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We give a formal account of some key properties
of Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html
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Disclaim

A node (place or transition) is called isolated if
its pre- and post-sets are empty

In the following we only consider nets

Oprdiya®

X

without isolated nodes

(o)—
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Petri nets:
behavioural properties



Properties of Petri nets

We introduce some of the properties of Petri nets
that can play an important role in the verification of
business processes

Liveness
Deadlock-freedom
Boundedness
Cyclicity (also Reversibility)



Let's practice with
some formula

N = (P, T, F, M)

for any markings M and M’ it follows that M’ is reachable from M|

VM, M', M e [M)ANM €M) = M €[My)
with M reachable from M, and M’ reachable from M

any marking that is reachable from a
reachable marking is also reachable



Disclaim

When we say:
for any reachable marking M

we mean:
for any marking M reachable from M,



Liveness, intuitively

A transition 7 is live if
from any reachable marking M another
marking M’ can be reached where t is enabled

In other words:
at any point in time of the computation, we

cannot exclude that t will fire in the future
or, equivalently,
at any point in time of the computation, it is still

possible to enable t in the future

A Petri net is live if all of its transitions are live
8



Liveness illustrated

For any reachable marking M...

i,

..can we find a way to enable 1 ?



Liveness, formally




Digression

Order of quantifier is important:

quantification of the same kind can be
switched

the order of universal and existential
quantification is important

Yn. dm. n < m = Im. VYn. n <m



Example: Non Live

DN pEe

pl tl1 p2

[M()> — {pl ] pg} t1 non livel



Example: Live

O

My = p; =

[MO>:{p17p27p3}
p2>:{plap27p3}
p3>:{p17p27p3}

>

tl

()

p2

Y

t2
t1 live

if M = p, take M' =p; —
if M = py take M' =p; —

if M = D3 take M/_pl



Example: Live

O

My = p; =

[M0> — {pl,pQ,Ps}

:pz >
P3)

={p1,D2, D3}
:{p17p27p3}

>

tl

p2
Y
t2
to live
!fM:pl ta<eM’:p2%
!fM:pgta@M’:pg%
if M = p3 take M’ = py =




Example: Live

O

£3
My = p;

[M0> — {pl,pQ,Ps}

:pz >
P3)

={p1,D2, D3}
:{p17p27p3}

>

tl

p2
Y
t2
3 live
IfM:pl ta<eM’:p3%
if M = po ta<eM’:p3%
if M = p3 take M’ = p3 —




Example: Live

Mo = p1 =
[MO> — {pl » P2
p2) = {p1, P2,
_p3> — {p1 » P2 5

Ive
Ive
Ive

lve



Liveness: pay attention!

Liveness of 1 should not be confused with the
following property:

starting from the initial marking M, it is possible to
reach a marking M that enables t

M € [My). M =

(this property just ensures that ¢ is not "dead" at M,)

|7



Dead transition

Given a marking M

A transition t is dead at M
If £ will never be enabled in the future
(i.e., t is not enabled at any marking reachable from M)



Example: 11 non live
(but t1 non dead!)

DN pEe

pl tl1 p2




Liveness, a formal recap

N = (P, T, F, My) teT
Live(t, N) = VM €[M,y), 3IM' e[M), M 5
NonLive(t, N) = -—Live(t,N)
Dead(t, N) = VM €[M,y), M 5
NonDead(t, N) = —Dead(t,N)
Live(N) = VteT, Live(t,N)
NonLive(N) = —Live(NV)

20



Liveness, a formal recap

N = (P, T, F, M) teT
Live(t, N) = VM €[My), 3IM' €[M), M =
NonLive(t, N) —Live(t, V)

~(VYM € [My), 3IM' € [M), M 5
M € [My), YM' € [M), M 5

21



Liveness, a formal recap

N = (P, T, F, M) teT

Dead(t, N) VM € [My), M 2

NonDead (%, V) —Dead(t, N)

(VM € [Mp), M )

t

M € [My), M-S

22



Liveness, a formal recap
N = (P, T, F, M)

NonLive(N) —Live(V)
~(Vt €T, Live(t,N))

dt € T,  NonLive(t, N)

3t e T, 3IM € [My), VM e[M), M #

23



Non-live vs Dead

VM € [My), M
Dead(t, N) = NonlLive(t, N)
t

M € [My), VM' e[M), M %
just take M = M,

NonLive(t, N) # Dead(t, V)

pl tl1 p2

24




Digression

How to disprove an implication?

