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Object

We study some “good” properties of
free-choice nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html
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Free-choice net

Definition: We recall that a net N is free-choice If
whenever there is an arc (p,t), then there is an arc
from any input place of t
to any output transition of p
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Free-choice net:
alternative definition

Proposition: All the following definitionsof free-choice net are equivalent.

1) A net (P, T, F) is free-choice if:
Vpe PVt eT, (p,t) € F implies ot x pe € F.

2) A net (P, T, F) is free-choice if:
Vp,g € PVt,u €T, {(p,t),(q,t),(p,u)} C F implies (q,u) € F.

3) A net (P, T, F) is free-choice if:
Vp,q € P, either pe = ge or p e Nge = ().

4) A net (P, T, F) is free-choice if:
Vt,u € T, either ot = o1, or of N ey = ().
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Free-choice net: my
favourite definition

S

4) A net (P, T, F) is free-choice if:
Vt,u € T, either of = o1, or of N ey = ().



Free-choice system

Definition: A system (N,Mo) is free-choice
if N is free-choice
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Exercises

Prove that every S-net is free-choice
Prove that every T-net is free-choice

Show a free-choice net that is neither an S-net nor a T-net

Free-choice
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Free-choice N*

Proposition: A workflow net N is free-choice
Iff N* Is free-choice

N and N* differ only for the reset transition,
whose pre-set (0) is disjoint
from the pre-set of any other transition



Fundamental property
of free-choice nets

Proposition: Let (P, T, F, M) be free-choice.
If M —3 and ¢ € pe, then M s for every t’ € pe.

The proof is trivial, by definition of free-choice net



Rank Theorem
(main result)

Theorem;:
A free-choice system (P, T,F,MO0) is live and bounded
Iff
. It has at least one place and one transition
. It Is connected
. Mo marks every proper siphon
. It has a positive S-invariant

. It has a positive T-invariant
.rank(N) = |Cn| - 1

OO, WN -

(where Cy is the set of clusters)
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Cluster

Let x be the node of a net N = (P, T, F)
(not necessarily free-choice)

Definition:
The cluster of x, written [x], is the least set s.t.

1. x € |x]
2. if p € |x]N P then pe C 1]
3. if t € [xz]NT then ot C |x]
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Cluster: example




Clusters partition

Lemma: Theset {|x| | x € PUT } is a partition of PUT

Take the reflexive, symmetric and transitive closure E of

FN(PxT)

From the definition, it follows that

y € |x] iff (x,y) € E

Since E is an equivalence relation, its classes define a partition



Fundamental property
of clusters in f.c. nets

Proposition:

If M —=, then for any t’ € [t] we have M v,

Immediate consequence of the fact that, for free-choice nets

t,t' € [x] iff of = of



Exercise

Draw all clusters in the nets below




Exercise

Draw all clusters in the free-choice net below




Stable markings



Stable set of markings

Definition: A set of markings M is called stable if

MeM implies ‘M)CM
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Question time

Given a net system:
Is the singleton set { 0 } a stable set?
Is the set of all markings a stable set?
Is the set of live markings a stable set?

Is the set of deadlock markings a stable set?
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Stability check

M is stable iff
VM, t,M'.(M € M A M — M’ implies M’ € M)
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pl

Example

Which of the following is a stable set of markings?

p2

t2

27

{2p1+p2 }
{2p1+p2, p1+2p3 }
{p1, p2}



pl

p2

t2

Exercises

Which of the following is a stable set of markings?

{p1, p3}
{2p1+2p2 , 2p3 }
{2p1+2p2 , p1+p2+ps3, 2ps3 }

{ p1, 2p1+2p2 , p1+p2+ps, 2ps3 }
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Exercises

Given a net system:
Is the set { M | M(P)=1 } a stable set?
Is the set of markings reachable from Mo a stable set?

Is the set { M | M(P)<k } a stable set?
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Exercises

Let | be an S-invariant

Isthe set{ M | I-M =1-Mo } a stable set?
Isthe set{M | I-M # 1-Mo } a stable set?
Isthe set{ M |[I-M =1 } a stable set?

Istheset{ M |I-M =0} a stable set?
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Exercises

Let M and M’ be stable sets
Is their union a stable set?
Is their intersection a stable set?
|s their difference a stable set?
What is the least stable set that includes a marking M?

