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Object
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We study suitable soundness properties  
of Workflow nets 

Ch.6 of Business Process Management: Concepts, Languages, Architectures



Bondedness, liveness
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Boundedness?              Liveness? 

(P, T, F, M0)

∃k ∈ ℕ, ∀p ∈ P, ∀M ∈ [M0⟩, M(p) ≤ k

∀t ∈ T, ∀M ∈ [M0⟩, ∃M′￼ ∈ [M⟩, M′￼

t



Soundness 
informally
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Example: Reseller
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Diagram verification

start / end

links

tasks

join / split

BPMN WfN EPC



Workflow net: idea

WFN
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start

work

end



Workflow net
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Definition:
A Petri net (P, T, F ) is called workflow net if:

1. there is a distinguished initial place i � P with •i = ⇥

2. there is a distinguished final place o � P with o• = ⇥

3. every other place and transition belongs to a path from i to o



WF nets as business 
processes
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

 

 

 

 



 

48













Transition realised by 
another workflow net



Structural analysis
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No distinguished entry / exit point 

no entry: when should the case start? 
no exit: when should the case end?  

not a workflow net!



Structural analysis
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Multiple entry / exit points 

multiple entries: when should the case start? 
multiple exit: when should the case end?  

not a workflow net!



Structural analysis
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Tasks t without incoming and/or outgoing arcs 

no input: when should t be carried out? 
no output: t does not contribute to case completion  

not a workflow net!



Structural analysis
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Wrong decorations of transitions 

split with only one outgoing arc 

join with only one incoming arc 

non-sense: left to designer responsibility



Structural analysis
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The definition of Workflow nets is purely structural 
but already rules out many erroneous models

XXX



Structural properties
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All the properties we have seen so far are  
structural (or static) 

(i.e., they depend on the shape of the graph, 
on its connectivity or topology,  

but NOT on the initial marking and enabled firings) 

We also care about behavioural properties 
(e.g., how the system can evolve,  

which firing sequences will be possible,  
which markings will be reachable)



A matter of terminology
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To better reflect the above distinction, it is frequent: 

to use the term net system for denoting a Petri net 
with a given initial marking 

(we study behavioural properties of systems) 

to use the term net for denoting a Petri net  
without specifying any initial marking  
(we study structural properties of nets) 

even if, in the case of workflow nets, the initial 
markings will consist of one token in the initial place



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!



Behavioural analysis
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pending tokens
upon completion!



Behavioural analysis
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upon completion!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...
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pending tokens
upon completion!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!
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upon completion!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!
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upon completion!
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upon completion!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

looks fine but...



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

let's roll
back in time



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!
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upon completion!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!
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Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

pending tokens 
and activities

upon completion!



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

pending tokens 
and activities

upon completion!
let's roll

back in time



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

we could have
prevented the

problem...



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!
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we could have
prevented the
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Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

we could have
prevented the

problem...



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

we could have
prevented the

problem...



Behavioural analysis
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Structural correctness cannot rule out many other 
problematic issues...

dead!

pending tokens
upon completion!

pending tokens and activities
upon completion!

we could have
prevented the

problem...
but we want to
make sure it

cannot happen



A case is trapped in a cycle with no opportunity to end 

can arise in workflow nets

Livelock
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A case is trapped in a cycle with no opportunity to end 

can arise in workflow nets

Livelock
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Remark
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All the previous flaws are typical errors that  
can be detected  

without any knowledge about the actual goal  
of the Business Process



System validation and 
verification
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Validation is concerned with  
the relation between the model and the reality 

How does a model fit log files? 
Which model does fit better?  

Verification aims to answer qualitative questions 
Is there a deadlock possible? 

Is it possible to successfully handle a specific case? 
Will all cases terminate eventually? 

Is it possible to execute a certain task?



Language of a workflow net
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The language of a workflow net is the set of 
firing sequences that lead from marking  to marking i o

A

L(N) = {� | i ��! o}
<latexit sha1_base64="jdR0mJ+7v3IQVKKHtWMm1Sy24z8=">AAACJHicbVC7SgRBEJz17fk6NTQZPARNZFcETQTRxEBEwTuF2+PonWvPxpndZabXB8v9hp/gV5hqZCYGBvot7j0CXxUVVd10V0WpJse+/+4NDY+Mjo1PTJampmdm58rzCzWXZFZhVSU6secRONQUY5WJNZ6nFsFEGs+iq/2uf3aN1lESn/Jdig0D7ZguSAEXUrPsH64erckdGeYydNQ2IENDLUkyvLXUvmSwNrnJ+1ZHJmGnWa74634P8i8JBqQiBjhulj/CVqIygzErDc7VAz/lRg6WSWnslMLMYQrqCtpYL2gMBl0j7yXryJXMAScyRStJy56I3zdyMM7dmaiYNMCX7rfXFf/z6hlfbDdyitOMMVbdQ0wae4ecslRUhrJFFpmh+zlKiqUCC8xoSYJShZgVHZaKPoLf6f+S2sZ6UPCTzcru3qCZCbEklsWqCMSW2BUH4lhUhRL34lE8iWfvwXvxXr23/uiQN9hZFD/gfX4BKCakJQ==</latexit><latexit sha1_base64="jdR0mJ+7v3IQVKKHtWMm1Sy24z8=">AAACJHicbVC7SgRBEJz17fk6NTQZPARNZFcETQTRxEBEwTuF2+PonWvPxpndZabXB8v9hp/gV5hqZCYGBvot7j0CXxUVVd10V0WpJse+/+4NDY+Mjo1PTJampmdm58rzCzWXZFZhVSU6secRONQUY5WJNZ6nFsFEGs+iq/2uf3aN1lESn/Jdig0D7ZguSAEXUrPsH64erckdGeYydNQ2IENDLUkyvLXUvmSwNrnJ+1ZHJmGnWa74634P8i8JBqQiBjhulj/CVqIygzErDc7VAz/lRg6WSWnslMLMYQrqCtpYL2gMBl0j7yXryJXMAScyRStJy56I3zdyMM7dmaiYNMCX7rfXFf/z6hlfbDdyitOMMVbdQ0wae4ecslRUhrJFFpmh+zlKiqUCC8xoSYJShZgVHZaKPoLf6f+S2sZ6UPCTzcru3qCZCbEklsWqCMSW2BUH4lhUhRL34lE8iWfvwXvxXr23/uiQN9hZFD/gfX4BKCakJQ==</latexit><latexit sha1_base64="jdR0mJ+7v3IQVKKHtWMm1Sy24z8=">AAACJHicbVC7SgRBEJz17fk6NTQZPARNZFcETQTRxEBEwTuF2+PonWvPxpndZabXB8v9hp/gV5hqZCYGBvot7j0CXxUVVd10V0WpJse+/+4NDY+Mjo1PTJampmdm58rzCzWXZFZhVSU6secRONQUY5WJNZ6nFsFEGs+iq/2uf3aN1lESn/Jdig0D7ZguSAEXUrPsH64erckdGeYydNQ2IENDLUkyvLXUvmSwNrnJ+1ZHJmGnWa74634P8i8JBqQiBjhulj/CVqIygzErDc7VAz/lRg6WSWnslMLMYQrqCtpYL2gMBl0j7yXryJXMAScyRStJy56I3zdyMM7dmaiYNMCX7rfXFf/z6hlfbDdyitOMMVbdQ0wae4ecslRUhrJFFpmh+zlKiqUCC8xoSYJShZgVHZaKPoLf6f+S2sZ6UPCTzcru3qCZCbEklsWqCMSW2BUH4lhUhRL34lE8iWfvwXvxXr23/uiQN9hZFD/gfX4BKCakJQ==</latexit><latexit sha1_base64="jdR0mJ+7v3IQVKKHtWMm1Sy24z8=">AAACJHicbVC7SgRBEJz17fk6NTQZPARNZFcETQTRxEBEwTuF2+PonWvPxpndZabXB8v9hp/gV5hqZCYGBvot7j0CXxUVVd10V0WpJse+/+4NDY+Mjo1PTJampmdm58rzCzWXZFZhVSU6secRONQUY5WJNZ6nFsFEGs+iq/2uf3aN1lESn/Jdig0D7ZguSAEXUrPsH64erckdGeYydNQ2IENDLUkyvLXUvmSwNrnJ+1ZHJmGnWa74634P8i8JBqQiBjhulj/CVqIygzErDc7VAz/lRg6WSWnslMLMYQrqCtpYL2gMBl0j7yXryJXMAScyRStJy56I3zdyMM7dmaiYNMCX7rfXFf/z6hlfbDdyitOMMVbdQ0wae4ecslRUhrJFFpmh+zlKiqUCC8xoSYJShZgVHZaKPoLf6f+S2sZ6UPCTzcru3qCZCbEklsWqCMSW2BUH4lhUhRL34lE8iWfvwXvxXr23/uiQN9hZFD/gfX4BKCakJQ==</latexit>