P 7

P A-Q

25



Non-live vs Dead

NonLive(t, N) = dM € [M,), Dead(t, N'=(P,T,F,M))
NonLive(t, N) = 3M € [M,), VM e[M), M %
Dead(t, N') = VM'e[M), M 5

a system is not live
Iff it has a non-live transition
Iff it has a transition that can become dead

26



Liveness: example

T 179 ° T

p4 t> t2 p2 t3 p4

Which transitions are live?
Which are not?

Which are dead?
Is the net live?
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Liveness: example

pl tl t4 pS pl t1
< | | «
t2 p2 t3

p4 t> t2 p2 t3 p4

t4, t5 Which transitions are live?  all

t1, 12, 13 Which are not? none
none Which are dead? none
NO |s the net live? Yes

28




Liveness on the
occurrence graph

A transition t is live
Iff
From any node of the occurrence graph we can reach a
node with an outgoing arc labelled by t

A transition t is dead (at Mo)
iff
There is no t-labelled arc in the occurrence graph

29



pl

t2

(p4)

Liveness: example

tl t4 pS pl tl t4
.<_
p2 t3 p4 ts t2 p2 t3 p4
(pl)
t1
t6
e t2
(p5)
t4

t5 t4
tsz;l E:, ‘:;
(pS5) (p4)

30
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Marked place

Given a marking M

We say that a place p is marked (at M)
if M(p) >0
(i.e., there is a token in p in the marking M)

We say that p is unmarked

if M(p) =0
(.e., there is no token in p in the marking M)

31



Place-liveness,
infuitively

A place p is live if
every time it becomes unmarked
there is still the possibility to be marked in the future
(or if it always stays marked)

A Petri net is place-live if all of its places are live

32



Live place

Definition: Let (P, T, F, My) be a net system.

A place p € Pis live if VM € [My).3IM' € [M ). M’ (p) > 0
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Place-liveness, formally

(PvTvFaMO)

Vpe P. YM e [My). IM' e [M). M (p) >0



Dead nodes, intuitively

Given a marking M

A transition t is dead at M
If t will never be enabled In the future
(i.e., t is not enabled in any marking reachable from M)

A place p is dead at M

if p will never be marked in the future
(l.e., p iIs unmarked in any marking reachable from M)

35



Dead nodes

Definition: Let (P, T, F') be a net
A transition t € T is dead at M if VM’ € [M ). M’ /=

A place p € Pisdead at M if VM’ € [M ). M'(p) =0

36



Non-live vs Dead

If a transition is dead at some reachable marking M
then it is non-live

If a place is dead at some reachable marking M
then it is non-live

being non-live implies possibly becoming dead
(but not necessarily in the current marking)

37



Place Liveness: example

P [ o
Yy T T T
%& —(O— — —(O—

p4 ts t2 p2 t3 p4

Which places are live?
Which are not?

Which are dead?
Is the net place live?

38



Place Liveness: example

T 11 ?‘Z E

o t3 ‘ p4 t3 t2 <_P2 t3 p4
P4, PO  Which places are live? all
p1, p2 Which are not? none

none Which are dead? none

No Is the net place live? Yes

39



Place liveness, a formal recap

N = (P, T, F, M) peEDP
PLive(p, N) = VM e [My), IM'e[M), M (p)>0
NonPLive(p, N) = —PLive(p, N)
Dead(p, N) = VM € |[My), M(p) =0
NonDead(p, N) = —Dead(p, N)
PLive(N) = Vpe P, PLive(p, N)
NonPLive(N) = —PLive(N)

40



Question time

N = (P, T, F, Mp) pe P
PLive(p, N) = VM € [My), IM'e[M), M'(p)>0
NonPLive(p, N) = —PLive(p, N)

write the explicit formula for NonPLive(p,N)

4]



