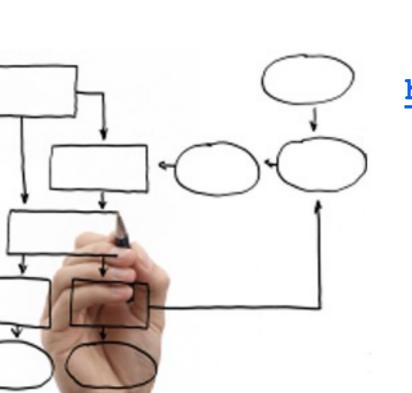
Business Processes Modelling MPB (6 cfu, 295AA)



Roberto Bruni

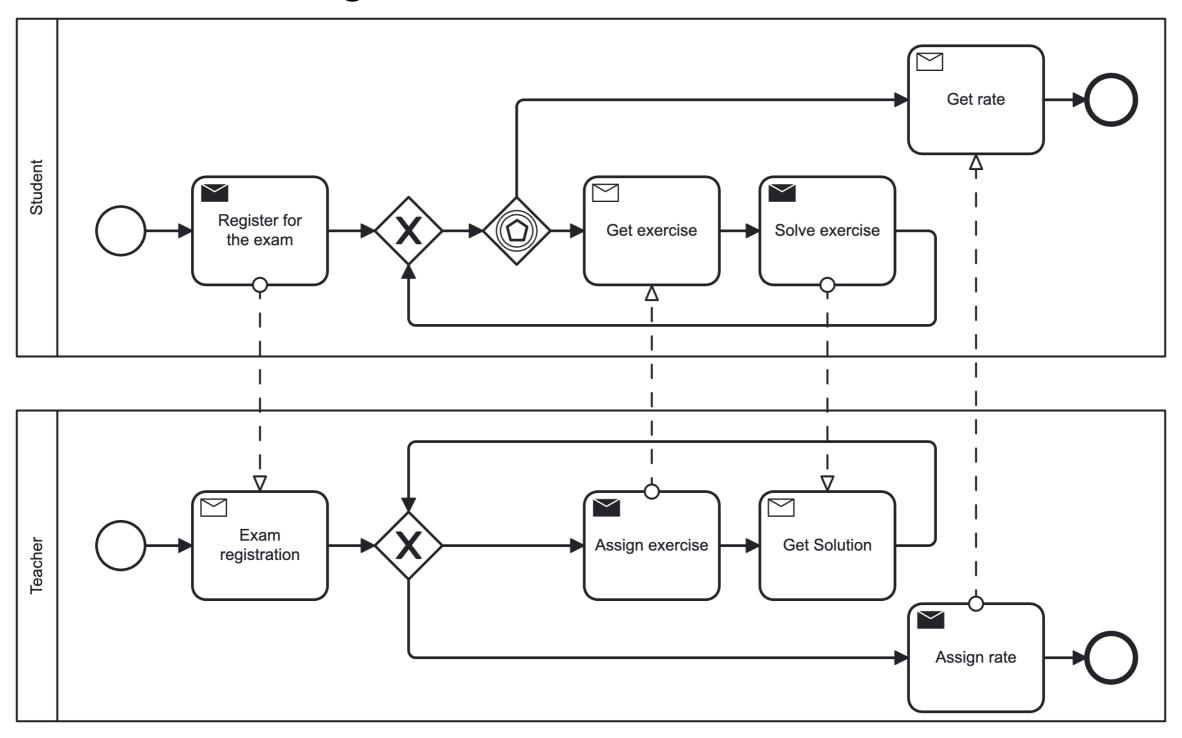
http://www.di.unipi.it/~bruni

11 - Incidence matrices

Pending exercises...

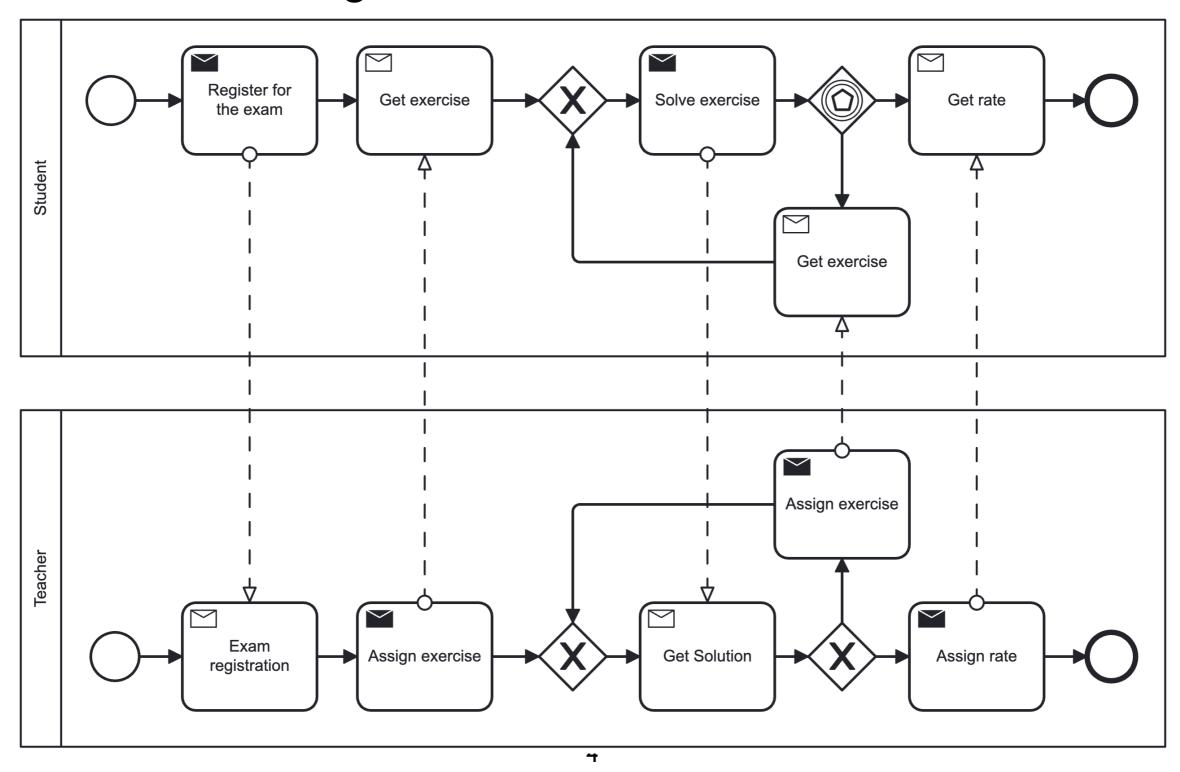
Exercise

Modify the collaboration diagram to enforce the assignment of at least one exercise



Solution?

Modify the collaboration diagram to enforce the assignment of at least one exercise



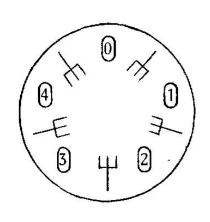
Exercises

Search for EPC/BPMN diagram drawing software products. For each product found, annotate the following features:

- 1) which OS is supported? (Windows, Apple, Linux,...)
- 2) is it free? if not, describe its pricing.
- 3) is .epml/.bpmn format supported?
- 4) if you install the product, rate your user experience / usability (on the scale 1-5 stars)

Send your findings to: bruni@di.unipi.it

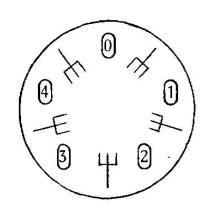
Exercise: drawing tools



Exercise: Dining philosophers

The problem is originally due to E.W. Dijkstra (and soon elaborated by T. Hoare) as an examination question on a synchronization problem where five computers competed for access to five shared tape drive peripherals.

It can be used to illustrate several important concepts in concurrency (mutual exclusion, deadlock, starvation)

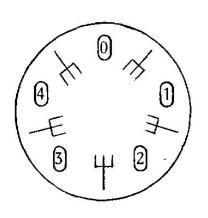


Exercise: Dining philosophers

The life of a philosopher consists of an alternation of thinking and eating

Five philosophers are living in a house where a table is laid for them, each philosopher having his own place at the table

Their only problem (besides those of philosophy) is that the dish served is a very difficult kind of spaghetti, that has to be eaten with two forks. There are two forks next to each plate, so that presents no difficulty: as a consequence, however, no two neighbours may be eating simultaneously.