 defines all the admissible traces of the workflowL(N)



Question time: L(N)
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 ABCE , ADE L(N) = { }



Question time: L(N)

48

L(N) = Ø



Question time: L(N)
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 ABCDE , ABDCE L(N) = { }



Question time: L(N)
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 ABDE , ABDCBDE , ABDCBDCBDE , 
ABDCBDCBDCBDE , ABDCBDCBDCBDCBDE , ... 

L(N) = {
}

 ABD(CBD) E L(N) = { k ∣ k ≥ 0}



Question time: L(N)
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<latexit sha1_base64="PlalkmD0dOIo3LtrScPsLCMv+iU=">AAACV3icbZC5TgMxEIad5QrhClDSWERIoYl2EVeDgKShQCggAkjZEHmdSbDiPbBnkdBqeT8eIQXPQAsVOEtAXFN9/mdG8/v3Iik02vYgZ42NT0xO5acLM7Nz8wvFxaULHcaKQ4OHMlRXHtMgRQANFCjhKlLAfE/CpdevDfuXd6C0CINzvI+g5bNeILqCMzRSu8iPyyfr1NXIeF+BTPbTZC+lbkJdn+GN7iaH6UP5k6vpwyeeOd94I12/7n89a2bfFx3ad3twS203bRdLdsXOiv4FZwQlMqp6u/jkdkIe+xAgl0zrpmNH2EqYQsElpAU31hAZw6wHTYMB80G3kiyMlK7FmmFII1BUSJqJ8H0jYb7W975nJjPDv3tD8b9eM8bubisRQRQjBHx4CIWE7JDmSpiUgXaEAkQ2dA5UBJQzxRBBCco4N2JsYi+YPJzfv/8LFxsVZ7uydbpZOqiOksmTFbJKysQhO+SAHJE6aRBOHskzeSGvuUHuzZq08h+jVm60s0x+lLX4Dqipt3M=</latexit>

L(N)
?
= {A (B R1 R2)k C | k � 0}

<latexit sha1_base64="sEpjnLs4h6jcCReMl3KRbJ5BACI=">AAACYnicbZFNTxsxEIa9CxRIaRvIkR4sokrhEu2i8nFBQHLhUFW0IoCUTSOvMwlWvN7FnkWKVptfyYUDN34FJ5xt0oaPOT1+Z8Yzfh0mUhj0vHvHXVhc+rC8slr6uPbp85fy+saFiVPNocVjGeurkBmQQkELBUq4SjSwKJRwGQ6bk/zlLWgjYnWOowQ6ERso0RecoZW6ZfWj9nObBgYZH2qQ2VGeHeY0yGgQMbw2/ewkH9dm3MjHM/ztz/HOf27k23+G/05Ne1UkenQYDOCGekHeLVe9ulcEfQv+FKpkGmfd8kPQi3kagUIumTFt30uwkzGNgkvIS0FqILG7swG0LSoWgelkhS85/ZYahjFNQFMhaSHCfEfGImNGUWgri4Vf5ybie7l2iv2DTiZUkiIoPhmEQkIxyHAtrOFAe0IDIptsDlQoyplmiKAFZZxbMbU/ULJ++K9f/xYudur+Xn331/fqcWPqzArZJFukRnyyT47JKTkjLcLJHXlyFpxF59Etuetu5W+p60x7KuRFuF+fAbuJuXs=</latexit>

L(N)
?
= {A (B R1 R2 B)k C | k � 0}

<latexit sha1_base64="w2eeR6mXdhH4mtKsmRjuTLHV258=">AAACYnicbVFNbxoxEPVuaJvQj5BwTA5WUSW4oN2oaXOJQuGSQxXRqCRILEVeM1ALr3drz1aKVsuv7KWH3PIrcqrZQEpD5/T83ozn+TlMpDDoeb8dd6v07PmL7Z3yy1ev3+xW9vavTJxqDj0ey1j3Q2ZACgU9FCihn2hgUSjhOpx1Fvr1T9BGxOor3iQwjNhUiYngDC01qqjP9YsGDQwyPtMgs7M8O81pkNEgYvjdTLJP+XwF2/m8vsKX/l/+8mi9p/Ft9njq2KsiMaazYAo/qBfko0rNa3pF0U3gL0GNLKs7qtwG45inESjkkhkz8L0EhxnTKLiEvBykBhLrnU1hYKFiEZhhVuSS03epYRjTBDQVkhYkrE9kLDLmJgptZ2H4qbYg/6cNUpycDDOhkhRB8cUiFBKKRYZrYQMHOhYaENnCOVChKGeaIYIWlHFuydT+QNnm4T99/Sa4Omr6H5rHX97XWu1lMtvkgLwldeKTj6RFzkmX9Agnv8i9s+WUnDu37O651YdW11nOVMk/5R7+Ab5ouXs=</latexit>

