
Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

21 - BPMN analysis

 1

http://www.di.unipi.it/~bruni

Object

2

We overview the main
challenges that arise when analysing

BPMN diagrams with Petri nets

Ch.5.7 of Business Process Management: Concepts, Languages, Architectures

38 Business Process Modeling Notation, v2.0

Figure 7.8 - An example of a stand-alone Process (Orchestration) diagram

BPMN Diagrams

3

Business process diagrams

4

BPMN defines a standard for
Business Process Diagrams (BPD)

based on flowcharting technique

Four categories of elements

swimlanes flow objects connecting objects artefacts

Events Activities

Artefacts

Graphical connecting objects

Sequence flow mechanism Compensation Association

S
ta

rt

In
te

rm
e
d
ia

te

E
n
d

Message

Timer

Error

Multiple

Link

Rule

Compensation

Cancel

Terminate

General

Event type

A message arrives from a participant and triggers the Event. This causes

process to {start, continue, end} if it was waiting for a message, or changes

the flow if exception happens. End type of message event indicates that a

message is sent to a participant at the conclusion of the process.

Event flow
Description

An event is something that »happens« during the process. These events affect the
flow of the process and usually have a cause (trigger) or an impact (result).
Examples: 'Email received', '3 o'clock', 'Warehouse empty', 'Critical error',...

An activity is a generic type of work that a company performs. An
activity can be atomic (task) or compound (process, sub-process).
Examples: 'Send a letter', 'Write a report', 'Calculate the interests',...

~

Description

Process

Collapsed

sub-process

Expanded

sub-process

Task

Transaction

A task is used to represent the
activity on the lowest abstraction
level.

More information about the
transaction and compensation
attribute can be found under
»Compensation Association«.

Looping

Ad Hoc

Compensation

Task/Subprocess special attributes

The task or sub-process is repeated.

The tasks in the sub-process can not be connected with
sequence flows at design time.

Multiple instances of task or sub-process will be created.

The symbol represents a compensation task or sub-process.

Multiple instances

Gateways
A gateway is used to split or merge multiple process
flows. Thus it will determine branching, forking,
merging and joining of paths. Examples: 'Condition true?

– yes/no', 'Choose colour? – red/green/blue',...

Gateway control types

Data based exclusive decision or
merging. Both symbols have equal
meaning. See also Conditional flow.

Event based exclusive decision only.

Data based inclusive decision or
merging.

Complex condition (a combination of
basic conditions)

Parallel forking and joining
(synchronization).

XOR
(DATA)

XOR
(EVENT)

OR

COM-
PLEX

AND

Swimlanes

P
o

o
l L
a

n
e

Pools and lanes are used to represent organizations,
roles, systems and responsibilities. Examples:

'University', 'Sales division', 'Warehouse', 'ERP system',...

A Lane is a sub-partition within a pool used to organize and
categorize activities.

A Pool represents a participant in a process. It contains a business
process and is used in B2B situations.

A Pool MUST contain 0 or 1
business process.

A Pool can contain 0 or more
lanes.

Two pools can only be connected
with message flows.

Artefacts are used to provide additional information about the process. If
required, modellers and modelling tools are free to add new artefacts.
Examples of data objects: 'A letter', 'Email message', 'XML document',
'Confirmation',...

Set of standardized artefacts

Data object

Group

Annotation

Data objects provide information about what activities are required to be

triggered and/or what they produce. They are considered as Artefacts

because they do not have any direct effect on the Sequence Flow or

Message Flow of the Process. The state of the data object should also be

set.

Grouping can be used for documentation or analysis purposes. Groups

can also be used to identify the activities of a distributed transaction that is

shown across Pools. Grouping of activities does not affect the Sequence

or Message Flow.

Text Annotations are a mechanism for a modeller to provide additional

information for the reader of a BPMN Diagram.

Normal
sequence flow
Conditional
sequence flow
Default
sequence flow

Message flow

Association

There are three ways of connecting Flow objects (Events, Activities,
Gateways) with each other or with other information – using sequence
flows, message flows or associations.

Graphical connecting objects

A Sequence Flow is used to show the order In which the activities in a

process will be performed.

A Message Flow is used to show the flow of messages between two

participants that are prepared to send and receive them. In BPMN,

two separate Pools in a Diagram can represent the two participants.
An Association (directed, non-directed) is used to associate

information with Flow Objects. Text and graphical non-Flow Objects

can be associated with Flow objects.

A Sequence Flow can have condition expressions which are evaluated

at runtime to determine whether or not the flow will be used.

For Data-Based Exclusive Decisions or Inclusive Decisions, one type

of flow is the Default condition flow. This flow will be used only if all

other outgoing conditional flows are NOT true at runtime.

Sequence Flow and Message Flow rules
Only objects that can have an incoming and/or outgoing Sequence Flow / Message
Flow are shown in the Tables Below.

Start

transaction

Successfull

transaction

Task A

Transaction boundary

Undo task A

Task B

Undo task B

Failed transaction

Transaction

exception

Handle through

other services

Wait a few minutes

Try again

Error - compensation

events cannot be

triggered

Task

Compensation activity

In case of transactions it is desired that all activities which constitute
a transaction are finished successfully. Otherwise the transaction fails
and rollback (compensation) activities occur which undo done
activities.

Normal sequence flow

Use of the sequence flow
mechanism

Use of message events and
message flows

Use of flows within lanes Use of gatewaysWrong use of flows in/between
pools

When modelling Pools, sequence flows and start/end events are
often missing, because it is wrongly presumed that message
flows substitute sequence flows. Additionally, sequence flows
are incorrectly used to connect pools.

P
o

o
l
A

Task A

P
o

o
l
B

Task D

Message

flow AD

Message

flow EB

Task B

Task E

Missing sequence flows

Task C

Task F

Missing end event

Missing start event

Model the process in each Pool independently and afterwards
define message flows between Pools.

(Wrong) Use of time events

Task A Task B

Task B ...

Delay

Exception time

(e.g. »after 2 hours«)

Here a time event Is used as

a DELAY mechanism.

Here it represents the

DURATION of a task.

...

An intermediate event

has to be used.

There are two common mistakes when using time events. First,
starting events are often used instead of intermediate events.
Second, intermediate events are often used as a delay
mechanism but modelled as an exception mechanism
(representing the duration of a task) and vice-versa (see the
right use below).

Use of tasks and events

Starting

task A

Receiving

document

X

...
Task A

finished

Document X

...

Task A
...

Normal flow

Document X

Event X

Analysts often wrongly model events and tasks. For
example: events are wrongly modelled as tasks, task states
are modelled as new tasks.

This task is redundant.

Task automatically

starts at input

sequence flow

This task is redundant.