Exercise: Dining philosophers

Design a net for representing the dining philosophers problem, then use WoPeD to compute the reachability graph

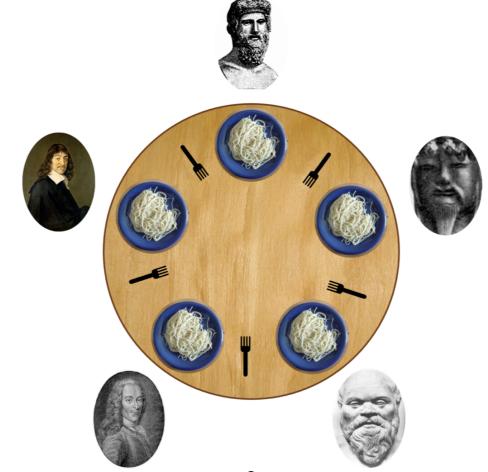
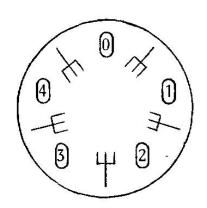
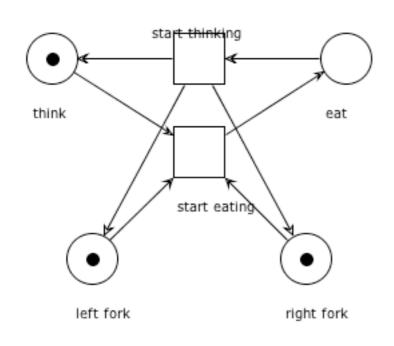
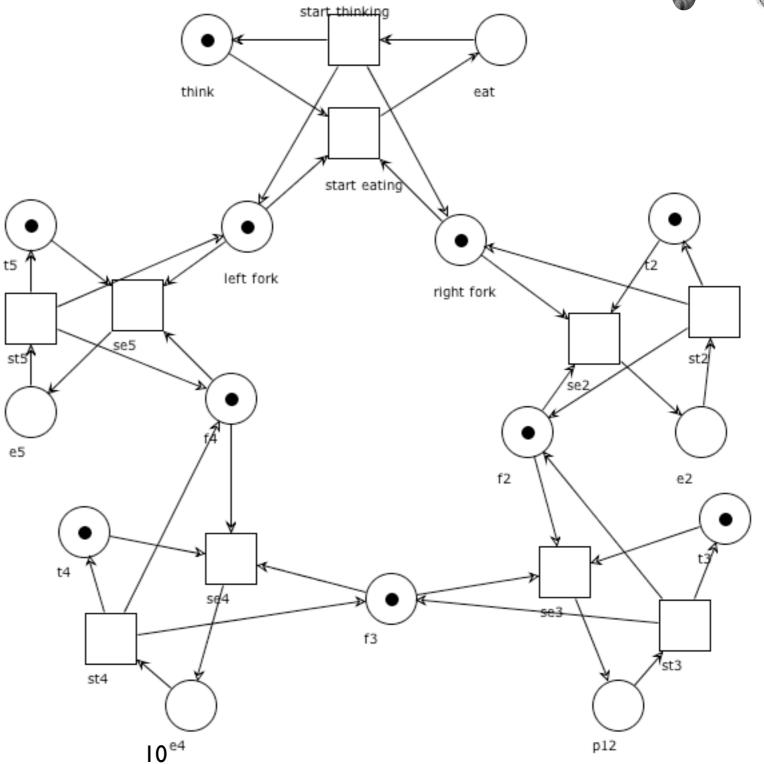


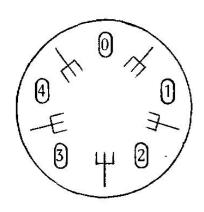
image taken from wikipedia philosophers clockwise from top: Plato, Konfuzius, Socrates, Voltaire and Descartes



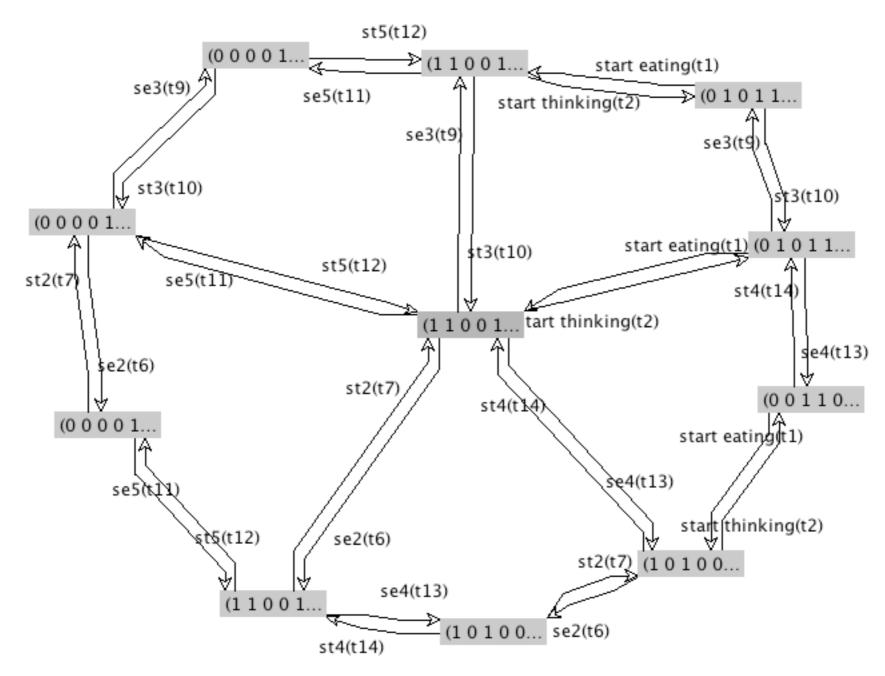
Dining philosophers ""

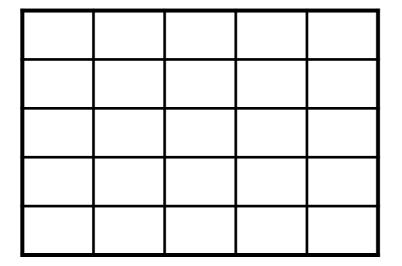






Dining philosophers





We give a matrix-based representation of Petri nets and their computations

Free Choice Nets (book, optional reading)

https://www7.in.tum.de/~esparza/bookfc.html

Are you familiar with the following concepts?

Vector notation

$$\begin{bmatrix} 2 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix} =$$

Are you familiar with the following concepts?

Vector notation

$$\begin{bmatrix} 2 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 3 & 4 \\ 2 & 2 \end{bmatrix} =$$

Are you familiar with the following concepts?

Linear algebra

$$\begin{cases} 3x_1 + 2x_2 - 2x_3 = 0 \\ 6x_1 - 4x_2 = 0 \\ 9x_1 - 3x_3 = 0 \end{cases}$$

Are you familiar with the following concepts?

Linear algebra

$$\begin{bmatrix} 3 & 2 & -2 \\ 6 & -4 & 0 \\ 9 & 0 & -3 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 3x_1 + 2x_2 - 2x_3 = 0 \\ 6x_1 - 4x_2 = 0 \\ 9x_1 - 3x_3 = 0 \end{cases}$$

Are you familiar with the following concepts?

Linear algebra

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \cdot \begin{bmatrix} 3 & 6 & 9 \\ 2 & -4 & 0 \\ -2 & 0 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$\begin{cases} 3x_1 + 2x_2 - 2x_3 = 0 \\ 6x_1 - 4x_2 = 0 \\ 9x_1 - 3x_3 = 0 \end{cases}$$

Vectors: notation

Let $E = \{e_1, e_2, ..., e_n\}$ be a finite set of elements.

Any mapping $v: E \to \mathbb{Q}$ (or to $\mathbb{N}, \mathbb{Z},...$) can be regarded as a vector:

$$\mathbf{v} = [v(e_1), v(e_2), ..., v(e_n)]$$

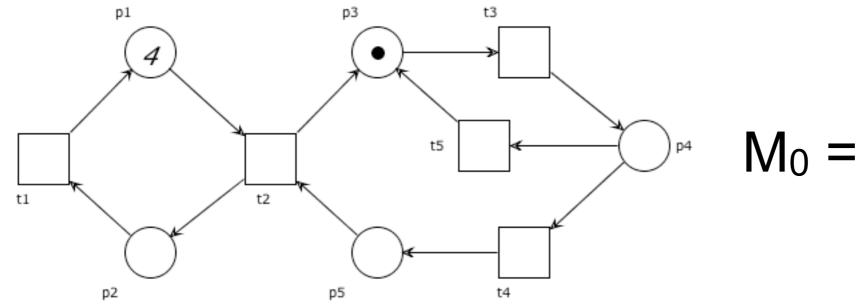
We **do not** use different symbols for row and column vectors:

$$\mathbf{v} = \left[egin{array}{c} v(e_1) \\ v(e_2) \\ dots \\ v(e_n) \end{array}
ight]$$

Marking as a vector

Any marking $M:P\to\mathbb{N}$ corresponds to a vector:

$$M = [M(p_1) \quad M(p_2) \quad \dots \quad M(p_n)]$$



$$M_0 = [4 \ 0 \ 1 \ 0 \ 0]$$

Vectors: notation

Let \mathbf{v}, \mathbf{w} be two vectors over E

We write $\mathbf{v} \leq \mathbf{w}$ if $v(e) \leq w(e)$ for any $e \in E$

We write $\mathbf{v} < \mathbf{w}$ if $v \leq w$ and v(e) < w(e) for some $e \in E$

