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Object
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We introduce two relevant kinds of invariants for 
Petri nets

Free Choice Nets (book, optional reading) 
https://www7.in.tum.de/~esparza/bookfc.html 

https://www7.in.tum.de/~esparza/bookfc.html


Puzzle time: tiling a 
chessboard with dominoes
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cells

31 dominoes
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Puzzle time: tiling a 
chessboard with dominoes
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64-2 = 62 
cells

31 dominoes



Invariant
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An invariant of a dynamic system is an assertion 
that holds at every reachable state 



Example

7

You have a polygon

You can rotate it
You can move it
You can scale it
You can mirror it

Which invariants?
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You have a polygon

You can rotate it
You can move it
You can scale it
You can mirror it

Which invariants? perimeter
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You have a polygon

You can rotate it
You can move it
You can scale it
You can mirror it

Which invariants? area



Example
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You have a polygon

You can rotate it
You can move it
You can scale it
You can mirror it

Which invariants? number of vertices
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You have a polygon

You can rotate it
You can move it
You can scale it
You can mirror it

Which invariants? number of sides
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You have a polygon

You can rotate it
You can move it
You can scale it
You can mirror it

Which invariants? vertex degrees
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You have a polygon

You can rotate it
You can move it
You can scale it
You can mirror it

Which invariants? convexity
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You have a polygon

You can rotate it
You can move it
You can scale it
You can mirror it

Which invariants? color



Question time
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You have a polygon

You can rotate it
You can move it
You can scale it
You can mirror it

Which invariants?

color

You can stretch it

convexity?
vertex degrees?

number of sides?

number of vertices?

area
perimeter
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Question time
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You have a polygon

You can rotate it
You can move it
You can scale it
You can mirror it

Which invariants?

color

You can stretch it

convexity
vertex degrees

number of sides

number of vertices

area
perimeter



Puzzle: from MI to MU

20

You can compose words using symbols M, I, U 

Given the initial word MI, you can apply the following 
transformations, in any order, as many times as you like: 

1. Add a U to the end of any string ending in I  
    (e.g., MI to MIU). 
2. Double the string after the M  
    (e.g., MIU to MIUIU). 
3. Replace any III with a U  
    (e.g., MUIIIU to MUUU). 
4. Remove any UU  
    (e.g., MUUU to MU).



Puzzle: from MI to MU

21

You can compose words using symbols M, I, U 

Given the initial word MI, you can apply the following 
transformations, in any order, as many times as you like: 

1. Add a U to the end of any string ending in I.         
2. Double the string after the M.                           
3. Replace any III with a U.                           
4. Remove any UU.                                      

wI → wIU
Mw → Mww

w1IIIw2 → w1Uw2
w1UUw2 → w1w2

MI MII MIIII MIIIIU MIUU MI
2 2 1 3 4



Puzzle: from MI to MU
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You can compose words using symbols M, I, U 

Given the initial word MI, you can apply the following 
transformations, in any order, as many times as you like: 

1. Add a U to the end of any string ending in I. 
2. Double the string after the M. 
3. Replace any III with a U. 
4. Remove any UU. 

Can you transform MI to MU? 
(Hint: count the number of I modulo 3) 



Modular arithmetic
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Numbers where the counting “wrap around” 
when reaching a certain bound, called the modulus 

counting modulo k: only numbers from 0 to k-1 

n modulo k = remainder of integer division n over k 
(often denoted n%k) 

9 % 2 = 1 
9 % 3 = 0 
9 % 5 = 4



Modular arithmetic: 
example

24

0 1
2

3
4

567
8

9

10
11

31 % 12 = 7



Example
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You have a Petri net

You can fire any  
currently enabled  
transition

Which invariants?

(P, T, F,M0)

⌅t ⇤ T, ⌅M ⇤ [M0 ⌃, ⇧M � ⇤ [M ⌃, M � t�⇥



Example
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You have a Petri net

You can fire any  
currently enabled  
transition

Which invariants? color

(P, T, F,M0)

⌅t ⇤ T, ⌅M ⇤ [M0 ⌃, ⇧M � ⇤ [M ⌃, M � t�⇥



Example

27

You have a Petri net

You can fire any  
currently enabled  
transition

Which invariants? P, T, F

(P, T, F,M0)

⌅t ⇤ T, ⌅M ⇤ [M0 ⌃, ⇧M � ⇤ [M ⌃, M � t�⇥



Example
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You have a Petri net

You can fire any  
currently enabled  
transition

Which invariants? number of tokens in p3

(P, T, F,M0)

⌅t ⇤ T, ⌅M ⇤ [M0 ⌃, ⇧M � ⇤ [M ⌃, M � t�⇥



Example
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You have a Petri net

You can fire any  
currently enabled  
transition

Which invariants? number of tokens in a 
dead place

(P, T, F,M0)

⌅t ⇤ T, ⌅M ⇤ [M0 ⌃, ⇧M � ⇤ [M ⌃, M � t�⇥



Example
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You have a Petri net

You can fire any  
currently enabled  
transition

Which invariants? Any property that holds  
for any reachable marking

(P, T, F,M0)

⌅t ⇤ T, ⌅M ⇤ [M0 ⌃, ⇧M � ⇤ [M ⌃, M � t�⇥



Recall: 
Liveness, formally

31

(P, T, F,M0)

⌅t ⇤ T, ⌅M ⇤ [M0 ⌃, ⇧M � ⇤ [M ⌃, M � t�⇥



Liveness as invariant
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Let t ⇤ T and M � ⇤ [M ⇧.

