 Conformance Checking

1 and the p counter is incremented by 2. Therefore, p = 3 and c = 1 after firing
transition a. Then we replay the second event (c). Firing transition c results in p = 4
and c = 2. After replaying the third event (i.e. d) p = 5 and c = 3. They we replay e.
Since e consumes two tokens and produces one, the result is p = 6 and c = 5. Then
we replay the last event (h). Firing h results in p = 7 and c = 6. At the end, the
environment consumes a token from place end. Hence the final result is p = c = 7
and m = r = 0. Clearly, there are no problems when replaying the σ1, i.e., there are
no missing or remaining tokens (m = r = 0).

The fitness of a case with trace σ on WF-net N is defined as follows:

fitness(σ,N) = 1
2

(
1 − m

c

)
+ 1

2

(
1 − r

p

)

The first parts computes the fraction of missing tokens relative to the number of
consumed tokens. 1 − m

c = 1 if there are no missing tokens (m = 0) and 1 − m
c = 0

if all tokens to be consumed were missing (m = c). Similarly, 1 − r
p = 1 if there

are no remaining tokens and 1 − r
p = 0 if none of the produced tokens was actually

consumed. We use an equal penalty for missing and remaining tokens. By definition:
0 ≤ fitness(σ,N) ≤ 1. In our example, fitness(σ1,N1) = 1

2(1 − 0
7) + 1

2 (1 − 0
7) = 1

because there are no missing or remaining tokens.
Let us now consider a trace that cannot be replayed properly. Figure 7.4 shows

the process of replaying σ3 = ⟨a, d, c, e,h⟩ on WF-net N2. Initially, p = c = 0 and
all places are empty. Then the environment produces a token for place start and the
p counter is updated: p = 1. The first event (a) can be replayed. After firing a, we
have p = 2, c = 1, m = 0, and r = 0. Now we try to replay the second event. This is
not possible, because transition d is not enabled. To fire d , we need to add a token
to place p2 and record the missing token, i.e., the m counter is incremented. The p
and c counter are updated as usual. Therefore, after firing d , we have p = 3, c = 2,
m = 1, and r = 0. We also tag place p2 to remember that a token was missing. Then
we replay the next three events (c, e, h). The corresponding transitions are enabled.
Therefore, we only need to update p and c counters. After replaying the last event,
we have p = 6, c = 5, m = 1, and r = 0. In the final state [p2, end], the environment
consumes the token from place end. A token remains in place p2. Therefore, place
p2 is tagged and the r counter is incremented. Hence, the final result is p = c = 6
and m = r = 1. Figure 7.4 shows diagnostic information that helps to understand
the nature of non-conformance. There was a situation in which d occurred but could
not happen according to the model (m-tag) and there was a situation in which d was
supposed to happen but did not occur according to the log (r-tag). Moreover, we can
compute the fitness of trace σ3 on WF-net N2 based on the values of p, c, m, and r :

fitness(σ3,N2) = 1
2

(
1 − 1

6

)
+ 1

2

(
1 − 1

6

)
= 0.8333

As a third example, we replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3. Now the
situation is slightly different because N3 does not contain all activities appearing in
the event log. In such a situation it seems reasonable to abstract from these events.
Hence, we effectively replay σ ′

2 = ⟨a, d, e⟩. Figure 7.5 shows the process of replay-
ing these three events. The first problem surfaces when replaying e. Since c did not

Example: Event Removal

145

200 7 Conformance Checking

Fig. 7.5 To replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3, all events not corresponding to ac-
tivities in the model are removed first. Replaying σ ′

2 = ⟨a, d, e⟩ shows that two tokens are missing
(m = 2) and two tokens are remaining (r = 2) thus resulting in a fitness of 0.6

fire, place p3 is still empty and e is not enabled. The missing token is recorded
(m = 1) and place p3 gets an m-tag. After replaying σ ′

2, the resulting marking is
[p1,p5]. Now the environment needs to consume the token from place end. How-
ever, place end is not marked. Therefore, another missing token is recorded (m = 2)

200 7 Conformance Checking

Fig. 7.5 To replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3, all events not corresponding to ac-
tivities in the model are removed first. Replaying σ ′

2 = ⟨a, d, e⟩ shows that two tokens are missing
(m = 2) and two tokens are remaining (r = 2) thus resulting in a fitness of 0.6

fire, place p3 is still empty and e is not enabled. The missing token is recorded
(m = 1) and place p3 gets an m-tag. After replaying σ ′

2, the resulting marking is
[p1,p5]. Now the environment needs to consume the token from place end. How-
ever, place end is not marked. Therefore, another missing token is recorded (m = 2)

200 7 Conformance Checking

Fig. 7.5 To replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3, all events not corresponding to ac-
tivities in the model are removed first. Replaying σ ′