We write $\mathbf{v} \prec \mathbf{w}$ if v(e) < w(e) for any $e \in E$

We let ${\bf 0}$ denote any vector of any length whose entries are all 0

Question time

$$3a + 2b \stackrel{?}{\subseteq} 2a + 3b + c$$

$$3a + 2b \stackrel{?}{\supseteq} 2a + 3b + c$$

$$a+2b \stackrel{?}{\subset} 2a+3b$$

$$[3 \ 2 \ 0] \stackrel{?}{\leq} [2 \ 3 \ 1]$$

$$[3 \ 2 \ 0] \stackrel{?}{\geq} [2 \ 3 \ 1]$$

$$\begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \stackrel{?}{<} \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \stackrel{?}{\prec} \begin{bmatrix} 2 & 0 & 1 \end{bmatrix}$$

$$[0 \ 0 \ 0] \stackrel{?}{\prec} [2 \ 3 \ 1]$$

Question time

$$3a + 2b \stackrel{?}{\subseteq} 2a + 3b + c$$
 No $[3 \ 2 \ 0] \stackrel{?}{\leq} [2 \ 3 \ 1]$

$$0 \stackrel{?}{\leq} [2$$

$$3a + 2b \stackrel{?}{\supseteq} 2a + 3b + c$$
 No $[3 \ 2 \ 0] \stackrel{?}{\ge} [2 \ 3 \ 1]$

$$0 \rceil \stackrel{?}{\geq} \lceil 2$$

$$a + 2b \stackrel{?}{\subset} 2a + 3b$$
 Yes $\begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \stackrel{?}{<} \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}$

$$\lceil 1$$

$$[0] \stackrel{?}{<} [2]$$

No
$$[0 \ 0 \ 0] \stackrel{?}{\prec} [2 \ 0 \ 1]$$

Yes
$$[0 \ 0 \ 0] \stackrel{?}{\prec} [2 \ 3 \ 1]$$

Computation as a vector transformation

Linear transformations of vectors (spaces) can be expressed by matrix multiplication

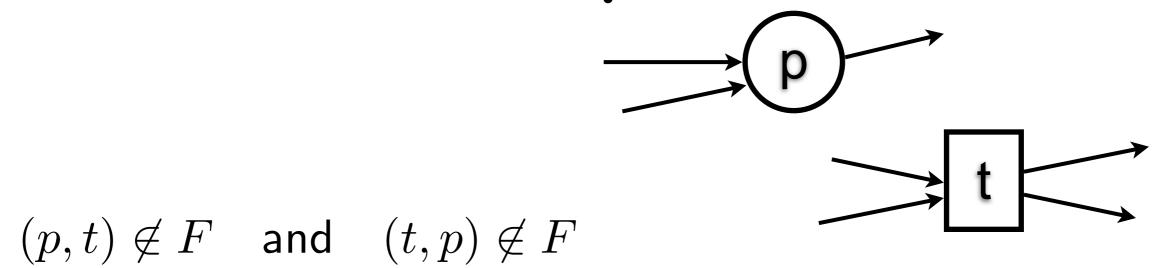
Can we express Petri net computations by matrix multiplication?

Key point

The change of the numbers of tokens on a place p caused by the firing of the transition t does not depend on the current marking

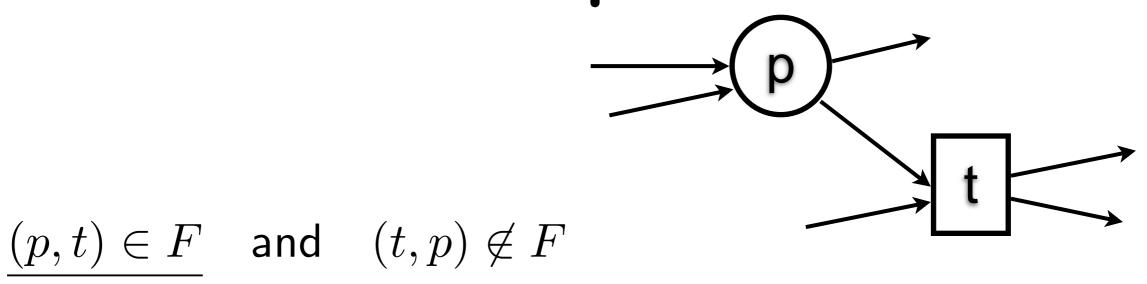
It is entirely determined by the net (i.e., by the flow relation)

Let us have a look at the relative changes for every place and transition...

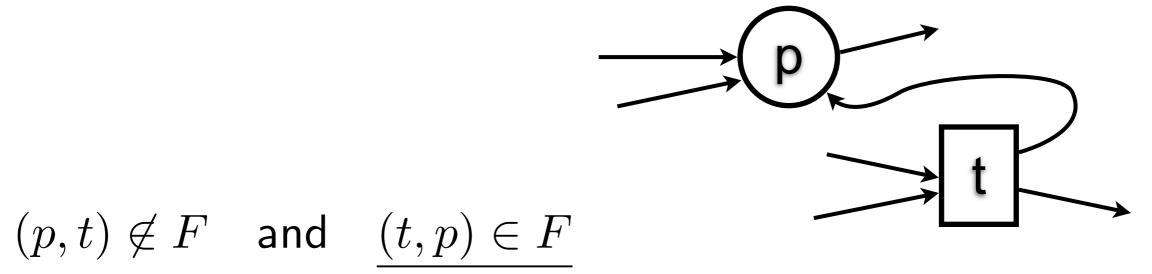


Place p and transition t are completely unrelated:

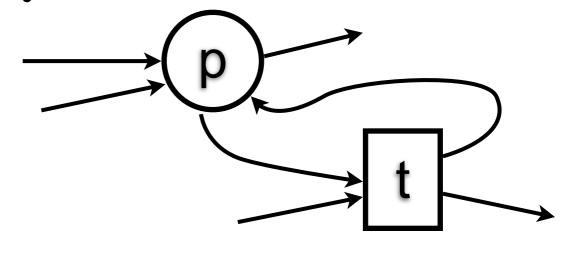
- ullet p has no influence on the enabling of t
- ullet firing t does not change the number of tokens in p



- ullet one token in p is needed to enable t
- ullet firing t reduces by one the number of tokens in p



ullet firing t increases by one the number of tokens in p



$$\underline{(p,t)\in F}\quad \text{and}\quad \underline{(t,p)\in F}$$

- ullet one token in p is needed to enable t
- ullet firing t does not change the number of tokens in p

Incidence matrix

Let N = (P, T, F) be a net.

Its incidence matrix $N: (P \times T) \rightarrow \{-1, 0, 1\}$ is defined as:

$$\mathbf{N}(p,t) = \begin{cases} -1 & \text{if } (p,t) \in F \ \land (t,p) \not \in F \\ +1 & \text{if } (p,t) \not \in F \ \land (t,p) \in F \\ 0 & \text{otherwise} \\ & (\ (p,t) \not \in F \ \land (t,p) \not \in F \ \text{or} \ (p,t) \in F \ \land (t,p) \in F \) \end{cases}$$

m columns, one for each transition

	t_1						
p_1							
p_2 p_3	-1						
p_3							
	+1						
p_n							

m columns, one for each transition

	t_1	t_2						
p_1		+1						
p_2 p_3	-1							
p_3		+1						
	+1							
p_n		-1						

m columns, one for each transition

	t_1	t_2	t_3					
p_1		+1	-1					
p_2 p_3	-1		+1					
p_3		+1						
			+1					
	+1							
			-1					
p_n		-1	+1					

m columns, one for each transition

	t_1	t_2	t_3					t_m
p_1		+1	-1					-1
p_2 p_3	-1		+1					
p_3		+1						
			+1					
								+1
	+1							
			-1					
								+1
p_n		-1	+1					-1

Column vector tj

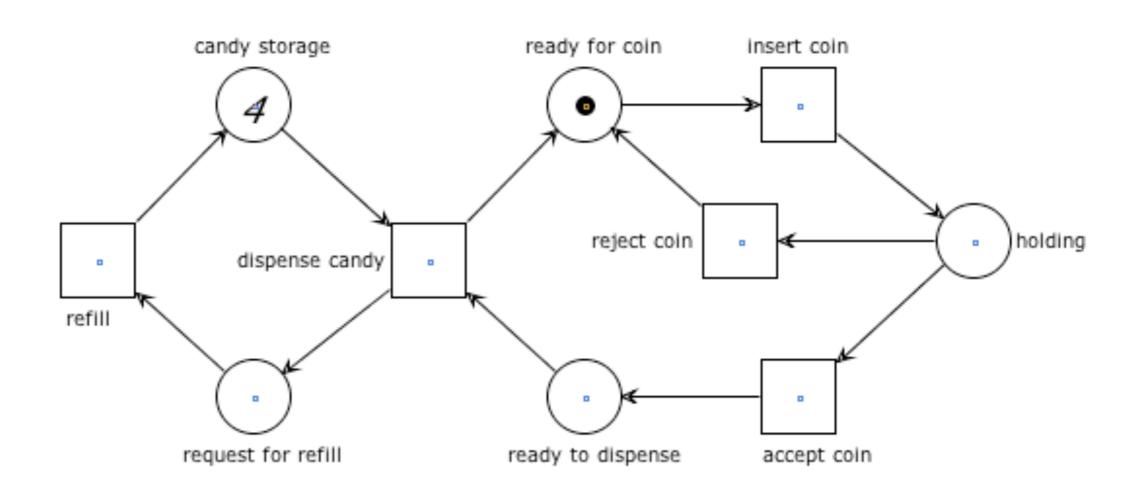
 $\mathbf{t_j}: P \to \{-1, 0, 1\}$ such that $\mathbf{t_j}(p) = \mathbf{N}(p, t_j)$

•	,	,	J			J	(1)		1) J	/		
	t_1	t_2	t_3										t_m
p_1		+1	-1										-1
p_2	-1		+1										
p_3		+1											
			+1										
													+1
	+1												
			-1										
													+1
p_n		-1	+1										-1
	$egin{array}{c} p_1 \\ p_2 \\ p_3 \\ \ldots \end{array}$	$egin{array}{c c} t_1 \\ p_1 \\ p_2 \\ -1 \\ p_3 \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c c c c c c c c c c c c c c c c c c c $				