L(N)
?
= {A B (R1 R2 B)k C | k � 0}

<latexit sha1_base64="+dw7F7YUbbj/KmMFZM1JA713T7o=">AAACYnicbZE7T8MwEMed8C6vAiMMFhVSWaoE8VoQr4UBIUAUkJpSOe61WHWcYF+QUJR+ShYGNj4FE24oEq+bfvrfne/u7zCRwqDnvTjuyOjY+MTkVGl6ZnZuvryweG3iVHOo81jG+jZkBqRQUEeBEm4TDSwKJdyEveNB/uYRtBGxusKnBJoR6yrREZyhlVpldVo9W6eBQcZ7GmS2n2d7OQ0yGkQM700nO8z71S8+yvtfeOl/4418/a7X/6fq2D4ViTbtBV14oF6Qt8oVr+YVQf+CP4QKGcZ5q/watGOeRqCQS2ZMw/cSbGZMo+AS8lKQGkjs7qwLDYuKRWCaWeFLTtdSwzCmCWgqJC1E+N6RsciYpyi0lcXCv3MD8b9cI8XObjMTKkkRFB8MQiGhGGS4FtZwoG2hAZENNgcqFOVMM0TQgjLOrZjaHyhZP/zf1/+F642av13butisHBwNnZkky2SVVIlPdsgBOSHnpE44eSbvzogz6ry5JXfBXfosdZ1hzxL5Ee7KB7gquXs=</latexit>

L(N)
?
= {A (B R1 R2)k B C | k � 0} Yes

Yes

No

No



Question time
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Consider the workflow net below

How many times can A be executed? 
How many times can B be executed? 
Can a firing sequence contain two As in a row? 
Can a firing sequence contain two Bs in a row? 
Can a firing sequence contain more Bs than As?



Question time
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Consider the workflow net below

How many times can A be executed? 
How many times can B be executed? 
Can a firing sequence contain two As in a row? 
Can a firing sequence contain two Bs in a row? 
Can a firing sequence contain more Bs than As?

1 or more
0 or more

yes
no
no



Simulation
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Test analysis 
Try and see which firing sequences are possible 

Using WoPeD: 
Play (forward and backward) with net tokens 

Record certain runs (to replay or explain) 
Randomly select alternatives 

Problem: how to make sure that all possible runs have 
been examined?



Reachability analysis
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All possible runs of a workflow net are represented in its 
Reachability / Coverability Graph 

Using WoPeD: 
all reachable states are shown 

(a single run does not necessarily visit all nodes) 
End states are evident (no outgoing arc) 

Useful to check if dangerous or undesired states can arise 
(e.g. the green-green state in the two-traffic-lights) 

Problem: state explosion
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Reachability analysis



Reachability analysis
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Problem: state explosion



Exercise
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Do you see any problem in the workflow net below?

Deadlock



Exercise
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Do you see any problem in the workflow net below?

Some tokens left in the net after case completion



Exercise
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Which problem(s) in the workflow net below? 
How would you redesign the business process?
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Which problem(s) in the workflow net below? 
How would you redesign the business process?



Exercise
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Which problem(s) in the workflow net below? 
How would you redesign the business process?



Exercise
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Which problem(s) in the workflow net below? 
How would you redesign the business process?

Some tokens left in the net after case completion



Exercise
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Which problem(s) in the workflow net below? 
How would you redesign the business process?

Some tokens left in the net after case completion



Exercise
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Which problem(s) in the workflow net below? 
How would you redesign the business process?

Some activities take place after case completion



Exercise
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Which problem(s) in the workflow net below? 
How would you redesign the business process?

Additional transitions needed  
(dealing with all check failures)



Exercise
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Which problem(s) in the workflow net below? 
How would you redesign the business process?



Soundness
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Soundness  
of Business Processes
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A process is called sound if 

1. it contains no unnecessary tasks 

2. every case, once started, can always be completed in full 

3. no pending items are left upon case completion



70

Business 
Process

i o

Soundness  
of Business Processes



Soundness  
of Workflow nets

71

A workflow net is called sound if

1. for each transition t,

there is a marking M (reachable from i) that enables t

2. for each token put in place i,

one token eventually appears in the place o

3. when a token is in place o, all other places are empty



Fairness assumption
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Remark:
Condition 2 does not mean that iteration must be forbidden or bound

It says that from any reachable marking M
there must be possible to reach o in some steps

Fairness assumption:
A task cannot be postponed indefinitely

OK
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Soundness, Formally
A workflow net is called sound if

no dead task no transition is dead

8t 2 T. 9M 2 [ i i. M t!

option to complete place o is eventually marked

8M 2 [ i i. 9M 0 2 [M i. M 0(o) � 1

proper completion when o is marked, no other token is left

8M 2 [ i i. M(o) � 1 ) M = o



1: no dead tasks
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?

Reachable marking that enables the 
transition



1: no dead tasks

75

The check must be repeated for each task



2: option to complete
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?

Able to produce one token in o 



2: option to complete
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The check must be repeated for each reachable marking



3: proper completion
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?

We must show that it is  
not a reachable marking



3: proper completion
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The check must be repeated for each marking  
such that 

M
M > o



Brute-force analysis
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First, check if the Petri net is a workflow net 
easy "structural" check 

Second, check if it is sound (more difficult): 
build the Reachability Graph  

to check 1: for each transition t there must be an arc in the 
RG that is labelled with t 

to check 2&3: the RG must have only one final state (sink), 
that consists of one token in o  

and is reachable from any other state,  
and no other marking has a token in o



Some Pragmatic 
Considerations
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All checks can better be done automatically  
(computer aided) 

but nevertheless RG construction... 
1. can be computationally expensive for large nets 
    (because of state explosion) 
2. provides little support in repairing unsound processes 
3. can be infinite (CG can be used, but it is not exact) 



Advanced support
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Translate soundness to other well-known properties that 
can be checked more efficiently: 

boundedness and liveness



N*
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Business 
Process

i o

Play once
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Business 
Process

i o

reset

Play twice
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Business 
Process

i o

reset

Play any number of times



From N to N*
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Let us denote by N : i ! o a workflow net
with entry place i and exit place o.

Let N⇤ be the net obtained by adding the “reset” transition to N
reset : o ! i.

Proposition:
N⇤ is strongly connected.



