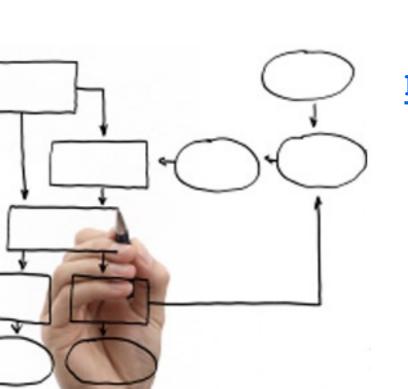
Business Processes Modelling MPB (6 cfu, 295AA)



Roberto Bruni

http://www.di.unipi.it/~bruni

10 - Liveness

Object

$$N \vdash \psi$$

We give a formal account of a key property of Petri nets

Free Choice Nets (book, optional reading)

https://www7.in.tum.de/~esparza/bookfc.html

Digression

How to disprove an implication?

$$P \not\Rightarrow Q$$

$$P \wedge \neg Q$$

Let's practice with some formula

$$N = (P, T, F, M_0)$$

for any markings M and M'

it follows that M' is reachable from M_0

$$\forall M, M', M \in [M_0) \land M' \in [M) \Rightarrow M' \in [M_0)$$

with M reachable from M_0 and M' reachable from M

any marking that is reachable from a reachable marking is also reachable

Disclaim

When we say: for any reachable marking M

we mean: for any marking M reachable from M_{0}

Boundedness

A place p can be:

safe / bounded

will never contain more than a certain amount of tokens

can arrive to contain more tokens than any fixed quantity

Petri nets: liveness

Liveness

A transition *t* can be:

live

can always be enabled in the future

dead

can never be enabled in the future

non live

can become dead (or is dead already)
non dead

Jij.

can be enabled at least once

Liveness

A place p can be:

live

can always be marked in the future

dead

can never be marked in the future (it is empty and will always remain empty)

non live

can become dead (or is dead already)
non dead

can become marked at least once

Liveness, intuitively

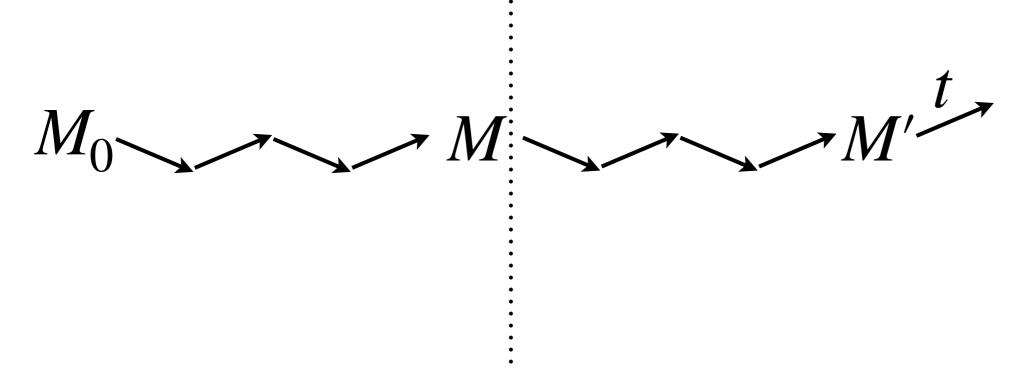
At any point in time of the computation, we cannot exclude that t will fire in the future or, equivalently, at any point in time of the computation, it is still possible to enable t in the future

A transition t is **live** if from any reachable marking M another marking M' can be reached where t is enabled

A Petri net is live if all of its transitions are live

Liveness illustrated

For any reachable marking M...



... we can find a way to enable t

Liveness, formally

$$(P, T, F, M_0)$$

for any transition t there is a marking M' reachable from M $\forall t \in T, \quad \forall M \in [M_0], \quad \exists M' \in [M], \quad M' \stackrel{t}{\longrightarrow}$ for any reachable marking M that enables t

Liveness: pay attention!

Liveness of *t* should not be confused with the following property:

starting from the initial marking M_0 it is possible to reach a marking M that enables t

$$\exists M \in [M_0\rangle. \ M \xrightarrow{t}$$

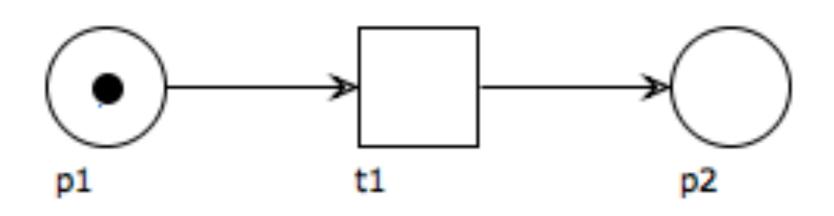
(this property just ensures that t is not "dead" at M_0)

Dead transition

Given a marking M

A transition t is dead at M if t will never be enabled in the future (i.e., t is not enabled at any marking reachable from M)