Row vector pi

		t_1	t_2	t_3						t_m
	p_1		+1	-1						-1
	p_2	-1		+1						
	p_3		+1							
$\mathbf{p_i}: T \to \{-1, 0,$	1}			+1						
	-, 						:			+1
$\mathbf{p_i}(t) = \mathbf{N}(p_i, t)$)	+1								
				-1						
										+1
	p_n		-1	+1						-1

Example: vending machine



candy storage ready for coin insert coin	mucine							
refill ready to dispense accept coin	refill t_1	dispense candy t_2	insert coin t_3	accept coin t_4	reject coin t_5			
candy storage p_1								
request for refill p_2								
ready for coin p_3								
$\overset{holding}{p_4}$								
ready to dispense p_5								

candy storage ready for coin insert coin	macmin						
refill ready to dispense accept coin	refill t_1	dispense candy t_2	insert coin t_3	accept coin t_4	reject coin t_5		
candy storage p_1	1						
request for refill p_2	-1						
ready for coin p_3							
holding p_4							
ready to dispense p_5							

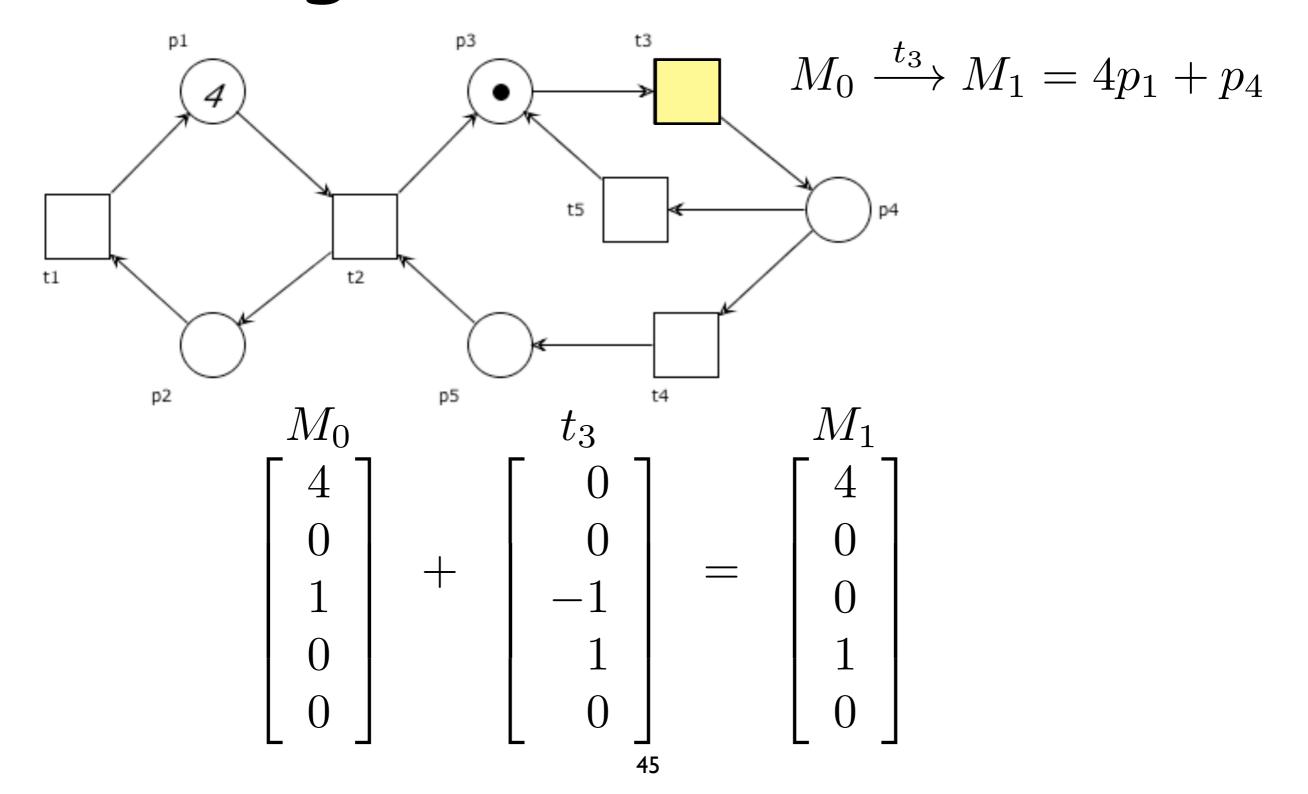
candy storage ready for coin insert coin							
refill ready to dispense accept coin	refill t_1	dispense candy t_2	insert coin t_3	accept coin t_4	reject coin t_5		
candy storage p_1	1	-1					
request for refill p_2	-1	1					
ready for coin p_3		1					
$\mathop{p_4}\limits_{p_4}$							
ready to dispense p_5		-1					

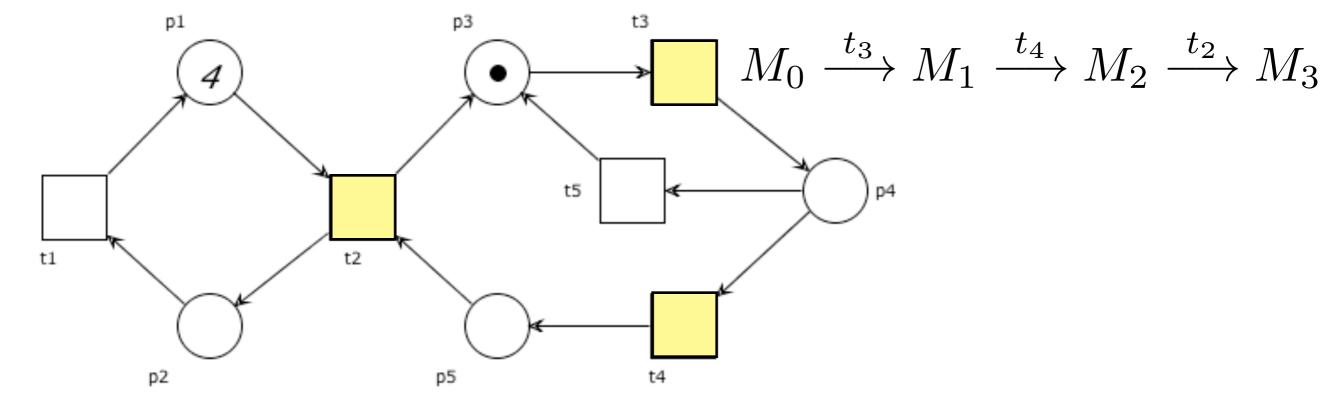
candy storage ready for coin insert coin	1114011110							
refill ready to dispense accept coin	refill t_1	dispense candy t_2	insert coin t_3	accept coin t_4	reject coin t_5			
candy storage p_1	1	-1						
request for refill p_2	-1	1						
ready for coin p_3		1	-1					
$\begin{array}{c} \text{holding} \\ p_4 \end{array}$			1					
ready to dispense p_5		-1						

candy storage ready for coin insert coin						
refill request for refill ready to dispense accept coin	refill t_1	dispense candy t_2	insert coin t_3	accept coin t_4	reject coin t_5	
candy storage p_1	1	-1				
request for refill p_2	-1	1				
ready for coin p_3		1	-1			
$\mathop{p_4}\limits_{p_4}$			1	-1		
ready to dispense p_5		-1		1		