Task A is automatically

finished at output

sequence flow.

This task is redundant.The act of receiving

a document is a task itself.

Task A Task B

Message A

Message B
A

B

Task A Task B

Message A

B

Message B

Starting and intermediate events can not be sources of
message flows.

Both examples are wrong - intermediate

message events can not produce

message flows. Events can be only

triggered by a message flow.

Wrong positioning of

message event

The Start Event indicates where a particular process will start. Intermediate

Events occur between a Start Event and an End Event. It will affect the flow

of the process, but will not start or (directly) terminate the process. The End

Event indicates where a process will end.

A specific time or cycle can be set that will trigger the start of the Process

or continue the process. Intermediate timer can be used to model the time-

based delays.

This type of event is triggered when the conditions for a rule

become true. Rules can be very useful to interrupt the loop process, for

example: 'The number of repeats = N'. Intermediate rule is used only for

exception handling.

A Link is a mechanism for connecting the end (Result) of one

Process to the start (Trigger) of another. Typically, these are

two Sub-Processes within the same parent Process. It can be used, for

example, when the working area (page) is too small – go to another page.

This type of event indicates that there are multiple ways of triggering the

Process. Only one of them will be required to {start, continue, end} the

Process.

This type of End indicates that a named Error should be generated. This

Error will be caught by an Intermediate Event within the Event Context.

This type of End indicates that all activities in the Process should be

immediately terminated. This includes all instances of Multi-Instances. The

Process is terminated without compensation or event handling.

Explanation of Poster Symbols

About the BPMN Poster

Sequence flows are not

allowed between Pools

P
o

o
l
B L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

P
o

o
l
A L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

A message flow is not

allowed within a process
A Pool can contain only one

(1) process

Lanes are often wrongly used in similar ways as Pools. They
wrongly contain more business processes or contain message
flows between different lanes.

Gateways are connected only with sequence flows. Also Avoid
potential deadlocks when using gateways.

Task A

Task B

Decision

information

from Pool X

Message flow cannot

influence the gateway

No output flow from the task

exists.

The decision must

contain at least two

output flows

When using expanded sub-processes, sequence flows should
be connected to the boundaries of sub-processes. Processes
and sub-processes should start and end properly!

Task A

Sub-process »P«

Task B Task C

A sequence flow cannot cross

the boundary of a sub-process

The process should have an

end event

The sub-process should

have a start event

Task A

Sub-process »P«

Task B Task C

Task C

A conditional flow Is not

allowed (necessary) here

Send message to

Pool X A message flow cannot be

a gateway alternative

Analysing

decision

information

Task A

Task B

Task C

Send message

to Pool X

Message to Pool X

Message

from Pool X

Exception flow

Until Loop

~

Ad Hoc –

No flow

The Sequence Flow mechanisms is divided into types: Normal flow, Exception flow,

Conditional flow, Link Events and Ad Hoc (no flow). Refer also to specific

»Workflow Patterns«.

A

A

Intermediate

link used as

GOTO

Important note, explanation

Warning or error in the BPMN model

Recommendation

Wrong model

Right (corrected) model

This poster is licensed under the Creative Commons Attribution-
Noncommercial-No Derivative Works 2.5 Slovenia License

Authors:
Gregor Polan!i! & Tomislav Rozman

Email: info@itposter.net
University of Maribor

Faculty of Electrical Engineering and Computer Science
Institute of Informatics

Poster version: 1.0.9 (4th June 2008)
Literature used: BPMN Specification 1.0 @ http://www.bpmi.org

http://bpmn.itposter.net

This is used for compensation handling--both setting and performing

compensation. It calls for compensation if the Event is part of a Normal

Flow. It reacts to a named compensation call when attached to the

boundary of an activity. Very useful for modelling roll-back actions within

the transaction.

This type of Event is used within a Transaction Sub-Process. This type of

Event MUST be attached to the boundary of a Sub-Process. It SHALL be

triggered if a Cancel End Event is reached within the Transaction Sub-

Process.

Workflow patterns
Normal sequence flow

Parallel split, uncontrolled flow

Multiple merge, uncontrolled flow

Exclusive choice with

decision gateway

Simple merge,

uncontrolled flow

Synchronization

(pararel join)

Parallel split,

forking gateway

Discriminator,

merging gateway

Multiple choice

Alter. 3

Alter. 1

Alter. 2

Event based decision Complex decision

(gateway)

Multiple choice, inclusive

decision gateway Synchronization merge,

merging gateway

Simple merge,

uncontrolled flow

Intermediate link

used as GOTO

No Expanded sub-process

Looped subprocess

Interrupt

loop rule

B

B ~ Collapsed adhoc sub-process

F
ro

m
:

To:

F
ro

m
:

To:

L
a

n
e[state]

Check for the latest version at: http://bpmn.itposter.net

Example of a

deadlock

Exception X

Exception X

Exception X

Performing

task A

Conditional flow

Although it is recommended that a process has an explicit start and end
event, this is not a rule. In fact start and end events can be hidden in a sub
process, if needed, or attached to the boundary of the task so as not to
interrupt the normal sequence flow between the sub-process and the rest of
the process.

Document Y

Event Y

Exception flow

Cancel - compensation events are triggered.

Cancel event can be used only with transaction.

...

...

......

... ...

...

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

BPTrends July, 2004 Introduction to BPMN

(c) 2004 Stephen A. White. All Rights Reserved. www.bptrends.com

6

Artifacts

BPMN was designed to allow modelers and modeling tools some flexibility in extending the basic
notation and in providing the ability to add context appropriate to a specific modeling situation,
such as for a vertical market (e.g., insurance or banking). Any number of Artifacts can be added to a
diagram, as appropriate for the context of the business processes being modeled. The current
version of the BPMN specification pre-defines only three types of BPD Artifacts, which are:

Data Object

Data Objects are a mechanism to show how

data is required or produced by activities.

They are connected to activities through
Associations.

Group

A Group is represented by a rounded corner
rectangle drawn with a dashed line (see the

figure to the right). The grouping can be used
for documentation or analysis purposes, but

does not affect the Sequence Flow.

Annotation

Annotations are a mechanism for a modeler
to provide additional text information for the

reader of a BPMN Diagram (see the figure to
the right).

Modelers can create their own types of Artifacts, which add more details about how the process is
performed—quite often to show the inputs and outputs of activities in the Process. However, the
basic structure of the Process, as determined by the Activities, Gateways, and Sequence Flow, is not
changed with the addition of Artifacts in the diagram, as you can see by comparing Figure 4 and
Figure 5.