MAIN THEOREM

88

Let us denote by N : i � o a workflow net
with entry place i and exit place o

Let N� be the net obtained by adding the ”reset” transition to N
reset : o � i

Theorem:
N is sound i� N� is live and bounded



MAIN THEOREM
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Let us denote by N : i � o a workflow net
with entry place i and exit place o

Let N� be the net obtained by adding the ”reset” transition to N
reset : o � i

Theorem:
N is sound i� N� is live and bounded
1 no dead tasks 
2 option to complete 
3 proper completion

at any reachable marking, every transition can fire in the future 
and 
for some k, every place will contain less than k tokens

⇐ 1
2 ⇒

3 ⇒



Proof of MAIN 
THEOREM (1)
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N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [ i ⇧. M t⇤

Take any M ⌅ [ i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [ i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live

( ⇐ )
N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [ i ⇧. M t⇤

Take any M ⌅ [ i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [ i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live

N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [ i ⇧. M t⇤

Take any M ⌅ [ i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [ i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live

N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [ i ⇧. M t⇤

Take any M ⌅ [ i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [ i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live

N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [ i ⇧. M t⇤

Take any M ⌅ [ i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [ i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live



A technical lemma
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Lemma:
If N is sound, M is reachable in N i� M is reachable in N⇥

⌅) straightforward

⇤) Let i
��⇥ M in N⇥ for � = t1t2...tn

We proceed by induction on the number r of instances of reset in �
If r = 0, then reset does not occur in � and M is reachable in N
If r > 0, let k be the least index such that tk = reset
Let � = �⇤tk�⇤⇤ with �⇤ = t1t2...tk�1 fireable in N

Since N is sound: i
��
�⇥ o and i

���
�⇥ M

Since �⇤⇤ contains r � 1 instances of reset :
by inductive hypothesis M is reachable in N



Proof of MAIN 
THEOREM (2)
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N sound implies N� bounded :
We proceed by contradiction, assuming N� is unbounded

Since N� is unbounded:
⌃M,M ⇥ such that i ⇤� M ⇤� M ⇥ with M ⇥ M ⇥

Let L = M ⇥ �M ⇧= ⌥

Since N is sound:
⌃� ⌅ T � such that M

�⇤ o

By the monotonicity Lemma: M ⇥ �⇤ o+ L and thus o+ L ⌅ [ i �
Which is absurd, because N is sound

( ⇒ )



Proof of MAIN 
THEOREM (3)
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N sound implies N� live:
Take any transition t and let M be a marking reachable in N�

By the technical lemma, M is reachable in N

Since N is sound: ⌅� ⇤ T � with M
��⇥ o

Since N is sound: ⌅�⇥ ⇤ T � with i
��
�⇥ M ⇥ and M ⇥ t⇥

Let �⇥⇥ = � reset �⇥, then:

M
���
�⇥ M ⇥ in N� and M ⇥ t⇥

( ⇐ )



A theorem on strong 
connectedness 

(whose proof we omit)
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Paths and circuits
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<latexit sha1_base64="j2PtaHNuYRWytwFKE38h2+eIFgU=">AAAB+XicbVDLSsNAFJ3UV62vqks3g0WoUEoiii6Lgris0Be0oUymt3XoZBJmboQS+hFudeVO3Po1LvwXk5iFtp7V4Zx7ueceL5TCoG1/WoWV1bX1jeJmaWt7Z3evvH/QMUGkObR5IAPd85gBKRS0UaCEXqiB+Z6Erje9Sf3uI2gjAtXCWQiuzyZKjAVnmEjdarPWqt2eDssVu25noMvEyUmF5GgOy1+DUcAjHxRyyYzpO3aIbsw0Ci5hXhpEBkLGp2wC/YQq5oNx4yzunJ5EhmFAQ9BUSJqJ8HsjZr4xM99LJn2GD2bRS8X/vH6E4ys3FiqMEBRPD6GQkB0yXIukB6AjoQGRpcmBCkU50wwRtKCM80SMkmJKSR/O4vfLpHNWdy7q9v15pXGdN1MkR+SYVIlDLkmD3JEmaRNOpuSJPJMXK7ZerTfr/We0YOU7h+QPrI9vI5+S3A==</latexit>

(P, T, F )

<latexit sha1_base64="yuxXsl8ePLGeh2ErsPjOg7PW1io=">AAACQ3icZVBNbxMxEPWWj5blK5QjF4sUiQur3UiIHgu9cKNIpK2URCuvM9tYsb3GM0aJVvlZ/Qn9EQhxgxM3xBUJZ8kBmnd6em9GM+9VTiukPP+c7Ny4eev27t6d9O69+w8e9h7tn2ITvIShbHTjzyuBoJWFISnScO48CFNpOKvmx2v/7BN4VI39QEsHEyMurKqVFBSlsveuHWOdvuZjggVVdesEzVZcIRfcNvYFGEdLjvAxgJXAmzqqU8D0YFEWi3KQZdminB9wDHLGaSZoVfb6eZZ34Nuk2JA+2+Ck7H0dTxsZDFiSWiCOitzRpBWelNSwSscBwQk5FxcwitQKAzhpu+Ar/iygoIY78Fxp3onw70YrDOLSVHHSxGB43TNd2m1vFKg+nLTKukAx+PoQKQ3dIZRexUaBT5UHIrH+HLiyXAoviMArLqSMYogVp7GP4nr6bXI6yIqXWf5+0D96s2lmjz1hT9lzVrBX7Ii9ZSdsyCS7ZF/YN/Y9uUp+JD+TX39Hd5LNzmP2H5LffwBy9rAs</latexit>

A path is a non-empty sequence of nodes x1x2...xk such that
<latexit sha1_base64="mDBSsefsDkAI/dVA716YSUqdfjU=">AAACB3icbVDLSsNAFJ3UV62vaJduBotQUUoiii6LgrisYB/QhjCZ3tbByYOZG2kJ/QC/wq2u3IlbP8OF/2ISu9DWszqccy/33ONFUmi0rE+jsLC4tLxSXC2trW9sbpnbOy0dxopDk4cyVB2PaZAigCYKlNCJFDDfk9D27i8zv/0ASoswuMVxBI7PhoEYCM4wlVyzXB254mjkJuLQnhzQngjolWtWrJqVg84Te0oqZIqGa371+iGPfQiQS6Z117YidBKmUHAJk1Iv1hAxfs+G0E1pwHzQTpKHn9D9WDMMaQSKCklzEX5vJMzXeux76aTP8E7Pepn4n9eNcXDuJCKIYoSAZ4dQSMgPaa5E2grQvlCAyLLkQNPfOVMMEZSgjPNUjNOaSmkf9uz386R1XLNPa9bNSaV+MW2mSHbJHqkSm5yROrkmDdIknIzJE3kmL8aj8Wq8Ge8/owVjulMmf2B8fAODjJf8</latexit>

