
Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

12 - Analysis of WF nets

1

http://www.di.unipi.it/~bruni

Object

2

We study suitable soundness properties
of Workflow nets

Ch.6 of Business Process Management: Concepts, Languages, Architectures

Bondedness, liveness

3

Boundedness? Liveness?

(P, T, F, M0)

∃k ∈ ℕ, ∀p ∈ P, ∀M ∈ [M0⟩, M(p) ≤ k

∀t ∈ T, ∀M ∈ [M0⟩, ∃M′￼ ∈ [M⟩, M′￼

t

Soundness
informally

4

Example: Reseller

5

Receive
Order

Send
Invoice

Ship
Products

Receive
Payment

Archive
Order

M
. W

es
ke

: B
us

in
es

s
 P

ro
ce

ss
 M

an
ag

em
en

t,
©

 S
pr

in
ge

r-
Ve

rla
g

 B
er

lin
 H

ei
de

lb
er

g
 2

00
7

6

Diagram verification

start / end

links

tasks

join / split

BPMN WfN EPC

Workflow net: idea

WFN

7

start

work

end

Workflow net

8

Definition:
A Petri net (P, T, F) is called workflow net if:

1. there is a distinguished initial place i � P with •i = ⇥

2. there is a distinguished final place o � P with o• = ⇥

3. every other place and transition belongs to a path from i to o

WF nets as business
processes

9



 

 

 

 



 

48













Transition realised by
another workflow net

Structural analysis

10

No distinguished entry / exit point

no entry: when should the case start?
no exit: when should the case end?

not a workflow net!

Structural analysis

11

Multiple entry / exit points

multiple entries: when should the case start?
multiple exit: when should the case end?

not a workflow net!

Structural analysis

12

Tasks t without incoming and/or outgoing arcs

no input: when should t be carried out?
no output: t does not contribute to case completion

not a workflow net!

Structural analysis

13

Wrong decorations of transitions

split with only one outgoing arc

join with only one incoming arc

non-sense: left to designer responsibility

Structural analysis

14

The definition of Workflow nets is purely structural
but already rules out many erroneous models

XXX

Structural properties

15

All the properties we have seen so far are
structural (or static)

(i.e., they depend on the shape of the graph,
on its connectivity or topology,

but NOT on the initial marking and enabled firings)

We also care about behavioural properties
(e.g., how the system can evolve,

which firing sequences will be possible,
which markings will be reachable)

A matter of terminology

16

To better reflect the above distinction, it is frequent:

to use the term net system for denoting a Petri net
with a given initial marking

(we study behavioural properties of systems)

to use the term net for denoting a Petri net
without specifying any initial marking
(we study structural properties of nets)

even if, in the case of workflow nets, the initial
markings will consist of one token in the initial place

Behavioural analysis

17

Structural correctness cannot rule out many other
problematic issues...

Behavioural analysis

18

Structural correctness cannot rule out many other
problematic issues...

dead!

Behavioural analysis

19

Structural correctness cannot rule out many other
problematic issues...

dead!

Behavioural analysis

20

Structural correctness cannot rule out many other
problematic issues...

dead!

Behavioural analysis

21

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

Behavioural analysis

22

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

Behavioural analysis

23

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

Behavioural analysis

24

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

Behavioural analysis

25

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

Behavioural analysis

26

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

Behavioural analysis

27

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

Behavioural analysis

28

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

Behavioural analysis

29

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

Behavioural analysis

30

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

looks fine but...

Behavioural analysis

31

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

let's roll
back in time

Behavioural analysis

32

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

Behavioural analysis

33

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

Behavioural analysis

34

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

Behavioural analysis

35

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

pending tokens
and activities

upon completion!

Behavioural analysis

36

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

pending tokens
and activities

upon completion!
let's roll

back in time

Behavioural analysis

37

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

we could have
prevented the

problem...

Behavioural analysis

38

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

we could have
prevented the

problem...

Behavioural analysis

39

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

we could have
prevented the

problem...

Behavioural analysis

40

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

we could have
prevented the

problem...

Behavioural analysis

41

Structural correctness cannot rule out many other
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

we could have
prevented the

problem...
but we want to
make sure it

cannot happen

A case is trapped in a cycle with no opportunity to end

can arise in workflow nets

Livelock

42

A case is trapped in a cycle with no opportunity to end

can arise in workflow nets

Livelock

43

Remark

44

All the previous flaws are typical errors that
can be detected

without any knowledge about the actual goal
of the Business Process

System validation and
verification

45

Validation is concerned with
the relation between the model and the reality

How does a model fit log files?
Which model does fit better?

Verification aims to answer qualitative questions
Is there a deadlock possible?

Is it possible to successfully handle a specific case?
Will all cases terminate eventually?

Is it possible to execute a certain task?

Language of a workflow net

46

The language of a workflow net is the set of
firing sequences that lead from marking to marking i o