Since M ⇤ [M0 ⇧, then M � ⇤ [M0 ⇧.

Since (P, T, F,M0) is live, ⌅M �� ⇤ [M � ⇧ with M �� t�⇥.

Therefore (P, T, F,M) is live.

Lemma
If (P, T, F,M0) is live and M � [M0 ⇥, then (P, T, F,M) is live.



Recall: Deadlock 
freedom, formally
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(P, T, F,M0)

⌅M ⇤ [M0 ⌃, ⇧t ⇤ T, M
t�⇥



Deadlock freedom as 
invariant
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Lemma: If (P, T, F,M0) is deadlock-free and M � [M0 ⇥,
then (P, T, F,M) is deadlock-free.

Let M � ⇤ [M ⇧.

Since M ⇤ [M0 ⇧, then M � ⇤ [M0 ⇧.

Since (P, T, F,M0) is deadlock-free, ⌅t ⇤ T with M � t�⇥.

Therefore (P, T, F,M) is deadlock-free.



Exercise
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Give the formal definition of Boundedness 

Then prove that Boundedness is an invariant 

Or give a counter-example



Exercise

36

Give the formal definition of Cyclicity 

Then prove that Cyclicity is an invariant 

Or give a counter-example



Structural invariants
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In the case of Petri nets, it is possible to compute 
certain vectors of rational numbers(*) 
(directly from the structure of the net) 

(independently from the initial marking) 
which induce nice invariants, called  

S-invariants 

T-invariants 
(*) it is not necessary to consider real-valued solutions, because incidence matrices only have integer entries



Why invariants?
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Can be calculated efficiently  
(polynomial time for a basis) 

Independent of initial marking 

Structural property with behavioural consequences 

However, the main reason is didactical!  
You only truly understand a model if you think 

about it in terms of invariants! 



S-invariants

39



S-invariant  
(aka place-invariant)
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x ·N = 0

Definition: An S-invariant of a net N=(P,T,F) is a 
rational-valued solution x of the equation

? ? ? ? ? 0 0 0 0 0 0=・ N
(length = number of places)



Example
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Find some/all S-invariants for the net above



Example

42

Find some/all S-invariants for the net aboveM0 = [ 4 0 1 0 0 ] � = t3t5t3t4t2 ⇥� = [ 0 1 2 1 1 ]

�

⇧⇧⇧⇧⇤

4
0
1
0
0

⇥

⌃⌃⌃⌃⌅
+

�

⇧⇧⇧⇧⇤

1 �1 0 0 0
�1 1 0 0 0
0 1 �1 0 1
0 0 1 �1 �1
0 �1 0 1 0

⇥

⌃⌃⌃⌃⌅
·

�

⇧⇧⇧⇧⇤

0
1
2
1
1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

3
1
1
0
0

⇥

⌃⌃⌃⌃⌅

N

<latexit sha1_base64="THhsyhfNf+TnzUiup5bBDD8ZV+g=">AAACJ3icbZC7SgNREIbPeo3xFrW0ORgECwm7atBStLGMYC6QXZbZkzEecvbiObMSCXkQH8GnsNXKTrSw8E3cxAQ0caqP/59hZv4gUdKQbX9YM7Nz8wuLuaX88srq2nphY7Nm4lQLrIpYxboRgEElI6ySJIWNRCOEgcJ60Dkf+PU71EbG0RXdJ+iF0I7ktRRAmeQXDpvuftd33NsUWrzrH4zhcAxHYyi7+x53RSsmv1C0S/aw+DQ4IyiyUVX8wqfbikUaYkRCgTFNx07I64EmKRT2825qMAHRgTY2M4wgROP1hs/1+W5qgGKeoOZS8aGIvyd6EBpzHwZZZwh0Yya9gfif10zp+sTryShJCSMxWERS4XCREVpmqSFvSY1EMLgcuYy4AA1EqCUHITIxzWLMZ3k4k99PQ+2g5JRL9uVR8fRslEyObbMdtsccdsxO2QWrsCoT7IE9sWf2Yj1ar9ab9f7TOmONZrbYn7K+vgHtQqTu</latexit>

[x1 x2 x3 x4 x5 ]·
<latexit sha1_base64="80BA48OxUmlbAkSQoWtvl0VZvWQ=">AAAB/nicbVC7SgNBFJ2NrxhfUUubwSBYhV1RtBGCNpYRzAOyIcxObuKQ2dlh5q4QloBfYauVndj6Kxb+i7vrFpp4qsM593LPPYGWwqLrfjqlpeWV1bXyemVjc2t7p7q717ZRbDi0eCQj0w2YBSkUtFCghK42wMJAQieYXGd+5wGMFZG6w6mGfsjGSowEZ5hK/iX1Q4b3wShxZ4Nqza27Oegi8QpSIwWag+qXP4x4HIJCLpm1Pc/V2E+YQcElzCp+bEEzPmFj6KVUsRBsP8kzz+hRbBlGVIOhQtJchN8bCQutnYZBOpkltPNeJv7n9WIcXfQToXSMoHh2CIWE/JDlRqRlAB0KA4gsSw5UKMqZYYhgBGWcp2KctlNJ+/Dmv18k7ZO6d1Z3b09rjauimTI5IIfkmHjknDTIDWmSFuFEkyfyTF6cR+fVeXPef0ZLTrGzT/7A+fgGNyWVzg==</latexit>