(xi, xi+1) 2 F
<latexit sha1_base64="ooOZ0DnMcvb+JRBNxLdNmLXYmCw=">AAACE3icbVC7TsNAEDyHVwgvAyUFJxIkqsiOhKCMoKEMEnlIcRSdL+twyvnB3RopslLyCXwFLVR0iJYPoOBfsI0LSJjiNJrZ1d6MG0mh0bI+jdLS8srqWnm9srG5tb1j7u51dBgrDm0eylD1XKZBigDaKFBCL1LAfFdC151cZn73HpQWYXCD0wgGPhsHwhOcYSoNzcPE0R71QkUhHZvSmu1IuKMifye12dCsWnUrB10kdkGqpEBraH45o5DHPgTIJdO6b1sRDhKmUHAJs4oTa4gYn7Ax9FMaMB/0IMmDzOhxrBmGNAJFhaS5CL83EuZrPfXddNJneKvnvUz8z+vH6J0PEhFEMULAs0MoJOSHNFcijQ50JBQgsuznQEVAOVMMEZSgjPNUjNPKKmkf9nz6RdJp1O3TunXdqDYvimbK5IAckRNikzPSJFekRdqEkwfyRJ7Ji/FovBpvxvvPaMkodvbJHxgf3xM+nTA=</latexit>

for every 1  i  k

<latexit sha1_base64="ZVwhnacVljXBGtFl1k8lC10Aus4=">AAACIXicbVC7TsNAEDzzJrwClDQnEiQaIjsSgjKChhIkApGSKFpfNuGU89m6WwORla/gE/gKWqjoEB1C/Au2SQEJU41mdjW740dKWnLdD2dmdm5+YXFpubCyura+UdzcurJhbATWRahC0/DBopIa6yRJYSMyCIGv8NofnGb+9S0aK0N9ScMI2wH0texJAZRKneJB0rI9DrrL75BbGHJJXCF0Le+ZMODl+45X5hRmZFAedYolt+Lm4NPEG5MSG+O8U/xqdUMRB6hJKLC26bkRtRMwJIXCUaEVW4xADKCPzZRqCNC2k/ytEd+LLaTRERouFc9F/L2RQGDtMPDTyQDoxk56mfif14ypd9xOpI5iQi2yIJIK8yArjEz7Qt6VBokguxy51FyAASI0koMQqRinBRbSPrzJ76fJVbXiHVbci2qpdjJuZontsF22zzx2xGrsjJ2zOhPsgT2xZ/biPDqvzpvz/jM644x3ttkfOJ/fYdmh9A==</latexit>

and we say it leads from x1 to xk

<latexit sha1_base64="dssHeoxl2/zbZ7el2/n+BIr93jc=">AAACL3icbVDLbhNBEJx1IBhDEgNHLiPsSDmtdi1FicTFwIWjkfBDsq1V77jXaXn2oZleZGvlj+ET+Aqu5IQ4gLjmLzI2PoBNnUpV3equigtNloPgh1c7evDw+FH9cePJ05PTs+az5wObl0ZhX+U6N6MYLGrKsM/EGkeFQUhjjcN48W7jDz+hsZRnH3lV4DSFeUYJKWAnRc3X1cQm8o0sgG9kexmFy6jj+/4yWrQlWalAa5xJkBPGJcdJpciokngtKVlHzVbgB1vIQxLuSEvs0IuaPyezXJUpZqw0WDsOg4KnFRgmpXHdmJQWC1ALmOPY0QxStNNqG3Itz0sLnMsCjSQttyL+vVFBau0qjd1k6sLYfW8j/s8bl5xcTyvKipIxU5tDTBq3h6wy5NpDOSODzLD5HCVlrhcDzGhIglJOLF2dDddHuJ/+kAw6fnjpBx86re7bXTN18VK8EhciFFeiK96LnugLJT6Lr+KbuPW+eN+9X97vP6M1b7fzQvwD7+4e5aioBQ==</latexit>

A path x1x2...xk is called a circuit if
<latexit sha1_base64="prmaXyXkJ9GVPl3WZuiL+PBWsYE=">AAACKXicbVDLSgNBEJz1bXxFPXoZjIKChN2A6DEoiEcFo0ISlt5JR4fMzi4zvWJY8iV+gl/hVU/eVPDkjzgbc/BVp6Kqm+6qKFXSku+/emPjE5NT0zOzpbn5hcWl8vLKuU0yI7AhEpWYywgsKqmxQZIUXqYGIY4UXkS9w8K/uEFjZaLPqJ9iO4YrLbtSADkpLO/mLdvloBSXZLlOOmg5GOQdd1pqQRx0h29s3Ya9ndsw2G5JzY82BmG54lf9IfhfEoxIhY1wEpbfW51EZDFqEgqsbQZ+Su0cDEmhcFBqZRZTED24wqajGmK07XwYb8A3MwuU8BQNl4oPRfy+kUNsbT+O3GQMdG1/e4X4n9fMqLvfzqVOM0ItikMkFQ4PWWGk660owiARFJ8jd+kFGCBCIzkI4cTMFVlyfQS/0/8l57VqsFv1T2uV+sGomRm2xtbZFgvYHquzY3bCGkywO/bAHtmTd+89ey/e29fomDfaWWU/4H18Agj+pWg=</latexit>

all its nodes are distinct and (xk, x1) 2 F
<latexit sha1_base64="AecvNeK45D6wJc6lZ62Kozwp/jU=">AAACS3icbVA9bxNBEN0zBIL5MlDSjLCRghRZd5EQlBFIiDJIOI5kW9bcehyPsrd32plLbJ380/gJ/AAKKlqo6BAFd44LSHja4um9eZrZlxaOReP4S9S6cXPn1u3dO+279+4/eNh59PhY8jJYGtjc5eEkRSHHngbK6uikCIRZ6miYnr1t/OE5BeHcf9RVQZMMTz3P2aLW0rQzrMYyB2FvCXRBgYAFfF6/GUFv2YML1gX09pb7yxdj9vCutw/oV2A52JIVFiiACo5QFPTiMiiwnna6cT/eAK6TZEu6ZoujaefreJbbMiOv1qHIKIkLnVQYlK2jdXtcChVoz/CURjX1mJFMqk0Ba3heCmoOBQVgBxuR/k5UmImssrSezFAXctVrxP95o1LnrycV+6JU8rZZpOxos0hs4POmsBkHUsXm8ro9DxYDqlJgQGtrsayrbtd9JFd/f50cH/STl/34w0H38M22mV3z1DwzeyYxr8yheW+OzMBY88l8M9/Nj+hz9DP6Ff2+HG1F28wT8w9aO38AxF6xHQ==</latexit>

