
Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

09 - Occurrence graphs

1

http://www.di.unipi.it/~bruni

Object

2

Formalization of basic concepts of
Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html

https://www7.in.tum.de/~esparza/bookfc.html

Petri nets:
occurrence graph

3

Occurrence graph
(aka Reachability graph)

4

The reachability graph is a graph that represents
all possible occurrence sequences of a net

 Nodes of the graphs = reachable markings
Arcs of the graphs = firings

Formally, OG(N) = ([M0i, A) where A ✓ [M0i ⇥ T ⇥ [M0i s.t.

(M, t,M
0) 2 A i↵ M

t�! M
0

How to compute OG(N)

11

The occurrence graph can be constructed as follows:

1. Nodes = {}, Arcs = {}, Todo = {M0}

2. M = next(Todo)

3. Nodes = Nodes [{M}, Todo = Todo \ {M}

4. Firings = {(M, t,M 0) | 9t 2 T, 9M 0 2 µ(P), M
t�! M 0}

5. New = {M 0 | (M, t,M 0) 2 Firings} \ (Nodes [Todo)

6. Todo = Todo [New , Arcs = Arcs [Firings

7. isEmpty(Todo) ? stop : goto 2

Adding all exiting arcs each time: markings to explore

select one marking to explore

update nodes

collect all firings from M

update nodes
and arcs

repeat if there are still markings
to be explored

find new markings to explore

Example: traffic light

12

Todo = { red }

Example: traffic light

13

red

Todo = { }

14

red

green

go-green

Example: traffic light
Todo = { green }

15

red

green

go-green

yellow go-yellow

Example: traffic light
Todo = { yellow }

16

red

green

go-green

yellow go-yellow

go-red

Example: traffic light
Todo = { }

Example: two traffic lights

17

Todo = { red + red’ }

18

red + red’

(we omit arc labels
for readability issues)

Example: two traffic lights

Todo = { }

19

green + red’

red + green’

Example: two traffic lights
(we omit arc labels

for readability issues)

red + red’

Todo = { green+red’ , red+green' }

20

yellow + red’

green + green’

Example: two traffic lights
(we omit arc labels

for readability issues)

red + red’

Todo = { yellow+red’ , green+green' , red+green' }

green + red’

red + green’

21

yellow + green’

Example: two traffic lights
(we omit arc labels

for readability issues)

red + red’

green + red’

red + green’

yellow + red’

green + green’

Todo = { yellow+green' , green+green' , red+green' }

22

red + yellow’

Example: two traffic lights
(we omit arc labels

for readability issues)

red + red’

green + red’

red + green’

yellow + green’

yellow + red’

green + green’

Todo = { yellow+green' , green+green' , red+yellow' }

23

green + yellow’

Example: two traffic lights
(we omit arc labels

for readability issues)

red + red’

green + red’

red + green’

yellow + green’

yellow + red’

green + green’

red + yellow’

Todo = { yellow+green' , green+yellow' , red+yellow' }

24

yellow + yellow’

Example: two traffic lights
(we omit arc labels

for readability issues)

red + red’

green + red’

red + green’

yellow + green’

yellow + red’

green + green’

red + yellow’

green + yellow’

Todo = { yellow+yellow' , green+yellow' , red+yellow' }

25

Example: two traffic lights
(we omit arc labels

for readability issues)

red + red’

green + red’

red + green’

yellow + green’

yellow + red’

green + green’

red + yellow’

green + yellow’

yellow + yellow’

Todo = { yellow+yellow' , green+yellow' }

26

Example: two traffic lights
(we omit arc labels

for readability issues)

red + red’

green + red’

red + green’

yellow + green’

yellow + red’

green + green’

red + yellow’

green + yellow’

yellow + yellow’

Todo = { yellow+yellow' }

27

Example: two traffic lights
(we omit arc labels

for readability issues)

red + red’

green + red’

red + green’

yellow + green’

yellow + red’

green + green’

red + yellow’

green + yellow’

yellow + yellow’