What is the largest stable set of a net?
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Siphons



Proper siphon

Definition:
A set of places R is a siphon if eR C Re

It is a proper siphon if R # ()
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Siphons, intuitively

A set of places R is a siphon if
all transitions that can produce tokens in the places of R
require some place in R to be marked
Therefore:

If no token is present in R,
then no token will ever be produced in R
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Siphon check

Let R be a set of places of a net
mark with V all transitions that consumes tokens from R

if there is a transition producing tokens in some place of
R that is not marked by v, then R is not a siphon

Otherwise R is a siphon
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Siphon check: example

Is R = { prod1busy, prod1free, itembuffer} a siphon?
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Siphon check: example

Is R = { prod1busy, prod1free, itembuffer} a siphon?
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Siphon check: example

Is R = { prod1busy, itembuffer} a siphon?

prodl busy

item buffer

4]

consl busy



Siphon check: example

Is R = { prod1busy, itembuffer} a siphon?

IIIIIIIII

consl busy
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Fundamental property
of siphons

Proposition: Unmarked siphons remain unmarked
Take a siphon R.
We just need to prove that the set of markings

M={M]|MR)=0}
Is stable, which is immediate by definition of siphon
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Consequence of the
fundamental property

Corollary:
If a siphon R is marked at some reachable marking M,
then it was initially marked at Mo

By hypothesis: M(R)>0
By contradiction: assume My(R)=0

Then by the fundamental property of siphons: M(R)=0
which is absurd
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Siphons and liveness

Prop.: Live systems have no unmarked proper siphons
(We show that every proper siphon R of a live system is
initially marked)

Take p € R and let t € ep U pe
Since the system is live, then there are M, M’ € [ My ) such that

M - MY

nerefore p is marked at either M or M’

nerefore R is marked at either M or M’

nerefore R was initially marked (at M)
45
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Siphons and deadlock

Proposition:
ieadlocked systems have an unmarked proper siphon

Let M be a deadlocked marking
Let R={p | M(p) =0}
Since M is deadlock: Re =T

Therefore «¢R C'I' = Re and R is a siphon.
Since I' cannot be empty, R is proper
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A key observation

If we can guarantee that

all proper siphons are marked
at every reachable marking,

then the system is deadlock free
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Exercise

Prove that the union of siphons is a siphon
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Traps



Proper trap

Definition:
A set of places R is a trap if eR O Re

It is a proper trap if R # ()
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Traps, intuitively

A set of places R is a trap if
all transitions that can consume tokens from R
produce some token in some place of R
Therefore:

If some token is present in R,
then it is never possible for R to become empty
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Trap check

Let R be a set of places of a net
mark with  all transitions that produce tokens in R

If there is a transition consuming tokens from some
place in R that is not marked by V, then R is not a trap

Otherwise R is a trap
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Trap check: example

Is R = { itembuffer, cons1busy, cons1free} a trap?

prodl busy

AN

item buffer

prod1l s:nt\ prodl end O/Q\
consl free
prodl free consl stast
consl end

consl busy
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Trap check: example

Is R = { itembuffer, cons1busy, cons1free} a trap?

S

prodl busy
prod1 start ®/ pr \/r.a
prodl free

item buffer
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Trap check: example

Is R = { itembuffer, cons1busy} a trap?

prodl busy

item buffer

55
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Trap check: example

Is R = { itembuffer, cons1busy} a trap?

S

prodl busy
prodl start CDA/M \/Ra
prodl free

item buffer
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Fundamental property
of traps

Proposition: Marked traps remain marked
Take a trap R.
We just need to prove that the set of markings

M={M| MR)>0}
is stable, which is immediate by definition of trap
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Consequence of the
fundamental property

Corollary:
If a trap R is unmarked at some reachable marking M,
then it was initially unmarked at Mo

By hypothesis: M(R)=0
By contradiction: assume My(R)>0

Then by the fundamental property of traps: M(R)>0
which is absurd
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Exercise

Prove that the union of traps is a trap
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Putting pieces together

unmarked siphons stay unmarked
(marked siphons can become unmarked)

If a siphon is marked at M, it was marked at Mo

if all proper siphons always stay marked => deadlock-free
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Putting pieces together

if all proper siphons always stay marked => deadlock-free

marked traps stay marked
(unmarked traps can become marked)

If a trap iIs unmarked at M, it was unmarked at Mo
If a siphon contains a marked trap, it stays marked

if all siphons contain marked traps, they stay marked
=> deadlock-free
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A sufficient condition
for deadlock-freedom

Proposition:
If every proper siphon of a system includes an initially
marked trap, then the system is deadlock-free

We show that if the system is not deadlock free, then there is
a siphon that does not include any marked trap.