BPTrends July, 2004 Introduction to BPMN

(c) 2004 Stephen A. White. All Rights Reserved. www.bptrends.com

6

Artifacts

BPMN was designed to allow modelers and modeling tools some flexibility in extending the basic
notation and in providing the ability to add context appropriate to a specific modeling situation,
such as for a vertical market (e.g., insurance or banking). Any number of Artifacts can be added to a
diagram, as appropriate for the context of the business processes being modeled. The current
version of the BPMN specification pre-defines only three types of BPD Artifacts, which are:

Data Object

Data Objects are a mechanism to show how

data is required or produced by activities.

They are connected to activities through
Associations.

Group

A Group is represented by a rounded corner
rectangle drawn with a dashed line (see the

figure to the right). The grouping can be used
for documentation or analysis purposes, but

does not affect the Sequence Flow.

Annotation

Annotations are a mechanism for a modeler
to provide additional text information for the

reader of a BPMN Diagram (see the figure to
the right).

Modelers can create their own types of Artifacts, which add more details about how the process is
performed—quite often to show the inputs and outputs of activities in the Process. However, the
basic structure of the Process, as determined by the Activities, Gateways, and Sequence Flow, is not
changed with the addition of Artifacts in the diagram, as you can see by comparing Figure 4 and
Figure 5.

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

5

BPMN vs EPC (roughly)

Events Activities

Artefacts

Graphical connecting objects

Sequence flow mechanism Compensation Association

S
ta

rt

In
te

rm
e
d
ia

te

E
n
d

Message

Timer

Error

Multiple

Link

Rule

Compensation

Cancel

Terminate

General

Event type

A message arrives from a participant and triggers the Event. This causes

process to {start, continue, end} if it was waiting for a message, or changes

the flow if exception happens. End type of message event indicates that a

message is sent to a participant at the conclusion of the process.

Event flow
Description

An event is something that »happens« during the process. These events affect the
flow of the process and usually have a cause (trigger) or an impact (result).
Examples: 'Email received', '3 o'clock', 'Warehouse empty', 'Critical error',...

An activity is a generic type of work that a company performs. An
activity can be atomic (task) or compound (process, sub-process).
Examples: 'Send a letter', 'Write a report', 'Calculate the interests',...

~

Description

Process

Collapsed

sub-process

Expanded

sub-process

Task

Transaction

A task is used to represent the
activity on the lowest abstraction
level.

More information about the
transaction and compensation
attribute can be found under
»Compensation Association«.

Looping

Ad Hoc

Compensation

Task/Subprocess special attributes

The task or sub-process is repeated.

The tasks in the sub-process can not be connected with
sequence flows at design time.

Multiple instances of task or sub-process will be created.

The symbol represents a compensation task or sub-process.

Multiple instances

Gateways
A gateway is used to split or merge multiple process
flows. Thus it will determine branching, forking,
merging and joining of paths. Examples: 'Condition true?

– yes/no', 'Choose colour? – red/green/blue',...

Gateway control types

Data based exclusive decision or
merging. Both symbols have equal
meaning. See also Conditional flow.

Event based exclusive decision only.

Data based inclusive decision or
merging.

Complex condition (a combination of
basic conditions)

Parallel forking and joining
(synchronization).

XOR
(DATA)

XOR
(EVENT)

OR

COM-
PLEX

AND

Swimlanes
P

o
o

l L
a

n
e

Pools and lanes are used to represent organizations,
roles, systems and responsibilities. Examples:

'University', 'Sales division', 'Warehouse', 'ERP system',...

A Lane is a sub-partition within a pool used to organize and
categorize activities.

A Pool represents a participant in a process. It contains a business
process and is used in B2B situations.

A Pool MUST contain 0 or 1
business process.

A Pool can contain 0 or more
lanes.

Two pools can only be connected
with message flows.

Artefacts are used to provide additional information about the process. If
required, modellers and modelling tools are free to add new artefacts.
Examples of data objects: 'A letter', 'Email message', 'XML document',
'Confirmation',...

Set of standardized artefacts

Data object

Group

Annotation

Data objects provide information about what activities are required to be

triggered and/or what they produce. They are considered as Artefacts

because they do not have any direct effect on the Sequence Flow or

Message Flow of the Process. The state of the data object should also be

set.

Grouping can be used for documentation or analysis purposes. Groups

can also be used to identify the activities of a distributed transaction that is

shown across Pools. Grouping of activities does not affect the Sequence

or Message Flow.

Text Annotations are a mechanism for a modeller to provide additional

information for the reader of a BPMN Diagram.

Normal
sequence flow
Conditional
sequence flow
Default
sequence flow

Message flow

Association

There are three ways of connecting Flow objects (Events, Activities,
Gateways) with each other or with other information – using sequence
flows, message flows or associations.

Graphical connecting objects

A Sequence Flow is used to show the order In which the activities in a

process will be performed.

A Message Flow is used to show the flow of messages between two

participants that are prepared to send and receive them. In BPMN,

two separate Pools in a Diagram can represent the two participants.
An Association (directed, non-directed) is used to associate

information with Flow Objects. Text and graphical non-Flow Objects

can be associated with Flow objects.

A Sequence Flow can have condition expressions which are evaluated

at runtime to determine whether or not the flow will be used.

For Data-Based Exclusive Decisions or Inclusive Decisions, one type

of flow is the Default condition flow. This flow will be used only if all

other outgoing conditional flows are NOT true at runtime.

Sequence Flow and Message Flow rules
Only objects that can have an incoming and/or outgoing Sequence Flow / Message
Flow are shown in the Tables Below.

Start

transaction

Successfull

transaction

Task A

Transaction boundary

Undo task A

Task B

Undo task B

Failed transaction

Transaction

exception

Handle through

other services

Wait a few minutes

Try again

Error - compensation

events cannot be

triggered

Task

Compensation activity

In case of transactions it is desired that all activities which constitute
a transaction are finished successfully. Otherwise the transaction fails
and rollback (compensation) activities occur which undo done
activities.

Normal sequence flow

Use of the sequence flow
mechanism

Use of message events and
message flows

Use of flows within lanes Use of gatewaysWrong use of flows in/between
pools

When modelling Pools, sequence flows and start/end events are
often missing, because it is wrongly presumed that message
flows substitute sequence flows. Additionally, sequence flows
are incorrectly used to connect pools.

P
o

o
l
A

Task A

P
o

o
l
B

Task D

Message

flow AD

Message

flow EB

Task B

Task E

Missing sequence flows

Task C

Task F

Missing end event

Missing start event

Model the process in each Pool independently and afterwards
define message flows between Pools.

(Wrong) Use of time events

Task A Task B

Task B ...

Delay

Exception time

(e.g. »after 2 hours«)

Here a time event Is used as

a DELAY mechanism.

Here it represents the

DURATION of a task.

...

An intermediate event

has to be used.