Example



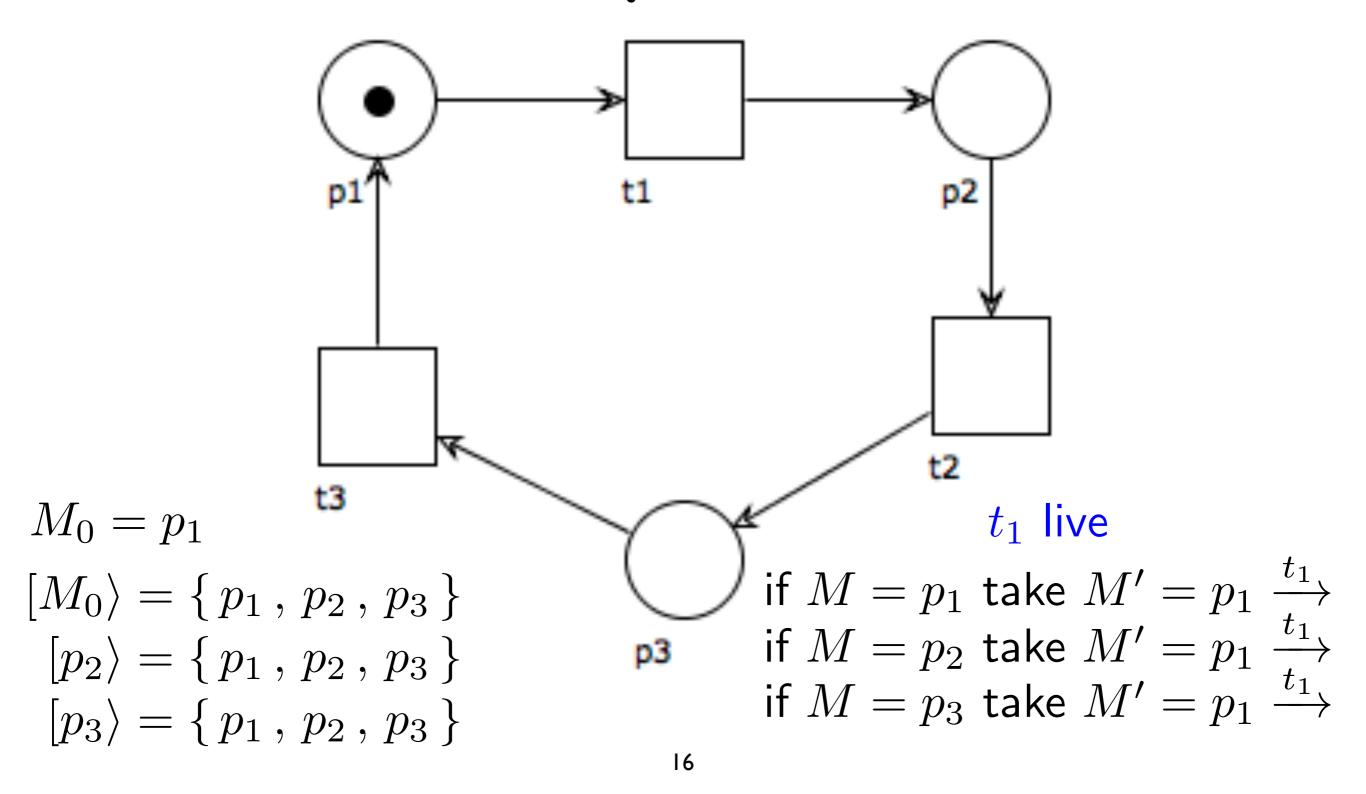
$$M_0 = p_1$$

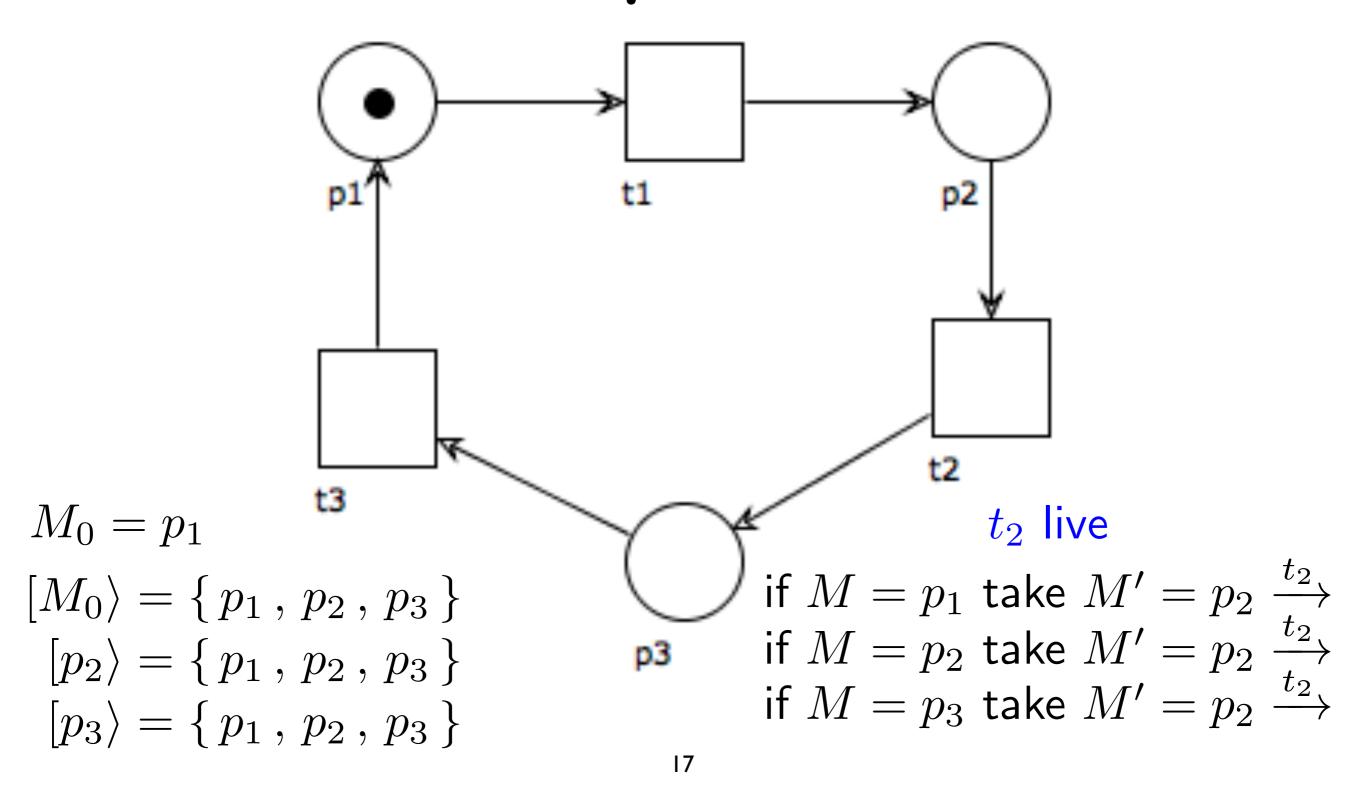
$$|M_0\rangle = \{p_1, p_2\}$$

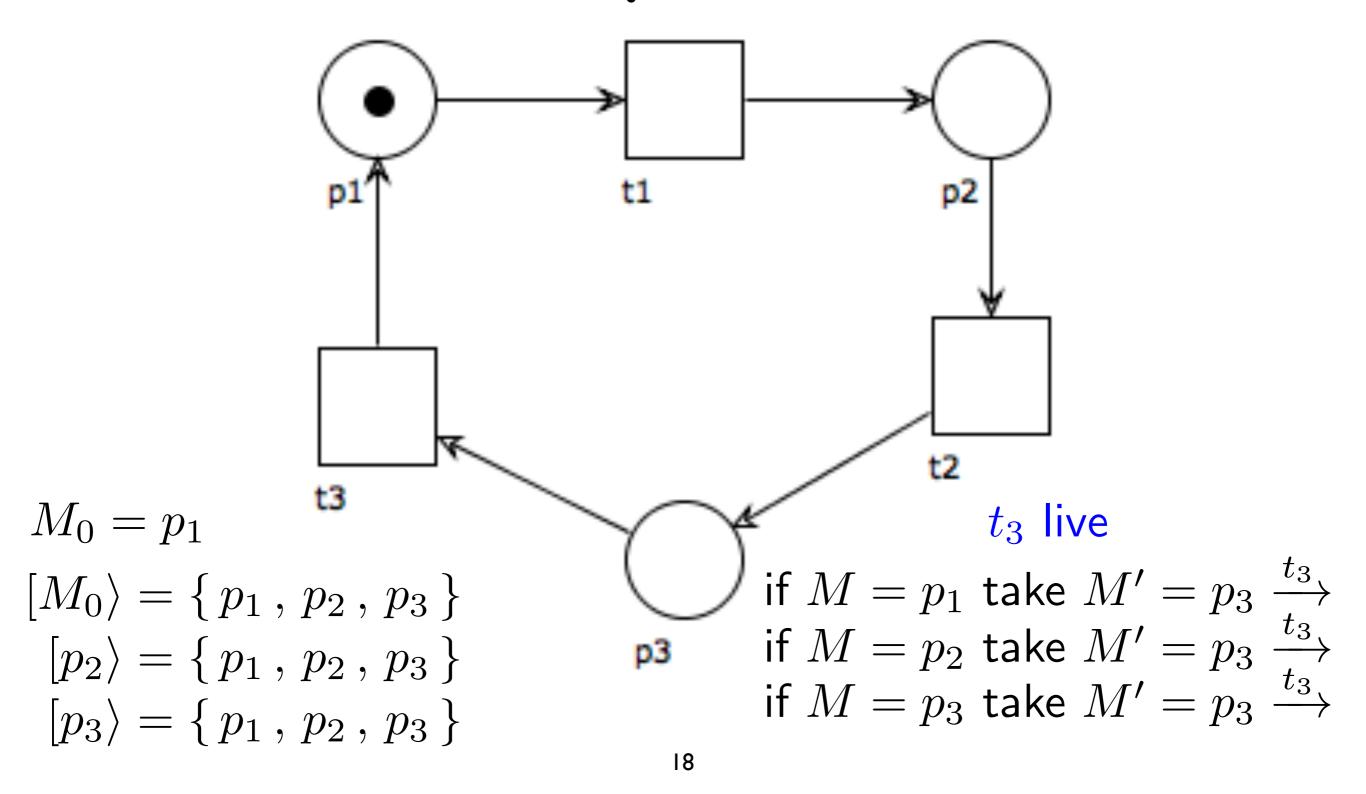
$$p_2 \not\rightarrow$$

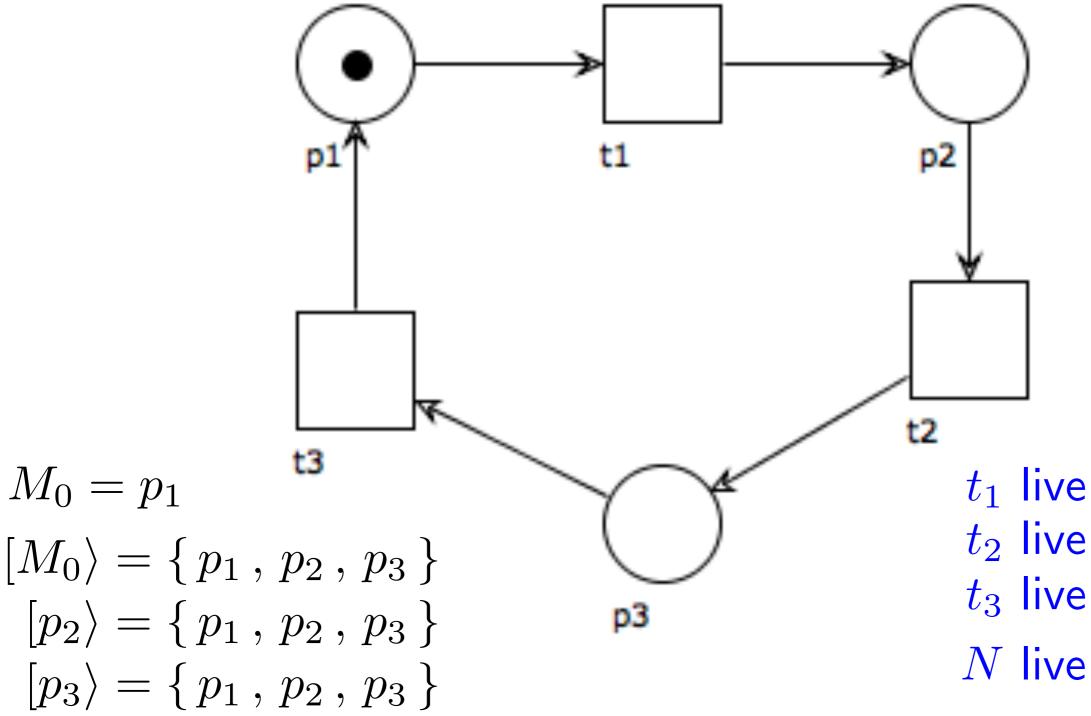
 t_1 non live!

 t_1 non dead!









Liveness, a formal recap

$$N = (P, T, F, M_0) \qquad t \in T$$

$$\mathsf{Live}(t, N) \quad \equiv \quad \forall M \in [M_0\rangle, \quad \exists M' \in [M\rangle, \quad M' \xrightarrow{t} \rightarrow$$

$$\mathsf{NonLive}(t, N) \quad \equiv \quad \neg \mathsf{Live}(t, N) \qquad \qquad \exists M' \in [M_0\rangle, \quad \exists M' \in [M\rangle, \quad M' \xrightarrow{t} \rightarrow) \qquad \qquad \equiv \quad \exists M \in [M_0\rangle, \quad \forall M' \in [M\rangle, \quad M' \xrightarrow{t} \rightarrow)$$