Assume some reachable M is dead.

Let R be the set of unmarked places at M.
Then, we have seen that R is a proper siphon.
Since M(R)=0, then R includes no trap marked at M.
Therefore, R include§2no trap marked at Mo



Note

It is easy to observe that the every siphon includes a
(possibly empty) unique maximal trap
with respect to set inclusion

Moreover, a siphon includes a marked trap
iff
its maximal trap is marked
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Exercise

Find all siphons and traps in the net below

/ p2 t2 D4 t3 ps;!;
p3 / PE

te
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Live and dead places
(recall)



Place liveness

Definition: Let (P, T, F, My) be a net system.

A place pe Pislive if VM € | My).dM’' € [M ). M'(p) > 0

A place p is live
if every time it becomes unmarked
there is still the possibility to be marked in the future
(or if it is always marked)

Definition:
A net system (P, T, F, My) is place-live if every place p € P is live

liveness implies place-liveness
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Dead nodes

Definition: Let (P, T, F') be a net system.
A transition t € T is dead at M if VM’ € [ M ). M’ /=

A place p € Pisdead at M if VM’ € [M ). M'(p) =0
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Some obvious facts

If a system is not live, it has a transition dead at some
reachable marking

If a system is not place-live, it has a place dead at
some reachable marking

If a place / transition is dead at M, then it remains dead
at any marking reachable from M
(the set of dead nodes can only increase during a run)

Every transition in the pre- or post-set of a dead place
IS also dead
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An obvious facts in
free-choice nets

In a free-choice net:
If an output transition t of a place p is dead at M
then any output transition t' of p is dead at M

(because t and t' must have the same pre-set)
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Dead t, dead p

Lemma: If the transition t is dead at M in a free-choice net,
then there is a place p in the pre-set of t and dead at M

By contraposition, we prove that if no input place of ¢ is dead then ¢ is not dead
Let ot = [t|NP ={p1,....,pn}

Since no place is dead at M, there exists
M 2 My 22 .. =% M,
such that M;(p;) > 0 for all i

If the sequence contains u € [t| then ¢ is not dead at M

If no transition in [t] appears in the sequence, then no token in et is consumed
Hence M., (p;) > 0 for all ¢, and M, '+ and t is not dead at M
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Place-liveness implies
liveness in f.c. nets

Proposition: If a free-choice system is place-live,
then it is live

If a free-choice system is not live then there is a
transition t dead at some reachable marking M

But then some input place of t must be dead at M,
so the system is not place-live
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Consequence in f.c. nets:
place-liveness = liveness

If a free-choice system is place-live, then it is live
In any system, liveness implies place-liveness
Therefore:

A free-choice system is live iff it is place-live
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Non-liveness and
unmarked siphons

Lemma: Every non-live free-choice system has a proper
siphon R and a reachable marking M such that M(R)=0

By non-liveness: the system is not place-live,
l.e., some p Is dead at some L

Take M € | L) such that every place not dead at M

is not dead at any marking of | M )

i.e. all markings in | M ) have the same set R dead places
(dead places remain dead)

Next we prove that R is a proper siphon and M (R) = 0
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Non-liveness and
unmarked siphons

Lemma: Every non-live free-choice system has a proper
siphon R and a reachable marking M such that M(R)=0

1. R is a siphon

e any t € eR Is dead at M
(if not any ¢ € t « MR would not be dead)

e every t dead at M has an input place in R

(t has some input place dead at some marking reachable from M)