= 0

<latexit sha1_base64="XL3D+Z1IRpaEafgxF9ZO7eXeVpM=">AAAB/HicbVC7TsNAEFzzDOEVoKQ5ESFRRTYCQRlBQxkk8hBJFJ0vm3DK+WzdrRGRFb6CFio6RMu/UPAv2MEFJEw1mtnVzo4fKWnJdT+dhcWl5ZXVwlpxfWNza7u0s9uwYWwE1kWoQtPyuUUlNdZJksJWZJAHvsKmP7rM/OY9GitDfUPjCLsBH2o5kIJTKt12Ak53/iB5mPRKZbfiTsHmiZeTMuSo9UpfnX4o4gA1CcWtbXtuRN2EG5JC4aTYiS1GXIz4ENsp1TxA202miSfsMLacQhahYVKxqYi/NxIeWDsO/HQyS2hnvUz8z2vHNDjvJlJHMaEW2SGSCqeHrDAyrQJZXxok4llyZFIzwQ0nQiMZFyIV47SbYtqHN/v9PGkcV7zTint9Uq5e5M0UYB8O4Ag8OIMqXEEN6iBAwxM8w4vz6Lw6b877z+iCk+/swR84H9/IwJWl</latexit>x

<latexit sha1_base64="VK/KXplfkDk3E46i/02z83t/PlQ=">AAACxXicbVFNa9tAEF0paZuqaeu2x16WmJRAsJHyQXophPbQHlOIk4AlxGg9VpasVmJ3FGKEyW/ssYf+l64tYeIkwy4zvDdvZnY2q5S0FIZ/PX9j88XLV1uvgzfbb9+97334eGHL2ggciVKV5ioDi0pqHJEkhVeVQSgyhZfZzY8Ff3mLxspSn9OswqSAXMupFEAOSnt/YoVTipsgzjCXugFjYDZvRGvz4C6N+Bc+uEsPnFu db+6GcRwMWnq/pZ07bHmHHz9IW4GHbdbRepVV2UFL7T+nbsWDdXEQo550Mwexkfk1DdNePxyGS+NPg6gL+qyzs7T3L56Uoi5Qk1Bg7TgKK0pcVZJCoatbW6xA3ECOYxdqKNAmzXL1c75bW6CSV2i4VHwJ4kNFA4W1syJzmQXQtX3MLcDnuHFN069JI3VVE2qxaERS4bKRFUa6P0U+kQaJYDE5cqm5AANEaCQHIRxYu08O3D6ix69/GlwcDKPjYfj7qH/6vdvMFvvMdtgei9gJO2W/2BkbMeGdeIk39XL/p1/45N+2qb7XaT6xNfPv/wOdw8M0</latexit>8
>>>><

>>>>:

x1 �x2 = 0
�x1 +x2 +x3 �x5 = 0

�x3 +x4 = 0
�x4 +x5 = 0

x3 �x4 = 0

<latexit sha1_base64="IuyRRRPH1Y+gjD8E6Cja82ZqGsk=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRXYEggYpgoYySOSBEss6XzbhlPPZulujRFa+ghYqOkTLx1DwL9jGBSRMNZrZ1c6OH0lh0LY/raXlldW19dJGeXNre2e3srffNmGsObR4KEPd9ZkBKRS0UKCEbqSBBb6Ejj++zvzOI2gjQnWH0wjcgI2UGArOMJXuJ55DL+nEq3uVql2zc9BF4hSkSgo0vcpXfxDyOACFXDJjeo4doZswjYJLmJX7sYGI8TEbQS+ligVg3CQPPKPHsWEY0gg0FZLmIvzeSFhgzDTw08mA4YOZ9zLxP68X4/DCTYSKYgTFs0MoJOSHDNcibQLoQGhAZFlyoEJRzjRDBC0o4zwV47SactqHM//9ImnXa85Zzb49rTauimZK5JAckRPikHPSIDekSVqEk4A8kWfyYs2sV+vNev8ZXbKKnQPyB9bHN/rTk+s=</latexit>x1 = x2