A

L(N) = {� | i ��! o}
<latexit sha1_base64="jdR0mJ+7v3IQVKKHtWMm1Sy24z8=">AAACJHicbVC7SgRBEJz17fk6NTQZPARNZFcETQTRxEBEwTuF2+PonWvPxpndZabXB8v9hp/gV5hqZCYGBvot7j0CXxUVVd10V0WpJse+/+4NDY+Mjo1PTJampmdm58rzCzWXZFZhVSU6secRONQUY5WJNZ6nFsFEGs+iq/2uf3aN1lESn/Jdig0D7ZguSAEXUrPsH64erckdGeYydNQ2IENDLUkyvLXUvmSwNrnJ+1ZHJmGnWa74634P8i8JBqQiBjhulj/CVqIygzErDc7VAz/lRg6WSWnslMLMYQrqCtpYL2gMBl0j7yXryJXMAScyRStJy56I3zdyMM7dmaiYNMCX7rfXFf/z6hlfbDdyitOMMVbdQ0wae4ecslRUhrJFFpmh+zlKiqUCC8xoSYJShZgVHZaKPoLf6f+S2sZ6UPCTzcru3qCZCbEklsWqCMSW2BUH4lhUhRL34lE8iWfvwXvxXr23/uiQN9hZFD/gfX4BKCakJQ==</latexit><latexit sha1_base64="jdR0mJ+7v3IQVKKHtWMm1Sy24z8=">AAACJHicbVC7SgRBEJz17fk6NTQZPARNZFcETQTRxEBEwTuF2+PonWvPxpndZabXB8v9hp/gV5hqZCYGBvot7j0CXxUVVd10V0WpJse+/+4NDY+Mjo1PTJampmdm58rzCzWXZFZhVSU6secRONQUY5WJNZ6nFsFEGs+iq/2uf3aN1lESn/Jdig0D7ZguSAEXUrPsH64erckdGeYydNQ2IENDLUkyvLXUvmSwNrnJ+1ZHJmGnWa74634P8i8JBqQiBjhulj/CVqIygzErDc7VAz/lRg6WSWnslMLMYQrqCtpYL2gMBl0j7yXryJXMAScyRStJy56I3zdyMM7dmaiYNMCX7rfXFf/z6hlfbDdyitOMMVbdQ0wae4ecslRUhrJFFpmh+zlKiqUCC8xoSYJShZgVHZaKPoLf6f+S2sZ6UPCTzcru3qCZCbEklsWqCMSW2BUH4lhUhRL34lE8iWfvwXvxXr23/uiQN9hZFD/gfX4BKCakJQ==</latexit><latexit sha1_base64="jdR0mJ+7v3IQVKKHtWMm1Sy24z8=">AAACJHicbVC7SgRBEJz17fk6NTQZPARNZFcETQTRxEBEwTuF2+PonWvPxpndZabXB8v9hp/gV5hqZCYGBvot7j0CXxUVVd10V0WpJse+/+4NDY+Mjo1PTJampmdm58rzCzWXZFZhVSU6secRONQUY5WJNZ6nFsFEGs+iq/2uf3aN1lESn/Jdig0D7ZguSAEXUrPsH64erckdGeYydNQ2IENDLUkyvLXUvmSwNrnJ+1ZHJmGnWa74634P8i8JBqQiBjhulj/CVqIygzErDc7VAz/lRg6WSWnslMLMYQrqCtpYL2gMBl0j7yXryJXMAScyRStJy56I3zdyMM7dmaiYNMCX7rfXFf/z6hlfbDdyitOMMVbdQ0wae4ecslRUhrJFFpmh+zlKiqUCC8xoSYJShZgVHZaKPoLf6f+S2sZ6UPCTzcru3qCZCbEklsWqCMSW2BUH4lhUhRL34lE8iWfvwXvxXr23/uiQN9hZFD/gfX4BKCakJQ==</latexit><latexit sha1_base64="jdR0mJ+7v3IQVKKHtWMm1Sy24z8=">AAACJHicbVC7SgRBEJz17fk6NTQZPARNZFcETQTRxEBEwTuF2+PonWvPxpndZabXB8v9hp/gV5hqZCYGBvot7j0CXxUVVd10V0WpJse+/+4NDY+Mjo1PTJampmdm58rzCzWXZFZhVSU6secRONQUY5WJNZ6nFsFEGs+iq/2uf3aN1lESn/Jdig0D7ZguSAEXUrPsH64erckdGeYydNQ2IENDLUkyvLXUvmSwNrnJ+1ZHJmGnWa74634P8i8JBqQiBjhulj/CVqIygzErDc7VAz/lRg6WSWnslMLMYQrqCtpYL2gMBl0j7yXryJXMAScyRStJy56I3zdyMM7dmaiYNMCX7rfXFf/z6hlfbDdyitOMMVbdQ0wae4ecslRUhrJFFpmh+zlKiqUCC8xoSYJShZgVHZaKPoLf6f+S2sZ6UPCTzcru3qCZCbEklsWqCMSW2BUH4lhUhRL34lE8iWfvwXvxXr23/uiQN9hZFD/gfX4BKCakJQ==</latexit>

 defines all the admissible traces of the workflowL(N)

Question time: L(N)

47

 ABCE , ADE L(N) = { }

Question time: L(N)

48

L(N) = Ø

Question time: L(N)

49

 ABCDE , ABDCE L(N) = { }

Question time: L(N)

50

 ABDE , ABDCBDE , ABDCBDCBDE ,
ABDCBDCBDCBDE , ABDCBDCBDCBDCBDE , ...

L(N) = {
}

 ABD(CBD) E L(N) = { k ∣ k ≥ 0}

Question time: L(N)

51

<latexit sha1_base64="PlalkmD0dOIo3LtrScPsLCMv+iU=">AAACV3icbZC5TgMxEIad5QrhClDSWERIoYl2EVeDgKShQCggAkjZEHmdSbDiPbBnkdBqeT8eIQXPQAsVOEtAXFN9/mdG8/v3Iik02vYgZ42NT0xO5acLM7Nz8wvFxaULHcaKQ4OHMlRXHtMgRQANFCjhKlLAfE/CpdevDfuXd6C0CINzvI+g5bNeILqCMzRSu8iPyyfr1NXIeF+BTPbTZC+lbkJdn+GN7iaH6UP5k6vpwyeeOd94I12/7n89a2bfFx3ad3twS203bRdLdsXOiv4FZwQlMqp6u/jkdkIe+xAgl0zrpmNH2EqYQsElpAU31hAZw6wHTYMB80G3kiyMlK7FmmFII1BUSJqJ8H0jYb7W975nJjPDv3tD8b9eM8bubisRQRQjBHx4CIWE7JDmSpiUgXaEAkQ2dA5UBJQzxRBBCco4N2JsYi+YPJzfv/8LFxsVZ7uydbpZOqiOksmTFbJKysQhO+SAHJE6aRBOHskzeSGvuUHuzZq08h+jVm60s0x+lLX4Dqipt3M=</latexit>

L(N)
?
= {A (B R1 R2)k C | k � 0}

<latexit sha1_base64="sEpjnLs4h6jcCReMl3KRbJ5BACI=">AAACYnicbZFNTxsxEIa9CxRIaRvIkR4sokrhEu2i8nFBQHLhUFW0IoCUTSOvMwlWvN7FnkWKVptfyYUDN34FJ5xt0oaPOT1+Z8Yzfh0mUhj0vHvHXVhc+rC8slr6uPbp85fy+saFiVPNocVjGeurkBmQQkELBUq4SjSwKJRwGQ6bk/zlLWgjYnWOowQ6ERso0RecoZW6ZfWj9nObBgYZH2qQ2VGeHeY0yGgQMbw2/ewkH9dm3MjHM/ztz/HOf27k23+G/05Ne1UkenQYDOCGekHeLVe9ulcEfQv+FKpkGmfd8kPQi3kagUIumTFt30uwkzGNgkvIS0FqILG7swG0LSoWgelkhS85/ZYahjFNQFMhaSHCfEfGImNGUWgri4Vf5ybie7l2iv2DTiZUkiIoPhmEQkIxyHAtrOFAe0IDIptsDlQoyplmiKAFZZxbMbU/ULJ++K9f/xYudur+Xn331/fqcWPqzArZJFukRnyyT47JKTkjLcLJHXlyFpxF59Etuetu5W+p60x7KuRFuF+fAbuJuXs=</latexit>