2 = ⟨a, d, e⟩ shows that two tokens are missing
(m = 2) and two tokens are remaining (r = 2) thus resulting in a fitness of 0.6

fire, place p3 is still empty and e is not enabled. The missing token is recorded
(m = 1) and place p3 gets an m-tag. After replaying σ ′

2, the resulting marking is
[p1,p5]. Now the environment needs to consume the token from place end. How-
ever, place end is not marked. Therefore, another missing token is recorded (m = 2)

events b and g are not present in the net
therefore we remove them from the trace

Example: Event Removal

146

200 7 Conformance Checking

Fig. 7.5 To replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3, all events not corresponding to ac-
tivities in the model are removed first. Replaying σ ′

2 = ⟨a, d, e⟩ shows that two tokens are missing
(m = 2) and two tokens are remaining (r = 2) thus resulting in a fitness of 0.6

fire, place p3 is still empty and e is not enabled. The missing token is recorded
(m = 1) and place p3 gets an m-tag. After replaying σ ′

2, the resulting marking is
[p1,p5]. Now the environment needs to consume the token from place end. How-
ever, place end is not marked. Therefore, another missing token is recorded (m = 2)

200 7 Conformance Checking

Fig. 7.5 To replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3, all events not corresponding to ac-
tivities in the model are removed first. Replaying σ ′

2 = ⟨a, d, e⟩ shows that two tokens are missing
(m = 2) and two tokens are remaining (r = 2) thus resulting in a fitness of 0.6

fire, place p3 is still empty and e is not enabled. The missing token is recorded
(m = 1) and place p3 gets an m-tag. After replaying σ ′

2, the resulting marking is
[p1,p5]. Now the environment needs to consume the token from place end. How-
ever, place end is not marked. Therefore, another missing token is recorded (m = 2)

Example: Event Removal

147

200 7 Conformance Checking

Fig. 7.5 To replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3, all events not corresponding to ac-
tivities in the model are removed first. Replaying σ ′

2 = ⟨a, d, e⟩ shows that two tokens are missing
(m = 2) and two tokens are remaining (r = 2) thus resulting in a fitness of 0.6

fire, place p3 is still empty and e is not enabled. The missing token is recorded
(m = 1) and place p3 gets an m-tag. After replaying σ ′

2, the resulting marking is
[p1,p5]. Now the environment needs to consume the token from place end. How-
ever, place end is not marked. Therefore, another missing token is recorded (m = 2)

200 7 Conformance Checking

Fig. 7.5 To replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3, all events not corresponding to ac-
tivities in the model are removed first. Replaying σ ′

2 = ⟨a, d, e⟩ shows that two tokens are missing
(m = 2) and two tokens are remaining (r = 2) thus resulting in a fitness of 0.6

fire, place p3 is still empty and e is not enabled. The missing token is recorded
(m = 1) and place p3 gets an m-tag. After replaying σ ′

2, the resulting marking is
[p1,p5]. Now the environment needs to consume the token from place end. How-
ever, place end is not marked. Therefore, another missing token is recorded (m = 2)

Example: Event Removal

148

200 7 Conformance Checking

Fig. 7.5 To replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3, all events not corresponding to ac-
tivities in the model are removed first. Replaying σ ′

2 = ⟨a, d, e⟩ shows that two tokens are missing
(m = 2) and two tokens are remaining (r = 2) thus resulting in a fitness of 0.6

fire, place p3 is still empty and e is not enabled. The missing token is recorded
(m = 1) and place p3 gets an m-tag. After replaying σ ′

2, the resulting marking is
[p1,p5]. Now the environment needs to consume the token from place end. How-
ever, place end is not marked. Therefore, another missing token is recorded (m = 2)

200 7 Conformance Checking

Fig. 7.5 To replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3, all events not corresponding to ac-
tivities in the model are removed first. Replaying σ ′

2 = ⟨a, d, e⟩ shows that two tokens are missing
(m = 2) and two tokens are remaining (r = 2) thus resulting in a fitness of 0.6

fire, place p3 is still empty and e is not enabled. The missing token is recorded
(m = 1) and place p3 gets an m-tag. After replaying σ ′

2, the resulting marking is
[p1,p5]. Now the environment needs to consume the token from place end. How-
ever, place end is not marked. Therefore, another missing token is recorded (m = 2)

Example: Event Removal

149

200 7 Conformance Checking

Fig. 7.5 To replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3, all events not corresponding to ac-
tivities in the model are removed first. Replaying σ ′

2 = ⟨a, d, e⟩ shows that two tokens are missing
(m = 2) and two tokens are remaining (r = 2) thus resulting in a fitness of 0.6

fire, place p3 is still empty and e is not enabled. The missing token is recorded
(m = 1) and place p3 gets an m-tag. After replaying σ ′

2, the resulting marking is
[p1,p5]. Now the environment needs to consume the token from place end. How-
ever, place end is not marked. Therefore, another missing token is recorded (m = 2)