<latexit sha1_base64="8H+loCWvsuM1iE/BdXFlDtH2CNw=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIhCBqkCBrKIJEHSizrfNmEU+5s626NEln5Clqo6BAtH0PBv2CbFJAw1WhmVzs7fiSFQdv+tApLyyura8X10sbm1vZOeXevZcJYc2jyUIa64zMDUgTQRIESOpEGpnwJbX90nfntR9BGhMEdTiJwFRsGYiA4w1S6H3un9JKOvZpXrthVOwddJM6MVMgMDa/81euHPFYQIJfMmK5jR+gmTKPgEqalXmwgYnzEhtBNacAUGDfJA0/pUWwYhjQCTYWkuQi/NxKmjJkoP51UDB/MvJeJ/3ndGAcXbiKCKEYIeHYIhYT8kOFapE0A7QsNiCxLDlQElDPNEEELyjhPxTitppT24cx/v0haJ1XnrGrf1ir1q1kzRXJADskxccg5qZMb0iBNwokiT+SZvFhT69V6s95/RgvWbGef/IH18Q0BKpPv</latexit>x3 = x4
<latexit sha1_base64="/bSyZpDkrVkk3GqNMBpRF01Ynn4=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrJRImiQImgog0QeKLGi82UTTjmfrbs1SmTlK2ihokO0fAwF/4JtXEDCVKOZXe3seKEUBm370yqsrK6tbxQ3S1vbO7t75f2DtgkizaHFAxnorscMSKGghQIldEMNzPckdLzJdep3HkEbEag7nIXg+mysxEhwhol0Px3U6CWdDuqDcsWu2hnoMnFyUiE5moPyV38Y8MgHhVwyY3qOHaIbM42CS5iX+pGBkPEJG0MvoYr5YNw4CzynJ5FhGNAQNBWSZiL83oiZb8zM95JJn+GDWfRS8T+vF+Howo2FCiMExdNDKCRkhwzXImkC6FBoQGRpcqBCUc40QwQtKOM8EaOkmlLSh7P4/TJpn1WdetW+rVUaV3kzRXJEjskpccg5aZAb0iQtwolPnsgzebHm1qv1Zr3/jBasfOeQ/IH18Q0ETpPx</latexit>x4 = x5

<latexit sha1_base64="ToZRgp4FQO6mb+IgfSSWmEFyC2M="></latexit>

[n n m m m ]



Homogeneous systems 
of linear equations

43

<latexit sha1_base64="OXsz4kbrBBM7JT1YXCVweKZdXvA="></latexit>8
>><

>>:

a1,1x1 + a1,2x2 + a1,nxn = 0
a2,1x1 + a2,2x2 + a2,nxn = 0
· · ·

am,1x1 + am,2x2 + am,nxn = 0

where  are the “unknowns” 

trivial solution:  
if  and  are solutions, then  is a solution 

if  is a solution, then  is a solution

x1, x2, . . . , xn

x1 = x2 = . . . = xn = 0
x x′￼ x + x′￼

x kx



Linear combination
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Proposition:  
Any linear combination of S-invariants is an S-invariant

Take any two S-Invariants I1 and I2 and any two values k1, k2.
We want to prove that k1 I1 + k2 I2 is an S-invariant.

(k1 I1 + k2 I2) ·N = k1 I1 ·N+ k2 I2 ·N
= k1 0+ k2 0

= 0



Fundamental property 
of S-invariants
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Proposition: Let I be an invariant of N .

For any M � [M0 ⇥ we have I ·M = I ·M0

=・I M M0・I



Fundamental property 
of S-invariants
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Proposition: Let I be an invariant of N .

For any M � [M0 ⇥ we have I ·M = I ·M0

Since M ⇤ [M0 ⌅, there is � s.t. M0
��⇥ M

By the marking equation: M = M0 +N · ⇥�

Therefore: I ·M = I · (M0 +N · ⇥�)
= I ·M0 + I ·N · ⇥�
= I ·M0 + 0 · ⇥�
= I ·M0



Place-invariant, 
intuitively

47

=・I M

weights tokens
weighted sum



Place-invariant, 
intuitively
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A place-invariant assigns a weight to each place such that 
the weighted token sum remains constant during any 

computation 

For example, you can imagine that tokens are coins, 
places are the different kinds of available coins, 

the S-invariant assigns a value to each coin: 
the value of a marking is the sum of the values of the 

tokens/coins in it and it is not changed by firings



Place-invariant, 
intuitively

49

A place-invariant assigns a weight to each place such that 
the weighted token sum remains constant during any 

computation 

For example, you can imagine that tokens are molecules, 
places are different kinds of molecules, 

the S-invariant assigns the number of atoms needed to 
form each molecule: 

the overall number of atoms is not changed by firings



Intuition: bubbles 
within tokens
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p1

p2

p3

p4

p5



Intuition: bubbles 
within tokens
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p1

p2

p3

p4

p5



Intuition: bubbles 
within tokens
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p1

p2

p3

p4

p5
I = [ 2 3 0 1 4 … ]



Intuition: bubbles 
within tokens
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I(p1)=2

I(p2)=3

I(p3)=0

I(p4)=1

I(p5)=4
I = [ 2 3 0 1 4 … ]



Intuition: bubbles 
within tokens
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I(p1)=2

I(p2)=3

I(p3)=0

I(p4)=1

I = [ 2 3 0 1 4 … ]
I(p5)=4



Intuition: bubbles 
within tokens
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I(p1)=2

I(p2)=3

I(p3)=0

I(p4)=1

I = [ 2 3 0 1 4 … ]
I(p5)=4



Intuition: bubbles 
within tokens
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I(p1)=2

I(p2)=3

I(p3)=0

I(p4)=1

I = [ 2 3 0 1 4 … ]
I(p5)=4



Intuition: bubbles 
within tokens
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I(p1)=2

I(p2)=3

I(p3)=0

I(p4)=1

I = [ 2 3 0 1 4 … ]
I(p5)=4



Intuition: tokens 
as coins
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I(p5)=20¢

I(p1)=10¢

I(p2)=50¢

I(p3)=20¢

I(p4)=20¢



Intuition: tokens 
as coins
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I(p5)=20¢

I(p1)=10¢

I(p2)=50¢

I(p3)=20¢

I(p4)=20¢



Alternative definition 
of S-invariant
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Proposition:

A mapping I : P � Q is an S-invariant of N i� for any t ⇥ T :

�

p�•t
I(p) =

�

p�t•
I(p)



Consequence of 
alternative definition
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Very useful in proving S-invariance! 