L(N)
?
= {A (B R1 R2 B)k C | k � 0}

<latexit sha1_base64="w2eeR6mXdhH4mtKsmRjuTLHV258=">AAACYnicbVFNbxoxEPVuaJvQj5BwTA5WUSW4oN2oaXOJQuGSQxXRqCRILEVeM1ALr3drz1aKVsuv7KWH3PIrcqrZQEpD5/T83ozn+TlMpDDoeb8dd6v07PmL7Z3yy1ev3+xW9vavTJxqDj0ey1j3Q2ZACgU9FCihn2hgUSjhOpx1Fvr1T9BGxOor3iQwjNhUiYngDC01qqjP9YsGDQwyPtMgs7M8O81pkNEgYvjdTLJP+XwF2/m8vsKX/l/+8mi9p/Ft9njq2KsiMaazYAo/qBfko0rNa3pF0U3gL0GNLKs7qtwG45inESjkkhkz8L0EhxnTKLiEvBykBhLrnU1hYKFiEZhhVuSS03epYRjTBDQVkhYkrE9kLDLmJgptZ2H4qbYg/6cNUpycDDOhkhRB8cUiFBKKRYZrYQMHOhYaENnCOVChKGeaIYIWlHFuydT+QNnm4T99/Sa4Omr6H5rHX97XWu1lMtvkgLwldeKTj6RFzkmX9Agnv8i9s+WUnDu37O651YdW11nOVMk/5R7+Ab5ouXs=</latexit>

L(N)
?
= {A B (R1 R2 B)k C | k � 0}

<latexit sha1_base64="+dw7F7YUbbj/KmMFZM1JA713T7o=">AAACYnicbZE7T8MwEMed8C6vAiMMFhVSWaoE8VoQr4UBIUAUkJpSOe61WHWcYF+QUJR+ShYGNj4FE24oEq+bfvrfne/u7zCRwqDnvTjuyOjY+MTkVGl6ZnZuvryweG3iVHOo81jG+jZkBqRQUEeBEm4TDSwKJdyEveNB/uYRtBGxusKnBJoR6yrREZyhlVpldVo9W6eBQcZ7GmS2n2d7OQ0yGkQM700nO8z71S8+yvtfeOl/4418/a7X/6fq2D4ViTbtBV14oF6Qt8oVr+YVQf+CP4QKGcZ5q/watGOeRqCQS2ZMw/cSbGZMo+AS8lKQGkjs7qwLDYuKRWCaWeFLTtdSwzCmCWgqJC1E+N6RsciYpyi0lcXCv3MD8b9cI8XObjMTKkkRFB8MQiGhGGS4FtZwoG2hAZENNgcqFOVMM0TQgjLOrZjaHyhZP/zf1/+F642av13butisHBwNnZkky2SVVIlPdsgBOSHnpE44eSbvzogz6ry5JXfBXfosdZ1hzxL5Ee7KB7gquXs=</latexit>

L(N)
?
= {A (B R1 R2)k B C | k � 0} Yes

Yes

No

No

Question time

52

Consider the workflow net below

How many times can A be executed?
How many times can B be executed?
Can a firing sequence contain two As in a row?
Can a firing sequence contain two Bs in a row?
Can a firing sequence contain more Bs than As?

Question time

53

Consider the workflow net below

How many times can A be executed?
How many times can B be executed?
Can a firing sequence contain two As in a row?
Can a firing sequence contain two Bs in a row?
Can a firing sequence contain more Bs than As?

1 or more
0 or more

yes
no
no

Simulation

54

Test analysis
Try and see which firing sequences are possible

Using WoPeD:
Play (forward and backward) with net tokens

Record certain runs (to replay or explain)
Randomly select alternatives

Problem: how to make sure that all possible runs have
been examined?

Reachability analysis

55

All possible runs of a workflow net are represented in its
Reachability / Coverability Graph

Using WoPeD:
all reachable states are shown

(a single run does not necessarily visit all nodes)
End states are evident (no outgoing arc)

Useful to check if dangerous or undesired states can arise
(e.g. the green-green state in the two-traffic-lights)

Problem: state explosion

56

Reachability analysis

Reachability analysis

57

Problem: state explosion

Exercise

58

Do you see any problem in the workflow net below?

Deadlock

Exercise

59

Do you see any problem in the workflow net below?

Some tokens left in the net after case completion

Exercise

60

Which problem(s) in the workflow net below?
How would you redesign the business process?

Exercise

61

Which problem(s) in the workflow net below?
How would you redesign the business process?

Exercise

62

Which problem(s) in the workflow net below?
How would you redesign the business process?

Exercise

63

Which problem(s) in the workflow net below?
How would you redesign the business process?

Some tokens left in the net after case completion

Exercise

64

Which problem(s) in the workflow net below?
How would you redesign the business process?

Some tokens left in the net after case completion

Exercise

65

Which problem(s) in the workflow net below?
How would you redesign the business process?

Some activities take place after case completion

Exercise

66

Which problem(s) in the workflow net below?
How would you redesign the business process?

Additional transitions needed
(dealing with all check failures)

Exercise

67

Which problem(s) in the workflow net below?
How would you redesign the business process?

Soundness

68

Soundness
of Business Processes

69

A process is called sound if

1. it contains no unnecessary tasks

2. every case, once started, can always be completed in full

3. no pending items are left upon case completion

70

Business
Process

i o

Soundness
of Business Processes

Soundness
of Workflow nets

71

A workflow net is called sound if

1. for each transition t,

there is a marking M (reachable from i) that enables t

2. for each token put in place i,

one token eventually appears in the place o

3. when a token is in place o, all other places are empty

Fairness assumption

72

Remark:
Condition 2 does not mean that iteration must be forbidden or bound

It says that from any reachable marking M
there must be possible to reach o in some steps

Fairness assumption:
A task cannot be postponed indefinitely

OK

73

Soundness, Formally
A workflow net is called sound if

no dead task no transition is dead

8t 2 T. 9M 2 [i i. M t!

option to complete place o is eventually marked

8M 2 [i i. 9M 0 2 [M i. M 0(o) � 1

proper completion when o is marked, no other token is left

8M 2 [i i. M(o) � 1) M = o

1: no dead tasks

74

?

Reachable marking that enables the
transition

1: no dead tasks

75

The check must be repeated for each task

2: option to complete

76

?

Able to produce one token in o

2: option to complete

77

The check must be repeated for each reachable marking

3: proper completion

78

?

We must show that it is
not a reachable marking

3: proper completion

79

The check must be repeated for each marking
such that

M
M > o

Brute-force analysis

80

First, check if the Petri net is a workflow net
easy "structural" check

Second, check if it is sound (more difficult):
build the Reachability Graph

to check 1: for each transition t there must be an arc in the
RG that is labelled with t

to check 2&3: the RG must have only one final state (sink),
that consists of one token in o

and is reachable from any other state,
and no other marking has a token in o

Some Pragmatic
Considerations

81

All checks can better be done automatically
(computer aided)

but nevertheless RG construction...
1. can be computationally expensive for large nets
 (because of state explosion)
2. provides little support in repairing unsound processes
3. can be infinite (CG can be used, but it is not exact)

Advanced support

82

Translate soundness to other well-known properties that
can be checked more efficiently:

boundedness and liveness

N*

83

84

Business
Process

i o

Play once

85

Business
Process

i o

reset

Play twice

86

Business
Process

i o

reset

Play any number of times

From N to N*

87

Let us denote by N : i ! o a workflow net
with entry place i and exit place o.