since there is no node x with (x, x) 2 F , any circuit has at least two nodes



Paths and circuits
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<latexit sha1_base64="j2PtaHNuYRWytwFKE38h2+eIFgU=">AAAB+XicbVDLSsNAFJ3UV62vqks3g0WoUEoiii6Lgris0Be0oUymt3XoZBJmboQS+hFudeVO3Po1LvwXk5iFtp7V4Zx7ueceL5TCoG1/WoWV1bX1jeJmaWt7Z3evvH/QMUGkObR5IAPd85gBKRS0UaCEXqiB+Z6Erje9Sf3uI2gjAtXCWQiuzyZKjAVnmEjdarPWqt2eDssVu25noMvEyUmF5GgOy1+DUcAjHxRyyYzpO3aIbsw0Ci5hXhpEBkLGp2wC/YQq5oNx4yzunJ5EhmFAQ9BUSJqJ8HsjZr4xM99LJn2GD2bRS8X/vH6E4ys3FiqMEBRPD6GQkB0yXIukB6AjoQGRpcmBCkU50wwRtKCM80SMkmJKSR/O4vfLpHNWdy7q9v15pXGdN1MkR+SYVIlDLkmD3JEmaRNOpuSJPJMXK7ZerTfr/We0YOU7h+QPrI9vI5+S3A==</latexit>

(P, T, F )

<latexit sha1_base64="ooOZ0DnMcvb+JRBNxLdNmLXYmCw=">AAACE3icbVC7TsNAEDyHVwgvAyUFJxIkqsiOhKCMoKEMEnlIcRSdL+twyvnB3RopslLyCXwFLVR0iJYPoOBfsI0LSJjiNJrZ1d6MG0mh0bI+jdLS8srqWnm9srG5tb1j7u51dBgrDm0eylD1XKZBigDaKFBCL1LAfFdC151cZn73HpQWYXCD0wgGPhsHwhOcYSoNzcPE0R71QkUhHZvSmu1IuKMifye12dCsWnUrB10kdkGqpEBraH45o5DHPgTIJdO6b1sRDhKmUHAJs4oTa4gYn7Ax9FMaMB/0IMmDzOhxrBmGNAJFhaS5CL83EuZrPfXddNJneKvnvUz8z+vH6J0PEhFEMULAs0MoJOSHNFcijQ50JBQgsuznQEVAOVMMEZSgjPNUjNPKKmkf9nz6RdJp1O3TunXdqDYvimbK5IAckRNikzPSJFekRdqEkwfyRJ7Ji/FovBpvxvvPaMkodvbJHxgf3xM+nTA=</latexit>

for every 1  i  k

<latexit sha1_base64="c5bXFizM09vdag5tZxVtWuKqvqY=">AAACSnicZVA9bxNBEN1zAoTjIyaUNKs4SDSc7iyhUAZoKIOEnUi2ddpbz4WVd/eWnVlk6+R/xk/gD1DQ0EJFh2hYHy5I/Kqn92Y0817ltELK869Jb2//1u07B3fTe/cfPDzsPzoaYxO8hJFsdOMvK4GglYURKdJw6TwIU2m4qBZvNv7FJ/CoGvueVg5mRlxZVSspKEplf9xOsU5fWT4lWFJVt8HOlQdJMOdO0Ic1V8gFt419DsbRiiN8DGAl8KaO6hwwPVmWxbIcZlm2LBcnHDPK1mV/kGd5B75Lii0ZsC3Oy/636byRwYAlqQXipMgdzVrhSUkN63QaEJyQC3EFk0itMICztsu/5k8DCmq4A8+V5p0I/2+0wiCuTBUnTcyENz3TBd31JoHql7NWWRcoZt4cIqWhO4TSq1gs8E1dRGLzOXBluRReEIFXXEgZxRCbTmMfxc30u2Q8zIoXWf5uODh7vW3mgD1hx+wZK9gpO2Nv2TkbMck+s+/sB/uZfEl+Jb+TP/9Ge8l25zG7ht7+Xzsesec=</latexit>

An undirected path is a non-empty sequence of nodes x1x2...xk s.t.
<latexit sha1_base64="WdYY63t9mv7MyD64ibyFxGQpJHo=">AAACFHicbVC7TgJBFJ3FF+ILtbSZSEwwKtk1Gi2JJsQSE3kkgJvZ4YITZh+ZuWsgG1o/wa+w1crO2Npb+C8OSKHgqU7OuTf3nuNFUmi07U8rNTe/sLiUXs6srK6tb2Q3t6o6jBWHCg9lqOoe0yBFABUUKKEeKWC+J6Hm9S5Hfu0elBZhcIODCFo+6waiIzhDI7lZmu+74rDvJuLAGe7TpghovtTkcURLt8mRkdxszi7YY9BZ4kxIjkxQdrNfzXbIYx8C5JJp3XDsCFsJUyi4hGGmGWuIGO+xLjQMDZgPupWMkwzpXqwZhjQCRYWkYxF+byTM13rge2bSZ3inp72R+J/XiLFz3kpEEMUIAR8dQiFhfEhzJUxFQNtCASIbfQ7UFMGZYoigBGWcGzE2nWVMH850+llSPS44pwX7+iRXvJg0kyY7ZJfkiUPOSJFckTKpEE4eyBN5Ji/Wo/VqvVnvP6Mpa7KzTf7A+vgGIvmcjQ==</latexit>

(xi, xi+1) 2 (F [ F�1)
(denotes the inverse of a binary relation)

<latexit sha1_base64="VhzlVRD699GttsxK3VF/vNVwv64=">AAACHXicbVDLSgNBEJz1GeMr6tHLYBASWMOuKHoRgkLwGME8IBvD7KQTB2cfzPSKYck3+Al+hVc9eROv4sF/cRJz0Gidiqpuuqv8WAqNjvNhzczOzS8sZpayyyura+u5jc26jhLFocYjGammzzRIEUINBUpoxgpY4Eto+DdnI79xC0qLKLzEQQztgPVD0ROcoZE6uWLlKt1zh/SEeqlnFwb2XdGzvUB0PZsW7uxB0RMhrRhp2MnlnZIzBv1L3AnJkwmqndyn1414EkCIXDKtW64TYztlCgWXMMx6iYaY8RvWh5ahIQtAt9NxpCHdTTTDiMagqJB0LMLPjZQFWg8C30wGDK/1tDcS//NaCfaO26kI4wQh5KNDKCSMD2muhOkKaFcoQGSjz4Ga/JwphghKUMa5ERNTXtb04U6n/0vq+yX3sORcHOTLp5NmMmSb7JACcckRKZNzUiU1wsk9eSRP5Nl6sF6sV+vte3TGmuxskV+w3r8AcLqfQA==</latexit>