The check is possible without constructing 
the incidence matrix 

It can also help to build S-invariants 
directly over the picture



Exercise

62

Prove the proposition about the alternative 
characterization of S-invariants



Question time
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Which of the following are S-invariants? 
   p   b    r ] 
[  1   1  -1 ] 
[  1   0   1 ] 
[  0   1   1 ] 
[  1   1   1 ] 
[  1  -1   0 ] 
[  1   1   2 ] 
[  1   2   2 ] 

⇥t � T,
�

p�•t
I(p)

?
=

�

p�t•
I(p)

p1 - persons 
p2 - bikes 
p3 - riders

riders



Question time
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Which of the following are S-invariants? 
   p   b    r ] 
[  1   1  -1 ] 
[  1   0   1 ] 
[  0   1   1 ] 
[  1   1   1 ] 
[  1  -1   0 ] 
[  1   1   2 ] 
[  1   2   2 ] 

⇥t � T,
�

p�•t
I(p)

?
=

�

p�t•
I(p)

p1 - persons 
p2 - bikes 
p3 - riders

riders



Question time
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Which of the following are S-invariants? 
   p   b    r ] 
[  1   1  -1 ] 
[  1   0   1 ] 
[  0   1   1 ] 
[  1   1   1 ] 
[  1  -1   0 ] 
[  1   1   2 ] 
[  1   2   2 ] 

⇥t � T,
�

p�•t
I(p)

?
=

�

p�t•
I(p)

p1 - persons 
p2 - bikes 
p3 - riders

riders



Question time
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Which of the following are S-invariants? 
   p   b    r ] 
[  1   1  -1 ] 
[  1   0   1 ] 
[  0   1   1 ] 
[  1   1   1 ] 
[  1  -1   0 ] 
[  1   1   2 ] 
[  1   2   2 ] 

⇥t � T,
�

p�•t
I(p)

?
=

�

p�t•
I(p)

p1 - persons 
p2 - bikes 
p3 - riders

riders



Question time
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Which of the following are S-invariants? 
   p   b    r ] 
[  1   1  -1 ] 
[  1   0   1 ] 
[  0   1   1 ] 
[  1   1   1 ] 
[  1  -1   0 ] 
[  1   1   2 ] 
[  1   2   2 ] 

⇥t � T,
�

p�•t
I(p)

?
=

�

p�t•
I(p)

p1 - persons 
p2 - bikes 
p3 - riders

riders



Question time
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Which of the following are S-invariants? 
   p   b    r ] 
[  1   1  -1 ] 
[  1   0   1 ] 
[  0   1   1 ] 
[  1   1   1 ] 
[  1  -1   0 ] 
[  1   1   2 ] 
[  1   2   2 ] 

⇥t � T,
�

p�•t
I(p)

?
=

�

p�t•
I(p)

p1 - persons 
p2 - bikes 
p3 - riders

riders



Question time
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Which of the following are S-invariants? 
   p   b    r ] 
[  1   1  -1 ] 
[  1   0   1 ] 
[  0   1   1 ] 
[  1   1   1 ] 
[  1  -1   0 ] 
[  1   1   2 ] 
[  1   2   2 ] 

⇥t � T,
�

p�•t
I(p)

?
=

�

p�t•
I(p)

p1 - persons 
p2 - bikes 
p3 - riders

riders



Question time
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Which of the following are S-invariants? 
   p   b    r ] 
[  1   1  -1 ] 
[  1   0   1 ] 
[  0   1   1 ] 
[  1   1   1 ] 
[  1  -1   0 ] 
[  1   1   2 ] 
[  1   2   2 ] 

⇥t � T,
�

p�•t
I(p)

?
=

�

p�t•
I(p)

p1 - persons 
p2 - bikes 
p3 - riders

riders



Question time
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⇥t � T,
�

p�•t
I(p)

?
=

�

p�t•
I(p)

Which of the following are S-invariants? 
   p   b    r ] 
[  1   1  -1 ] 
[  1   0   1 ] 

 + [  0   1   1 ] 
[  1   1   1 ] 
[  1  -1   0 ] 

= [  1   1   2 ] 
[  1   2   2 ] 

p1 - persons 
p2 - bikes 
p3 - riders

riders



Question time
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Which of the following are S-invariants? 
   p   b    r ] 
[  1   1  -1 ] 
[  1   0   1 ] 

 - [  0   1   1 ] 
[  1   1   1 ] 

= [  1  -1   0 ] 
[  1   1   2 ] 
[  1   2   2 ] 

⇥t � T,
�

p�•t
I(p)

?
=

�

p�t•
I(p)

p1 - persons 
p2 - bikes 
p3 - riders

riders



Traffic-lights example
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0

0

0
0

111

[ 1 1 1 0 0 0 0 ]



Traffic-lights example
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1

1

1
0

000

[ 1 1 1 0 0 0 0 ]
[ 0 0 0 0 1 1 1 ]