Let N⇤ be the net obtained by adding the “reset” transition to N
reset : o ! i.

Proposition:
N⇤ is strongly connected.

MAIN THEOREM

88

Let us denote by N : i � o a workflow net
with entry place i and exit place o

Let N� be the net obtained by adding the ”reset” transition to N
reset : o � i

Theorem:
N is sound i� N� is live and bounded

MAIN THEOREM

89

Let us denote by N : i � o a workflow net
with entry place i and exit place o

Let N� be the net obtained by adding the ”reset” transition to N
reset : o � i

Theorem:
N is sound i� N� is live and bounded
1 no dead tasks
2 option to complete
3 proper completion

at any reachable marking, every transition can fire in the future
and
for some k, every place will contain less than k tokens

⇐ 1
2 ⇒

3 ⇒

Proof of MAIN
THEOREM (1)

90

N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [i ⇧. M t⇤

Take any M ⌅ [i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live

(⇐)
N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [i ⇧. M t⇤

Take any M ⌅ [i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live

N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [i ⇧. M t⇤

Take any M ⌅ [i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live

N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [i ⇧. M t⇤

Take any M ⌅ [i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live

N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [i ⇧. M t⇤

Take any M ⌅ [i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live

A technical lemma

91

Lemma:
If N is sound, M is reachable in N i� M is reachable in N⇥

⌅) straightforward

⇤) Let i
��⇥ M in N⇥ for � = t1t2...tn

We proceed by induction on the number r of instances of reset in �
If r = 0, then reset does not occur in � and M is reachable in N
If r > 0, let k be the least index such that tk = reset
Let � = �⇤tk�⇤⇤ with �⇤ = t1t2...tk�1 fireable in N

Since N is sound: i
��
�⇥ o and i

���
�⇥ M

Since �⇤⇤ contains r � 1 instances of reset :
by inductive hypothesis M is reachable in N

Proof of MAIN
THEOREM (2)

92

N sound implies N� bounded :
We proceed by contradiction, assuming N� is unbounded

Since N� is unbounded:
⌃M,M ⇥ such that i ⇤� M ⇤� M ⇥ with M ⇥ M ⇥

Let L = M ⇥ �M ⇧= ⌥

Since N is sound:
⌃� ⌅ T � such that M

�⇤ o

By the monotonicity Lemma: M ⇥ �⇤ o+ L and thus o+ L ⌅ [i �
Which is absurd, because N is sound

(⇒)

Proof of MAIN
THEOREM (3)

93

N sound implies N� live:
Take any transition t and let M be a marking reachable in N�

By the technical lemma, M is reachable in N

Since N is sound: ⌅� ⇤ T � with M
��⇥ o

Since N is sound: ⌅�⇥ ⇤ T � with i
��
�⇥ M ⇥ and M ⇥ t⇥

Let �⇥⇥ = � reset �⇥, then:

M
���
�⇥ M ⇥ in N� and M ⇥ t⇥

(⇐)

A theorem on strong
connectedness

(whose proof we omit)

94

Paths and circuits

95

<latexit sha1_base64="j2PtaHNuYRWytwFKE38h2+eIFgU=">AAAB+XicbVDLSsNAFJ3UV62vqks3g0WoUEoiii6Lgris0Be0oUymt3XoZBJmboQS+hFudeVO3Po1LvwXk5iFtp7V4Zx7ueceL5TCoG1/WoWV1bX1jeJmaWt7Z3evvH/QMUGkObR5IAPd85gBKRS0UaCEXqiB+Z6Erje9Sf3uI2gjAtXCWQiuzyZKjAVnmEjdarPWqt2eDssVu25noMvEyUmF5GgOy1+DUcAjHxRyyYzpO3aIbsw0Ci5hXhpEBkLGp2wC/YQq5oNx4yzunJ5EhmFAQ9BUSJqJ8HsjZr4xM99LJn2GD2bRS8X/vH6E4ys3FiqMEBRPD6GQkB0yXIukB6AjoQGRpcmBCkU50wwRtKCM80SMkmJKSR/O4vfLpHNWdy7q9v15pXGdN1MkR+SYVIlDLkmD3JEmaRNOpuSJPJMXK7ZerTfr/We0YOU7h+QPrI9vI5+S3A==</latexit>

(P, T, F)

<latexit sha1_base64="yuxXsl8ePLGeh2ErsPjOg7PW1io=">AAACQ3icZVBNbxMxEPWWj5blK5QjF4sUiQur3UiIHgu9cKNIpK2URCuvM9tYsb3GM0aJVvlZ/Qn9EQhxgxM3xBUJZ8kBmnd6em9GM+9VTiukPP+c7Ny4eev27t6d9O69+w8e9h7tn2ITvIShbHTjzyuBoJWFISnScO48CFNpOKvmx2v/7BN4VI39QEsHEyMurKqVFBSlsveuHWOdvuZjggVVdesEzVZcIRfcNvYFGEdLjvAxgJXAmzqqU8D0YFEWi3KQZdminB9wDHLGaSZoVfb6eZZ34Nuk2JA+2+Ck7H0dTxsZDFiSWiCOitzRpBWelNSwSscBwQk5FxcwitQKAzhpu+Ar/iygoIY78Fxp3onw70YrDOLSVHHSxGB43TNd2m1vFKg+nLTKukAx+PoQKQ3dIZRexUaBT5UHIrH+HLiyXAoviMArLqSMYogVp7GP4nr6bXI6yIqXWf5+0D96s2lmjz1hT9lzVrBX7Ii9ZSdsyCS7ZF/YN/Y9uUp+JD+TX39Hd5LNzmP2H5LffwBy9rAs</latexit>

A path is a non-empty sequence of nodes x1x2...xk such that
<latexit sha1_base64="mDBSsefsDkAI/dVA716YSUqdfjU=">AAACB3icbVDLSsNAFJ3UV62vaJduBotQUUoiii6LgrisYB/QhjCZ3tbByYOZG2kJ/QC/wq2u3IlbP8OF/2ISu9DWszqccy/33ONFUmi0rE+jsLC4tLxSXC2trW9sbpnbOy0dxopDk4cyVB2PaZAigCYKlNCJFDDfk9D27i8zv/0ASoswuMVxBI7PhoEYCM4wlVyzXB254mjkJuLQnhzQngjolWtWrJqVg84Te0oqZIqGa371+iGPfQiQS6Z117YidBKmUHAJk1Iv1hAxfs+G0E1pwHzQTpKHn9D9WDMMaQSKCklzEX5vJMzXeux76aTP8E7Pepn4n9eNcXDuJCKIYoSAZ4dQSMgPaa5E2grQvlCAyLLkQNPfOVMMEZSgjPNUjNOaSmkf9uz386R1XLNPa9bNSaV+MW2mSHbJHqkSm5yROrkmDdIknIzJE3kmL8aj8Wq8Ge8/owVjulMmf2B8fAODjJf8</latexit>