Question time

N = (P, T, F, Mp) pe P
PLive(p, N) = VM € [My), IM'e[M), M'(p)>0
NonPLive(p, N) = —PLive(p, N)

IM € [My), YM' € [M), M (p)=0

write the explicit formula for NonPLive(p,N)

42



Question time

N = (P, T, F, My) peEP
Dead(p, N) = VM € [My), M(p)=0
NonDead(p, N) = —Dead(p, N)

write the explicit formula for NonDead(p,N)
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Question time

N = (P, T, F, My) peEP
Dead(p, N) = VM € [My), M(p)=0
NonDead(p, N) = —Dead(p, N)

= 3IM € [My), M(p) >0

write the explicit formula for NonDead(p,N)
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Question time

N = (P, T,F, M) pe P
PLive(p, N) = VM e [My), IM'e[M), M (p)>0
PLive(N) = Vpe P, PLive(p, N)
NonPLive(N) = —PLive(N)

write the explicit formula for NonPLive(N)
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Question time

N = (P, T,F, M) pe P
PLive(p, N) = VM e [My), IM'e[M), M (p)>0
PLive(N) = Vpe P, PLive(p, N)
NonPLive(N) = —PLive(N)

= JpeP, 3IMe[My), VM €[M), M (p)=0

write the explicit formula for NonPLive(N)

46



Some obvious facts

a system is not live iff it has a transition that can
become dead at some reachable marking

a system is not place-live iff it has a place that can
become dead at some reachable marking

If a place / transition is dead at M, then it remains dead

at any marking reachable from M
(the set of dead nodes can only increase during a run)

47



True or false?

Every transition in the pre- or post-set of a dead place
IS also dead

48



t1

t3

True or false?

Every transition in the pre- or post-set of a dead place
IS also dead

True

suppose p is dead
If p remains empty then t3 and t4 cannot fire
® so they are dead

suppose p is dead
p iIf t1 or t2 could fire then some token would arrive in p
since no token can arrive in p
” it means that t1 and t2 will never fire

49



True or false?

Every place in the pre- or post-set of a dead transition
IS also dead

50



True or false?

Every place in the pre- or post-set of a dead transition
IS also dead

® > <€

False

p3 p4

t1 i1s dead but p1 and p3 are not dead

51



Liveness implies
place-liveness

Proposition: Live systems are also place-live
Assume the net is live

Take any p € P and M € | M)

We want to find M’ € [My) s.t. M'(p) > 0

Take any t € ep U pe

By liveness: there are M"', M"" € [My) s.t. M" RNV
Then M"(p) > 0 or M"(p) > 0

52



Place liveness on the
occurrence graph

A place p is live
Iff
From any node of the occurrence graph we can reach a
node with a token in p

A place p is dead (at Mo)
iff
All the nodes of the occurrence graph have no token in p

53



Place Liveness: example

1o 0d DI 0T

N

pl
t1
t2 P t2 P
(p4) t3 L (p2) (pS5) (p2)
t4 t3/
t5 t4
t5 ?. ?, ‘§
(p5) (p4)
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Exercise

Draw a net that
IS place-live but not live
(if you can)
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Deadlock-freedom

A Petri net is deadlock free, if every reachable
marking enables some transition

In other words, we are guaranteed that at any

point in time of the computation, some
transition can be fired

56



Deadlock-freedom
illustrated

For any reachable marking M...

...can we fire some transition?

57



Deadlock freedom,
formally

(PvTvFvMO)

VM e [My), JteT, M-



Deadlock-freedom:
example

|s the net deadlock-free”?



Deadlock-freedom:
example

YOS O

Yes Is the net deadlock-free? No

[p1>:{p17p27p3} [p1>:{p1,p2—|—p3,p5,...}
p1 — p2 — p3 — p574

60




Deadlock freedom on
the occurrence graph

A net is deadlock free
Iff
Every node of the occurrence graph has an outgoing arc

61



Question time

Does liveness imply deadlock-freedom?
(Can you exhibit a live Petri net that is not deadlock-free?)

Does deadlock-freedom imply liveness?
(Can you exhibit a deadlock-free net that is not live?)

62



Question time

Does liveness imply deadlock-freedom? YES
(Can you exhibit a live Petri net that is not deadlock-free?)