F�1 = { (y, x) | (x, y) 2 F }

(a path where we disregard the orientation of arcs)
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<latexit sha1_base64="TSf5rmSClnZa43P5MfFkNhH6n9Y=">AAACKXicbVDLSgNBEJyN7/ha9ehlMAoKEnYDokcfIB4jGBWSEHonvTpkdnaZ6VXDki/xE/wKr3rypoInf8RNzEGNdSqquumuChIlLXnem1MYG5+YnJqeKc7OzS8sukvL5zZOjcCaiFVsLgOwqKTGGklSeJkYhChQeBF0jvr+xQ0aK2N9Rt0EmxFcaRlKAZRLLXcna9iweMA1El/frG6fbR9vrXNpeYPwjoIwu0XoqC4XsdYoCNs9LsNeyy15ZW8APkr8ISmxIaot96PRjkUaoSahwNq67yXUzMCQFAp7xUZqMQHRgSus51RDhLaZDeL1+EZqgWKeoOFS8YGIPzcyiKztRkE+GQFd279eX/zPq6cU7jUzqZOUUIv+IZIKB4esMDLvDXlbGiSC/ufIpeYCDBChkRyEyMU0L7KY9+H/TT9Kzitlf6fsnVZK+4fDZqbZKltjm8xnu2yfnbAqqzHB7tkje2LPzoPz4rw679+jBWe4s8J+wfn8AtMEpWo=</latexit>

A net (P, T, F ) is weakly connected if
<latexit sha1_base64="lKW0oLHXN8NkLgvkwnigSPB1Z6c=">AAACNHicbVDLSgNBEJz1bXxFPXoZDIKnsCuIHoNePCqYByQh9M52dHB2dpnpTQhLfsdP8Cu8Kgh6Eq9+g7MxB43WqajqpqsrTJW05Psv3tz8wuLS8spqaW19Y3OrvL3TsElmBNZFohLTCsGikhrrJElhKzUIcaiwGd6dF35zgMbKRF/TKMVuDDda9qUAclKvXMs7tl+iWzTIpeWgeaYjaVAQRjwFuuUh0hBRO2vEaZjwyIWSWhDXSYR23CtX/Ko/Af9LgimpsCkue+W3TpSILEZNQoG17cBPqZuDISkUjkudzGIK4g5usO2ohhhtN598OuYHmQVKeIqGS8UnIv7cyCG2dhSHbjJ24e2sV4j/ee2M+qfdXOo0I9SiOERS4eSQFUYOin6KXoigSO7K0lyAASI0koMQTsxcpyXXRzD7/V/SOKoGx1X/6qhSO5s2s8L22D47ZAE7YTV2wS5ZnQl2zx7ZE3v2HrxX7937+B6d86Y7u+wXvM8vr82rpw==</latexit>

there is an undirected path between any two distinct nodes

<latexit sha1_base64="o744aSeIASD9pv5ygcsXKpcFA3g=">AAACK3icbVDLSgNBEJyNrxhfUY9eBhMhQgi7AYnHqCAeI+QFSQizk944ZHZ2mekVw5JP8RP8Cq968qTo0f9wE3PQaJ2Kqm66q9xQCoO2/WqllpZXVtfS65mNza3tnezuXtMEkebQ4IEMdNtlBqRQ0ECBEtqhBua7Elru6GLqt25BGxGoOo5D6PlsqIQnOMNE6mcrcdd4mTOqAGm+UCvWi5fHeSoM7SLcoevFBnWghnJMeaAUcITBhApv0s/m7JI9A/1LnDnJkTlq/exHdxDwyAeFXDJjOo4dYi9mGgWXMMl0IwMh4yM2hE5CFfPB9OJZwAk9igzDgIagqZB0JsLPjZj5xox9N5n0Gd6YRW8q/ud1IvROe7FQYYSg+PQQCgmzQ4ZrkTQHdCA0ILLp50CFopxphghaUMZ5IkZJlZmkD2cx/V/SLJeck5J9Xc5Vz+fNpMkBOSQF4pAKqZIrUiMNwsk9eSRP5Nl6sF6sN+v9ezRlzXf2yS9Yn1/EC6Zz</latexit>

A net (P, T, F ) is strongly connected if
<latexit sha1_base64="ddvO4Upc8PFfv8THO2oXifto4XY=">AAACKHicbVC7TsNAEDzzDOFloKQ5ESFRRTYCQYmgoQwSCUhJFK0vm+TE+WzdrYMiKz/CJ/AVtFDRoRQ0fAnnkILXVKOZXe3sRKmSloJg4s3NLywuLZdWyqtr6xub/tZ2wyaZEVgXiUrMbQQWldRYJ0kKb1ODEEcKb6K7i8K/GaKxMtHXNEqxHUNfy54UQE7q+Ed5y/bKNECDXFoOPAUa8AjpHlFz0CNO9wnvuiBSC+I66aIdd/xKUA2m4H9JOCMVNkOt47+3uonIYtQkFFjbDIOU2jkYkkLhuNzKLKYg7qCPTUc1xGjb+fS7Md/PLFDCUzRcKj4V8ftGDrG1ozhyk7ELb397hfif18yod9rOpU4zQi2KQyQVTg9ZYeSw6KQrDRJBkdwVpLkAA0RoJAchnJi5Hsuuj/D3939J47AaHleDq8PK2fmsmRLbZXvsgIXshJ2xS1ZjdSbYA3tiz+zFe/RevTdv8jU65812dtgPeB+fkE6meg==</latexit>

there is a path between any two distinct nodes
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A net (P,T,F) is weakly connected 
iff  

it cannot be splitted in separated components 

A weakly connected net is strongly connected 
iff 

 for every arc (x,y) there is a path from y to x



Examples
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weakly connected 
not strongly connected



Examples
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not weakly connected 
not strongly connected



Examples
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weakly connected 
strongly connected



Question time

102

not weakly connected 
strongly connected

? IMPOSSIBLE !!!



A note
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In the following we will consider (implicitly) weakly 
connected nets only 

(if they are not, then we can study each of their 
subsystems separately)



Question time
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Is the net strongly connected?



Question time
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Is the net strongly connected?