Traffic-lights example
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1

1

0
1

011

[ 1 1 1 0 0 0 0 ]
[ 0 0 0 0 1 1 1 ]
[ 1 1 0 1 1 1 0 ]



Traffic-lights example

76

2

2

1
1

122

[ 1 1 1 0 0 0 0 ]
[ 0 0 0 0 1 1 1 ]
[ 1 1 0 1 1 1 0 ]
[ 2 2 1 1 2 2 1 ]

+
+
=



Exercises

77

Define two (linearly independent) S-invariants for 
each of the nets below



S-invariants and system 
properties

78



(Semi-)Positive  
S-invariants

79

The S-invariant I is semi-positive if I > 0
(i.e. I � 0 and I ⌅= 0)

The support of I is: ⇧I⌃ = { p | I(p) > 0 }

The S-invariant I is positive if I ⇥ 0
(i.e. I(p) > 0 for any place p ⇤ P )
(i.e. ⇧I⌃ = P )

A (semi-positive) S-invariant whose coefficients 
are all 0 and 1 is called uniform

all entries are non-negative 
and at least one is positive

all entries are positive

set of places with positive weights



Note

80

Every semi-positive invariant 
satisfies the equation 

pre-sets of support equal post-sets of support 

(the result holds for both S-invariants and T-invariants) 

•�I⇥ = �I⇥•

Notation: •S =
�

s�S •s

transitions that produce tokens 
in some places of the support

transitions that consume tokens 
from some places of the support



A sufficient condition 
for boundedness

81

Theorem:
If (P, T, F,M0) has a positive S-invariant then it is bounded

Let M ⇥ [M0 ⇤ and let I be a positive S-invariant.

Let p ⇥ P . Then I(p)M(p) � I ·M = I ·M0

Since I is positive, we can divide by I(p):
M(p) � (I ·M0)/I(p)

I ·M =
X

q2P

I(q)M(q)



Consequences of 
previous theorem

82

By exhibiting a positive S-invariant we can prove 
that the system is bounded for any initial marking 

Note that all places in the support of a semi-positive 
S-invariant are bounded for any initial marking

M(p)  I ·M0

I(p)
this value is independent 

from the reachable marking M



Example

83

To prove that the system is bounded we can 
just exhibit a positive S-invariant 

I = [ 1  1  2 ]

p1 - persons 
p2 - bikes 
p3 - riders riders



Example

84

How many tokens are at most in p3? 

I = [ 1  1  2 ] 

I ·M0

I(p3)
=

2

2
= 1

p1 - persons 
p2 - bikes 
p3 - riders riders



Example

85

How many tokens are at most in p3?

I = [ 1  0  1  1 ] 

<latexit sha1_base64="UXe9PxYL1l8ydAwHt2YX5OdfFTQ="></latexit>

I ·M0

I(p3)
=

1

1
= 1



Question time
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live, deadlock-free, bounded, safe, cyclic 
Prove boundedness by exhibiting an S-invariant



Question time
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live, deadlock-free, bounded, safe, cyclic 
Prove boundedness by exhibiting an S-invariant

I = [ 2  1  1  1  1 ] 



Exercises

88

Find a positive S-invariant for the net below



A necessary condition 
for liveness

89

Theorem:
If (P, T, F,M0) is live then for every semi-positive invariant I:

I ·M0 > 0
Let p ⌅ ⌃I⌥ and take any t ⌅ •p ⇧ p•.

By liveness, there are M,M � ⌅ [M0 ⌥ with M
t�⇤ M �

Then, M(p) > 0 (if t ⌅ p•) or M �(p) > 0 (if t ⌅ •p)

If M(p) > 0, then I ·M ⇥ I(p)M(p) > 0
If M �(p) > 0, then I ·M � ⇥ I(p)M �(p) > 0

In any case, I ·M0 = I ·M = I ·M � > 0 I ·M =
X

q2P

I(q)M(q)



Consequence of 
previous theorem

90

If we find a semi-positive invariant such that 

Then we can conclude that the system is not live

I ·M0 = 0



Example

91

It is immediate to check the counter-example 

I = [ 1  0  1 ] 

0 ] = 0 
[ 1 0 1 ]   1   = 0 

0 ] = 0
I M0

the system is not live

p1 - persons 
p2 - bikes 
p3 - riders riders



Exercises

92

Find an S-invariant that proves the net non-live



Markings that agree on 
all S-invariant

93

Definition:  and  agree on all S-invariants if  
for every S-invariant I we have I⋅  = I⋅  

Note: by properties of linear algebra,  
this corresponds to require that the equation on y 

N⋅y = -  has some rational-valued solution 

Remark: In general, there can exist  and  that 
agree on all S-invariants but such that  

none of them is reachable from the other

M M′￼

M M′￼

M′￼M

M M′￼



A necessary condition 
for reachability

94

Let (P, T, F,M0) be a system.

If there is an S-invariant I s.t. I ·M ⇤= I ·M0 then M ⇤⇥ [M0 ⌅

If the equationN·x = M�M0 has no rational-valued solution, thenM ⇤⇥ [M0 ⌅y

reachability problem: is  reachable from ?    
decidable, but computationally expensive 

(EXPSPACE-hard) 

S-invariants provide a preliminary check that can be 
computed more efficiently

M M0 M ∈ [M0⟩
?