Todo = { }

28

Example: two traffic lights
(we omit arc labels

for readability issues)Todo = { 2red }

29

2 red

green + red

Example: two traffic lights
(we omit arc labels

for readability issues)Todo = { green+red }

30

yellow + red

2 green

Example: two traffic lights
(we omit arc labels

for readability issues)

2 red

green + red

Todo = { 2green , yellow+red }

31

green + yellow

Example: two traffic lights
(we omit arc labels

for readability issues)

2 red

green + red

yellow + red

2 green

Todo = { 2green , green+yellow }

32

green + yellow

Example: two traffic lights
(we omit arc labels

for readability issues)

2 red

green + red

yellow + red

2 green

Todo = { green+yellow }

33

2 yellow

Example: two traffic lights
(we omit arc labels

for readability issues)

2 red

green + red

yellow + red

2 green

green + yellow

Todo = { 2yellow }

34

Example: two traffic lights
(we omit arc labels

for readability issues)

2 red

green + red

yellow + red

2 green

green + yellow

2 yellow

Todo = { }

35

Example: two traffic lights
(we omit arc labels

for readability issues)

2 red

green + red

yellow + red

2 green

green + yellow

2 yellow

Question time

36

Complete the net in
such a way that
the two lights

can never be green
at the same time

Question time

37

Complete the net in
such a way that
the two lights

can never be green
at the same time

Exercises

38

Draw the reachability graph of the last net

Exercises

39

Draw the reachability graph of the last net

Exercises

40

Modify the net so to guarantee that
green alternate on the two traffic lights
and then draw the reachability graph

Exercises

41

Modify the net so to guarantee that
green alternate on the two traffic lights
and then draw the reachability graph

Exercises

42

Play the “token games” on the previous nets
using Workflow Petri net Designer:

http://www.woped.org

http://www.woped.org/

Exercise:
German traffic lights

43

German traffic lights have an extra phase:
traffic lights do not turn suddenly from red to green but

give a red light together with a yellow light before turning to green.

Identify the possible states and model the automaton that lists all
possible states and state transitions.

Design a Petri net that behaves exactly like a German traffic light.
There should be three places indicating the state of each light and
make sure that the Petri net does not allow state transitions which

should not be possible.

German traffic lights

44

German traffic lights

45

Exercise:
Producer and consumer

46

Model a process with one producer and one consumer:
Each one is either busy or free.

Each one alternates between these two states
After every production cycle the producer puts a

product in a buffer and the consumer consumes one
product from this buffer (when available) per cycle.

How to model 4 producers and 3 consumers connected
through a single buffer?

How to limit the size of the buffer to 2 items?
Draw the reachability graph

Producer and consumer

47

Producer and consumer

48

How to model 4 producers and 3 consumers connected
through a single buffer?

Producers and consumers

49

How to limit the size of the
buffer to 2 items?

Producers and consumers

50

Draw the reachability graph

Producers and consumers

51

Exercise:
Dining philosophers

52

The problem is originally due to E.W. Dijkstra (and
soon elaborated by T. Hoare) as an examination

question on a synchronization problem where five
computers competed for access to five shared tape

drive peripherals.

It can be used to illustrate several important concepts
in concurrency (mutual exclusion, deadlock, starvation)

Exercise:
Dining philosophers

53

The life of a philosopher consists of
an alternation of thinking and eating

Five philosophers are living in a house where a table is laid
for them, each philosopher having his own place at the table

Their only problem (besides those of philosophy) is that the
dish served is a very difficult kind of spaghetti, that has to be
eaten with two forks. There are two forks next to each plate,
so that presents no difficulty: as a consequence, however,

no two neighbours may be eating simultaneously.