2. R 1s proper
p is dead at L, hence it is dead at M, hence p € R, hence R # ()

3. M(R) = 0 because it contains dead places
74



Commonher's theorem



Commonher's theorem

Theorem:
A free-choice system is live

Iff

every proper siphon includes an initially marked trap

(we show just the “if” direction, which is simpler)
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Commoher's theorem:
“iIf" direction

(Non-live free-choice implies that
a proper siphon exists whose traps are all unmarked)

We know that a non-live free-choice system contains a
proper siphon R such that M(R)=0

So every trap included in R is unmarked at M

Since marked traps remain marked,
every trap included in R must have been
initially unmarked
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Complexity of the
non-liveness problem
in free-choice systems



A non-deterministic
algorithm for non-liveness

1. guess a set of places R

2. check if Ris a siphon (*R € Re)
(polynomial time)

3. if R is a siphon, compute the maximal trap Q € R

4. if Mo(Q)=0, then answer “non-live’
(polynomial time)
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A polynomial algorithm for
maximal trap in a siphon

3. if Ris a siphon, compute the maximal trap Q ¢ R

Input: Anet N=(P,T,F)and RC P
Output: ) C R

Q=R
while (dp € Q), dt € pe, t £ o())
Q = Q\{p}

return ()




Main consequence

The non-liveness problem for free-choice systems is in NP
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Is the same problem in P?

The corresponding deterministic algorithm cannot make
the guess in step 1

It has to explore all possible subsets of places
2/Pl cases!
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NP-completeness

We next sketch the proof of the reduction to non-liveness
in a free-choice net of the CNF-SAT problem

(Satisfiability problem for propositional formulas in
conjunctive normal form)
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CNF-SAT formulas

Variables: x4, x9, ...,y
Literals: x1,Z1, 22,9, ..., 2., Tn
Clause: disjunction of literals

Formula: conjunction of clauses

Example: ¢ = (21 V23) A (21 VI Va3) A (x2V T3)

Is there an assignment of boolean values to the variables such that ¢ = true?
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The free-choice net of a
formula

The idea Is
to construct a free-choice system (P, T,F,Mo)
and show that

the formula is satisfiable
iff
(P, T,F,Mo) is not live

85



CNF-SAT formulas

Is there an assignment of boolean values to the variables such that ¢ = true?

Is there an assignment of boolean values to the variables such that —¢ = false?

¢: (331 \/fg)/\($1 VTQ\/QZ‘;;)/\(QEQ \/Tg)

—¢ = (T1 ANx3) V(T3 Az AT3) V (Ty A x3)
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—|¢ — (Tl /\513‘3) V (fl /\$2 /\Tg) \V4 (fg /\wg)

A
(egelgsls




_l¢:(fl/\.fl?3)\/ iEl/\CCQ/\Qig)\/(EQ/\$3)
o O o
One place Li for each varlableﬂ

(egelgsls

v
‘.‘
v
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_l¢ — (Tl /\513‘3) \ (fl /\$2 /\Tg) \ (fg /\wg)

One transition for each literal

vl ‘%P
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—¢ = (T1 ANx3) V (T1 Nx2 ANT3) V (T2 N 23)
L3

| 1 Lo
1 X1 X2 o ﬁ%

SRR A

One transition C; for each clause C;

&2

90



—¢ = (T1 ANx3) V (T1 Nx2 ANT3) V (T2 N 23)
L3

L L2
5o 660 YEO

A place for each occurrence of a literal
U1 \ w3
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—¢ = (T1 ANx3) V (T1 Nx2 ANT3) V (T2 N 23)
L1 Lo L3

. True
A place for true
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—¢ = (T1 ANx3) V (T1 Nx2 ANT3) V (T2 N 23)

|1 o L3
L1 T1 To CI_Z‘Q T3 T3
C{ O o‘o ofele
C Cs
N Triia
A transition to restart
mBack
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—¢ = (T1 ANx3) V (T1 Nx2 ANT3) V (T2 N 23)
L1 Lo L3
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—|¢ — (fl /\ .513’3) V (Tl A\ L9 /\fg) \V4 (EQ /\ $3)
L1 , Lo L3