There are two common mistakes when using time events. First,
starting events are often used instead of intermediate events.
Second, intermediate events are often used as a delay
mechanism but modelled as an exception mechanism
(representing the duration of a task) and vice-versa (see the
right use below).

Use of tasks and events

Starting

task A

Receiving

document

X

...
Task A

finished

Document X

...

Task A
...

Normal flow

Document X

Event X

Analysts often wrongly model events and tasks. For
example: events are wrongly modelled as tasks, task states
are modelled as new tasks.

This task is redundant.

Task automatically

starts at input

sequence flow

This task is redundant.

Task A is automatically

finished at output

sequence flow.

This task is redundant.The act of receiving

a document is a task itself.

Task A Task B

Message A

Message B
A

B

Task A Task B

Message A

B

Message B

Starting and intermediate events can not be sources of
message flows.

Both examples are wrong - intermediate

message events can not produce

message flows. Events can be only

triggered by a message flow.

Wrong positioning of

message event

The Start Event indicates where a particular process will start. Intermediate

Events occur between a Start Event and an End Event. It will affect the flow

of the process, but will not start or (directly) terminate the process. The End

Event indicates where a process will end.

A specific time or cycle can be set that will trigger the start of the Process

or continue the process. Intermediate timer can be used to model the time-

based delays.

This type of event is triggered when the conditions for a rule

become true. Rules can be very useful to interrupt the loop process, for

example: 'The number of repeats = N'. Intermediate rule is used only for

exception handling.

A Link is a mechanism for connecting the end (Result) of one

Process to the start (Trigger) of another. Typically, these are

two Sub-Processes within the same parent Process. It can be used, for

example, when the working area (page) is too small – go to another page.

This type of event indicates that there are multiple ways of triggering the

Process. Only one of them will be required to {start, continue, end} the

Process.

This type of End indicates that a named Error should be generated. This

Error will be caught by an Intermediate Event within the Event Context.

This type of End indicates that all activities in the Process should be

immediately terminated. This includes all instances of Multi-Instances. The

Process is terminated without compensation or event handling.

Explanation of Poster Symbols

About the BPMN Poster

Sequence flows are not

allowed between Pools

P
o

o
l
B L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

P
o

o
l
A L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

A message flow is not

allowed within a process
A Pool can contain only one

(1) process

Lanes are often wrongly used in similar ways as Pools. They
wrongly contain more business processes or contain message
flows between different lanes.

Gateways are connected only with sequence flows. Also Avoid
potential deadlocks when using gateways.

Task A

Task B

Decision

information

from Pool X

Message flow cannot

influence the gateway

No output flow from the task

exists.

The decision must

contain at least two

output flows

When using expanded sub-processes, sequence flows should
be connected to the boundaries of sub-processes. Processes
and sub-processes should start and end properly!

Task A

Sub-process »P«

Task B Task C

A sequence flow cannot cross

the boundary of a sub-process

The process should have an

end event

The sub-process should

have a start event

Task A

Sub-process »P«

Task B Task C

Task C

A conditional flow Is not

allowed (necessary) here

Send message to

Pool X A message flow cannot be

a gateway alternative

Analysing

decision

information

Task A

Task B

Task C

Send message

to Pool X

Message to Pool X

Message

from Pool X

Exception flow

Until Loop

~

Ad Hoc –

No flow

The Sequence Flow mechanisms is divided into types: Normal flow, Exception flow,

Conditional flow, Link Events and Ad Hoc (no flow). Refer also to specific

»Workflow Patterns«.

A

A

Intermediate

link used as

GOTO

Important note, explanation

Warning or error in the BPMN model

Recommendation

Wrong model

Right (corrected) model

This poster is licensed under the Creative Commons Attribution-
Noncommercial-No Derivative Works 2.5 Slovenia License

Authors:
Gregor Polan!i! & Tomislav Rozman

Email: info@itposter.net
University of Maribor

Faculty of Electrical Engineering and Computer Science
Institute of Informatics

Poster version: 1.0.9 (4th June 2008)
Literature used: BPMN Specification 1.0 @ http://www.bpmi.org

http://bpmn.itposter.net

This is used for compensation handling--both setting and performing

compensation. It calls for compensation if the Event is part of a Normal

Flow. It reacts to a named compensation call when attached to the

boundary of an activity. Very useful for modelling roll-back actions within

the transaction.

This type of Event is used within a Transaction Sub-Process. This type of

Event MUST be attached to the boundary of a Sub-Process. It SHALL be

triggered if a Cancel End Event is reached within the Transaction Sub-

Process.

Workflow patterns
Normal sequence flow

Parallel split, uncontrolled flow

Multiple merge, uncontrolled flow

Exclusive choice with

decision gateway

Simple merge,

uncontrolled flow

Synchronization

(pararel join)

Parallel split,

forking gateway

Discriminator,

merging gateway

Multiple choice

Alter. 3

Alter. 1

Alter. 2

Event based decision Complex decision

(gateway)

Multiple choice, inclusive

decision gateway Synchronization merge,

merging gateway

Simple merge,

uncontrolled flow

Intermediate link

used as GOTO

No Expanded sub-process

Looped subprocess

Interrupt

loop rule

B

B ~ Collapsed adhoc sub-process

F
ro

m
:

To:

F
ro

m
:

To:

L
a

n
e[state]

Check for the latest version at: http://bpmn.itposter.net

Example of a

deadlock

Exception X

Exception X

Exception X

Performing

task A

Conditional flow

Although it is recommended that a process has an explicit start and end
event, this is not a rule. In fact start and end events can be hidden in a sub
process, if needed, or attached to the boundary of the task so as not to
interrupt the normal sequence flow between the sub-process and the rest of
the process.

Document Y

Event Y

Exception flow

Cancel - compensation events are triggered.

Cancel event can be used only with transaction.

...

...

......

... ...

...

swimlanes

event event

activity function

gateway connector

sequence flow control flow

message flow

6

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

BPMN 2.0 poster

7

Resources as lanes:
order fulfillment

From processes to
collaborations

8

a more detailed collaboration

9

A negotiation without choice

BPMN Semantics

10

BPMN formal semantics?