Deadness, a formal recap

$$N = (P, T, F, M_0)$$
 $t \in T$
$$\mathsf{Dead}(t, N) \equiv \forall M \in [M_0\rangle, \quad M \not\xrightarrow{t}$$

$$\mathsf{NonDead}(t, N) \equiv \neg \mathsf{Dead}(t, N)$$

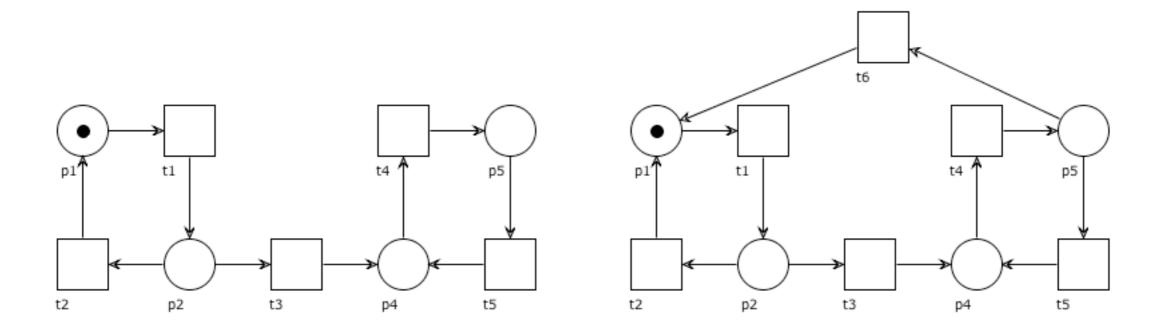
$$\equiv \neg (\forall M \in [M_0\rangle, \quad M \not\xrightarrow{t})$$

$$\equiv \exists M \in [M_0\rangle, \quad M \xrightarrow{t})$$

Non-live vs Dead

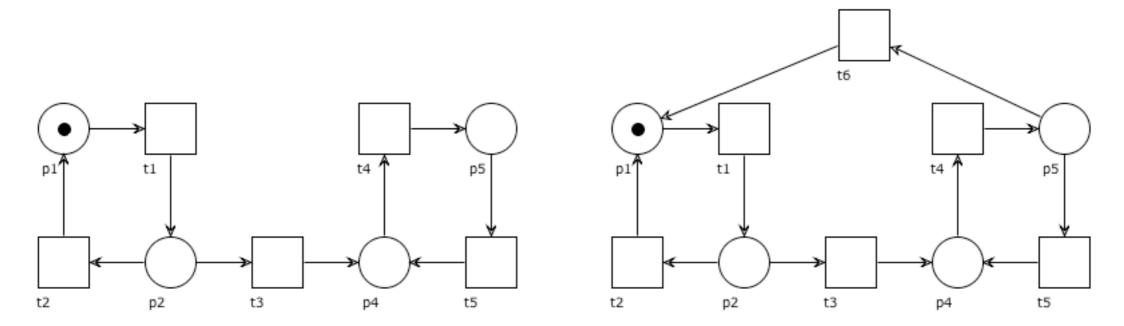
a system is not live iff it has a non-live transition iff it has a transition that **can become** dead

Liveness: example



Which transitions are live?
Which are not?
Which are dead?
Is the net live?