7.2 Token Replay 201

and also place end gets an m-tag. Moreover, two tokens are remaining: one in place
p1 and one in place p5. The places are tagged with an r-tag, and the two remaining
tokens are recorded r = 2. This way we find a fitness of 0.6 for trace σ2 and WF-net
N3 based on the values p = 5, c = 5, m = 2, and r = 2:

fitness(σ2,N3) = 1
2

(
1 − 2

5

)
+ 1

2

(
1 − 2

5

)
= 0.6

Moreover, Fig. 7.5 clearly shows the cause of this poor conformance: c was sup-
posed to happen according to the model but did not happen, e happened but was not
possible according to the model, and h was supposed to happen but did not happen.

Figures 7.3, 7.4, 7.5 illustrate how to analyze the fitness of a single case. The
same approach can be used to analyze the fitness of a log consisting of many cases.
Simply take the sums of all produced, consumed, missing, and remaining tokens,
and apply the same formula. Let pN,σ denote the number of produced tokens when
replaying σ on N . cN,σ , mN,σ , rN,σ are defined in a similar fashion, e.g., mN,σ

is the number of missing tokens when replaying σ on N . Now we can define the
fitness of an event log L on WF-net N :

fitness(L,N) = 1
2

(
1 −

∑
σ∈L L(σ) × mN,σ∑
σ∈L L(σ) × cN,σ

)
+ 1

2

(
1 −

∑
σ∈L L(σ) × rN,σ∑
σ∈L L(σ) × pN,σ

)

Note that
∑

σ∈L L(σ)×mN,σ is total number of missing tokens when replaying the
entire event log, because L(σ) is the frequency of trace σ and mN,σ is the number
of missing tokens for a single instance of σ . The value of fitness(L,N) is between
0 (very poor fitness; none of the produced tokens is consumed and all of the con-
sumed tokens are missing) and 1 (perfect fitness; all cases can be replayed without
any problems). Although fitness(L,N) is a measure focusing on tokens in places, we
will interpret it as a measure on events. The intuition of fitness(L,N) = 0.9 is that
about 90% of the events can be replayed correctly.1 This is only an informal charac-
terization as fitness depends on missing and remaining tokens rather than events. For
instance, a transition that is forced to fire during replay may have multiple empty
input places. Note that if two subsequent events are swapped in a sequential pro-
cess, this results in one missing and one remaining token. This seems reasonable,
but also shows that the relation between the proportion of events that cannot be re-
played correctly and the proportion of tokens that are missing or remaining is rather
indirect.

By replaying the entire event log, we can now compute the fitness of event log
Lfull for the four models in Fig. 7.2

fitness(Lfull,N1) = 1

fitness(Lfull,N2) = 0.9504

fitness(Lfull,N3) = 0.8797

fitness(Lfull,N4) = 1

1In the remainder of this book, we often use this intuitive characterization of fitness, although from
a technical point of view this is incorrect as fitness(L,N) is only an indication of the fraction of
events that can be replayed correctly.

200 7 Conformance Checking

Fig. 7.5 To replay σ2 = ⟨a, b, d, e, g⟩ on top of WF-net N3, all events not corresponding to ac-
tivities in the model are removed first. Replaying σ ′

2 = ⟨a, d, e⟩ shows that two tokens are missing
(m = 2) and two tokens are remaining (r = 2) thus resulting in a fitness of 0.6

fire, place p3 is still empty and e is not enabled. The missing token is recorded
(m = 1) and place p3 gets an m-tag. After replaying σ ′

2, the resulting marking is
[p1,p5]. Now the environment needs to consume the token from place end. How-
ever, place end is not marked. Therefore, another missing token is recorded (m = 2)

Fitness of a Log

150

7.2 Token Replay 201

and also place end gets an m-tag. Moreover, two tokens are remaining: one in place
p1 and one in place p5. The places are tagged with an r-tag, and the two remaining
tokens are recorded r = 2. This way we find a fitness of 0.6 for trace σ2 and WF-net
N3 based on the values p = 5, c = 5, m = 2, and r = 2:

fitness(σ2,N3) = 1
2

(
1 − 2

5

)
+ 1

2

(
1 − 2

5

)
= 0.6

Moreover, Fig. 7.5 clearly shows the cause of this poor conformance: c was sup-
posed to happen according to the model but did not happen, e happened but was not
possible according to the model, and h was supposed to happen but did not happen.