(xi, xi+1) 2 F
<latexit sha1_base64="ooOZ0DnMcvb+JRBNxLdNmLXYmCw=">AAACE3icbVC7TsNAEDyHVwgvAyUFJxIkqsiOhKCMoKEMEnlIcRSdL+twyvnB3RopslLyCXwFLVR0iJYPoOBfsI0LSJjiNJrZ1d6MG0mh0bI+jdLS8srqWnm9srG5tb1j7u51dBgrDm0eylD1XKZBigDaKFBCL1LAfFdC151cZn73HpQWYXCD0wgGPhsHwhOcYSoNzcPE0R71QkUhHZvSmu1IuKMifye12dCsWnUrB10kdkGqpEBraH45o5DHPgTIJdO6b1sRDhKmUHAJs4oTa4gYn7Ax9FMaMB/0IMmDzOhxrBmGNAJFhaS5CL83EuZrPfXddNJneKvnvUz8z+vH6J0PEhFEMULAs0MoJOSHNFcijQ50JBQgsuznQEVAOVMMEZSgjPNUjNPKKmkf9nz6RdJp1O3TunXdqDYvimbK5IAckRNikzPSJFekRdqEkwfyRJ7Ji/FovBpvxvvPaMkodvbJHxgf3xM+nTA=</latexit>

for every 1  i  k

<latexit sha1_base64="ZVwhnacVljXBGtFl1k8lC10Aus4=">AAACIXicbVC7TsNAEDzzJrwClDQnEiQaIjsSgjKChhIkApGSKFpfNuGU89m6WwORla/gE/gKWqjoEB1C/Au2SQEJU41mdjW740dKWnLdD2dmdm5+YXFpubCyura+UdzcurJhbATWRahC0/DBopIa6yRJYSMyCIGv8NofnGb+9S0aK0N9ScMI2wH0texJAZRKneJB0rI9DrrL75BbGHJJXCF0Le+ZMODl+45X5hRmZFAedYolt+Lm4NPEG5MSG+O8U/xqdUMRB6hJKLC26bkRtRMwJIXCUaEVW4xADKCPzZRqCNC2k/ytEd+LLaTRERouFc9F/L2RQGDtMPDTyQDoxk56mfif14ypd9xOpI5iQi2yIJIK8yArjEz7Qt6VBokguxy51FyAASI0koMQqRinBRbSPrzJ76fJVbXiHVbci2qpdjJuZontsF22zzx2xGrsjJ2zOhPsgT2xZ/biPDqvzpvz/jM644x3ttkfOJ/fYdmh9A==</latexit>

and we say it leads from x1 to xk

<latexit sha1_base64="dssHeoxl2/zbZ7el2/n+BIr93jc=">AAACL3icbVDLbhNBEJx1IBhDEgNHLiPsSDmtdi1FicTFwIWjkfBDsq1V77jXaXn2oZleZGvlj+ET+Aqu5IQ4gLjmLzI2PoBNnUpV3equigtNloPgh1c7evDw+FH9cePJ05PTs+az5wObl0ZhX+U6N6MYLGrKsM/EGkeFQUhjjcN48W7jDz+hsZRnH3lV4DSFeUYJKWAnRc3X1cQm8o0sgG9kexmFy6jj+/4yWrQlWalAa5xJkBPGJcdJpciokngtKVlHzVbgB1vIQxLuSEvs0IuaPyezXJUpZqw0WDsOg4KnFRgmpXHdmJQWC1ALmOPY0QxStNNqG3Itz0sLnMsCjSQttyL+vVFBau0qjd1k6sLYfW8j/s8bl5xcTyvKipIxU5tDTBq3h6wy5NpDOSODzLD5HCVlrhcDzGhIglJOLF2dDddHuJ/+kAw6fnjpBx86re7bXTN18VK8EhciFFeiK96LnugLJT6Lr+KbuPW+eN+9X97vP6M1b7fzQvwD7+4e5aioBQ==</latexit>

A path x1x2...xk is called a circuit if
<latexit sha1_base64="prmaXyXkJ9GVPl3WZuiL+PBWsYE=">AAACKXicbVDLSgNBEJz1bXxFPXoZjIKChN2A6DEoiEcFo0ISlt5JR4fMzi4zvWJY8iV+gl/hVU/eVPDkjzgbc/BVp6Kqm+6qKFXSku+/emPjE5NT0zOzpbn5hcWl8vLKuU0yI7AhEpWYywgsKqmxQZIUXqYGIY4UXkS9w8K/uEFjZaLPqJ9iO4YrLbtSADkpLO/mLdvloBSXZLlOOmg5GOQdd1pqQRx0h29s3Ya9ndsw2G5JzY82BmG54lf9IfhfEoxIhY1wEpbfW51EZDFqEgqsbQZ+Su0cDEmhcFBqZRZTED24wqajGmK07XwYb8A3MwuU8BQNl4oPRfy+kUNsbT+O3GQMdG1/e4X4n9fMqLvfzqVOM0ItikMkFQ4PWWGk660owiARFJ8jd+kFGCBCIzkI4cTMFVlyfQS/0/8l57VqsFv1T2uV+sGomRm2xtbZFgvYHquzY3bCGkywO/bAHtmTd+89ey/e29fomDfaWWU/4H18Agj+pWg=</latexit>

all its nodes are distinct and (xk, x1) 2 F
<latexit sha1_base64="AecvNeK45D6wJc6lZ62Kozwp/jU=">AAACS3icbVA9bxNBEN0zBIL5MlDSjLCRghRZd5EQlBFIiDJIOI5kW9bcehyPsrd32plLbJ380/gJ/AAKKlqo6BAFd44LSHja4um9eZrZlxaOReP4S9S6cXPn1u3dO+279+4/eNh59PhY8jJYGtjc5eEkRSHHngbK6uikCIRZ6miYnr1t/OE5BeHcf9RVQZMMTz3P2aLW0rQzrMYyB2FvCXRBgYAFfF6/GUFv2YML1gX09pb7yxdj9vCutw/oV2A52JIVFiiACo5QFPTiMiiwnna6cT/eAK6TZEu6ZoujaefreJbbMiOv1qHIKIkLnVQYlK2jdXtcChVoz/CURjX1mJFMqk0Ba3heCmoOBQVgBxuR/k5UmImssrSezFAXctVrxP95o1LnrycV+6JU8rZZpOxos0hs4POmsBkHUsXm8ro9DxYDqlJgQGtrsayrbtd9JFd/f50cH/STl/34w0H38M22mV3z1DwzeyYxr8yheW+OzMBY88l8M9/Nj+hz9DP6Ff2+HG1F28wT8w9aO38AxF6xHQ==</latexit>