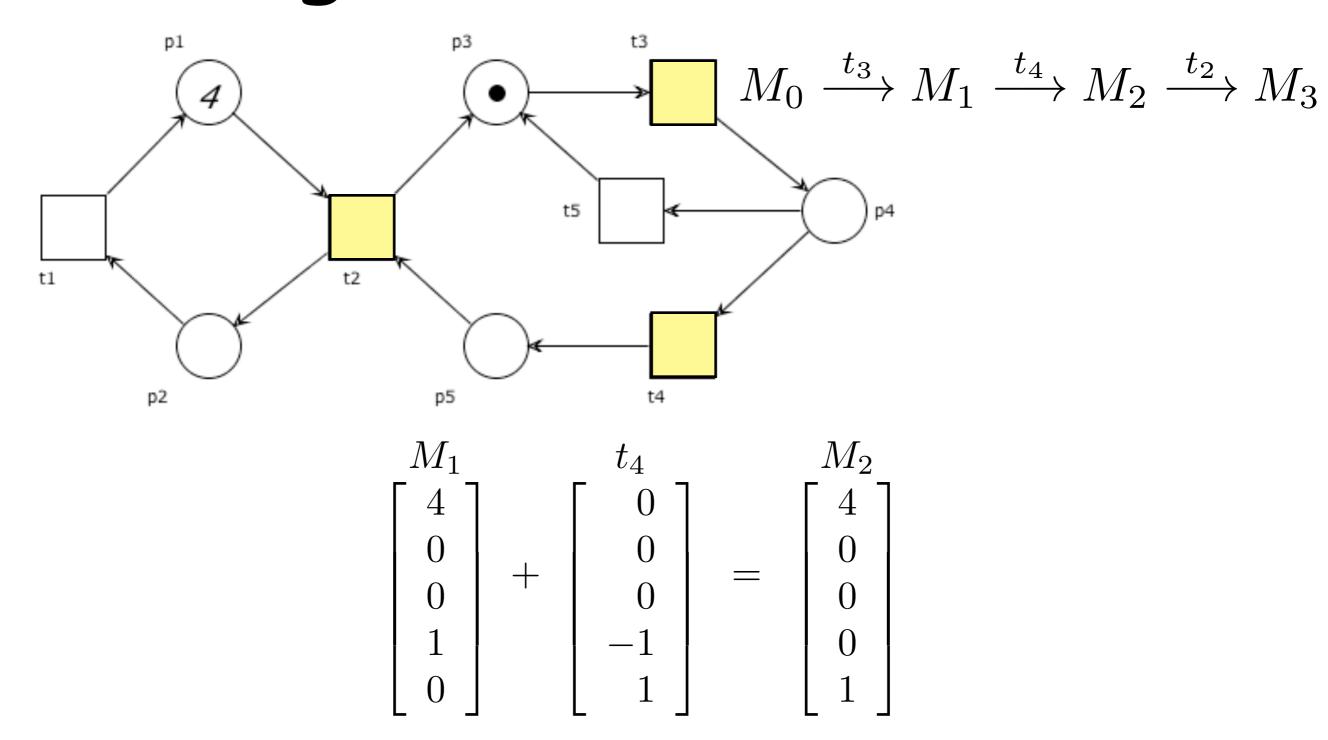
4 Planty storage								
refill request for refill ready to dispense accept coin	refill t_1	dispense candy t_2	insert coin t_3	accept coin t_4	reject coin t_5			
candy storage p_1	1	-1						
request for refill p_2	-1	1						
ready for coin p_3		1	-1		1			
$\overset{holding}{p_4}$			1	-1	-1			
ready to dispense p_5		-1		1				

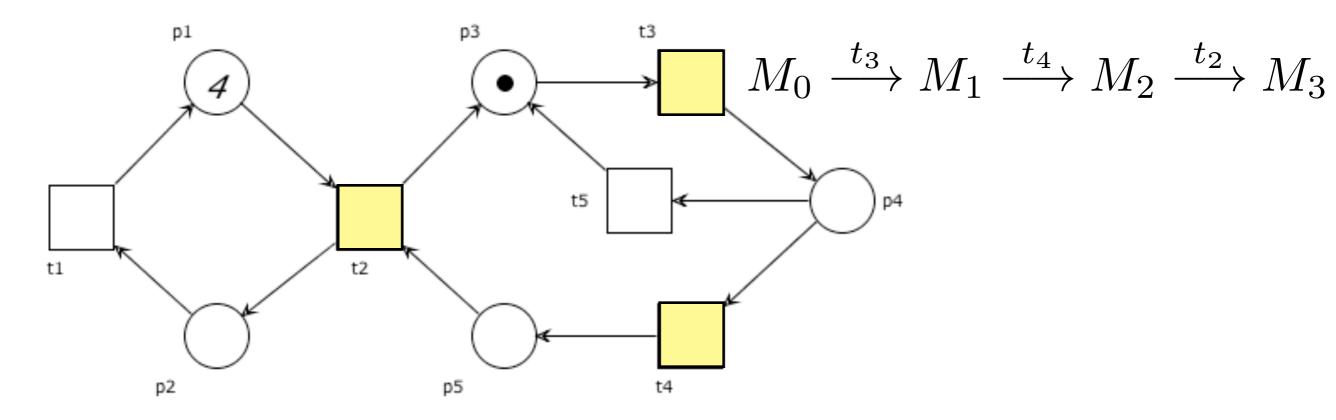
refill request for refill ready to dispense accept coin	refill t_1	dispense candy t_2	insert coin t_3	accept coin t_4	reject coin t_5
candy storage p_1	1	-1	0	0	0
request for refill p_2	-1	1	0	0	0
ready for coin p_3	0	1	-1	0	1
$\underset{p_4}{holding}$	0	0	1	-1	-1
ready to dispense p_5	0	-1	0	1	0





$$\begin{bmatrix} M_0 & t_3 & M_1 \\ 4 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$$





$$\begin{bmatrix} A \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} t_2 \\ -1 \\ 1 \\ 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} M_3 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Products

Let \mathbf{x}, \mathbf{y} be two vectors of equal length n (written $|\mathbf{x}| = |\mathbf{y}| = n$)

We define their scalar product by

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i$$

$$\begin{bmatrix} x_1 \ x_2 \dots x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

$$\begin{bmatrix}
0 & 1 & -1 & 0 & 1 \\
0 & 1 & 1
\end{bmatrix} \cdot \begin{bmatrix}
1 \\
2 \\
0 \\
1
\end{bmatrix} = (0 \cdot 1) + (0 \cdot 1$$

$$\begin{bmatrix} 0 & 1 & -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = (0 \cdot 1) + (1 \cdot$$

$$\begin{bmatrix} 0 & 1 & -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = (0 \cdot 1) + (1 \cdot 1) + (-1 \cdot 2) +$$

$$\begin{bmatrix} 0 & 1 & -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \end{bmatrix} = (0 \cdot 1) + (1 \cdot 1) + (-1 \cdot 2) + (0 \cdot 0) +$$

$$\begin{bmatrix} 0 & 1 & -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = (0 \cdot 1) + (1 \cdot 1) + (-1 \cdot 2) + (0 \cdot 0) + (1 \cdot 1)$$

$$\begin{bmatrix} 0 & 1 & -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = (0 \cdot 1) + (1 \cdot 1) + (-1 \cdot 2) + (0 \cdot 0) + (1 \cdot 1) = 0 + 1 - 2 + 0 + 1$$

$$\begin{bmatrix} 0 & 1 & -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = (0 \cdot 1) + (1 \cdot 1) + (-1 \cdot 2) + (0 \cdot 0) + (1 \cdot 1) = 0 + 1 - 2 + 0 + 1 = 0$$

Products

Let $x_1, x_2, ..., x_k, y$ be all vectors of equal length

Let X be a $(k \times n)$ -matrix whose i-th row is $\mathbf{x_i}$

We define the product $X \cdot y$ as the (column) vector where

$$(X \cdot \mathbf{y})_i = \mathbf{x_i} \cdot \mathbf{y}$$

$$\begin{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \mathbf{x_k} \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \mathbf{x_1} \cdot \mathbf{y} \\ \mathbf{x_2} \cdot \mathbf{y} \\ \vdots \\ \mathbf{x_k} \cdot \mathbf{y} \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & -1 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1-1 \\ -1+1 \\ 1-2+1 \\ 2-1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & -1 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1-1 \\ -1+1 \\ 1-2+1 \\ 2-1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

Products

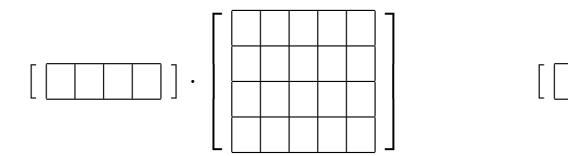
Let $x, y_1, y_2, ..., y_k$ be all vectors of equal length

Let Y be a $(n \times k)$ -matrix whose i-th column is y_i

We define the product $x \cdot Y$ as the (row) vector where

$$(\mathbf{x} \cdot Y)_i = \mathbf{x} \cdot \mathbf{y_i}$$

$$\begin{bmatrix} x_1 \ x_2 \dots x_n \end{bmatrix} \cdot \begin{bmatrix} \mathbf{y_1} \ \mathbf{y_2} \dots \mathbf{y_k} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \cdot \mathbf{y_1} & \mathbf{x} \cdot \mathbf{y_2} & \dots & \mathbf{x} \cdot \mathbf{y_k} \end{bmatrix}$$



Vector perspective

Let
$$P = \{ p_1, ..., p_n \}$$
 and $T = \{ t_1, ..., t_m \}$

The net (P,T,F) can be seen as a matrix (n x m)

A marking is a vector of length n

But we miss an ingredient:

can any firing sequence be seen as a vector?

Parikh vectors of transition sequences

Let N=(P,T,F) be a net and $\sigma\in T^*$ a finite sequence of transitions.

The **Parikh vector**

$$\vec{\sigma}: T \to \mathbb{N}$$

of σ maps every $t \in T$ to the number of its occurrences in σ .