Figures 7.3, 7.4, 7.5 illustrate how to analyze the fitness of a single case. The
same approach can be used to analyze the fitness of a log consisting of many cases.
Simply take the sums of all produced, consumed, missing, and remaining tokens,
and apply the same formula. Let pN,σ denote the number of produced tokens when
replaying σ on N . cN,σ , mN,σ , rN,σ are defined in a similar fashion, e.g., mN,σ

is the number of missing tokens when replaying σ on N . Now we can define the
fitness of an event log L on WF-net N :

fitness(L,N) = 1
2

(
1 −

∑
σ∈L L(σ) × mN,σ∑
σ∈L L(σ) × cN,σ

)
+ 1

2

(
1 −

∑
σ∈L L(σ) × rN,σ∑
σ∈L L(σ) × pN,σ

)

Note that
∑

σ∈L L(σ)×mN,σ is total number of missing tokens when replaying the
entire event log, because L(σ) is the frequency of trace σ and mN,σ is the number
of missing tokens for a single instance of σ . The value of fitness(L,N) is between
0 (very poor fitness; none of the produced tokens is consumed and all of the con-
sumed tokens are missing) and 1 (perfect fitness; all cases can be replayed without
any problems). Although fitness(L,N) is a measure focusing on tokens in places, we
will interpret it as a measure on events. The intuition of fitness(L,N) = 0.9 is that
about 90% of the events can be replayed correctly.1 This is only an informal charac-
terization as fitness depends on missing and remaining tokens rather than events. For
instance, a transition that is forced to fire during replay may have multiple empty
input places. Note that if two subsequent events are swapped in a sequential pro-
cess, this results in one missing and one remaining token. This seems reasonable,
but also shows that the relation between the proportion of events that cannot be re-
played correctly and the proportion of tokens that are missing or remaining is rather
indirect.

By replaying the entire event log, we can now compute the fitness of event log
Lfull for the four models in Fig. 7.2

fitness(Lfull,N1) = 1

fitness(Lfull,N2) = 0.9504

fitness(Lfull,N3) = 0.8797

fitness(Lfull,N4) = 1

1In the remainder of this book, we often use this intuitive characterization of fitness, although from
a technical point of view this is incorrect as fitness(L,N) is only an indication of the fraction of
events that can be replayed correctly.

7.2 Token Replay 201

and also place end gets an m-tag. Moreover, two tokens are remaining: one in place
p1 and one in place p5. The places are tagged with an r-tag, and the two remaining
tokens are recorded r = 2. This way we find a fitness of 0.6 for trace σ2 and WF-net
N3 based on the values p = 5, c = 5, m = 2, and r = 2:

fitness(σ2,N3) = 1
2

(
1 − 2

5

)
+ 1

2

(
1 − 2

5

)
= 0.6

Moreover, Fig. 7.5 clearly shows the cause of this poor conformance: c was sup-
posed to happen according to the model but did not happen, e happened but was not
possible according to the model, and h was supposed to happen but did not happen.

Figures 7.3, 7.4, 7.5 illustrate how to analyze the fitness of a single case. The
same approach can be used to analyze the fitness of a log consisting of many cases.
Simply take the sums of all produced, consumed, missing, and remaining tokens,
and apply the same formula. Let pN,σ denote the number of produced tokens when
replaying σ on N . cN,σ , mN,σ , rN,σ are defined in a similar fashion, e.g., mN,σ

is the number of missing tokens when replaying σ on N . Now we can define the
fitness of an event log L on WF-net N :

fitness(L,N) = 1
2

(
1 −

∑
σ∈L L(σ) × mN,σ∑
σ∈L L(σ) × cN,σ

)
+ 1

2

(
1 −

∑
σ∈L L(σ) × rN,σ∑
σ∈L L(σ) × pN,σ

)

Note that
∑

σ∈L L(σ)×mN,σ is total number of missing tokens when replaying the
entire event log, because L(σ) is the frequency of trace σ and mN,σ is the number
of missing tokens for a single instance of σ . The value of fitness(L,N) is between
0 (very poor fitness; none of the produced tokens is consumed and all of the con-
sumed tokens are missing) and 1 (perfect fitness; all cases can be replayed without
any problems). Although fitness(L,N) is a measure focusing on tokens in places, we
will interpret it as a measure on events. The intuition of fitness(L,N) = 0.9 is that
about 90% of the events can be replayed correctly.1 This is only an informal charac-
terization as fitness depends on missing and remaining tokens rather than events. For
instance, a transition that is forced to fire during replay may have multiple empty
input places. Note that if two subsequent events are swapped in a sequential pro-
cess, this results in one missing and one remaining token. This seems reasonable,
but also shows that the relation between the proportion of events that cannot be re-
played correctly and the proportion of tokens that are missing or remaining is rather
indirect.