Exercise:
Dining philosophers

54

Design a net for representing the dining
philosophers problem, then use WoPeD to

compute the reachability graph

image taken from wikipedia
philosophers clockwise from top:

Plato, Konfuzius, Socrates,
Voltaire and Descartes

Dining philosophers

55

Dining philosophers

56

Exercise:
Railway system

57

Use a Petri net to model a circular railway system
with four stations (st1, st2, st3, st4) and one train

At each station passengers may
"hop on" or "hop off"

(this is impossible when the train is moving)

The train has a capacity of 50 persons
(if the train is full no passenger can hop on,

if the train is empty no passenger can hop off)

What is the number of reachable states?

Railway System

58

Solution

PAGE 73

arrive
st1

leave
st1

arrive
st2

leave
st2

arrive
st4

leave
st3

arrive
st4

leave
st3

hop
on st1

hop
off
st1

move41 move12

move23move34

hop
on st4

hop
on st3

hop
on st2

hop
off
st2

hop
off
st3

hop
off
st4

waiting st1

waiting st3

waiting st4 waiting st2free busy50
tokens

51 x 4 = 204 states
st3

st4

Railway System

59

waiting st1

free busy50
tokens

hop
on st1

hop
off
 st1

Railway System

60

Solution

PAGE 73

arrive
st1

leave
st1

arrive
st2

leave
st2

arrive
st4

leave
st3

arrive
st4

leave
st3

hop
on st1

hop
off
st1

move41 move12

move23move34

hop
on st4

hop
on st3

hop
on st2

hop
off
st2

hop
off
st3

hop
off
st4

waiting st1

waiting st3

waiting st4 waiting st2free busy50
tokens

51 x 4 = 204 states
51 x 8 = 408 states

st3

st4

Boundedness

61

k-Boundedness

62

Let k be a natural number

A place p is k-bounded if no reachable marking has
more than k tokens in place p

A net is k-bounded if all of its places are k-bounded

In other words, if a net is k-bounded, then k is a
capacity constraint that can be imposed over places

without any risk of causing “overflow”

Safe nets

63

A place p is safe if it is 1-bounded

A net is safe if all of its places are safe

In other words, if the net is safe, then we know
that, in any reachable marking, each place

contains one token at most

Boundedness

64

A place p is bounded if it is k-bounded for some
natural number k

A net is bounded if all of its places are bounded

A net is unbounded if it is not bounded
(i.e., there is at least one place in which any

number of tokens can appear)

Boundedness, formally

65

(P, T, F,M0)

⌅k ⇥ N, ⇤M ⇥ [M0 ⇧, ⇤p ⇥ P, M(p) � k

Boundedness: example

66

Which places are bounded?
Is the net bounded?

Which places are safe?
Is the net safe?

Boundedness: example

67

Which places are bounded?
Is the net bounded?

Which places are safe?
Is the net safe?

all
Yes
all

Yes

none
No

none
No

Boundedness and the
reachability graph

68

A system is bounded
iff

its reachability graph is finite

Boundedness implies
finiteness

69

Theorem: If a system is bounded
then its reachability graph is finite

Proof: if the system is bounded there exists k
such that each place contains at most k tokens.

If there are n places it means that there are at
most (k+1)n reachable markings.

Hence the occurrence graph has a finite number
of nodes

Finiteness implies
boundedness

70

Theorem: A system is bounded
if its reachability graph is finite

Proof: for each node M we take kM be the
maximum number of tokens in the same place.

Then we let k be the largest among all kM
k = max {kM | M is a node of the graph}

(k exists because the reachability graph is finite)

Clearly the system is k-bounded and thus bounded

71

A net is unbounded

if and only if

its reachability graph is not finite

Consequence

Exercises

72

Which places are bounded?
Which ones are safe?
Is the net bounded?

Exercises

73

…

Which places are bounded?
Which ones are safe?
Is the net bounded?

Question time

74

Which places are bounded?
Which ones are safe?
Is the net bounded?

Question time

75

Which places are bounded?
Which ones are safe?
Is the net bounded?