Example

95

Prove that the marking  
M = prod1free + cons1busy 

is not reachable

I = [ 0 0 0 1 1 ] 
I  M0 = 0 ≠1 = I  M・ ・



S-invariants: recap

96

Positive S-invariant                           => boundedness 
Unboundedness                  => no positive S-invariant 

Semi-positive S-invariant I and liveness    => I⋅M0 > 0 
Semi-positive S-invariant I and I⋅M0 = 0    => non-live 

S-invariant I and M reachable               => I⋅M = I⋅M0 
S-invariant I and I⋅M ≠ I⋅M0         => M not reachable



S-invariants: pay 
attention to implication

97

No positive S-invariant              => maybe unbounded 

Semi-positive S-invariant I and I⋅M0 > 0 => maybe live 

S-invariant I and I⋅M = I⋅M0      => maybe M reachable



Exercises

98

Can you find a positive S-invariant?



Exercises

99

Prove that the system is not live by exhibiting a 
suitable S-invariant



T-invariants

100



Dual reasoning

101

x ·N = 0

The S-invariants of a net N are vectors satisfying 
the equation

It seems natural to ask if we can find some 
interesting properties also for the vectors 

satisfying the equation

N · y = 0



T-invariant  
(aka transition-invariant)

102

Definition: A T-invariant of a net N=(P,T,F) is a 
rational-valued solution y of the equation

N · y = 0

?

?

?

?

?

?

=・N

0

0

0

0

0



Fundamental property 
of T-invariants

103

Proposition: Let M
��⇥ M �.

The Parikh vector ⇥� is a T-invariant i� M � = M

⌅) By the marking equation lemma M � = M +N · ⇥�
Since ⇥� is a T-invariant N · ⇥� = 0, thus M � = M .

⇤) If M
��⇥ M , by the marking equation lemma M = M +N · ⇥�

Thus N · ⇥� = M �M = 0 and ⇥� is a T-invariant



Transition-invariant, 
intuitively

104

A transition-invariant assigns a number of 
occurrences to each transition such that any  
occurrence sequence comprising exactly those 

transitions leads to the same marking where it started 
(independently from the order of execution) 



Example

105

An easy-to-be-found T-invariant 

   t    l  ] 
[  1   1 ] 

p1 - persons 
p2 - bikes 
p3 - riders 

t1 - take 
t2 - leave

riders



Alternative definition 
of T-invariant

106

Proposition:

A mapping J : T � Q is a T-invariant of N i� for any p ⇥ P :

�

t�•p
J(t) =

�

t�p•
J(t)



Question time
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Which of the following are T-invariants? 
   t1   t2   t3   t4  t5 ] 

[ 1   0   0   1  1 ] 
[ 1   1   2   1  2 ] 
[ 1   1   1   0  2 ] 
[ 1   1   1   1  2 ] 
[ 0   1   1   0  1 ] 

⇥p � P,
�

t�•p
J(t)

?
=

�

t�p•
J(t)



Question time
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Which of the following are T-invariants? 
   t1   t2   t3   t4  t5 ] 

[ 1   0   0   1  1 ] 
[ 1   1   2   1  2 ] 
[ 1   1   1   0  2 ] 
[ 1   1   1   1  2 ] 
[ 0   1   1   0  1 ] 

⇥p � P,
�

t�•p
J(t)

?
=

�

t�p•
J(t)

0

0
1

1

1



Question time
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Which of the following are T-invariants? 
   t1   t2   t3   t4  t5 ] 

[ 1   0   0   1  1 ] 
[ 1   1   2   1  2 ] 
[ 1   1   1   0  2 ] 
[ 1   1   1   1  2 ] 
[ 0   1   1   0  1 ] 

⇥p � P,
�

t�•p
J(t)

?
=

�

t�p•
J(t)

1

2



Question time

110

Which of the following are T-invariants? 
   t1   t2   t3   t4  t5 ] 

[ 1   0   0   1  1 ] 
[ 1   1   2   1  2 ] 
[ 1   1   1   0  2 ] 
[ 1   1   1   1  2 ] 
[ 0   1   1   0  1 ] 

→

⇥p � P,
�

t�•p
J(t)

?
=

�

t�p•
J(t)

1

1
2

0

1



Question time
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Which of the following are T-invariants? 
   t1   t2   t3   t4  t5 ] 

[ 1   0   0   1  1 ] 
[ 1   1   2   1  2 ] 
[ 1   1   1   0  2 ] 
[ 1   1   1   1  2 ] 
[ 0   1   1   0  1 ] 

⇥p � P,
�

t�•p
J(t)

?
=

�

t�p•
J(t)

1

2
0



Question time

112

Which of the following are T-invariants? 
   t1   t2   t3   t4  t5 ] 

[ 1   0   0   1  1 ] 
[ 1   1   2   1  2 ] 
[ 1   1   1   0  2 ] 
[ 1   1   1   1  2 ] 
[ 0   1   1   0  1 ] 

→

⇥p � P,
�

t�•p
J(t)

?
=

�

t�p•
J(t)

1

1
2

1

1



Question time
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Which of the following are T-invariants? 
   t1   t2   t3   t4  t5 ] 