By replaying the entire event log, we can now compute the fitness of event log
Lfull for the four models in Fig. 7.2

fitness(Lfull,N1) = 1

fitness(Lfull,N2) = 0.9504

fitness(Lfull,N3) = 0.8797

fitness(Lfull,N4) = 1

1In the remainder of this book, we often use this intuitive characterization of fitness, although from
a technical point of view this is incorrect as fitness(L,N) is only an indication of the fraction of
events that can be replayed correctly.

 is just the multiplicity of the trace in the log L(σ) σ L

Diagnostic Information

151

202 7 Conformance Checking

Fig. 7.6 Diagnostic information showing the deviations (fitness(Lfull,N2) = 0.9504)

This shows that, as expected, N1 and N4 can replay event log Lfull without any prob-
lems (i.e., fitness 1). fitness(Lfull,N2) = 0.9504. Intuitively, this means that about
95% of the events in Lfull can be replayed correctly on N2. As indicated earlier, this
can be viewed in two ways:

• Event log Lfull has a fitness of 0.9504, i.e., about 5% of the events deviate.
• Process model N2 has a fitness of 0.9504, i.e., the model is unable to explain 5%

of the observed behavior.

The first view is used when the model is considered to be normative and correct
(“the event log, i.e. reality, does not conform to the model”). The second view is
used when the model should be descriptive (“the process model does not conform
to reality”). fitness(Lfull,N3) = 0.8797, i.e., about 88% of the events in Lfull can be
replayed on N3. Hence, process model N3 has the lowest fitness of the four models.

Typically, the event-based fitness is higher than the naïve case-based fitness. This
is also the case here. WF-net N2 can only replay 68% of the cases from start to end.
However, about 95% of the individual events can be replayed.

Figure 7.6 shows some the diagnostics than can be generated based on replaying
event log Lfull on process model N2. The numbers on arcs indicate the flow of
produced and consumed tokens. These show how cases flowed through the model,
e.g., 146 times a request was reinitiated, 930 requests were rejected and 461 requests
resulted in a payment. The places tagged during replay (i.e., the m and r-tags in
Figs. 7.3, 7.4, and 7.5) can be aggregated to diagnose conformance problems and
reveal their severity. As Fig. 7.6 shows, 443 times activity d happend although it was
not supposed to happen and 443 times activity d was supposed to happen but did
not. The reason is that d was executed before b or c, which is not possible according
to this sequential model.

Similarly, diagnostic information is shown for N3 in Fig. 7.7. There the problems
are more severe. For example, 566 times a decision was made (activity e) without

Diagnostic Information

152

7.2 Token Replay 203

Fig. 7.7 Diagnostic information showing the deviations (fitness(Lfull,N3) = 0.8797)

being examined casually (activity c), and 461 cases did not reach the end because
the request was not rejected.

As Fig. 7.8 shows, an event log can be split into two sublogs: one event log
containing only fitting cases and one event log containing only non-fitting cases.
Each of the event logs can be used for further analysis. For example, one could
construct a process model for the event log containing only deviating cases. Also
other data and process mining techniques can be used. For instance, it is interesting
to know which people handled the deviating cases and whether these cases took
longer or were more costly. In case fraud is suspected, one may create a social
network based on the event log with deviating cases (see Sect. 8.3).

One could also use classification techniques to further investigate non-conform-
ance. Recall that a decision tree can be learned from a table with one response
variable and multiple predictor variables. Whether a case fits or not can be seen as
the value of a response variable whereas characteristics of the case (e.g., case and
event attributes) serve a predictor variables. The resulting decision tree attempts to
explain conformance in terms of characteristics of the case. For example, one could
find out that cases from gold customers handled by Pete tend to deviate. We will
elaborate on this in Sect. 8.5.

The idea to replay event logs on process models is not limited to Petri nets. Any
process modeling notation with executable semantics allows for replay. See also the
replay techniques used in [31, 50, 123, 124]. However, having explicit places and
a clear start and end place in WF-nets facilitates the generation of meaningful di-
agnostics. Replay becomes more complicated when there are duplicate and silent
activities, e.g., transitions with a τ label or two transitions with the same label. In
general, there can be a many-to-many relationship between event names in the event

Drill Down

153

An event log can be split into two sublogs:
one event log containing only fitting cases and
one event log containing only non-fitting cases.

The second event log can be used to discover a different
process model.

Also other data and process mining techniques can be used.
For instance, it is interesting to know which people handled

the deviating cases and whether these cases took
longer or were more costly.

In case fraud is suspected, one may create a social
network based on the event log with deviating cases.

Drill Down

154

204 7 Conformance Checking

Fig. 7.8 Conformance checking provides global conformance measures like fitness(L,N) and
local diagnostics (e.g., showing activities that were executed although not allowed according to
the process model). Moreover, the event log is partitioned into fitting and non-fitting cases. Both
sublogs can be used for further analysis, e.g., discovering a process model for the deviating cases

log and activity names in the process model. Activities that appear in the event log
but that have no counterpart in the model are easy to handle; as illustrated when
computing fitness(σ2,N3) one can simply discard these events. For handling du-
plicate and silent activities, local state-space explorations can be used to find the
corresponding (most likely) path in the process model [80]. For instance, τ -labeled
transitions in the model that do not correspond to events in the log are only executed
if they can enable transitions that correspond to subsequent events in the event log.
The drawback is that such local state-space explorations can be time-consuming for
larger event logs. Moreover, local state-space exploration provides only a heuristic.
For example, if two transitions with the same label are enabled, then randomly tak-
ing one of them can have effects on the fitness of the model at a later stage in the
trace; see [80] for details. Also see the more advanced replay technique described in
[2]. Here, a variant of the A∗ algorithm is used to find an “optimal” replay of cases.