76

Which places are bounded?
Which ones are safe?
Is the net bounded?

Question time

77

Which places are bounded?
Which ones are safe?
Is the net bounded?

Question time

Coverability

78

79

Coverability graph

A coverability graph is a finite
over-approximation of the reachability graph

It allows for markings with infinitely many tokens
in one place (called extended bags)

B : P �⇥ N ⌅ {⇤}

Suppose

M0
t1�⇤ M1

t2�⇤ M2 ...
ti�⇤ Mi ...

tj�⇤ Mj

with Mi ⇥ Mj

Let M = Mi and M ⇥ = Mj and L = M ⇥ �M

By the monotonicity Lemma we have, for any n ⌅ N:
M ⇤� M + L ⇤� M + 2L ⇤� ... ⇤� M + nL

Hence all places p marked by L (i.e. if L(p) > 0) are unbounded
80

Discover unbounded
places

81

Account for unbounded
places

Idea:
When computing the RG, if M ⇥ is found s.t.

M0 ⇤� M ⇤� M ⇥ with M ⇥ M ⇥

Add the extended bag B (instead of M ⇥) to the graph

where B(p) =

�
M ⇥(p) if M ⇥(p)�M(p) = 0
⌅ otherwise

82

A few remarks

Idea: mark unbounded places by ⇧

Remind: M ⇤ M ⇥ means that M � M ⇥ � M ⌥= M ⇥, i.e.,
1. for any p ⌃ P , M ⇥(p) ⇥ M(p)
2. there exists at least one place q ⌃ P such that M ⇥(q) > M(q)

Remark:
Requiring M0 ⌅� M ⌅� M ⇥ is di�erent that
requiring M,M ⇥ ⌃ [M0

than

83

Operations on extended
bags

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

84

Operations on extended
bags: examples

<latexit sha1_base64="/ridejGQt6QgT7fp90cT2X525Cc=">AAACRHicfVBdSxtBFJ2NXzG1NupjX4YGoVAIu4uNyZvoi48pNDGQhHB3vEkHZ2fXmbtCCP4tf0L/Q0Ef9ck38VWc3aaQinpg4HDOudy5J0qVtOT7f7zS0vLK6lp5vfJh4+Pmp+rWdtcmmRHYEYlKTC8Ci0pq7JAkhb3UIMSRwpPo7Cj3Ty7QWJnonzRNcRjDRMuxFEBOGlXbIfBvPHJvIPWYplzwgc0ii4TnvPDCd8y5vJgYVWt+3XdoNHhOgqYfONJqNcOwxYPC8v0am6M9qt4MThORxahJKLC2H/gpDWdgSAqFl5VBZjEFcQYT7DuqIUY7nBWXX/LdzAIlPEXDpeKFiIsTM4itncaRS8ZAv+xLLxdf8/oZjZvDmdRpRqhFvoikwmKRFUa6SpGfSoNEkP8cudRcgAEiNJKDEE7MXMcV18e/o/nbpBvWg0b9+4+92sHhvJky+8y+sK8sYPvsgB2zNuswwa7YNbtld95v79578B7/RkvefGaH/Qfv6RlQSa3b</latexit>