Parikh vector of a firing

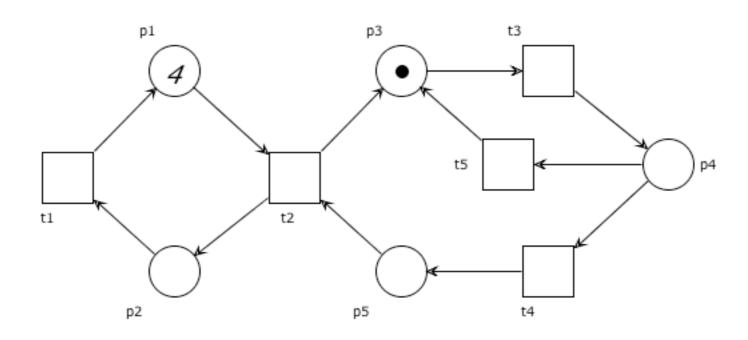
As a special case, for a sequence $\sigma = t$ (one single transition):

Recursive definition of Parikh vector

$$\vec{\epsilon} = \mathbf{0}$$

$$\overrightarrow{\sigma t} = \overrightarrow{\sigma} + \overrightarrow{t}$$

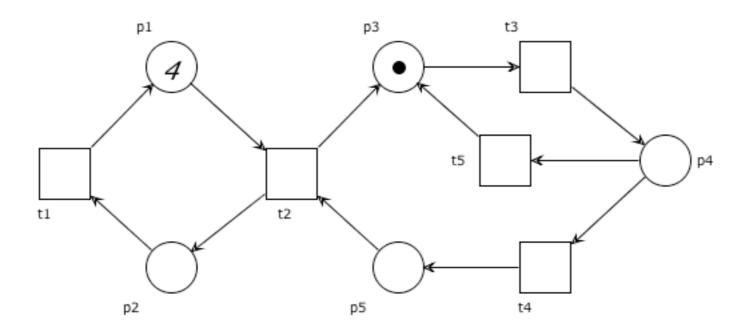
Parikh vector: example



$$M_0 = 4p_1 + p_3$$

$$M_0 \xrightarrow{\sigma = t_3 t_5 t_3 t_4 t_2} 3p_1 + p_2 + p_3$$

Parikh vector: example

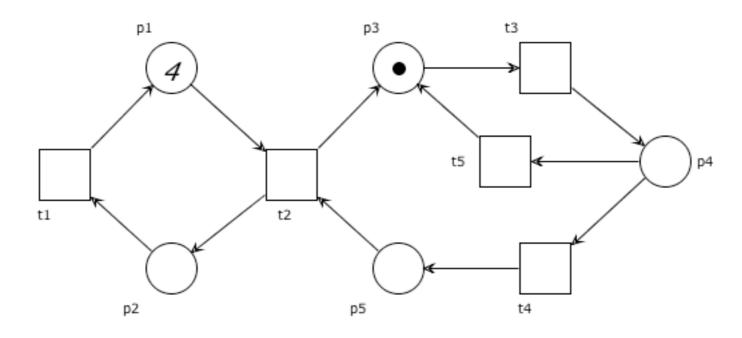


$$M_0 = 4p_1 + p_3$$

$$M_0 \xrightarrow{\sigma = t_3 t_5 t_3 t_4 t_2} 3p_1 + p_2 + p_3 \qquad \vec{\sigma} = [0 \quad 1 \quad 2 \quad 1 \quad 1]$$

$$M_0 \xrightarrow{\sigma' = t_3 t_4 t_2 t_3 t_4 t_2 t_3 t_5 t_3} 2p_1 + 2p_2 + p_4$$

Parikh vector: example



$$M_0 = 4p_1 + p_3$$

$$M_0 \xrightarrow{\sigma = t_3 t_5 t_3 t_4 t_2} 3p_1 + p_2 + p_3 \qquad \vec{\sigma} = [0 \ 1 \ 2 \ 1 \ 1]$$

$$M_0 \xrightarrow{\sigma' = t_3 t_4 t_2 t_3 t_4 t_2 t_3 t_5 t_3} 2p_1 + 2p_2 + p_4 \qquad \vec{\sigma'} = \begin{bmatrix} 0 & 2 & 4 & 2 & 1 \end{bmatrix}$$

First fact

$$\mathbf{N} \cdot \vec{t_j} = \mathbf{t_j}$$

	t_1	t_{j}	t_m		$ec{t_j}$	_	t_{j}
p_1					0	t_1	
					0		
				•	1	$ t_j $	
					0		
p_n					0	$ t_m $	

Second fact

$$\mathbf{N} \cdot \vec{t} = \mathbf{t}$$

If
$$M \xrightarrow{t} M'$$
 then $M' = M + \mathbf{t}$

Consequence

$$\mathbf{N} \cdot \vec{t} = \mathbf{t}$$

If
$$M \xrightarrow{t} M'$$
 then $M' = M + \mathbf{t}$

If
$$M \xrightarrow{t} M'$$
 then $M' = M + \mathbf{N} \cdot \vec{t}$

Marking equation lemma

Lemma: If $M \stackrel{\sigma}{\longrightarrow} M'$ then $M' = M + \mathbf{N} \cdot \vec{\sigma}$

The proof is by induction on the length of σ

base $(\sigma = \epsilon)$: and therefore M' = M. The equality holds trivially, because $\vec{\sigma} = 0$ induction $(\sigma = \sigma' t \text{ for some sequence } \sigma' \text{ and transition } t)$:

Let
$$M \xrightarrow{\sigma'} M'' \xrightarrow{t} M'$$
. We have: $M' = M'' + \mathbf{t}$

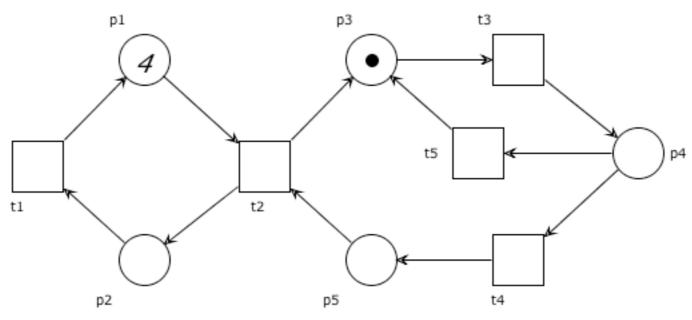
$$= M'' + \mathbf{N} \cdot \vec{t}$$
(inductive hyp. $M'' = M + \mathbf{N} \cdot \vec{\sigma'}$) $= M + \mathbf{N} \cdot \vec{\sigma'} + \mathbf{N} \cdot \vec{t}$

$$= M + \mathbf{N} \cdot (\vec{\sigma'} + \vec{t})$$

$$= M + \mathbf{N} \cdot (\vec{\sigma'} t)$$

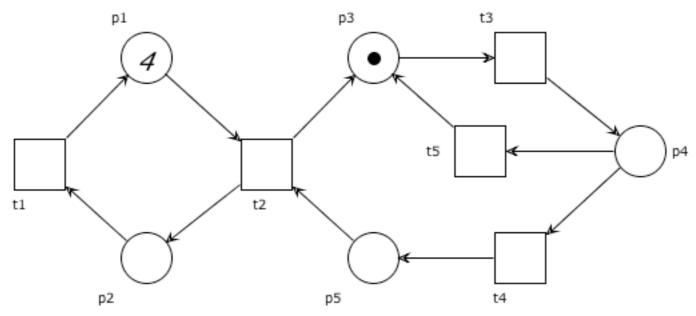
$$= M + \mathbf{N} \cdot \vec{\sigma}$$

Marking equation: example



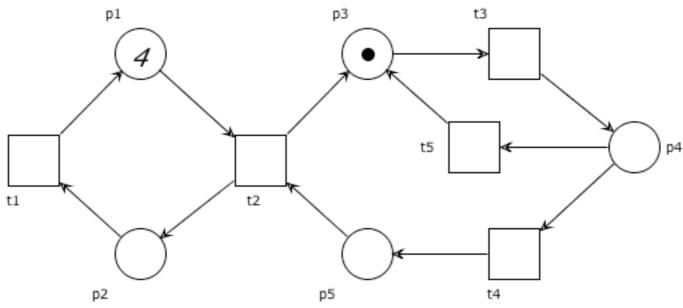
$$M_0 = [4 \quad 0 \quad 1 \quad 0 \quad 0]$$

Marking equation: example



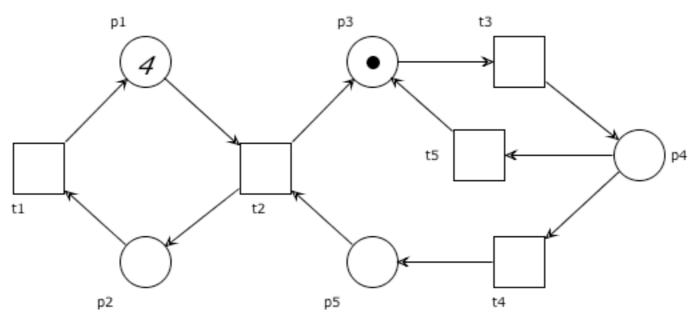
$$M_0 = [4 \quad 0 \quad 1 \quad 0 \quad 0] \qquad \sigma = t_3 t_5 t_3 t_4 t_2$$

Marking equation: example



$$M_0 = [4 \quad 0 \quad 1 \quad 0 \quad 0] \qquad \sigma = t_3 t_5 t_3 t_4 t_2 \qquad \vec{\sigma} = [0 \quad 1 \quad 2 \quad 1 \quad 1]$$

Marking equation: example



$$M_0 = [4 \quad 0 \quad 1 \quad 0 \quad 0] \qquad \sigma = t_3 t_5 t_3 t_4 t_2 \qquad \vec{\sigma} = [0 \quad 1 \quad 2 \quad 1 \quad 1]$$

$$\begin{bmatrix}
4 \\
0 \\
1 \\
0 \\
0
\end{bmatrix} + \begin{bmatrix}
1 & -1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & 1 & -1 & -1 \\
0 & 0 & -1 & 0 & 1 & 0
\end{bmatrix} \cdot \begin{bmatrix}
0 \\
1 \\
2 \\
1 \\
1
\end{bmatrix} = \begin{bmatrix}
3 \\
1 \\
0 \\
0
\end{bmatrix}$$

Marking equation lemma: consequences

The marking reached by any occurrence sequence only depends on the number of occurrences of each transition

It does not depend on the order in which transitions occur

Every fireable permutation of the same transitions leads to the same marking

Monotonicity lemma (1)

Lemma: If $M \xrightarrow{\sigma} M'$ then $M + L \xrightarrow{\sigma} M' + L$ for any L

The proof is by induction on the length of σ

base $(\sigma = \epsilon)$: the empty sequence is always enabled, at any marking

induction ($\sigma = \sigma' t$ for some sequence σ' and transition t):

Let
$$M \xrightarrow{\sigma'} M'' \xrightarrow{t} M'$$
.