The techniques described in [2, 80] can deal with the situation that the set of
activities in the model AM differs from the set of activities in the event logAL.
The activities in the log but not in the model (AL \ AM) are simply ignored and
the activities in the model but not in the log (AM \ AL) are considered to be silent.
This may lead to rather optimistic conformance values. Alternatively, one can also

Comparing Footprints
(optional reading)

155

Footprint from Play-out

156

Given a workflow net, the play-out technique can be used to
extract a local complete set of traces.

If we see the set of traces as an event log (without
multiplicities), then we can derive the relation >.

Then, we can construct the footprint (i.e. a matrix showing
causal dependencies between events) of the net model

based on such relation >.

 (From the viewpoint of a footprint matrix, an event log is
complete if and only if all activities that

can follow one another do so at least once in the log.)

Example: complete set

157

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

⟨a b d e g⟩ ⟨a c d e f b d e g⟩

⟨a d b e f d c e h⟩ ⟨a d b e f c d e h⟩

Footprint-based
Conformance

158

Footprints are available for logs and models (nets).
This allows for:

log vs model conformance
(do the log and the model agree?)

model vs model conformance
(quantification of their similarities)

log vs log comparison
(concept drift: how does the work changes in sub-logs?)

Conformance based on
footprints

159

The conformance based on footprints can be computed by
taking:

: total number of cells in the footprint matrix

: number of cells in the same positions
but with different content between the two matrices

n

d

1� d

n

Example

160

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

206 7 Conformance Checking

Table 7.2 Footprint of Lfull
and N1

a b c d e f g h

a # → → → # # # #

b ← # # ∥ → ← # #

c ← # # ∥ → ← # #

d ← ∥ ∥ # → ← # #

e # ← ← ← # → → →
f # → → → ← # # #

g # # # # ← # # #

h # # # # ← # # #

Table 7.3 Footprint of N2
shown in Fig. 7.2 a b c d e f g h

a # → → # # # # #

b ← # # → # ← # #

c ← # # → # ← # #

d # ← ← # → # # #

e # # # ← # → → →
f # → → # ← # # #

g # # # # ← # # #

h # # # # ← # # #

Table 7.4 Differences
between the footprints of Lfull
and N2. The event log and the
model “disagree” on 12 of the
64 cells of the footprint
matrix

a b c d e f g h

a →: #

b ∥ :→ →: #

c ∥ :→ →: #

d ←: # ∥ :← ∥ :← ←: #

e ←: # ←: #

f →: #

g

h

and log “agree” on the ordering of activities. However, the same approach can be
used for log-to-log and model-to-model comparisons. Comparing the footprints of
two process models (model-to-model comparison) allows for the quantification of
their similarity. Comparing the footprints of two event logs (log-to-log comparison)
can, for example, be used for detecting concept drift. The term concept drift refers
to the situation in which the process is changing while being analyzed. For instance,
in the beginning of the event log two activities may be concurrent whereas later in

206 7 Conformance Checking

Table 7.2 Footprint of Lfull
and N1

a b c d e f g h

a # → → → # # # #

b ← # # ∥ → ← # #

c ← # # ∥ → ← # #

d ← ∥ ∥ # → ← # #

e # ← ← ← # → → →
f # → → → ← # # #

g # # # # ← # # #

h # # # # ← # # #

Table 7.3 Footprint of N2
shown in Fig. 7.2 a b c d e f g h

a # → → # # # # #

b ← # # → # ← # #

c ← # # → # ← # #

d # ← ← # → # # #

e # # # ← # → → →
f # → → # ← # # #

g # # # # ← # # #

h # # # # ← # # #

Table 7.4 Differences
between the footprints of Lfull
and N2. The event log and the
model “disagree” on 12 of the
64 cells of the footprint
matrix

a b c d e f g h

a →: #

b ∥ :→ →: #

c ∥ :→ →: #

d ←: # ∥ :← ∥ :← ←: #

e ←: # ←: #

f →: #

g

h

and log “agree” on the ordering of activities. However, the same approach can be
used for log-to-log and model-to-model comparisons. Comparing the footprints of
two process models (model-to-model comparison) allows for the quantification of
their similarity. Comparing the footprints of two event logs (log-to-log comparison)
can, for example, be used for detecting concept drift. The term concept drift refers
to the situation in which the process is changing while being analyzed. For instance,
in the beginning of the event log two activities may be concurrent whereas later in