Liveness: example



t4, t5 t1, t2, t3 none No

Which transitions are live?
Which are not?
Which are dead?
Is the net live?

all none none Yes

Liveness on the occurrence graph

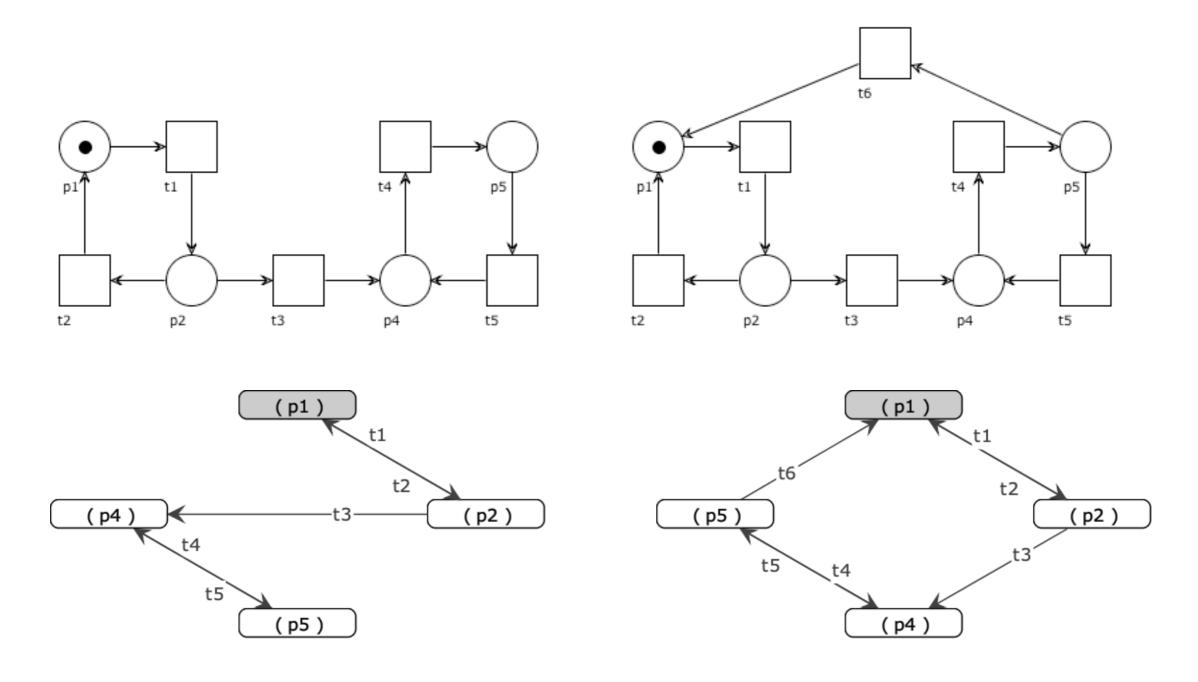
A transition t is live iff

From any node of the occurrence graph we can reach a node with an outgoing arc labelled by t

A transition t is dead (at M₀) iff

There is no t-labelled arc in the occurrence graph

Liveness: example



Marked place

Given a marking M

We say that a place p is marked (at M) if M(p) > 0 (i.e., there is a token in p in the marking M)

We say that p is unmarked if M(p) = 0(i.e., there is no token in p in the marking M)

Place-liveness, intuitively

A place p is **live** if
every time it becomes unmarked
there is still the possibility to be marked in the future
(or if it always stays marked)

A Petri net is place-live if all of its places are live

Live place

Definition: Let (P, T, F, M_0) be a net system.

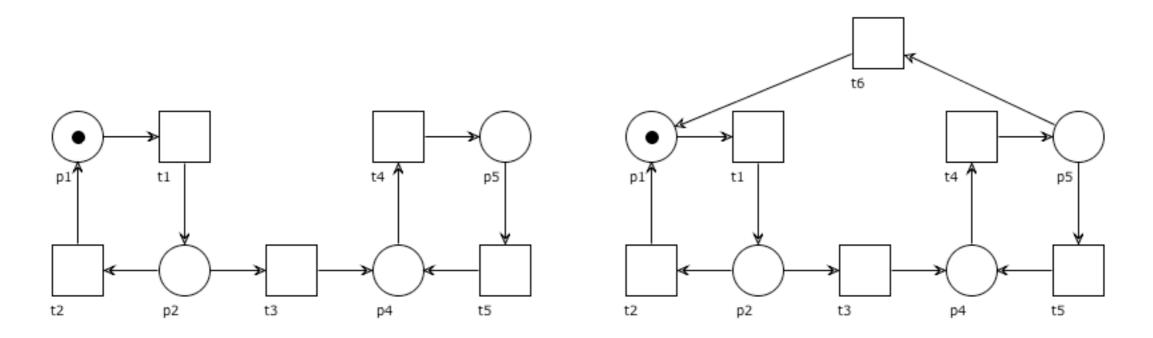
A place $p \in P$ is **live** if $\forall M \in [M_0] . \exists M' \in [M] . M'(p) > 0$

Place-liveness, formally

$$(P, T, F, M_0)$$

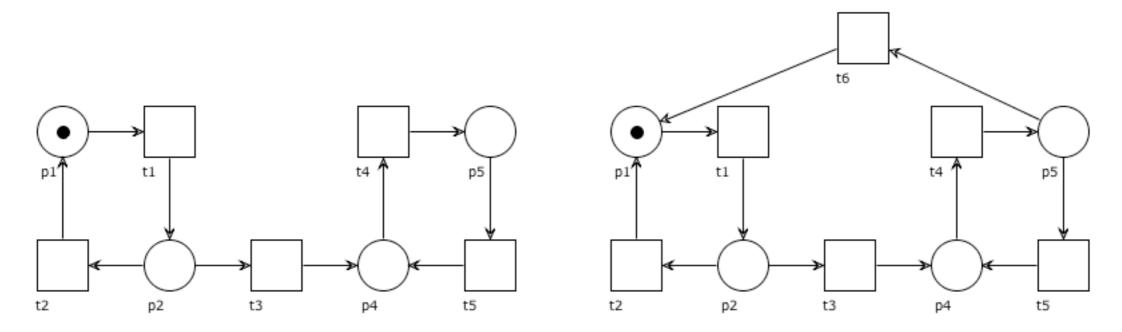
$$\forall p \in P. \quad \forall M \in [M_0). \quad \exists M' \in [M). \quad M'(p) > 0$$

Place Liveness: example



Which places are live?
Which are not?
Which are dead?
Is the net place live?