NO

Does deadlock-freedom imply liveness? NO
(Can you exhibit a deadlock-free net that is not live?) YES

2
pl t1 p2 p3

63




Liveness implies
deadlock freedom

Lemma If (P, T, F, My) is live, then it is deadlock-free

By contradiction, let M € | My ), with M 4

Let ¢ € T' (T" cannot be empty).
By liveness, IM’ € [ M ) with M’ — .

Since M /4, we have |[M ) ={ M }.
Therefore M = M’ 4 which is absurd.

64



Digression:
for next exercises

Contraposition

P:>Q — (—IQ)i—IP



Exercises

Prove each of the following properties
or give some counterexamples

If a system is not place-live, then it is not live
If a system is not live, then it is not place-live
If a system is place-live, then it is deadlock-free

If a system is deadlock-free, then it is place-live

66



k-Boundedness

Let k be a natural number

A place p is k-bounded if no reachable marking has
more than k tokens in place p

A net is k-bounded if all of its places are k-bounded
In other words, if a net is k-bounded, then k is a

capacity constraint that can be imposed over places
without any risk of causing “overflow”

67



Safe nets

A place p is safe if it is 1-bounded
A net is safe if all of its places are safe
In other words, if the net is safe, then we know

that, in any reachable marking, each place
contains one token at most

68



Boundedness

A place p is bounded if it is k-bounded for some
natural number k

A net is bounded if all of its places are bounded
A net is unbounded if it is not bounded

(i.e., there is at least one place in which any
number of tokens can appear)

69



Boundedness, formally

(PaTaFaMO)

keN, VM e|Mp),

Vvpe P, M(p) <k



Boundedness: example

Which places are bounded?
Is the net bounded?
Which places are safe?
Is the net safe?

71



Boundedness: example

Y VA

all  Which places are bounded? Nhone
Yes s the net bounded? No

all Which places are safe?  [OIN€
Yes ls the net safe? No

72




Boundedness and the
reachability graph

A system is bounded
Iff
its reachabillity graph is finite



Boundedness implies
finiteness

Theorem: If a system is bounded
then its reachability graph is finite

Proof: if the system is bounded there exists k
such that each place contains at most k tokens.

If there are n places it means that there are at
most (k+1)" reachable markings.

Hence the occurrence graph has a finite number
of nodes

74



Finiteness implies
boundedness

Theorem: A system is bounded
If its reachability graph is finite

Proof: for each node M we take km be the
maximum number of tokens in the same place.

Then we let k be the largest among all ku
k = max {km | M is a node of the graph}
(k exists because the reachability graph is finite)

Clearly the system is k-bounded and thus bounded

75



Cyclicity
(aka Reversibility)

A marking M is a home marking if it can be
reached from every reachable marking

A net is cyclic (or reversible) if its initial marking
IS @ home marking

76



Orthogonal properties

Liveness, boundedness and cyclicity are
iIndependent of each other

In other words, you can find nets that satisfy any

arbitrary combination of the above three properties
(and not the others)

77



Exercises

Write the formal definition of the predicates
Home(M,N) and Cyclic(N)
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Exercises

For each of the following nets, say if they are
live, deadlock-free, bounded, safe, cyclic

pl;i; t1 | pzi
——
t2 p3 t3 |
——
: t4 p4
pl t1
1 t1 p2
| H@ H
t2 | p2 t4 p4 t2 p3 t3 l
t4
ts
p3 t3

p4

79



Exercises

For each of the following nets, say if they are
live, deadlock-free, bounded, safe, cyclic

80



Petri nets:
structural properties



Structural properties

All the properties we have seen so far are
behavioural (or dynamic)
(i.e. they depend on the initial marking and firing rules)

It is sometimes interesting to connect them to
structural properties
(.e. the shape of the graph representing the net)

This way we can give structural characterization of
behavioural properties for a class of nets
(computationally less expensive to check)
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A matter of
terminology

To better reflect the above distinction, it is frequent:

to use the term net system for denoting a Petri net
with a given initial marking
(we study behavioural properties of systems)

to use the term net for denoting a Petri net

without specifying any initial marking
(we study structural properties of nets)
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Paths and circuits
(P, T, F)
A path is a non-empty sequence of nodes x1x5...x; such that
(i, xi11) € F  forevery 1 <i<k

and we say it leads from x; to x;

A path zix5...xp 1s called a circuit if

all its nodes are distinct and (xx,z1) € F

since there is no node = with (x,x) € F, any circuit has at least two nodes
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Paths and circuits
(P, T, F)
An undirected path is a non-empty sequence of nodes xixs...x% S.t.