[ 1   0   0   1  1 ] 
[ 1   1   2   1  2 ] 
[ 1   1   1   0  2 ] 
[ 1   1   1   1  2 ] 
[ 0   1   1   0  1 ] 

⇥p � P,
�

t�•p
J(t)

?
=

�

t�p•
J(t)

1

1
2

1

1



Question time
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Which of the following are T-invariants? 
   t1   t2   t3   t4  t5 ] 

[ 1   0   0   1  1 ] 
[ 1   1   2   1  2 ] 
[ 1   1   1   0  2 ] 
[ 1   1   1   1  2 ] 
[ 0   1   1   0  1 ] →

⇥p � P,
�

t�•p
J(t)

?
=

�

t�p•
J(t)

1

1
1

0

0



Question time
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Which of the following are T-invariants? 
   t1   t2   t3   t4  t5 ] 

[ 1   0   0   1  1 ] 
[ 1   1   2   1  2 ] 
[ 1   1   1   0  2 ] 
[ 1   1   1   1  2 ] 
[ 0   1   1   0  1 ] 

⇥p � P,
�

t�•p
J(t)

?
=

�

t�p•
J(t)

1

1
1

0

0



T-invariants and system 
properties

116



Pigeonhole principle

117

 If n items are put into m slots, with n > m, then at least 
one slot must contain more than one item



Reproduction lemma
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Lemma: Let (P, T, F,M0) be a bounded system.
If M0

��⇤ for some infinite sequence �, then
there is a semi-positive T-invariant J such that ⇧J ⌃ ⇥ { t | t ⌅ � }.

Assume � = t1 t2 t3 ... and M0
t1�⇤ M1

t2�⇤ M2
t3�⇤ ...

By boundedness: [M0 ⇧ is finite.

By the pigeonhole principle, there are 0 ⇥ i < j s.t. Mi = Mj

Let �� = ti+1...tj . Then Mi
��
�⇤ Mj = Mi

By the marking equation lemma: ⇥�� is a T-invariant.
It is semi-positive, because �� is not empty (i < j).
Clearly, ⌅J ⇧ only includes transitions in �.

(fund. prop. of T-inv.)



Boundedness, liveness 
and positive T-invariant

119

Theorem: If a bounded system is live,  
then it has a positive T-invariant

By boundedness: [M0 ⌃ is finite and we let k = |[M0 ⌃|.

By liveness: M0
�1�⌅ M1 with ⇥�1(t) > 0 for any t ⇧ T

Similarly: M1
�2�⌅ M2 with ⇥�2(t) > 0 for any t ⇧ T

Similarly: M0
�1�⌅ M1

�2�⌅ M2...
�k�⌅ Mk

By the pigeonhole principle, there are 0 ⇥ i < j ⇥ k s.t. Mi = Mj

Let � = �i+1...�j . Then Mi
��⌅ Mj = Mi

By the marking equation lemma: ⇥� is a T-invariant.
It is positive, because ⇥�(t) ⇤ ⇥�j(t) > 0 for any t ⇧ T .

(fund. prop. of T-inv.)



Corollary of previous 
theorem

120

Every live and bounded system has:

a reachable marking M and
an occurrence sequence M

��⇥ M

such that all transitions of N occur in �.



T-invariants: recap
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Boundedness + liveness           => positive T-invariant 

No positive T-invariant           => non (live + bounded) 
No positive T-invariant      => non-live OR unbounded 
No positive T-invariant + liveness         => unbounded 
No positive T-invariant + boundedness     => non-live 
No positive T-inv. + positive S-inv.             => non-live 



T-invariants: pay 
attention to implication

122

No positive T-invariant              => maybe non live



Example

123

The system below has a positive S-invariant 
but no positive T-invariant: 

thus it is bounded but not live

I = [ 2  1  1  1  1  1 ] J = [ ?? ]

1

1

2

1

1

0!



Exercises
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Which system has a positive T-invariant  
but is not 

live and bounded?



Exercises
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Which live system has a positive T-invariant  
but is not bounded?



Two theorems on strong 
connectedness 

(whose proofs we omit)

126



Strong connectedness 
theorem

127

Theorem: If a weakly connected system is  
live and bounded then it is strongly connected



Consequences

128

If a (weakly-connected) net is not strongly connected  

then 

It is not “live and bounded” 

If it is live, it is not bounded 

If it is bounded, it is not live



Example
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It is now immediate to see that this system 
(weakly connected, not strongly connected) 

cannot be live and bounded 
(it is live but not bounded)



Example

130

It is now immediate to see that this system 
(weakly connected, not strongly connected) 

cannot be live and bounded 
(it is bounded but not live)



Example
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It is now immediate to see that this system 
(weakly connected, not strongly connected) 

cannot be live and bounded 
(it is neither bounded nor live)



Strong connectedness 
via invariants
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Theorem: If a weakly connected net has  
a positive S-invariant I and a positive T-invariant J  

then it is strongly connected



Consequences
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If a (weakly-connected) net is not strongly connected  

then 

we cannot find (two) positive S- and T-invariants



Example
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It is now immediate to check that this system 
(weakly connected, not strongly connected) 

has a positive T-invariant, but not a positive S-Invariant

1 1
1 1



Example
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It is now immediate to check that this system 
(weakly connected, not strongly connected) 

has a positive S-invariant, but not a positive T-Invariant

1 1 2 1

1 1