Also

⟨a b d e g⟩

⟨a c d e f b d e g⟩

⟨a d b e f d c e h⟩

⟨a d b e f c d e h⟩

Example

161

196 7 Conformance Checking

Fig. 7.2 Four WF-nets: N1, N2, N3 and N4

use this example to introduce the notation. Figure 7.3 shows the various stages of
replay. Four counters are shown at each stage: p (produced tokens), c (consumed
tokens), m (missing tokens), and r (remaining tokens). Let us first focus on p and c.
Initially, p = c = 0 and all places are empty. Then the environment produces a
token for place start. Therefore, the p counter is incremented: p = 1. Now we need
to replay σ1 = ⟨a, c, d, e,h⟩, i.e., we first fire transition a. This is possible. Since
a consumes one token and produces two tokens, the c counter is incremented by

206 7 Conformance Checking

Table 7.2 Footprint of Lfull
and N1

a b c d e f g h

a # → → → # # # #

b ← # # ∥ → ← # #

c ← # # ∥ → ← # #

d ← ∥ ∥ # → ← # #

e # ← ← ← # → → →
f # → → → ← # # #

g # # # # ← # # #

h # # # # ← # # #

Table 7.3 Footprint of N2
shown in Fig. 7.2 a b c d e f g h

a # → → # # # # #

b ← # # → # ← # #

c ← # # → # ← # #

d # ← ← # → # # #

e # # # ← # → → →
f # → → # ← # # #

g # # # # ← # # #

h # # # # ← # # #

Table 7.4 Differences
between the footprints of Lfull
and N2. The event log and the
model “disagree” on 12 of the
64 cells of the footprint
matrix

a b c d e f g h

a →: #

b ∥ :→ →: #

c ∥ :→ →: #

d ←: # ∥ :← ∥ :← ←: #

e ←: # ←: #

f →: #

g

h

and log “agree” on the ordering of activities. However, the same approach can be
used for log-to-log and model-to-model comparisons. Comparing the footprints of
two process models (model-to-model comparison) allows for the quantification of
their similarity. Comparing the footprints of two event logs (log-to-log comparison)
can, for example, be used for detecting concept drift. The term concept drift refers
to the situation in which the process is changing while being analyzed. For instance,
in the beginning of the event log two activities may be concurrent whereas later in

⟨a c d e f c d e h⟩

⟨a b d e f b d e g⟩

Example

162

206 7 Conformance Checking

Table 7.2 Footprint of Lfull
and N1

a b c d e f g h

a # → → → # # # #

b ← # # ∥ → ← # #

c ← # # ∥ → ← # #

d ← ∥ ∥ # → ← # #

e # ← ← ← # → → →
f # → → → ← # # #

g # # # # ← # # #

h # # # # ← # # #

Table 7.3 Footprint of N2
shown in Fig. 7.2 a b c d e f g h

a # → → # # # # #

b ← # # → # ← # #

c ← # # → # ← # #

d # ← ← # → # # #

e # # # ← # → → →
f # → → # ← # # #

g # # # # ← # # #

h # # # # ← # # #

Table 7.4 Differences
between the footprints of Lfull
and N2. The event log and the
model “disagree” on 12 of the
64 cells of the footprint
matrix

a b c d e f g h

a →: #

b ∥ :→ →: #

c ∥ :→ →: #

d ←: # ∥ :← ∥ :← ←: #

e ←: # ←: #

f →: #

g

h

and log “agree” on the ordering of activities. However, the same approach can be
used for log-to-log and model-to-model comparisons. Comparing the footprints of
two process models (model-to-model comparison) allows for the quantification of
their similarity. Comparing the footprints of two event logs (log-to-log comparison)
can, for example, be used for detecting concept drift. The term concept drift refers
to the situation in which the process is changing while being analyzed. For instance,
in the beginning of the event log two activities may be concurrent whereas later in

206 7 Conformance Checking

Table 7.2 Footprint of Lfull
and N1

a b c d e f g h

a # → → → # # # #

b ← # # ∥ → ← # #

c ← # # ∥ → ← # #

d ← ∥ ∥ # → ← # #

e # ← ← ← # → → →
f # → → → ← # # #

g # # # # ← # # #

h # # # # ← # # #

Table 7.3 Footprint of N2
shown in Fig. 7.2 a b c d e f g h

a # → → # # # # #

b ← # # → # ← # #

c ← # # → # ← # #

d # ← ← # → # # #

e # # # ← # → → →
f # → → # ← # # #

g # # # # ← # # #

h # # # # ← # # #

Table 7.4 Differences
between the footprints of Lfull
and N2. The event log and the
model “disagree” on 12 of the
64 cells of the footprint
matrix

a b c d e f g h

a →: #

b ∥ :→ →: #

c ∥ :→ →: #

d ←: # ∥ :← ∥ :← ←: #

e ←: # ←: #

f →: #

g

h

and log “agree” on the ordering of activities. However, the same approach can be
used for log-to-log and model-to-model comparisons. Comparing the footprints of
two process models (model-to-model comparison) allows for the quantification of
their similarity. Comparing the footprints of two event logs (log-to-log comparison)
can, for example, be used for detecting concept drift. The term concept drift refers
to the situation in which the process is changing while being analyzed. For instance,
in the beginning of the event log two activities may be concurrent whereas later in