L1 5131 L9 CBQ

L3 L3

|
Fix an aSS|gnment
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—¢ = (T1 ANx3) V (T1 Nx2 ANT3) V (T2 N 23)
L1 Lo L3

o o I

T L2 L2| L3
Jo BT QY
Co Cs

r A
N v

C1
If none enabled, Back is dead

({fTrue

Back
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) = (513‘1 A 373 261 NTo NI 513‘3 \/ (5132 /\ xS)

g gt

$1 $1 $2 T2 $3 X3

N
If & Is satlsflable, then the net Is not live

If the net is not live, then ¢ Is satistiable

Klj Irue

Back
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—|¢ — (fl /\513’3) V (Tl /\$2 /\fg) \V4 (fg /\$3)

|1 , Lo L3
() () ()
5131 5132 .2173
ofe Qoo Ol®
. True
Back
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Main consequence &

No polynomial algorithm to decide liveness of a
free-choice system exists

(unless P=NP)
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Exercise

Draw the net corresponding to the formula

To N (1 VT3V Tg) N (21 VT2) A (T1Vxy) A (ToVTy)

|s it satisfiable?
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Live and bounded
free-choice nets



Rank Theorem
(extended)

Theorem;:
A free-choice system (P, T,F,MO0) is live and bounded
Iff
. It has at least one place and one transition
. It Is connected
. Mo marks every proper siphon
. It has a positive S-invariant

. It has a positive T-invariant
.rank(N) = |Cn| - 1

OO, WN -

(where Cy is the set of clusters)
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A polynomial algorithm
for maximal siphon

A polynomial algorithm for computing maximal siphon in R

Input: Anet N =(P,T,F,My), RCP
Output: ) C R

Q=R

while (dp € Q), dt € ep, t £ Qo)
Q= Q\{p}

return ()

103 () is a siphon if () C (e



A polynomial algorithm for
maximal unmarked siphon

3. Mo marks every proper siphon

Input: Anet N = (P,T,F,My),|R={p| My(p) =0}
Output: () € R maximal unmarked siphon

Q=R

while (dp € Q, dt € ep, t £ Qo)
Q= Q\{p}

return ()

If Q is empty then Mo marks every proper siphon
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Main consequence

Given a free-choice system, the problem to decide
if it is live and bounded
can be solved in polynomial time
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S-coverability



A technique to find
positive S-invariant

Decompose the free-choice net in suitable S-nets so
that any place belong to an S-net

Sum up the S-invariants of each subnet
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S-component

Definition: Let N = (P,T,F)and ) C X C PUT
Let N =(PNX, TNX,FN(X x X)) be a subnet of V.
N’ is an S-component if

1. it is a strongly connected S-net

2. for every place p € X N P, we have ep Upe C X
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S-cover

Definition: Let C be a set of S-components of a net N

C is an S-cover if every place p of N
belongs to one or more S-components in C

We say that N is covered by S-components
if it has an S-cover
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S-cover: example

sl 3! 2 2




S-coverability theorem

Theorem: If a free-choice net N is live and bounded
then N is S-coverable

(proof omitted)



A technique to find
positive T-invariant

Decompose the free-choice net in suitable T-nets so
that any transition belong to a T-net

Sum up the T-invariants of each subnet
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T-component

Definition: Let N = (P,T,F)and ) C X C PUT
Let N =(PNX, TNX,FN(X x X)) be a subnet of V.
N’ is a T-component if

1. it is a strongly connected T-net

2. for every transition t € X N1, we have ot Ute C X
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T-cover

Definition: Let C be a set of T-components of a net N

C is a T-cover if every transition t of N
belongs to one or more T-components in C

We say that N is covered by T-components
if it has a T-cover

| 14



T-cover: example




T-coverability theorem

Theorem: If a free-choice net N is live and bounded
then N I1s T-coverable

(proof omitted)
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Exercise

Find an S-cover and a T-cover for the net below
and derive suitable S- and T-invariants

/ p2 t2 p4 t3 ps;i;

pl tl W tS ‘!’
p3 /D6

te
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Compositionality



Compositionality of
sound free-choice nets

Lemma:
If a free-choice workflow net N is sound
then it is safe

(because it is S-coverable and Mo=i has just one token)

Proposition:
If N and N’ are sound free-choice workflow nets
then N[N’/t] is a sound free-choice workflow net

(we just need to show that N[N'/t] is free-choice)
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