Place Liveness: example



p4, p5 p1, p2 none No

Which places are live?
Which are not?
Which are dead?
Is the net place live?

all none none Yes

Place liveness on the occurrence graph

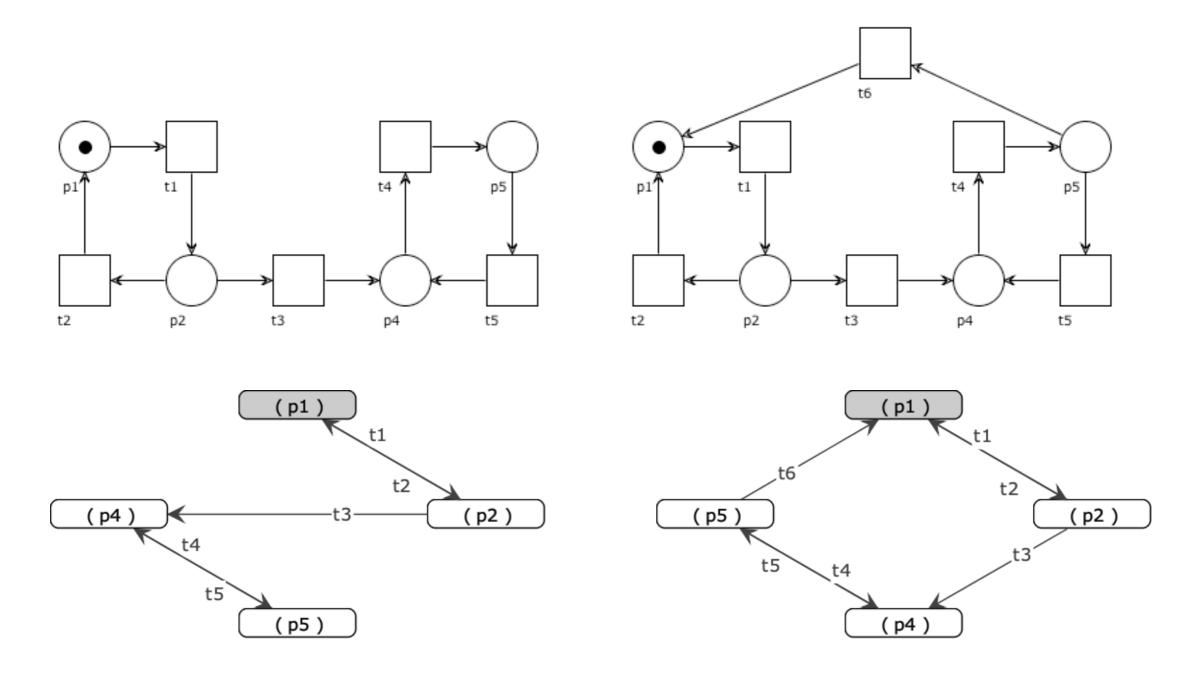
A place p is live iff

From any node of the occurrence graph we can reach a node with a token in p

A place p is dead (at M₀) iff

All the nodes of the occurrence graph have no token in p

Place Liveness: example



Question time

$$N=(P,T,F,M_0) \qquad p\in P$$

$$\mathsf{PLive}(p,N) \quad \equiv \quad \forall M\in [M_0\rangle, \quad \exists M'\in [M\rangle, \quad M'(p)>0$$

$$\mathsf{NonPLive}(p,N) \quad \equiv \quad \neg \mathsf{PLive}(p,N)$$

write the explicit formula for NonPLive(p,N)

Question time

$$N=(P,T,F,M_0)$$
 $p\in P$ $ext{PLive}(p,N)$ $\equiv \ \, orall M\in [M_0
angle, \ \, \exists M'\in [M
angle, \ \, M'(p)>0$ $ext{NonPLive}(p,N)$ $\equiv \ \, \neg ext{PLive}(p,N)$ $\equiv \ \, \exists M\in [M_0
angle, \ \, orall M'\in [M
angle, \ \, M'(p)=0$

write the explicit formula for NonPLive(p,N)

Question time

$$N=(P,T,F,M_0) \qquad p\in P$$

$$\mathsf{Dead}(p,N) \quad \equiv \quad \forall M\in [M_0\rangle, \quad M(p)=0$$

$$\mathsf{NonDead}(p,N) \quad \equiv \quad \neg \mathsf{Dead}(p,N)$$

write the explicit formula for NonDead(p,N)

Question time

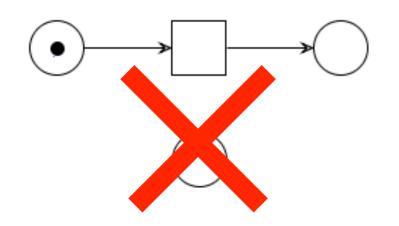
$$N=(P,T,F,M_0)$$
 $p\in P$ $\mathrm{Dead}(p,N)$ \equiv $orall M\in [M_0
angle, \ M(p)=0$ $\mathrm{NonDead}(p,N)$ \equiv $\neg \mathrm{Dead}(p,N)$ \equiv $\exists M\in [M_0
angle, \ M(p)>0$

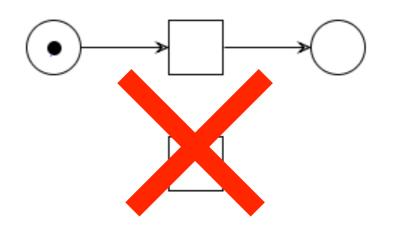
write the explicit formula for NonDead(p,N)

Disclaim

A node (place or transition) is called **isolated** if its pre- and post-sets are empty

We only consider nets without isolated nodes





Dead nodes, intuitively

Given a marking M

A transition t is dead at M if t will never be enabled in the future (i.e., t is not enabled in any marking reachable from M)

A place p is dead at M
if p will never be marked in the future
(i.e., p is unmarked in any marking reachable from M)

Dead nodes

Definition: Let (P, T, F) be a net

A transition $t \in T$ is **dead** at M if $\forall M' \in [M] \cdot M' \xrightarrow{t}$

A place $p \in P$ is **dead** at M if $\forall M' \in [M] . M'(p) = 0$

Non-live vs Dead

If a transition is dead at some reachable marking M then it is non-live

If a place is dead at some reachable marking M then it is non-live

being non-live implies possibly becoming dead (but not necessarily in the current marking)

Some obvious facts

a system is not live iff it has a transition that can become dead at some reachable marking

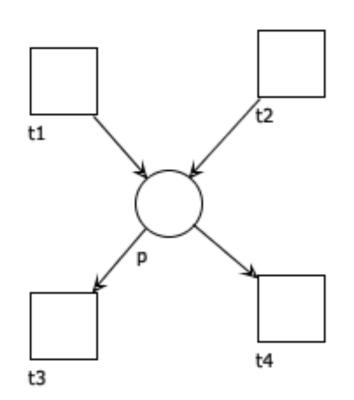
a system is not place-live iff it has a place that can become dead at some reachable marking

If a place / transition is dead at M, then it remains dead at any marking reachable from M (the set of dead nodes can only increase during a run)