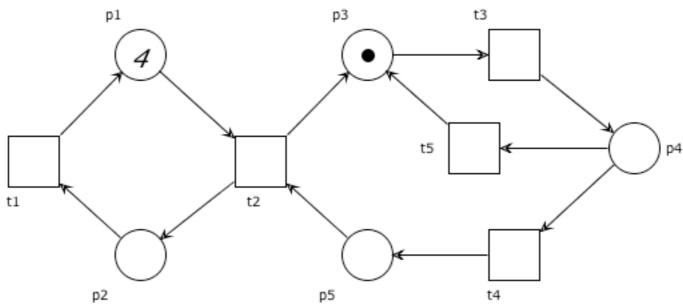
By the marking equation lemma: $M' = M'' + \mathbf{N} \cdot \vec{t}$

By the induction hypothesis $M+L \xrightarrow{\sigma'} M''+L$

Moreover, $M'' + L \xrightarrow{t}$ because $M'' \xrightarrow{t}$.

By the marking equation lemma: $M'' + L \xrightarrow{t} M'' + L + \mathbf{N} \cdot \vec{t} = M' + L$

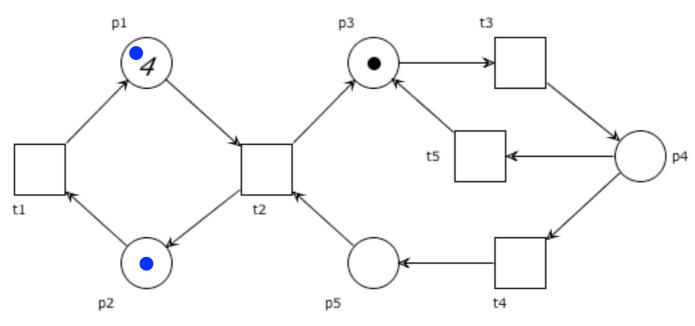
Monotonicity lemma: example



$$M_0 = [4 \quad 0 \quad 1 \quad 0 \quad 0] \qquad \sigma = t_3 t_5 t_3 t_4 t_2 \qquad \vec{\sigma} = [0 \quad 1 \quad 2 \quad 1 \quad 1]$$

$$M = M_0 + N \cdot \vec{\sigma} = \begin{bmatrix} 3 & 1 & 1 & 0 & 0 \end{bmatrix} \qquad M_0 \xrightarrow{\sigma} M$$

Monotonicity lemma: example



 $M_0 \xrightarrow{\sigma} M$

$$M_0 = [\ 4 \ \ 0 \ \ 1 \ \ 0 \ \ 0 \] \qquad \sigma = t_3 t_5 t_3 t_4 t_2 \qquad \vec{\sigma} = [\ 0 \ \ 1 \ \ 2 \ \ 1 \ \ 1 \]$$
 $M = M_0 + N \cdot \vec{\sigma} = [\ 3 \ \ 1 \ \ 1 \ \ 0 \ \ 0 \] \qquad M_0 \xrightarrow{\sigma} M$
 $L = [\ 1 \ \ 1 \ \ 0 \ \ 0 \ \ 0 \]$
 $M_0 + L \xrightarrow{\sigma} M + L = [\ 4 \ \ 2 \ \ 1 \ \ 0 \ \ 0 \]$

Monotonicity lemma, intuitively

If some activities can be done with less (resources), then the same activities can be done with more (resources)

If we perform activities with more resources than needed, then the additional resources are preserved

It also holds for infinite sequences...

Reminder: infinite sequence

Let $\sigma = t_1 t_2 ... \in T^{\omega}$ be an infinite sequence of transitions.

We write $M \stackrel{\sigma}{\rightarrow}$ if:

there is an infinite sequence of markings $M_1, M_2, ...$

with
$$M=M_1$$
 and $M_i \xrightarrow{t_i} M_{i+1}$ for $1 \leq i$

(i.e.
$$M = M_1 \xrightarrow{t_1} M_2 \xrightarrow{t_2} ...$$
)

Proposition: $M \xrightarrow{\sigma}$ iff $M \xrightarrow{\sigma'}$ for every prefix σ' of σ

Monotonicity lemma (2)

Lemma: If $M \xrightarrow{\sigma}$ then $M + L \xrightarrow{\sigma}$ for any L

If σ is finite then the thesis follows from monotonicity lemma 1

If σ is infinite, then it suffices to prove that:

$$M+L \stackrel{\sigma'}{\longrightarrow}$$
 for any finite prefix σ' of σ

Take any such prefix σ' . Then, $M \xrightarrow{\sigma'}$ (because $M \xrightarrow{\sigma}$)

By the marking equation lemma, $M \xrightarrow{\sigma'} M + \mathbf{N} \cdot \vec{\sigma'}$.

By monotonicity lemma 1, $M+L \stackrel{\sigma'}{\longrightarrow} M + \mathbf{N} \cdot \vec{\sigma'} + L$

Hence $M + L \xrightarrow{\sigma'}$

Corollary

Corollary: If $M \xrightarrow{\sigma} M'$ with $M \subseteq M'$ then $M \xrightarrow{\sigma\sigma\cdots}$

We need to show that every prefix of $\sigma\sigma\cdots$ is enabled at M. Any such prefix take the form $\sigma'' = \underbrace{\sigma\cdots\sigma}_n\sigma'$ with σ' a prefix of σ .

We prove that $M \xrightarrow{\sigma''}$ by induction on n:

base: $\sigma'' = \sigma'$ is a prefix of σ and $M \xrightarrow{\sigma'}$ by Enabledness Prop.

induction: We assume that $M \xrightarrow{\sigma''}$ and prove that $M \xrightarrow{\sigma\sigma''}$.

Let L=M'-M. By Monotonicity Lemma $M+L \xrightarrow{\sigma''}$.

Thus $M \xrightarrow{\sigma} M + L \xrightarrow{\sigma''}$ and $M \xrightarrow{\sigma\sigma''}$.

Boundedness Lemma

Lemma: If a system is bounded and $M \in [M_0]$ with $M \supseteq M_0$, then $M = M_0$.

Let
$$M_0 \xrightarrow{\sigma} M$$
.

By $M \supseteq M_0$, there exists a marking L with $M = M_0 + L$.

Let $M_k = M_0 + k \cdot L$ for every $k \in \mathbb{N}$.

By the Monotonicity Lemma, we have:

$$M_0 \xrightarrow{\sigma} M_1 \xrightarrow{\sigma} M_2 \cdots$$

i.e., $M_k \in [M_0]$ for any $k \in \mathbb{N}$.

Since the system is bounded, it must be $L = \emptyset$.

Boundedness lemma: consequences

If we show that a marking M is reachable with

$$M\supset M_0$$

then the system is not bounded

Repetition Lemma

Lemma: If $M \xrightarrow{\sigma} M'$ and $M \xrightarrow{\sigma\sigma \cdots}$, then $M \subseteq M'$.

We proceed by contradiction.

Suppose $M \not\subseteq M'$, i.e., there exist $k > 0, p \in P$ such that M'(p) = M(p) - k.

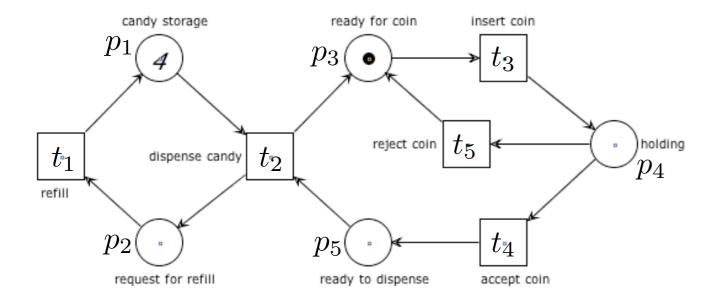
By the Marking Equation Lemma we have $M' = M + \mathbf{N} \cdot \vec{\sigma}$. Therefore $(\mathbf{N} \cdot \vec{\sigma})(p) = -k$.

Let
$$n = M(p) + 1$$
 and $\sigma' = \underbrace{\sigma \cdots \sigma}_{n}$.