11

Many attempts:
Abstract State Machines (ASM)

Term Rewriting Systems
Graph Rewrite Systems

Process Algebras
Temporal Logic

…
Petri nets

(Usual difficulties with OR-join semantics)

Sound BPMN diagrams

12

We can exploit the formal semantics of nets
to give unambiguous semantics to

BPMN process diagrams
BPMN collaboration diagrams

We transform
BPMN process diagrams to wf nets

BPMN collaboration diagrams to wf systems

A BPMN diagram is sound if its net is so
We can reuse the verification tools

to check if the net is sound

Translation of BPMN
to Petri nets

13

From BPMN
to Petri nets

14

Semantics and analysis of business process models in BPMN

Remco M. Dijkman a, Marlon Dumas b,c, Chun Ouyang c,*

aDepartment of Technology Management, Eindhoven University of Technology, P.O. Box 513, 5600 MB, The Netherlands
b Institute of Computer Science, University of Tartu, J Liivi 2, Tartu 50409, Estonia

cFaculty of Information Technology, Queensland University of Technology, G.P.O. Box 2434, Brisbane, Qld 4001, Australia

Received 11 September 2007; received in revised form 15 January 2008; accepted 9 February 2008
Available online 29 February 2008

Abstract

The Business Process Modelling Notation (BPMN) is a standard for capturing business processes in the early phases of systems devel-
opment. The mix of constructs found in BPMN makes it possible to create models with semantic errors. Such errors are especially seri-
ous, because errors in the early phases of systems development are among the most costly and hardest to correct. The ability to statically
check the semantic correctness of models is thus a desirable feature for modelling tools based on BPMN. Accordingly, this paper pro-
poses a mapping from BPMN to a formal language, namely Petri nets, for which efficient analysis techniques are available. The proposed
mapping has been implemented as a tool that, in conjunction with existing Petri net-based tools, enables the static analysis of BPMN
models. The formalisation also led to the identification of deficiencies in the BPMN standard specification.
! 2008 Elsevier B.V. All rights reserved.

Keywords: Business process modelling and analysis; BPMN; Petri nets

1. Introduction

The Business Process Modelling Notation (BPMN) [17]
is a standard notation for capturing business processes,
especially at the level of domain analysis and high-level sys-
tems design. The notation inherits and combines elements
from a number of previously proposed notations for busi-
ness process modelling, including the XML Process Defini-
tion Language (XPDL) [21] and the Activity Diagrams
component of the Unified Modelling Notation (UML)
[16]. BPMN process models are composed of: (i) activity
nodes, denoting business events or items of work per-
formed by humans or by software applications and (ii) con-
trol nodes capturing the flow of control between activities.
Activity nodes and control nodes can be connected by
means of a flow relation in almost arbitrary ways.

Languages that follow a similar paradigm, known as
graph-oriented process definition languages, have been pre-

viously studied from a formal perspective (e.g., the work on
task structures [2]). It is known that models defined in this
family of languages may exhibit a range of semantic errors,
including deadlocks and livelocks. Such errors are espe-
cially problematic at the levels of domain analysis and
high-level systems design, because errors at these levels
are among the hardest and most costly to correct. BPMN
even increases the types of semantic errors with respect to
traditional graph-oriented languages, because it combines
graph-oriented features with other features, drawn from a
range of sources including Workflow Patterns [5] and Busi-
ness Process Execution Language (BPEL) [12], a standard
for defining business processes at the implementation level.
These features include the ability to define: (i) subprocesses
that may be executed multiple times concurrently; (ii) sub-
processes that may be interrupted as a result of exceptions;
and (iii) message flows between processes. The interactions
between these features are an additional source of semantic
errors.

For these reasons the ability to statically analyse BPMN
models is likely to become a desirable feature for tools sup-
porting process modelling in BPMN. Anecdotal evidence

0950-5849/$ - see front matter ! 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.02.006

* Corresponding author. Tel.: +61 7 31389385; fax: +61 7 31389390.
E-mail addresses: r.m.dijkman@tue.nl (R.M. Dijkman), marlon.dumas

@ut.ee (M. Dumas), c.ouyang@qut.edu.au (C. Ouyang).

www.elsevier.com/locate/infsof

Available online at www.sciencedirect.com

Information and Software Technology 50 (2008) 1281–1294

Simplified BPMN

15

a start / exception event has just one outgoing flow
and no incoming flow

an end event has just one incoming flow
and no outgoing flow

all activities and intermediate events have exactly
one incoming flow and one outgoing flow

all gateways have either
one incoming flow (and multiple outgoing)

or one outgoing flow (and multiple incoming)

Simplified BPMN

16

The previous constraints are no real limitation:

events or activities with multiple incoming flows:
insert a preceding XOR-join gateway

events or activities with multiple outgoing flows:
insert a following AND-split gateway

gateways with multiple incoming and outgoing flows:
decompose in two gateways

insert start / end events if needed

17

Pay attention to gateways
stands for

stands for

stands for

…
…

…

…
…

…

…
…

…

…
…

…

18

My suggestions
stands for

stands for

stands for

…
…

…

…
…

…

…
…

…

…
…

…

Avoid OR-gateways
(all problems seen with EPC apply to BPMN as well)

Limited form of sub-processing

No transactions and compensations

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Simplified BPMN

19

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

20

event transition

activity transition

sequence flow place

The twist!
BPMN object net fragment

message flow

Roughly

21

A place for each arc

one transitions for each event

one transition for each activity

one or two transitions for each gateway
…

with some exceptions!
(start event, end event, event-based gateways, loops, …)

no dummy objects!

The strategy

22

From BPMN process diagrams to wf nets in three steps

Step 1
convert

sequence flow
message flow

Step 2
convert

flow objects

Step 3
enforce

initial place
final place

Travel

Step 1: convert flows

23

We insert a place for each sequence flow and message flow

Step 1
sequence flow
message flow

Step 2: convert flow objects

24

Then insert transitions

Step 1
sequence flow
message flow

Step 2
flow objects

25

AND split / join transition

XOR split transition

Step 2: gateways
BPMN object net fragment

transitionXOR join

26

Step 2: event-based
BPMN object net fragment

Step 1
sequence flow
message flow

Step 2
place fusion

Step 3: add unique start

27

XOR start

Steps 1+2 Step 3
unique start

start
1start

1
start

2

start
2

start
1

start
2

Step 3: add unique end

28

XOR end
(sometimes AND can be preferred)

Steps 1+2 Step 3
unique start

end 1
end

1
end

2 end 2

end 1 end 2

Example:
Order process

29

Order process

30

ok? no

yes

Sound?

O
rd

er
 p

ro
ce

ss

Order process: step 1

31

ok? no

yes

O
rd

er
 p

ro
ce

ss

Step 1
sequence flow
message flow

Order process: step 2

32

Step 2
flow objects

Order process: (desugar)

33

desugar

Order process: step 3

34

Step 3
enforce
initial place
final place

Soundness analysis

35

Not sound!

Soundness analysis

36

Soundness analysis

37

t5

Soundness analysis

38

Not sound!

Example:
Travel itinerary

39

Travel itinerary

40

ok?
no

yes

Sound?