Example

163

206 7 Conformance Checking

Table 7.2 Footprint of Lfull
and N1

a b c d e f g h

a # → → → # # # #

b ← # # ∥ → ← # #

c ← # # ∥ → ← # #

d ← ∥ ∥ # → ← # #

e # ← ← ← # → → →
f # → → → ← # # #

g # # # # ← # # #

h # # # # ← # # #

Table 7.3 Footprint of N2
shown in Fig. 7.2 a b c d e f g h

a # → → # # # # #

b ← # # → # ← # #

c ← # # → # ← # #

d # ← ← # → # # #

e # # # ← # → → →
f # → → # ← # # #

g # # # # ← # # #

h # # # # ← # # #

Table 7.4 Differences
between the footprints of Lfull
and N2. The event log and the
model “disagree” on 12 of the
64 cells of the footprint
matrix

a b c d e f g h

a →: #

b ∥ :→ →: #

c ∥ :→ →: #

d ←: # ∥ :← ∥ :← ←: #

e ←: # ←: #

f →: #

g

h

and log “agree” on the ordering of activities. However, the same approach can be
used for log-to-log and model-to-model comparisons. Comparing the footprints of
two process models (model-to-model comparison) allows for the quantification of
their similarity. Comparing the footprints of two event logs (log-to-log comparison)
can, for example, be used for detecting concept drift. The term concept drift refers
to the situation in which the process is changing while being analyzed. For instance,
in the beginning of the event log two activities may be concurrent whereas later in

7.3 Comparing Footprints 205

preprocess the model and log such that both agree on the set of activities. After
this preprocessing step, events referring to activities that do not appear in the model
and the skipping of activities that do not appear in the log are considered to be
deviations.

In this section, we focused exclusively on fitness (i.e., the proportion of events
in the log that can be explained by the process model). This is only one of the four
quality criteria discussed in Sect. 5.4.3. For conformance checking, the other three
quality criteria are less relevant. However, replay techniques can also be used to an-
alyze precision (avoiding underfitting models) and generalization (avoiding overfit-
ting models). This can be done by keeping track of the number of enabled transitions
during replay. If, on average, many transitions are enabled during replay, the model
is likely to be underfitting. If, on average, very few transitions are enabled during
replay, the model is likely to be overfitting. For example, in the “flower model” N4
in Fig. 7.2, activities b, c, d , e, and f are all continuously enabled in-between start
and end. The relatively high mean number of enabled transitions when replaying
the log using N4, suggests that the model is underfitting. See [33, 78, 80] for more
information.

7.3 Comparing Footprints

In Sect. 5.2, we defined the notion of a footprint, i.e., a matrix showing causal depen-
dencies. Such a matrix characterizes the event log. For instance, Table 7.2 shows the
footprint matrix of Lfull. This matrix is derived from the “directly follows” relation
>Lfull . Clearly, process models also have a footprint: simply generate a complete
event log, i.e., Play-out the model and record execution sequences. From the view-
point of a footprint matrix, an event log is complete if and only if all activities that
can follow one another do so at least once in the log. Applying this to N1 in Fig. 7.2
results in the same footprint matrix (i.e., Table 7.2). This suggests that the event log
and the model “conform”.

Table 7.3 shows the footprint matrix generated for WF-net N2, i.e., Play-out N2
to record a complete log and derived its footprint. Comparing both footprint matrices
(Tables 7.2 and 7.3) reveals several differences as shown in Table 7.4. For example,
the relation between a and d changed from → to #. When comparing event log Lfull
with WF-net N2 it can indeed be seen that in Lfull activity a is directly followed by
d whereas this is not possible in N2. The relation between b and d changed from ∥
to →. This reflects that in WF-net N2 both activities are no longer parallel. Besides
providing detailed diagnostics, Table 7.4 can also be used to quantify conformance.
For instance, 12 of the 64 cells differ. Hence, one could say that the conformance
based on the footprints is 1 − 12

64 = 0.8125.
Conformance analysis based on footprints is only meaningful if the log is com-

plete with respect to the “directly follows” relation >L. This can be verified using
k-fold cross-validation (see Sect. 3.6.2).

Interestingly, both models and event logs have footprints. This allows for log-
to-model comparisons as just described, i.e., it can be checked whether and model