(zi,2i41) € (FUF™Y) forevery 1 <i<k

(denotes the inverse of a binary relation)

F=={(y.z) | (v,y) € F}

(a path where we disregard the orientation of arcs)
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Connectedness

A net (P, T, F') is weakly connected if

there I1s an undirected path between any two distinct nodes

A net (P, T, F) is strongly connected if

there I1s a path between any two distinct nodes

86



Connectedness, again

A net (P, T,F) is weakly connected
Iff
it cannot be splitted in separated components

A weakly connected net is strongly connected iff
for every arc (x,y) there is a path from y to x
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Examples

prodl busy
rod1 s:,rt\C>&/

prodl e

eeeeeeeeee

ccccccccc

weakly connected

not strongly connected
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Examples

prodl start

prodl busy
prodl er /Q\
1l |  conslfree
P ee c

ccccccccc

not weakly connected
not strongly connected
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Examples

prodl busy

rod1 s?art\O/Droal en
prodl free

IIIIIIIIIII

sssssssss

weakly connected

strongly connected
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A note

In the following we will consider (implicitly) weakly
connected nets only

(if they are not, then we can study each of their
subsystems separately)
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Question time

Is the net strongly connected?

O

<

"]

ps t4

H@

t1
p3 t3

e—

p2
p4

92

pl;i; t1
——
t2

017

pS t4

G

pl ’ tl

t2 T
ps;i; t6
t4



Question time

Is the net strongly connected?

oo o
Ed

YE

T ES
: 4& T

t2 T 3
pS t4 p4 1 p2 I ps;'; t6

S Y
YES “_< - «
AS OTHO  No

93

pl t1
t2 T ts
ps t4



Interference of
conflicts and synch

Typical situation:

initially t1 and t2 are not in conflict

but when t3 fires they are in conflict
(the firing of {3 is not controllable)
(3
How to rule this situation out?

tl
94



S-systems / S-nets

A Petri net is called S-system if every transition has
one input place and one output place
(S comes from Stellen, the German word for place)
This way any synchronization is ruled out

The theory of S-systems is very simple

95



T-systems / T-nets

A Petri net is called T-system if every place has one
input transition and one output transition

This way all choices/conflicts are ruled out
T-systems are concurrent but essentially deterministic

T-systems have been studied extensively since the
early Seventies
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Question time

|s the net an S-net, a T-net?

0
i

017

p2
t2 p3 ; t2 T
Q«— €—— !
ps t4 p4 pl tl ps t6
——
t2
t4

p2 I
T p3 t3 |
pS t4 p4
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S-net
T-net

Question time

|s the net an S-net, a T-net?

Y
ve

98

S-net g >—”“ ”g )
T-net

pl t1 5 t6
< O

& @CB S-net




Free-choice nets

The aim iIs to avoid that a choice between transitions
IS influenced by the rest of the system

Easiest way:
keep places with more than one output transition apart
from transitions with more than one input place

In other words, if (p,t) Is an arc, then it means that

t is the only output transition of p (no conflict)
OR
p is the only input place of t (no synch)
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Free-choice
systems / nets

But we can study a slightly more general class of nets by
requiring a weaker constraint

A Petri net is free-choice if
for any pair of transitions
their pre-sets are either disjoint or equal

or, equivalently, if

for any pair of places
their post-sets are either disjoint or equal
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Question time

Is the net free-choice?

T
o

ps t4

101

H@
b

o
&f

pl I tl

' te




Question time

Is the net free-choice?
@ﬂ HQ FC-net
FC-net I j%
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Exercises

Prove that every S-net is free-choice
Prove that every T-net is free-choice

Show a net for each area of the Eulero-Venn diagram below

Free-choice

9
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