Tr
av

el
 it

in
er

ar
y

ok?

no

yes

Travel itinerary: step 1

41

ok?
no

yes

Tr
av

el
 it

in
er

ar
y

ok?

no

yes

Step 1
sequence flow
message flow

Travel itinerary: step 2

42

Step 2
flow objects

Travel itinerary: (desugar)

43

desugar

Travel itinerary: step 3

44

Step 3
enforce
initial place
final place

Soundness analysis

45

Not sound!

Soundness analysis

46

Example:
Always sushi

47

48

Always sushi

Sound?

Sushi lover

49

Sound?

S
us

hi
 lo

ve
r

Sushi lover: step 1

50

Step 1
sequence flow
message flow

S
us

hi
 lo

ve
r

Sushi lover: step 2

51

Step 2
flow objects

Sushi lover: (desugar)

52

desugar

Sushi lover: step 3

53

Step 3
enforce
initial place
final place

Soundness analysis

54

safe & sound
(s-net)

Sushi doomed

55

Sound?

S
us

hi
 d

oo
m

ed

Sushi doomed: step 1

56

Step 1
sequence flow
message flow

S
us

hi
 d

oo
m

ed

Sushi doomed: step 2

57

Step 2
flow objects

Sushi doomed: (desugar)

58

desugar

Sushi doomed: step 3

59

Step 3
enforce
initial place
final place

Soundness analysis

60

safe & sound
(s-net)

Sushi system

61

Sound?

S
us

hi
 lo

ve
r

S
us

hi
 d

oo
m

ed

Sushi system: step 1

62

Sushi system: step 1+2+3

63

Soundness analysis

64

Sound!

Soundness analysis

65

Sound!

Example:
Buyer - Reseller

66

67

Buyer 3 and Reseller 2

Sound?

68

Buyer 3 sound?

Step 1 + 2 + 3

69

Buyer 3 soundness analysis

Safe and sound!

70

Reseller 2 sound?

Step 1 + 2 + 3

71

Reseller 2 soundness analysis

Safe and sound!

72

Buyer 3 + Reseller 2: sound?

Step 1 + 2 + 3

73

Buyer 3 + Reseller 2: analysis

Not sound!

74

Buyer 3 + Reseller 2: analysis

Not sound!

Step 0: preprocessing
BPMN diagrams

75

will switch to the exception flow at the point when the
exception occurs. Note that an error event on a normal
sequence flow models ‘‘throwing” an error, while one
attached on the boundary of the activity models ‘‘catching”
an error. This is similar to the strictly hierarchical throw-
catch mechanism used in most programming languages.

A message flow is used to show transmission of mes-
sages between two interacting processes via communication
actions such as send/receive task or message event. The two
processes are located, respectively, within two separate
pools, representing two participants (e.g., business entities
or roles). In graphical representation, a message flow is
drawn as a dashed line with an open arrowhead connected
to the target process and a circle connected to the source
process, and a pool is drawn as a rectangle labelled with
the process name.

Finally, a BPMN model is composed of a set of BPMN
processes which are related to each other via subprocess
invocation activities or message flows.

2.2. Petri nets

Petri nets are a formal model of concurrent systems.
Petri nets are particularly suited to model behaviour of sys-
tems in terms of ‘‘flow”, be it the flow of control or flow of
objects or information. This feature makes Petri nets a
good candidate for formally defining the semantics of
BPMN models, since BPMN is also flow-oriented. In addi-
tion, Petri nets have been studied from a theoretical point
of view for several decades, and this research had led to a
number of tools that enable their automated analysis.

A Petri net is a directed graph composed of two types of
nodes: places and transitions. This graphical syntax allows

Petri nets to be intuitively visualized. Usually, places are
represented as circles and transitions are represented as
rectangles. Petri nets are bipartite graphs, meaning that
an arc in the net may connect a place to a transition or vice
versa, but no arc may connect a place to another place or a
transition to another transition. A transition has a number
of immediately preceding places (called its input places) and
a number of immediately succeeding places (called its out-
put places).

Places are containers for tokens. Tokens represent the
thing(s) that flow through the system. At a given point dur-
ing the execution of a Petri net, each place may hold zero,
one or multiple tokens. Thus, a state of a Petri net is rep-
resented as a function that assigns a number of tokens to
each place in the net. Such a function is called a marking.
For example, Fig. 2(i) depicts a marking of a Petri net
where there is one token in the leftmost place and no token
in any other place. The state of a Petri net changes when
one of its transitions fires. A transition may only fire if
there is at least one token in each of its input places. In this
case, we say that the transition is enabled. For example, in
Fig. 2(i), the transition labelled t1 is enabled since this tran-
sition has only one input place and this input place has one

Fig. 2. Sample workflow net in two different states.

Fig. 1. Overview of BPMN.

R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294 1283Overview

76

Activity looping

77

transitions: one identified as tðSI ;callÞ modelling the invoca-
tion of subprocess P, the other tðSI ;returnÞ modelling the flow
returns to the parent process after P completed.

3.4. Exception handling

In BPMN, exception handling is captured by excep-
tion flows. An exception flow originates from an error
event attached to the boundary of an activity. For pre-
sentation purposes, it is convenient to distinguish the
case where the activity is a single task, from the case
where it is a subprocess. Fig. 8 shows the mapping of
an error event associated with a task. Given that the exe-
cution of task T is atomic, the occurrence of exception
Ex may only interrupt T when T is enabled and has
not yet completed. In Petri net terms, this means that

the occurrence of exception Ex can ‘‘steal” the input
token that would normally be consumed by the transi-
tion corresponding to task T.

In the case of an exception flow associated to a subpro-
cess, the occurrence of the exception (i.e., the error event)
will cancel the execution of the subprocess assuming that
this latter has started but has not yet completed. The map-
ping is complicated by the fact that it needs to capture the
cancellation of the running subprocess at any point when
the exception occurs. This means that when the transition
corresponding to the error event fires, all the tokens left
in the Petri net fragment corresponding to the subprocess
need to be removed. However, due to the local nature of
Petri net transitions, it is cumbersome to model a ‘‘vacuum
cleaner” that would remove all tokens from a given frag-
ment of a net [3].

Fig. 4. Macro expansions for repeated activities.

Fig. 5. Macro expansion for a multi-instance activity where n is known at design time.

Fig. 6. Mapping of a subprocess without exception handling.

Fig. 7. Calling a subprocess via a subprocess invocation activity.

Fig. 8. Mapping of a task with an exception flow.

1286 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

transitions: one identified as tðSI ;callÞ modelling the invoca-
tion of subprocess P, the other tðSI ;returnÞ modelling the flow
returns to the parent process after P completed.