since there is no node x with (x, x) 2 F , any circuit has at least two nodes

Paths and circuits

96

<latexit sha1_base64="j2PtaHNuYRWytwFKE38h2+eIFgU=">AAAB+XicbVDLSsNAFJ3UV62vqks3g0WoUEoiii6Lgris0Be0oUymt3XoZBJmboQS+hFudeVO3Po1LvwXk5iFtp7V4Zx7ueceL5TCoG1/WoWV1bX1jeJmaWt7Z3evvH/QMUGkObR5IAPd85gBKRS0UaCEXqiB+Z6Erje9Sf3uI2gjAtXCWQiuzyZKjAVnmEjdarPWqt2eDssVu25noMvEyUmF5GgOy1+DUcAjHxRyyYzpO3aIbsw0Ci5hXhpEBkLGp2wC/YQq5oNx4yzunJ5EhmFAQ9BUSJqJ8HsjZr4xM99LJn2GD2bRS8X/vH6E4ys3FiqMEBRPD6GQkB0yXIukB6AjoQGRpcmBCkU50wwRtKCM80SMkmJKSR/O4vfLpHNWdy7q9v15pXGdN1MkR+SYVIlDLkmD3JEmaRNOpuSJPJMXK7ZerTfr/We0YOU7h+QPrI9vI5+S3A==</latexit>

(P, T, F)

<latexit sha1_base64="ooOZ0DnMcvb+JRBNxLdNmLXYmCw=">AAACE3icbVC7TsNAEDyHVwgvAyUFJxIkqsiOhKCMoKEMEnlIcRSdL+twyvnB3RopslLyCXwFLVR0iJYPoOBfsI0LSJjiNJrZ1d6MG0mh0bI+jdLS8srqWnm9srG5tb1j7u51dBgrDm0eylD1XKZBigDaKFBCL1LAfFdC151cZn73HpQWYXCD0wgGPhsHwhOcYSoNzcPE0R71QkUhHZvSmu1IuKMifye12dCsWnUrB10kdkGqpEBraH45o5DHPgTIJdO6b1sRDhKmUHAJs4oTa4gYn7Ax9FMaMB/0IMmDzOhxrBmGNAJFhaS5CL83EuZrPfXddNJneKvnvUz8z+vH6J0PEhFEMULAs0MoJOSHNFcijQ50JBQgsuznQEVAOVMMEZSgjPNUjNPKKmkf9nz6RdJp1O3TunXdqDYvimbK5IAckRNikzPSJFekRdqEkwfyRJ7Ji/FovBpvxvvPaMkodvbJHxgf3xM+nTA=</latexit>

for every 1  i  k

<latexit sha1_base64="c5bXFizM09vdag5tZxVtWuKqvqY=">AAACSnicZVA9bxNBEN1zAoTjIyaUNKs4SDSc7iyhUAZoKIOEnUi2ddpbz4WVd/eWnVlk6+R/xk/gD1DQ0EJFh2hYHy5I/Kqn92Y0817ltELK869Jb2//1u07B3fTe/cfPDzsPzoaYxO8hJFsdOMvK4GglYURKdJw6TwIU2m4qBZvNv7FJ/CoGvueVg5mRlxZVSspKEplf9xOsU5fWT4lWFJVt8HOlQdJMOdO0Ic1V8gFt419DsbRiiN8DGAl8KaO6hwwPVmWxbIcZlm2LBcnHDPK1mV/kGd5B75Lii0ZsC3Oy/636byRwYAlqQXipMgdzVrhSUkN63QaEJyQC3EFk0itMICztsu/5k8DCmq4A8+V5p0I/2+0wiCuTBUnTcyENz3TBd31JoHql7NWWRcoZt4cIqWhO4TSq1gs8E1dRGLzOXBluRReEIFXXEgZxRCbTmMfxc30u2Q8zIoXWf5uODh7vW3mgD1hx+wZK9gpO2Nv2TkbMck+s+/sB/uZfEl+Jb+TP/9Ge8l25zG7ht7+Xzsesec=</latexit>

An undirected path is a non-empty sequence of nodes x1x2...xk s.t.
<latexit sha1_base64="WdYY63t9mv7MyD64ibyFxGQpJHo=">AAACFHicbVC7TgJBFJ3FF+ILtbSZSEwwKtk1Gi2JJsQSE3kkgJvZ4YITZh+ZuWsgG1o/wa+w1crO2Npb+C8OSKHgqU7OuTf3nuNFUmi07U8rNTe/sLiUXs6srK6tb2Q3t6o6jBWHCg9lqOoe0yBFABUUKKEeKWC+J6Hm9S5Hfu0elBZhcIODCFo+6waiIzhDI7lZmu+74rDvJuLAGe7TpghovtTkcURLt8mRkdxszi7YY9BZ4kxIjkxQdrNfzXbIYx8C5JJp3XDsCFsJUyi4hGGmGWuIGO+xLjQMDZgPupWMkwzpXqwZhjQCRYWkYxF+byTM13rge2bSZ3inp72R+J/XiLFz3kpEEMUIAR8dQiFhfEhzJUxFQNtCASIbfQ7UFMGZYoigBGWcGzE2nWVMH850+llSPS44pwX7+iRXvJg0kyY7ZJfkiUPOSJFckTKpEE4eyBN5Ji/Wo/VqvVnvP6Mpa7KzTf7A+vgGIvmcjQ==</latexit>

(xi, xi+1) 2 (F [F�1)
(denotes the inverse of a binary relation)

<latexit sha1_base64="VhzlVRD699GttsxK3VF/vNVwv64=">AAACHXicbVDLSgNBEJz1GeMr6tHLYBASWMOuKHoRgkLwGME8IBvD7KQTB2cfzPSKYck3+Al+hVc9eROv4sF/cRJz0Gidiqpuuqv8WAqNjvNhzczOzS8sZpayyyura+u5jc26jhLFocYjGammzzRIEUINBUpoxgpY4Eto+DdnI79xC0qLKLzEQQztgPVD0ROcoZE6uWLlKt1zh/SEeqlnFwb2XdGzvUB0PZsW7uxB0RMhrRhp2MnlnZIzBv1L3AnJkwmqndyn1414EkCIXDKtW64TYztlCgWXMMx6iYaY8RvWh5ahIQtAt9NxpCHdTTTDiMagqJB0LMLPjZQFWg8C30wGDK/1tDcS//NaCfaO26kI4wQh5KNDKCSMD2muhOkKaFcoQGSjz4Ga/JwphghKUMa5ERNTXtb04U6n/0vq+yX3sORcHOTLp5NmMmSb7JACcckRKZNzUiU1wsk9eSRP5Nl6sF6sV+vte3TGmuxskV+w3r8AcLqfQA==</latexit>