YES

YES

YES

NO



Strong connectedness 
theorem
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Theorem: If a weakly connected system is  
live and bounded then it is strongly connected



Consequences
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If a (weakly-connected) net is not strongly connected  

then 

It is not “live and bounded” 

If it is live, it is not bounded 

If it is bounded, it is not live



Example
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It is now immediate to see that this system 
(weakly connected, not strongly connected) 

cannot be live and bounded 
(it is live but not bounded)



Example
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It is now immediate to see that this system 
(weakly connected, not strongly connected) 

cannot be live and bounded 
(it is bounded but not live)



Example
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It is now immediate to see that this system 
(weakly connected, not strongly connected) 

cannot be live and bounded 
(it is neither bounded nor live)



Strong connectedness 
of N*
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Let us denote by N : i ! o a workflow net
with entry place i and exit place o.

Let N⇤ be the net obtained by adding the “reset” transition to N
reset : o ! i.

Proposition:
N⇤ is strongly connected.

Take two nodes of (x, y) 2 FN⇤ ,
we want to build a path from y to x

If x, y 6= reset , then
y lies on a path i !⇤ y !⇤ o, because N is a workflow net,
x lies on a path i !⇤ x !⇤ o, because N is a workflow net,
we combine the paths y !⇤ o ! reset ! i !⇤ x

If x = o, y = reset , then
take any path i !⇤ o,
we build the path reset ! i !⇤ o

If x = reset , y = i, then
take any path i !⇤ o,
we build the path i !⇤ o ! reset



Strong connectedness 
of N*: example
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<latexit sha1_base64="IyvvUihDxoI02U4xQIrZcA7u7ok=">AAAB83icdVC7TkJBFNzrE/GFWtpsJCZWZJeoQEe0sYREHgkQsnc54Ia9j+yeaySEL7DVys7Y+kEW/ot7ERM1OtVk5pycOePHWllk7M1bWl5ZXVvPbGQ3t7Z3dnN7+00bJUZCQ0Y6Mm1fWNAqhAYq1NCODYjA19Dyx5ep37oFY1UUXuMkhl4gRqEaKinQSfW7fi7PCowxzjlNCS+dM0cqlXKRlylPLYc8WaDWz713B5FMAghRamFth7MYe1NhUEkNs2w3sRALORYj6DgaigBsbzoPOqPHiRUY0RgMVZrORfi+MRWBtZPAd5OBwBv720vFv7xOgsNyb6rCOEEIZXoIlYb5ISuNcg0AHSgDiCJNDlSFVAojEMEoKqR0YuIqybo+vp6m/5NmscDPCqx+mq9eLJrJkENyRE4IJyVSJVekRhpEEiD35IE8eon35D17L5+jS95i54D8gPf6Adcjkbs=</latexit>x

<latexit sha1_base64="YIAnqUgf2hpXvTTKApdqC7PbV/Q=">AAAB83icdVC7TkJBFNyLL8QXammzkZhYkV2iAh3RxhISeSRAyN7lgBv2PrJ7rgkhfIGtVnbG1g+y8F/ci5io0akmM+fkzBk/1soiY29eZmV1bX0ju5nb2t7Z3cvvH7RslBgJTRnpyHR8YUGrEJqoUEMnNiACX0Pbn1ylfvsOjFVReIPTGPqBGIdqpKRAJzWmg3yBFRljnHOaEl6+YI5Uq5USr1CeWg4FskR9kH/vDSOZBBCi1MLaLmcx9mfCoJIa5rleYiEWciLG0HU0FAHY/mwRdE5PEiswojEYqjRdiPB9YyYCa6eB7yYDgbf2t5eKf3ndBEeV/kyFcYIQyvQQKg2LQ1Ya5RoAOlQGEEWaHKgKqRRGIIJRVEjpxMRVknN9fD1N/yetUpGfF1njrFC7XDaTJUfkmJwSTsqkRq5JnTSJJEDuyQN59BLvyXv2Xj5HM95y55D8gPf6Adiykbw=</latexit>y

reset



http://woped.dhbw-karlsruhe.de/woped/

WoPeD

http://woped.dhbw-karlsruhe.de/woped/


Exercise
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Use some tools to check if the net below is a sound 
workflow net or not
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Liveness and boundedness refer to N* 
not to N



116

in this case, the problem is due to a 
possible deadlock



Exercise
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Use some tools to check if the net below is a sound 
workflow net or not



Exercise

118

Use some tools to check if the net below is a sound 
workflow net or not

Deadlock
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Use some tools to check if the net below is a sound 
workflow net or not

Deadlock
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Use some tools to check if the net below is a sound 
workflow net or not
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Exercise
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Analyse the following net



123



Exercise
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Analyse the following net
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Liveness and boundedness refer to N* 
not to N
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Boundedness: we can end the case 
leaving a token in c8



Exercise
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Analyse the following net

Some tokens left in the net after case completion
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Liveness: possible deadlock



Exercise
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Analyse the following net

Deadlock



Design and analysis of 
WF-nets
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The workflow of a computer repair service (CRS) can be described as follows.  
A customer brings in a defective computer and the CRS checks the defect and hands out a 
repair cost calculation back.  
If the customer decides that the costs are acceptable, the process continues, otherwise 
she takes her computer home unrepaired.  
The ongoing repair consists of two activities, which are executed sequentially but in an 
arbitrary order.  
One activity is to check and repair the hardware,  
whereas the other activity is to check and configure the software.  
After both activities are completed, the proper system functionality is tested.  
If an error is detected the repair procedure is repeated,  
otherwise the repair is finished and the computer is returned. 

Model the described workflow as a sound workflow net.
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The workflow of a computer repair service (CRS) can be described as follows.  
A customer brings in a defective computer and the CRS checks the defect and hands 
out a repair cost calculation back.  
If the customer decides that the costs are acceptable, the process continues, otherwise 
she takes her computer home unrepaired.  
The ongoing repair consists of two activities, which are executed sequentially but in an 
arbitrary order.  
One activity is to check and repair the hardware,  
whereas the other activity is to check and configure the software.  
After both activities are completed, the proper system functionality is tested.  
If an error is detected the repair procedure is repeated,  
otherwise the repair is finished and the computer is returned. 

Model the described workflow as a sound workflow net.
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The workflow of a computer repair service (CRS) can be described as follows.  
A customer brings in a defective computer and the CRS checks the defect and hands 
out a repair cost calculation back. 



Design and analysis of 
WF-nets

133

If the customer decides that the costs are acceptable, the process continues, otherwise 
she takes her computer home unrepaired.  
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The ongoing repair consists of two activities, which are executed sequentially but in an 
arbitrary order.  
One activity is to check and repair the hardware,  
whereas the other activity is to check and configure the software. 
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The ongoing repair consists of two activities, which are executed sequentially but in an 
arbitrary order.  
One activity is to check and repair the hardware,  
whereas the other activity is to check and configure the software. 
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After both activities are completed, the proper system functionality is tested.  
If an error is detected the repair procedure is repeated, 
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otherwise the repair is finished and the computer is returned. 



Design and analysis of 
WF-nets
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