3.4. Exception handling

In BPMN, exception handling is captured by excep-
tion flows. An exception flow originates from an error
event attached to the boundary of an activity. For pre-
sentation purposes, it is convenient to distinguish the
case where the activity is a single task, from the case
where it is a subprocess. Fig. 8 shows the mapping of
an error event associated with a task. Given that the exe-
cution of task T is atomic, the occurrence of exception
Ex may only interrupt T when T is enabled and has
not yet completed. In Petri net terms, this means that

the occurrence of exception Ex can ‘‘steal” the input
token that would normally be consumed by the transi-
tion corresponding to task T.

In the case of an exception flow associated to a subpro-
cess, the occurrence of the exception (i.e., the error event)
will cancel the execution of the subprocess assuming that
this latter has started but has not yet completed. The map-
ping is complicated by the fact that it needs to capture the
cancellation of the running subprocess at any point when
the exception occurs. This means that when the transition
corresponding to the error event fires, all the tokens left
in the Petri net fragment corresponding to the subprocess
need to be removed. However, due to the local nature of
Petri net transitions, it is cumbersome to model a ‘‘vacuum
cleaner” that would remove all tokens from a given frag-
ment of a net [3].

Fig. 4. Macro expansions for repeated activities.

Fig. 5. Macro expansion for a multi-instance activity where n is known at design time.

Fig. 6. Mapping of a subprocess without exception handling.

Fig. 7. Calling a subprocess via a subprocess invocation activity.

Fig. 8. Mapping of a task with an exception flow.

1286 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Multiple instances
(design-time bounded)

78

transitions: one identified as tðSI ;callÞ modelling the invoca-
tion of subprocess P, the other tðSI ;returnÞ modelling the flow
returns to the parent process after P completed.

3.4. Exception handling

In BPMN, exception handling is captured by excep-
tion flows. An exception flow originates from an error
event attached to the boundary of an activity. For pre-
sentation purposes, it is convenient to distinguish the
case where the activity is a single task, from the case
where it is a subprocess. Fig. 8 shows the mapping of
an error event associated with a task. Given that the exe-
cution of task T is atomic, the occurrence of exception
Ex may only interrupt T when T is enabled and has
not yet completed. In Petri net terms, this means that

the occurrence of exception Ex can ‘‘steal” the input
token that would normally be consumed by the transi-
tion corresponding to task T.

In the case of an exception flow associated to a subpro-
cess, the occurrence of the exception (i.e., the error event)
will cancel the execution of the subprocess assuming that
this latter has started but has not yet completed. The map-
ping is complicated by the fact that it needs to capture the
cancellation of the running subprocess at any point when
the exception occurs. This means that when the transition
corresponding to the error event fires, all the tokens left
in the Petri net fragment corresponding to the subprocess
need to be removed. However, due to the local nature of
Petri net transitions, it is cumbersome to model a ‘‘vacuum
cleaner” that would remove all tokens from a given frag-
ment of a net [3].

Fig. 4. Macro expansions for repeated activities.

Fig. 5. Macro expansion for a multi-instance activity where n is known at design time.

Fig. 6. Mapping of a subprocess without exception handling.

Fig. 7. Calling a subprocess via a subprocess invocation activity.

Fig. 8. Mapping of a task with an exception flow.

1286 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Sub-processes

79

transitions: one identified as tðSI ;callÞ modelling the invoca-
tion of subprocess P, the other tðSI ;returnÞ modelling the flow
returns to the parent process after P completed.

3.4. Exception handling

In BPMN, exception handling is captured by excep-
tion flows. An exception flow originates from an error
event attached to the boundary of an activity. For pre-
sentation purposes, it is convenient to distinguish the
case where the activity is a single task, from the case
where it is a subprocess. Fig. 8 shows the mapping of
an error event associated with a task. Given that the exe-
cution of task T is atomic, the occurrence of exception
Ex may only interrupt T when T is enabled and has
not yet completed. In Petri net terms, this means that

the occurrence of exception Ex can ‘‘steal” the input
token that would normally be consumed by the transi-
tion corresponding to task T.

In the case of an exception flow associated to a subpro-
cess, the occurrence of the exception (i.e., the error event)
will cancel the execution of the subprocess assuming that
this latter has started but has not yet completed. The map-
ping is complicated by the fact that it needs to capture the
cancellation of the running subprocess at any point when
the exception occurs. This means that when the transition
corresponding to the error event fires, all the tokens left
in the Petri net fragment corresponding to the subprocess
need to be removed. However, due to the local nature of
Petri net transitions, it is cumbersome to model a ‘‘vacuum
cleaner” that would remove all tokens from a given frag-
ment of a net [3].

Fig. 4. Macro expansions for repeated activities.

Fig. 5. Macro expansion for a multi-instance activity where n is known at design time.

Fig. 6. Mapping of a subprocess without exception handling.

Fig. 7. Calling a subprocess via a subprocess invocation activity.

Fig. 8. Mapping of a task with an exception flow.

1286 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

transitions: one identified as tðSI ;callÞ modelling the invoca-
tion of subprocess P, the other tðSI ;returnÞ modelling the flow
returns to the parent process after P completed.

3.4. Exception handling

In BPMN, exception handling is captured by excep-
tion flows. An exception flow originates from an error
event attached to the boundary of an activity. For pre-
sentation purposes, it is convenient to distinguish the
case where the activity is a single task, from the case
where it is a subprocess. Fig. 8 shows the mapping of
an error event associated with a task. Given that the exe-
cution of task T is atomic, the occurrence of exception
Ex may only interrupt T when T is enabled and has
not yet completed. In Petri net terms, this means that

the occurrence of exception Ex can ‘‘steal” the input
token that would normally be consumed by the transi-
tion corresponding to task T.

In the case of an exception flow associated to a subpro-
cess, the occurrence of the exception (i.e., the error event)
will cancel the execution of the subprocess assuming that
this latter has started but has not yet completed. The map-
ping is complicated by the fact that it needs to capture the
cancellation of the running subprocess at any point when
the exception occurs. This means that when the transition
corresponding to the error event fires, all the tokens left
in the Petri net fragment corresponding to the subprocess
need to be removed. However, due to the local nature of
Petri net transitions, it is cumbersome to model a ‘‘vacuum
cleaner” that would remove all tokens from a given frag-
ment of a net [3].

Fig. 4. Macro expansions for repeated activities.

Fig. 5. Macro expansion for a multi-instance activity where n is known at design time.

Fig. 6. Mapping of a subprocess without exception handling.

Fig. 7. Calling a subprocess via a subprocess invocation activity.

Fig. 8. Mapping of a task with an exception flow.

1286 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Exception handling:
single task

80

transitions: one identified as tðSI ;callÞ modelling the invoca-
tion of subprocess P, the other tðSI ;returnÞ modelling the flow
returns to the parent process after P completed.