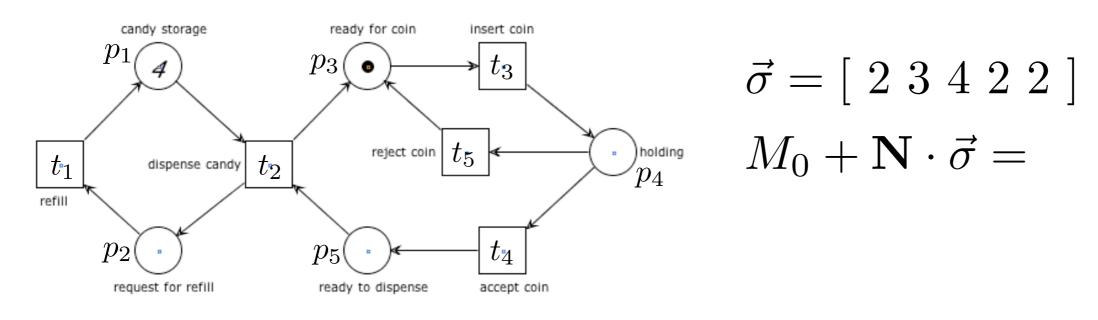
By hypothesis we have $M \xrightarrow{\sigma'} M''$, and by the Marking Equation Lemma M''(p) = M(p) - nk < 0, which is absurd.

Repetition Lemma: consequences

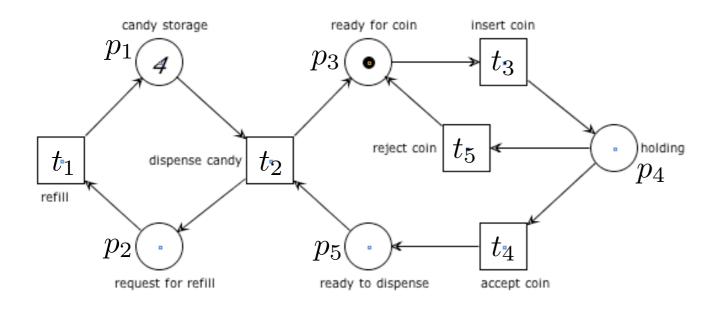
If σ can be fired any number of times it means that σ produces more resources than it consumes (or as many as it consumes)



- Compute the Parikh vector of $\sigma = t_3t_4t_2t_3t_5t_3t_4t_1t_2t_1t_3t_5t_2$
- Show that σ is not enabled at $M_0 = 4p_1 + p_3$ (*Hint:* Exploit the Marking Equation Lemma)
- Let $\sigma' = t_3 t_4 t_2 t_1$. Prove that $M_0 \xrightarrow{\sigma' \sigma' \cdots}$ (*Hint:* Exploit the Corollary of Monotonicity Lemma)



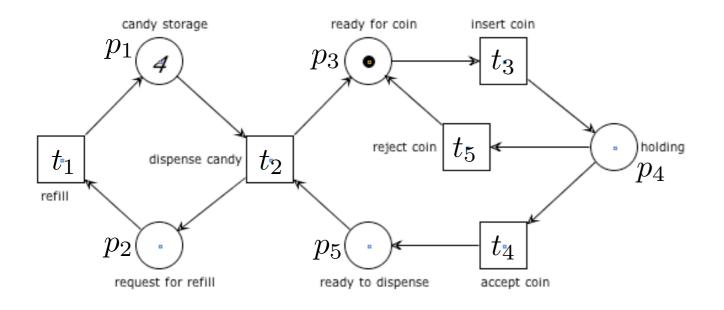
- ullet Compute the Parikh vector of $\sigma=t_3t_4t_2t_3t_5t_3t_4t_1t_2t_1t_3t_5t_2$
- Show that σ is not enabled at $M_0 = 4p_1 + p_3$ (*Hint:* Exploit the Marking Equation Lemma)
- Let $\sigma' = t_3 t_4 t_2 t_1$. Prove that $M_0 \xrightarrow{\sigma' \sigma' \cdots}$ (*Hint:* Exploit the Corollary of Monotonicity Lemma)



$$\vec{\sigma} = [23422]$$

$$M_0 + \mathbf{N} \cdot \vec{\sigma} =$$

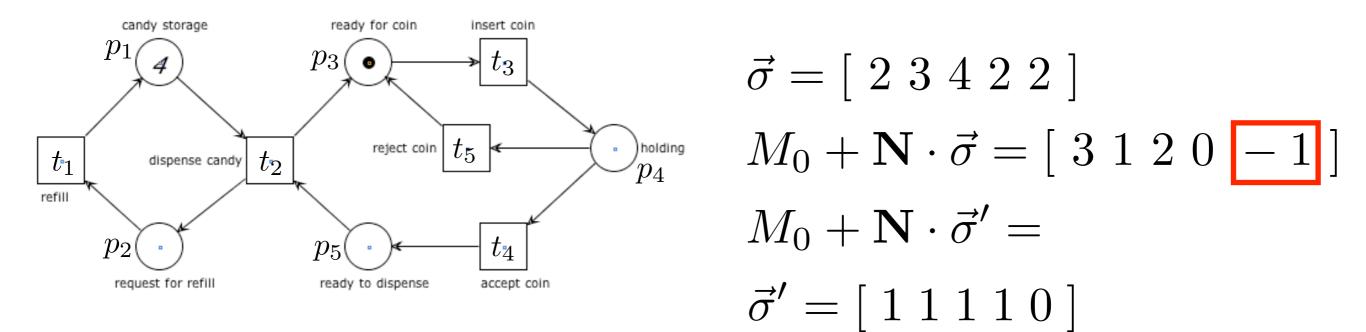
$$\begin{bmatrix} 4 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & -1 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \\ 4 \\ 2 \\ 2 \end{bmatrix}$$



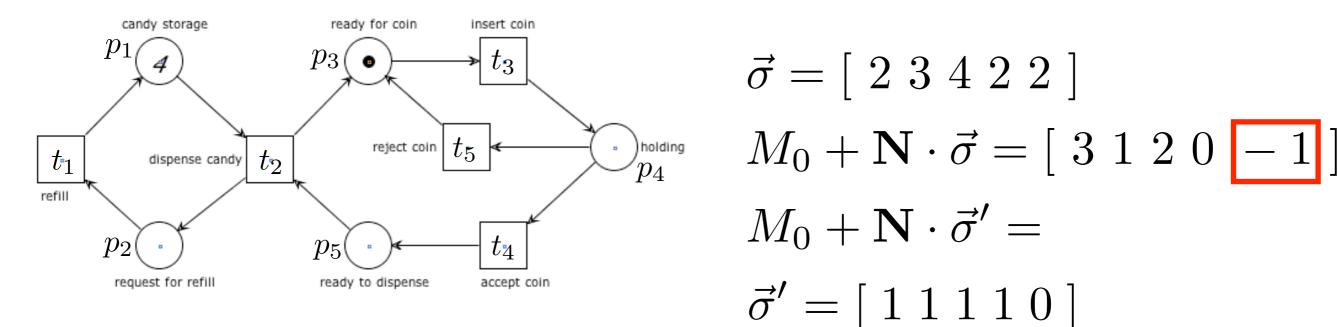
$$\vec{\sigma} = [2 \ 3 \ 4 \ 2 \ 2]$$

$$M_0 + \mathbf{N} \cdot \vec{\sigma} = [3 \ 1 \ 2 \ 0 \ -1]$$

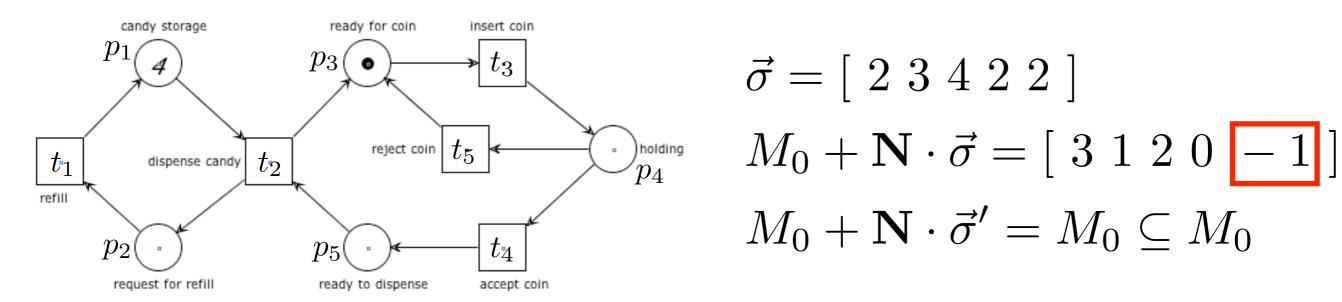
$$\begin{bmatrix} 4 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & -1 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \\ 4 \\ 2 \\ 2 \end{bmatrix}$$



- Compute the Parikh vector of $\sigma = t_3t_4t_2t_3t_5t_3t_4t_1t_2t_1t_3t_5t_2$
- Show that σ is not enabled at $M_0 = 4p_1 + p_3$ (*Hint:* Exploit the Marking Equation Lemma)
- Let $\sigma' = t_3 t_4 t_2 t_1$. Prove that $M_0 \xrightarrow{\sigma' \sigma' \cdots}$ (*Hint:* Exploit the Corollary of Monotonicity Lemma)



$$\begin{bmatrix} 4 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & -1 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$



- ullet Compute the Parikh vector of $\sigma=t_3t_4t_2t_3t_5t_3t_4t_1t_2t_1t_3t_5t_2$
- Show that σ is not enabled at $M_0 = 4p_1 + p_3$ (*Hint:* Exploit the Marking Equation Lemma)
- Let $\sigma' = t_3 t_4 t_2 t_1$. Prove that $M_0 \xrightarrow{\sigma' \sigma' \cdots}$ (*Hint:* Exploit the Corollary of Monotonicity Lemma)