Every transition in the pre- or post-set of a dead place is also dead

Every transition in the pre- or post-set of a dead place is also dead

True

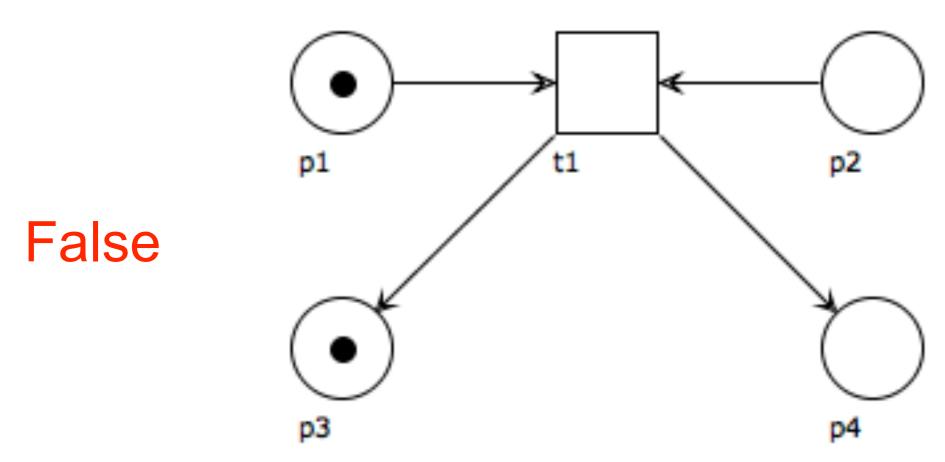


suppose p is dead if p remains empty then t3 and t4 cannot fire so they are dead

suppose p is dead
if t1 or t2 could fire then some token would arrive in p
since no token can arrive in p
it means that t1 and t2 will never fire

Every place in the pre- or post-set of a dead transition is also dead

Every place in the pre- or post-set of a dead transition is also dead



t1 is dead but p1 and p3 are not dead

Liveness implies place-liveness

Proposition: Live systems are also place-live

Assume the net is live

Take any $p \in P$ and $M \in [M_0)$

We want to find $M' \in [M_0]$ s.t. M'(p) > 0

Take any $t \in \bullet p \cup p \bullet$

By liveness: there are $M'', M''' \in [M_0]$ s.t. $M'' \xrightarrow{t} M'''$

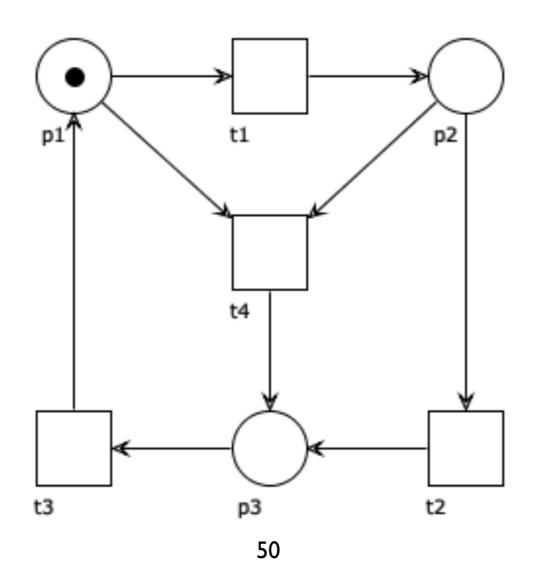
Then M''(p) > 0 or M'''(p) > 0

Exercise

Draw a net that is place-live but not live

Exercise

Draw a net that is place-live but not live



Petri nets: Deadlock-freedom

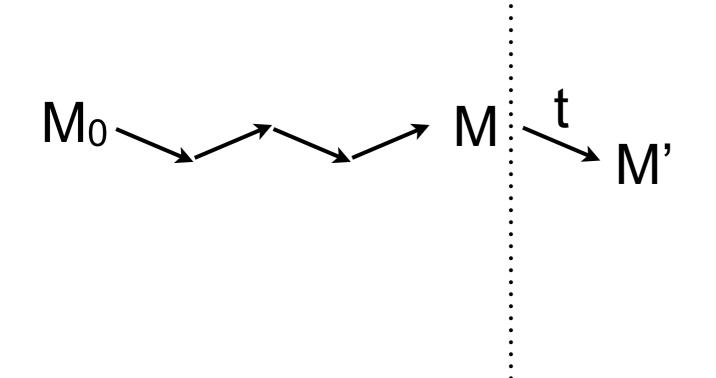
Deadlock-freedom

A Petri net is **deadlock free**, if every reachable marking enables some transition

In other words, we are guaranteed that at any point in time of the computation, some transition can be fired

Deadlock-freedom illustrated

For any reachable marking M...



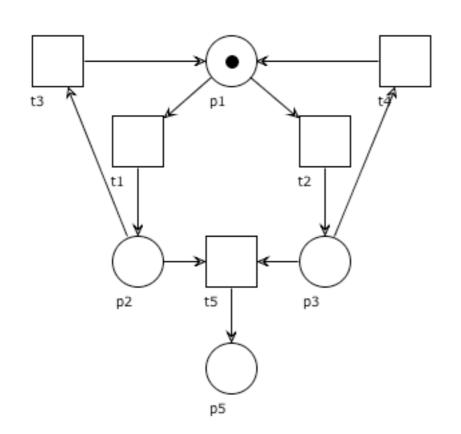
... we can still fire some transition next

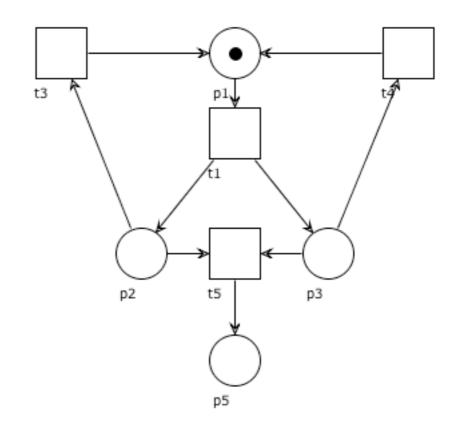
Deadlock freedom, formally

$$(P, T, F, M_0)$$

$$\forall M \in [M_0\rangle, \exists t \in T, M \xrightarrow{t}$$

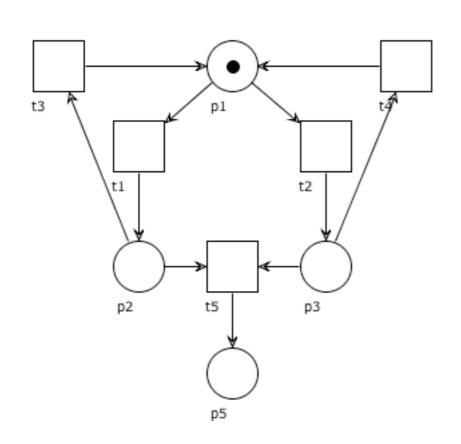
Deadlock-freedom: example

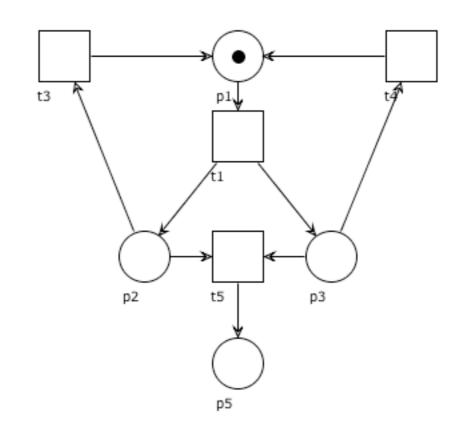




Is the net deadlock-free?