3.4. Exception handling

In BPMN, exception handling is captured by excep-
tion flows. An exception flow originates from an error
event attached to the boundary of an activity. For pre-
sentation purposes, it is convenient to distinguish the
case where the activity is a single task, from the case
where it is a subprocess. Fig. 8 shows the mapping of
an error event associated with a task. Given that the exe-
cution of task T is atomic, the occurrence of exception
Ex may only interrupt T when T is enabled and has
not yet completed. In Petri net terms, this means that

the occurrence of exception Ex can ‘‘steal” the input
token that would normally be consumed by the transi-
tion corresponding to task T.

In the case of an exception flow associated to a subpro-
cess, the occurrence of the exception (i.e., the error event)
will cancel the execution of the subprocess assuming that
this latter has started but has not yet completed. The map-
ping is complicated by the fact that it needs to capture the
cancellation of the running subprocess at any point when
the exception occurs. This means that when the transition
corresponding to the error event fires, all the tokens left
in the Petri net fragment corresponding to the subprocess
need to be removed. However, due to the local nature of
Petri net transitions, it is cumbersome to model a ‘‘vacuum
cleaner” that would remove all tokens from a given frag-
ment of a net [3].

Fig. 4. Macro expansions for repeated activities.

Fig. 5. Macro expansion for a multi-instance activity where n is known at design time.

Fig. 6. Mapping of a subprocess without exception handling.

Fig. 7. Calling a subprocess via a subprocess invocation activity.

Fig. 8. Mapping of a task with an exception flow.

1286 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

4.5 Handling Exceptions 117

Fig. 4.19 Error events model internal exceptions

The error event is depicted as an event with a lightning marker. Following the
BPMN conventions for throwing and catching events, the lightning is empty for the
catching intermediate event and full for the end throwing event.

An example of error events is shown in Fig. 4.19 in the context of our order ful-
fillment process. If there is an out of stock exception, the acquisition of raw materi-
als is interrupted and the recovery procedure is triggered, which in this case simply
consists of a task to notify the customer before aborting the process. In terms of
token semantics, upon throwing an end error event, all tokens are removed from
the enclosing sub-process (causing its interruption), and one token is sent through
the exception flow emanating from the boundary error event. There is no restriction
on the modeling elements we can put in the exception flow to model the recovery
procedure. Typically, we would complete the exception flow with an end terminate
event to abort the process, or wire this flow back to the normal sequence flow if the
exception has been properly handled.

4.5.3 External Exceptions

An exception may also be caused by an external event occurring during an activity.
For example, while checking the stock availability for the product in a purchase
order, the Seller may receive an order cancellation from the customer. Upon this
request, the Seller should interrupt the stock availability check and handle the order
cancellation. Scenarios like the above are called unsolicited exceptions since they
originate externally to the process. They can be captured by attaching a catching
intermediate message event to an activity’s boundary, as shown in Fig. 4.20. From
a token semantics, when the intermediate message event is triggered, the token is
removed from the enclosing activity, consequently causing the activity interruption,
and sent through the exception flow emanating from the boundary event, to perform
the recovery procedure.

Exception handling:
sub-processes

81

in the BPMN specification. This is further discussed in Sec-
tion 4.

Finally, we note that if a subprocess P is nested within
another subprocess P 0, the execution of P may be cancelled
due to the cancellation of P 0, regardless of the reason why
P 0 is cancelled. Accordingly, each task or event in P needs
to check the OK status of both P and P 0 to ensure that once
P 0 is cancelled the execution of P stops as well.

3.5. Message flow

A message flow describes the interaction between pro-
cesses. It can be mapped to a place with an incoming arc
from the transition modelling a send action and an outgo-
ing arc to the transition modelling a receive action. A spe-
cial case is the mapping of a message flow to a start event
where the process is instantiated each time a message is
received. In this case, the message flow is directly mapped
to an arc linking the transition that models sending the
message to the place that signals triggering the start event
(e.g., place ps in the mapping of start event s shown in
Fig. 3, which we refer to as the ‘‘trigger place” of start
event s). Fig. 10 shows four mapping rules, each capturing
a case for a message sent by a task or an end event and
received by a task or a start event. Note that a task may

be replaced by an intermediate message event without
changing the rule.

The above mapping is restricted to tasks that either send
or receive messages but not both (such as user task and ser-
vice task). This restriction does not limit the expressive
power of BPMN, because successively sending and receiv-
ing a message can be represented by two tasks such as a
send followed by a receive.

3.6. Initial marking configuration

The initial state of a BPMN model can be specified by
the initial marking of the corresponding Petri net model.
The basic idea for configuring the initial marking is to
mark the trigger places for each of the start events that
do not have any incoming message flows and that the pro-
cesses they belong to are top-level processes. A message
flow that has as a target the start event of a process, will
create an instance of the process upon message delivery.
So, the mapping should ensure that the trigger place of
each start event with an incoming message flow does not
contain a token in the initial marking, because the process
can only be instantiated as a consequence of this event
when a message has arrived. A special case is that each
top-level process is instantiated by another process via an

Fig. 10. Mapping of message flows between BPMN processes.

Fig. 9. Mapping of a subprocess with an exception flow.

1288 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

accounts for
separate execution

of multiple instances

4.5 Handling Exceptions 117

Fig. 4.19 Error events model internal exceptions

The error event is depicted as an event with a lightning marker. Following the
BPMN conventions for throwing and catching events, the lightning is empty for the
catching intermediate event and full for the end throwing event.

An example of error events is shown in Fig. 4.19 in the context of our order ful-
fillment process. If there is an out of stock exception, the acquisition of raw materi-
als is interrupted and the recovery procedure is triggered, which in this case simply
consists of a task to notify the customer before aborting the process. In terms of
token semantics, upon throwing an end error event, all tokens are removed from
the enclosing sub-process (causing its interruption), and one token is sent through
the exception flow emanating from the boundary error event. There is no restriction
on the modeling elements we can put in the exception flow to model the recovery
procedure. Typically, we would complete the exception flow with an end terminate
event to abort the process, or wire this flow back to the normal sequence flow if the
exception has been properly handled.

4.5.3 External Exceptions

An exception may also be caused by an external event occurring during an activity.
For example, while checking the stock availability for the product in a purchase
order, the Seller may receive an order cancellation from the customer. Upon this
request, the Seller should interrupt the stock availability check and handle the order
cancellation. Scenarios like the above are called unsolicited exceptions since they
originate externally to the process. They can be captured by attaching a catching
intermediate message event to an activity’s boundary, as shown in Fig. 4.20. From
a token semantics, when the intermediate message event is triggered, the token is
removed from the enclosing activity, consequently causing the activity interruption,
and sent through the exception flow emanating from the boundary event, to perform
the recovery procedure.