F�1 = { (y, x) | (x, y) 2 F }

(a path where we disregard the orientation of arcs)

Connectedness

97

<latexit sha1_base64="TSf5rmSClnZa43P5MfFkNhH6n9Y=">AAACKXicbVDLSgNBEJyN7/ha9ehlMAoKEnYDokcfIB4jGBWSEHonvTpkdnaZ6VXDki/xE/wKr3rypoInf8RNzEGNdSqquumuChIlLXnem1MYG5+YnJqeKc7OzS8sukvL5zZOjcCaiFVsLgOwqKTGGklSeJkYhChQeBF0jvr+xQ0aK2N9Rt0EmxFcaRlKAZRLLXcna9iweMA1El/frG6fbR9vrXNpeYPwjoIwu0XoqC4XsdYoCNs9LsNeyy15ZW8APkr8ISmxIaot96PRjkUaoSahwNq67yXUzMCQFAp7xUZqMQHRgSus51RDhLaZDeL1+EZqgWKeoOFS8YGIPzcyiKztRkE+GQFd279eX/zPq6cU7jUzqZOUUIv+IZIKB4esMDLvDXlbGiSC/ufIpeYCDBChkRyEyMU0L7KY9+H/TT9Kzitlf6fsnVZK+4fDZqbZKltjm8xnu2yfnbAqqzHB7tkje2LPzoPz4rw679+jBWe4s8J+wfn8AtMEpWo=</latexit>

A net (P, T, F) is weakly connected if
<latexit sha1_base64="lKW0oLHXN8NkLgvkwnigSPB1Z6c=">AAACNHicbVDLSgNBEJz1bXxFPXoZDIKnsCuIHoNePCqYByQh9M52dHB2dpnpTQhLfsdP8Cu8Kgh6Eq9+g7MxB43WqajqpqsrTJW05Psv3tz8wuLS8spqaW19Y3OrvL3TsElmBNZFohLTCsGikhrrJElhKzUIcaiwGd6dF35zgMbKRF/TKMVuDDda9qUAclKvXMs7tl+iWzTIpeWgeaYjaVAQRjwFuuUh0hBRO2vEaZjwyIWSWhDXSYR23CtX/Ko/Af9LgimpsCkue+W3TpSILEZNQoG17cBPqZuDISkUjkudzGIK4g5usO2ohhhtN598OuYHmQVKeIqGS8UnIv7cyCG2dhSHbjJ24e2sV4j/ee2M+qfdXOo0I9SiOERS4eSQFUYOin6KXoigSO7K0lyAASI0koMQTsxcpyXXRzD7/V/SOKoGx1X/6qhSO5s2s8L22D47ZAE7YTV2wS5ZnQl2zx7ZE3v2HrxX7937+B6d86Y7u+wXvM8vr82rpw==</latexit>

there is an undirected path between any two distinct nodes

<latexit sha1_base64="o744aSeIASD9pv5ygcsXKpcFA3g=">AAACK3icbVDLSgNBEJyNrxhfUY9eBhMhQgi7AYnHqCAeI+QFSQizk944ZHZ2mekVw5JP8RP8Cq968qTo0f9wE3PQaJ2Kqm66q9xQCoO2/WqllpZXVtfS65mNza3tnezuXtMEkebQ4IEMdNtlBqRQ0ECBEtqhBua7Elru6GLqt25BGxGoOo5D6PlsqIQnOMNE6mcrcdd4mTOqAGm+UCvWi5fHeSoM7SLcoevFBnWghnJMeaAUcITBhApv0s/m7JI9A/1LnDnJkTlq/exHdxDwyAeFXDJjOo4dYi9mGgWXMMl0IwMh4yM2hE5CFfPB9OJZwAk9igzDgIagqZB0JsLPjZj5xox9N5n0Gd6YRW8q/ud1IvROe7FQYYSg+PQQCgmzQ4ZrkTQHdCA0ILLp50CFopxphghaUMZ5IkZJlZmkD2cx/V/SLJeck5J9Xc5Vz+fNpMkBOSQF4pAKqZIrUiMNwsk9eSRP5Nl6sF6sN+v9ezRlzXf2yS9Yn1/EC6Zz</latexit>

A net (P, T, F) is strongly connected if
<latexit sha1_base64="ddvO4Upc8PFfv8THO2oXifto4XY=">AAACKHicbVC7TsNAEDzzDOFloKQ5ESFRRTYCQYmgoQwSCUhJFK0vm+TE+WzdrYMiKz/CJ/AVtFDRoRQ0fAnnkILXVKOZXe3sRKmSloJg4s3NLywuLZdWyqtr6xub/tZ2wyaZEVgXiUrMbQQWldRYJ0kKb1ODEEcKb6K7i8K/GaKxMtHXNEqxHUNfy54UQE7q+Ed5y/bKNECDXFoOPAUa8AjpHlFz0CNO9wnvuiBSC+I66aIdd/xKUA2m4H9JOCMVNkOt47+3uonIYtQkFFjbDIOU2jkYkkLhuNzKLKYg7qCPTUc1xGjb+fS7Md/PLFDCUzRcKj4V8ftGDrG1ozhyk7ELb397hfif18yod9rOpU4zQi2KQyQVTg9ZYeSw6KQrDRJBkdwVpLkAA0RoJAchnJi5Hsuuj/D3939J47AaHleDq8PK2fmsmRLbZXvsgIXshJ2xS1ZjdSbYA3tiz+zFe/RevTdv8jU65812dtgPeB+fkE6meg==</latexit>

there is a path between any two distinct nodes

Connectedness, again

98

A net (P,T,F) is weakly connected
iff

it cannot be splitted in separated components

A weakly connected net is strongly connected
iff

 for every arc (x,y) there is a path from y to x

Examples

99

weakly connected
not strongly connected

Examples

100

not weakly connected
not strongly connected

Examples

101

weakly connected
strongly connected

Question time

102

not weakly connected
strongly connected

? IMPOSSIBLE !!!

A note

103

In the following we will consider (implicitly) weakly
connected nets only

(if they are not, then we can study each of their
subsystems separately)

Question time

104

Is the net strongly connected?

Question time

105

Is the net strongly connected?

YES

YES

YES

NO

Strong connectedness
theorem

106

Theorem: If a weakly connected system is
live and bounded then it is strongly connected

Consequences

107

If a (weakly-connected) net is not strongly connected

then

It is not “live and bounded”

If it is live, it is not bounded

If it is bounded, it is not live

Example

108

It is now immediate to see that this system
(weakly connected, not strongly connected)

cannot be live and bounded
(it is live but not bounded)

Example

109

It is now immediate to see that this system
(weakly connected, not strongly connected)

cannot be live and bounded
(it is bounded but not live)

Example

110

It is now immediate to see that this system
(weakly connected, not strongly connected)

cannot be live and bounded
(it is neither bounded nor live)

Strong connectedness
of N*

111

Let us denote by N : i ! o a workflow net
with entry place i and exit place o.