Deadlock-freedom: example





Yes Is the net deadlock-free? No

$$[p_1\rangle = \{ p_1, p_2, p_3 \}$$
 $[p_1\rangle = \{ p_1, p_2 + p_3, p_5, \dots \}$
 $p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow p_5 \not\rightarrow$ $p_5 \not\rightarrow$

Deadlock freedom on the occurrence graph

A net is deadlock free iff

Every node of the occurrence graph has an outgoing arc

Question time

Does liveness imply deadlock-freedom? (Can you exhibit a live Petri net that is not deadlock-free?)

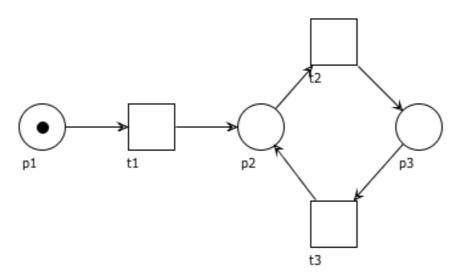
Does deadlock-freedom imply liveness? (Can you exhibit a deadlock-free net that is not live?)

Question time

Does liveness imply deadlock-freedom? YES (Can you exhibit a live Petri net that is not deadlock-free?)

NO

Does deadlock-freedom imply liveness? NO (Can you exhibit a deadlock-free net that is not live?) YES



Liveness implies deadlock freedom

Lemma If (P, T, F, M_0) is live, then it is deadlock-free

By contradiction, let $M \in [M_0]$, with $M \not\rightarrow$

Let $t \in T$ (T cannot be empty).

By liveness, $\exists M' \in [M]$ with $M' \stackrel{t}{\longrightarrow}$.

Since $M \not\rightarrow$, we have $[M \rangle = \{M\}$.

Therefore $M = M' \xrightarrow{t}$, which is absurd.

Digression: for next exercises

Contraposition

$$P \Rightarrow Q \qquad \equiv \qquad (\neg Q) \Rightarrow \neg P$$

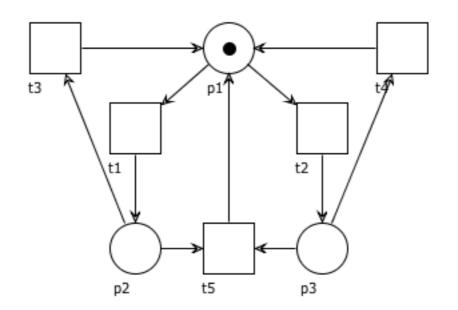
If a system is not place-live, then it is not live

If a system is not place-live, then it is not live (true, by contraposition)

liveness implies place-liveness

If a system is not live, then it is not place-live

If a system is not live, then it is not place-live (false, see below)



t₅ is dead (and thus non-live) p₁, p₂ and p₃ are live

If a system is place-live, then it is deadlock-free

If a system is place-live, then it is deadlock-free (true, see below)

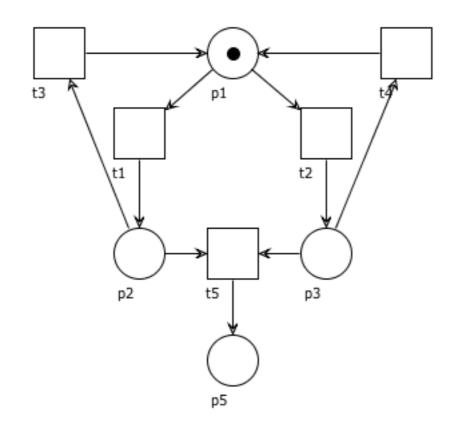
Take $M \in [M_0)$.

If all places are marked at M, then $\exists t \in T$ such that $M \xrightarrow{t}$.

Otherwise, take $p \in P$ such that M(p) = 0. Since the system is place-live, then $\exists M' \in [M]$ such that M'(p) > 0. Obviously $M' \neq M$, therefore $\exists \sigma \neq \epsilon$ such that $M \xrightarrow{\sigma} M'$. Thus, M is not a deadlock state.

If a system is deadlock-free, then it is place-live

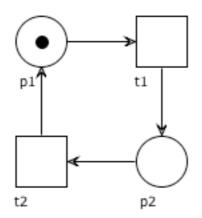
If a system is deadlock-free, then it is place-live (false, see below)



p₅ is dead (and thus non-live) the system is deadlock-free

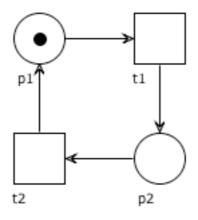
Exercises

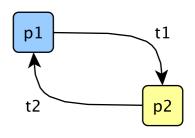
For each of the following nets, say if they are bounded, safe, live, deadlock-free



Exercises

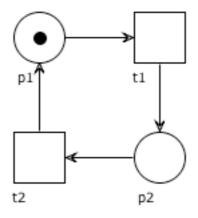
For each of the following nets, say if they are bounded, safe, live, deadlock-free

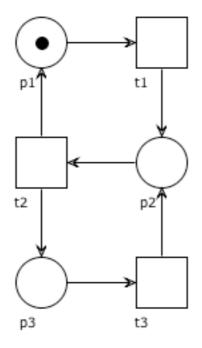




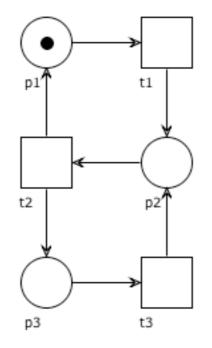
Exercises

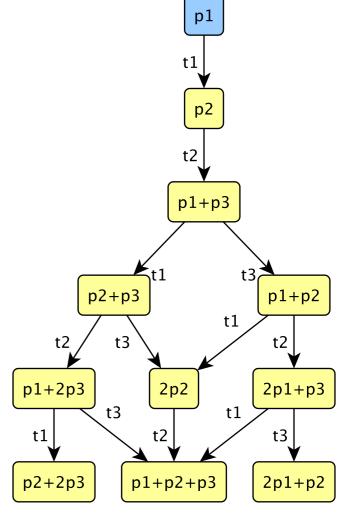
For each of the following nets, say if they are bounded, safe, live, deadlock-free



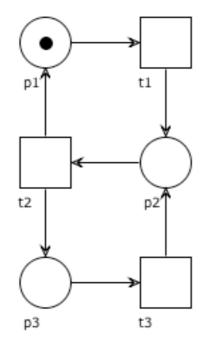


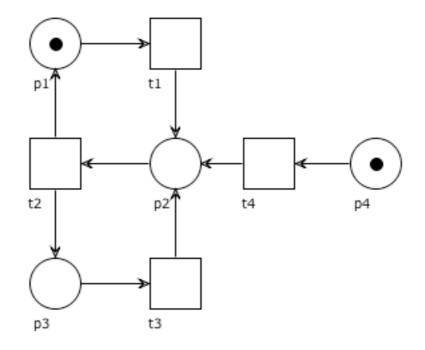
For each of the following nets, say if they are bounded, safe, live, deadlock-free