Let N⇤ be the net obtained by adding the “reset” transition to N
reset : o ! i.

Proposition:
N⇤ is strongly connected.

Take two nodes of (x, y) 2 FN⇤ ,
we want to build a path from y to x

If x, y 6= reset , then
y lies on a path i !⇤ y !⇤ o, because N is a workflow net,
x lies on a path i !⇤ x !⇤ o, because N is a workflow net,
we combine the paths y !⇤ o ! reset ! i !⇤ x

If x = o, y = reset , then
take any path i !⇤ o,
we build the path reset ! i !⇤ o

If x = reset , y = i, then
take any path i !⇤ o,
we build the path i !⇤ o ! reset

Strong connectedness
of N*: example

112

<latexit sha1_base64="IyvvUihDxoI02U4xQIrZcA7u7ok=">AAAB83icdVC7TkJBFNzrE/GFWtpsJCZWZJeoQEe0sYREHgkQsnc54Ia9j+yeaySEL7DVys7Y+kEW/ot7ERM1OtVk5pycOePHWllk7M1bWl5ZXVvPbGQ3t7Z3dnN7+00bJUZCQ0Y6Mm1fWNAqhAYq1NCODYjA19Dyx5ep37oFY1UUXuMkhl4gRqEaKinQSfW7fi7PCowxzjlNCS+dM0cqlXKRlylPLYc8WaDWz713B5FMAghRamFth7MYe1NhUEkNs2w3sRALORYj6DgaigBsbzoPOqPHiRUY0RgMVZrORfi+MRWBtZPAd5OBwBv720vFv7xOgsNyb6rCOEEIZXoIlYb5ISuNcg0AHSgDiCJNDlSFVAojEMEoKqR0YuIqybo+vp6m/5NmscDPCqx+mq9eLJrJkENyRE4IJyVSJVekRhpEEiD35IE8eon35D17L5+jS95i54D8gPf6Adcjkbs=</latexit>x

<latexit sha1_base64="YIAnqUgf2hpXvTTKApdqC7PbV/Q=">AAAB83icdVC7TkJBFNyLL8QXammzkZhYkV2iAh3RxhISeSRAyN7lgBv2PrJ7rgkhfIGtVnbG1g+y8F/ci5io0akmM+fkzBk/1soiY29eZmV1bX0ju5nb2t7Z3cvvH7RslBgJTRnpyHR8YUGrEJqoUEMnNiACX0Pbn1ylfvsOjFVReIPTGPqBGIdqpKRAJzWmg3yBFRljnHOaEl6+YI5Uq5USr1CeWg4FskR9kH/vDSOZBBCi1MLaLmcx9mfCoJIa5rleYiEWciLG0HU0FAHY/mwRdE5PEiswojEYqjRdiPB9YyYCa6eB7yYDgbf2t5eKf3ndBEeV/kyFcYIQyvQQKg2LQ1Ya5RoAOlQGEEWaHKgKqRRGIIJRVEjpxMRVknN9fD1N/yetUpGfF1njrFC7XDaTJUfkmJwSTsqkRq5JnTSJJEDuyQN59BLvyXv2Xj5HM95y55D8gPf6Adiykbw=</latexit>y

reset

http://woped.dhbw-karlsruhe.de/woped/

WoPeD

http://woped.dhbw-karlsruhe.de/woped/

Exercise

114

Use some tools to check if the net below is a sound
workflow net or not

115

Liveness and boundedness refer to N*
not to N

116

in this case, the problem is due to a
possible deadlock

Exercise

117

Use some tools to check if the net below is a sound
workflow net or not

Exercise

118

Use some tools to check if the net below is a sound
workflow net or not

Deadlock

Exercise

119

Use some tools to check if the net below is a sound
workflow net or not

Deadlock

Exercise

120

Use some tools to check if the net below is a sound
workflow net or not

121

Exercise

122

Analyse the following net

123

Exercise

124

Analyse the following net

125

Liveness and boundedness refer to N*
not to N

126

Boundedness: we can end the case
leaving a token in c8

Exercise

127

Analyse the following net

Some tokens left in the net after case completion

128

Liveness: possible deadlock

Exercise

129

Analyse the following net

Deadlock

Design and analysis of
WF-nets

130

The workflow of a computer repair service (CRS) can be described as follows.
A customer brings in a defective computer and the CRS checks the defect and hands out a
repair cost calculation back.
If the customer decides that the costs are acceptable, the process continues, otherwise
she takes her computer home unrepaired.
The ongoing repair consists of two activities, which are executed sequentially but in an
arbitrary order.
One activity is to check and repair the hardware,
whereas the other activity is to check and configure the software.
After both activities are completed, the proper system functionality is tested.
If an error is detected the repair procedure is repeated,
otherwise the repair is finished and the computer is returned.

Model the described workflow as a sound workflow net.

Design and analysis of
WF-nets

131

The workflow of a computer repair service (CRS) can be described as follows.
A customer brings in a defective computer and the CRS checks the defect and hands
out a repair cost calculation back.
If the customer decides that the costs are acceptable, the process continues, otherwise
she takes her computer home unrepaired.
The ongoing repair consists of two activities, which are executed sequentially but in an
arbitrary order.
One activity is to check and repair the hardware,
whereas the other activity is to check and configure the software.
After both activities are completed, the proper system functionality is tested.
If an error is detected the repair procedure is repeated,
otherwise the repair is finished and the computer is returned.

Model the described workflow as a sound workflow net.

Design and analysis of
WF-nets

132

The workflow of a computer repair service (CRS) can be described as follows.
A customer brings in a defective computer and the CRS checks the defect and hands
out a repair cost calculation back.

Design and analysis of
WF-nets

133

If the customer decides that the costs are acceptable, the process continues, otherwise
she takes her computer home unrepaired.

Design and analysis of
WF-nets

134

The ongoing repair consists of two activities, which are executed sequentially but in an
arbitrary order.
One activity is to check and repair the hardware,
whereas the other activity is to check and configure the software.

Design and analysis of
WF-nets

135

The ongoing repair consists of two activities, which are executed sequentially but in an
arbitrary order.
One activity is to check and repair the hardware,
whereas the other activity is to check and configure the software.

Design and analysis of
WF-nets

136

After both activities are completed, the proper system functionality is tested.
If an error is detected the repair procedure is repeated,

Design and analysis of
WF-nets

137

otherwise the repair is finished and the computer is returned.

Design and analysis of
WF-nets

138