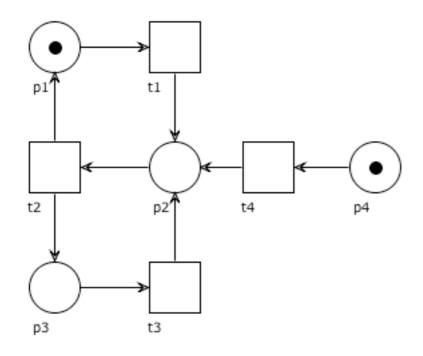


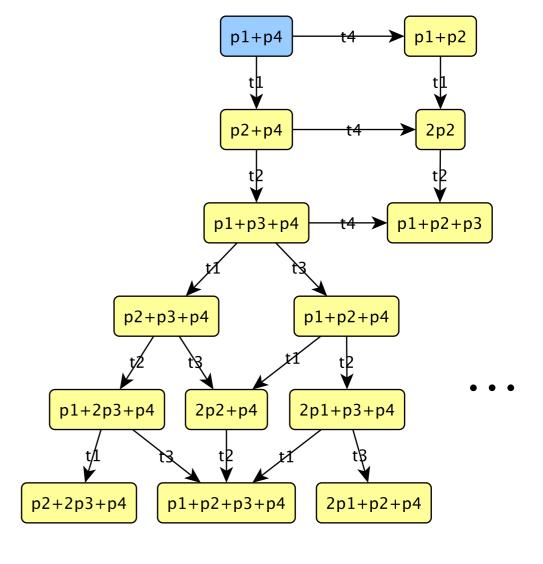
74



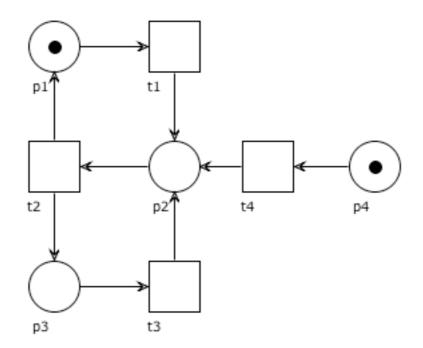


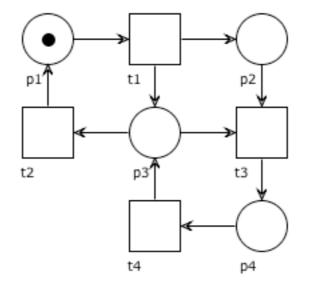
For each of the following nets, say if they are bounded, safe, live, deadlock-free



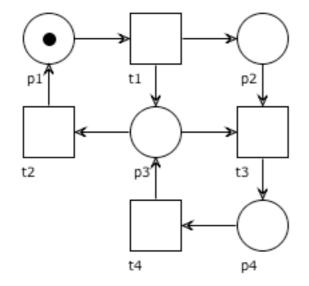


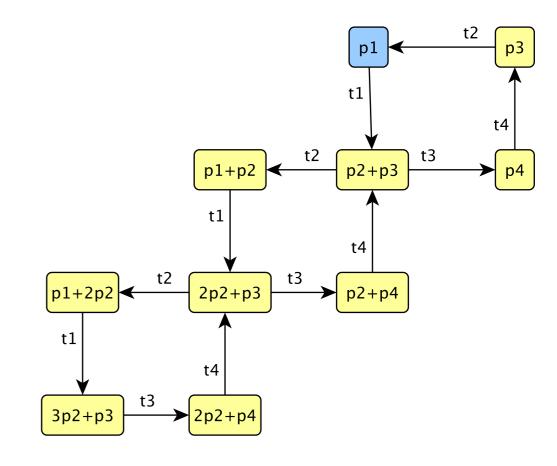
77



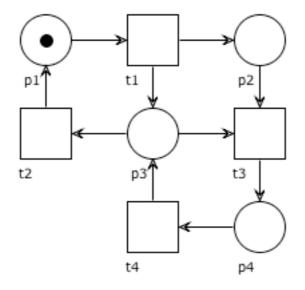


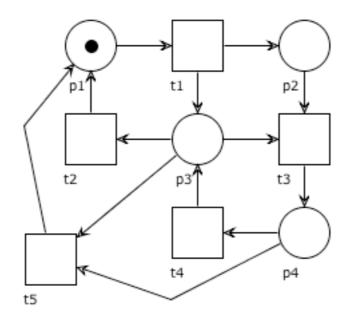
For each of the following nets, say if they are bounded, safe, live, deadlock-free



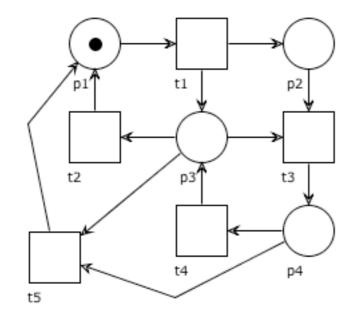


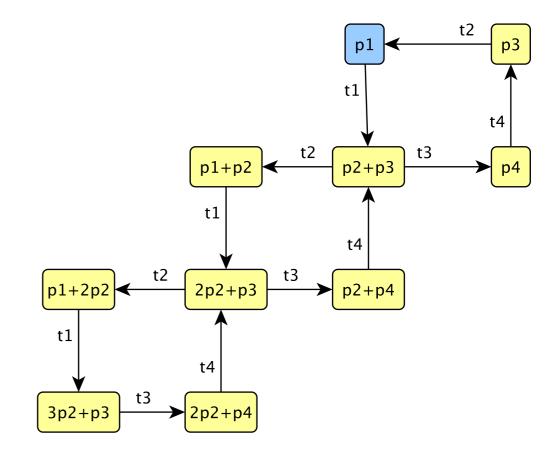
• • •



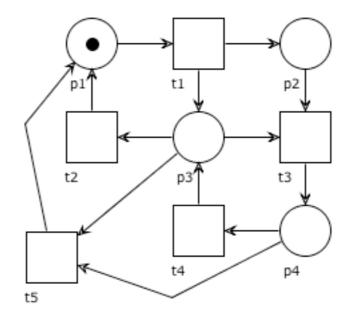


For each of the following nets, say if they are bounded, safe, live, deadlock-free





• • •



Live	Bounded	Deadlock free	None
pl ti p2	p1 t1 p2	p1 t1 t1 p2	
pl t1 p2 p2 p3 t3			
		p1 t1 p2 t4 p4	
$\begin{array}{c} \bullet \\ p1 \\ t1 \\ p2 \\ t3 \\ t4 \\ p4 \\ \end{array}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{c c} & & & \\ \hline \\ p_1 & & \\ \hline \\ t_2 & & \\ \hline \\ p_3 & & \\ \hline \\ t_3 & & \\ \hline \\ t_5 & & \\ \hline \end{array}$	

Recap

```
non place-live => non live
t dead => non live
p dead => non place-live
p dead => non live

live => deadlock-free
```

possible deadlock => non place-live

possible deadlock => non live

=> place-live

=> deadlock-free

live

place live