2a+ b+1c ✓ 2a+ 2b+1c ✓ 2a+1b+1c

<latexit sha1_base64="XLDewD6HfNW9zFOzYvp2jl+gWj4=">AAACSHicfVBNSxxBEO1Zk6ibr9UcvRRZAoHAMjuru3qTePGo4Kqwsyw1ba1p7OmZdNcIy+If8yf4DzwIuZqTt5Cb3esKSdAUNDzee1XV9bJSK8dxfB3VFl68fLW4tFx//ebtu/eNldVDV1RWUl8WurDHGTrSylCfFWs6Li1hnmk6ys52gn50TtapwhzwpKRhjqdGjZVE9tSocZAgfIHMv1SZMU9AQj01BaeuyhwxfYegJ/8zhAlzLdg6IEeNZtza2uwmGwnErTjuJZ1uAElvPelA2zOhmmJee6PGTXpSyConw1Kjc4N2XPJwipaV1HRRTytHJcozPKWBhwZzcsPp7PoL+FQ55AJKsqA0zEj6s2OKuXOTPPPOHPmb+1cL5FPaoOLx5nCqTFkxGRkWsdI0W+SkVT5WghNliRnDzwmUAYkWmckqQCk9Wfmc6z6Px6PheXCYtNrd1sb+enP76zyZJbEmPorPoi16Ylvsij3RF1Jcih/iVvyMrqK76Ff0+8Fai+Y9H8RfVavdA80frfQ=</latexit>

2a+ b+1c 6✓ a+ 2b+1c 6✓ 2a+1b+ 3c

<latexit sha1_base64="wtbf86x7SgQ8fQ8+Rn0ynwmJFLU=">AAACRHicdVDLSgNBEJz1GddX1KOXwSBEAmE3Pi9C0IvHCEaFJITeSUeHzM4uM71CCP6Wn+A/CHrUkzfxKm5iQE20Dk1R1U13VxAracnzHpyJyanpmdnMnDu/sLi0nF1ZPbdRYgRWRaQicxmARSU1VkmSwsvYIISBwougc9z3L27QWBnpM+rG2AjhSsu2FECp1MxW8tvAC7wUpKUudZu6XGy5BZ4vwbfyy+TuoZvf/ddtZnNe0RuAjxN/SHJsiEoz+1RvRSIJUZNQYG3N92Jq9MCQFApv3XpiMQbRgSuspVRDiLbRG3x+yzcTCxTxGA2Xig9E/DnRg9DabhiknSHQtR31+uJfXi2h9kGjJ3WcEGrRX0RS4WCRFUamkSJvSYNE0L8cudRcgAEiNJKDEKmYpBm7aR7+6Pfj5LxU9PeKu6c7ufLRMJkMW2cbLM98ts/K7IRVWJUJdsce2TN7ce6dV+fNef9qnXCGM2vsF5yPTxk9qjE=</latexit>

(3a+ 2b+1c) + (2a+1b+1c) = (5a+1b+1c)
<latexit sha1_base64="cJjCzY+dT2q9AUPbeHygIog0Pfg=">AAACKnicdZDLSgNBEEV7fDu+oi7dNAYhIobJxCS6EEU3LhWMCkkINW1FG3t6hu4aIQT/xE/wK9zqyp2IOz/EmRjxgdbqcm4VVXWDWElLnvfsDA2PjI6NT0y6U9Mzs3O5+YUTGyVGYF1EKjJnAVhUUmOdJCk8iw1CGCg8Da72M//0Go2VkT6mboytEC607EgBlKJ2rlqoAF/jTak71OXBlxSrfJ0Xypnp/8DutrvjtnN5r7i1WfUrPveKnlfzy9VM+LUNv8xLKckqzwZ12M69Ns8jkYSoSSiwtlHyYmr1wJAUCm/cZmIxBnEFF9hIpYYQbavX/++GryQWKOIxGi4V70P8PtGD0NpuGKSdIdCl/e1l8C+vkVBns9WTOk4ItcgWkVTYX2SFkWlwyM+lQSLILkcuNRdggAiN5CBECpM0ySyPz6f5/+LEL5aqxcrRRn53b5DMBFtiy6zASqzGdtkBO2R1Jtgtu2cP7NG5c56cZ+flo3XIGcwssh/lvL0DByOhxw==</latexit>

(5a+1b+1c)� (3a+ 2b+1c) =?

must be a marking!
<latexit sha1_base64="WpQBT3uoLkDHmYpTdbGDoKbeUF0=">AAACPHicdVCxThtBEN2DBJxLIIaUaVaxIhkhrLsLNnYRCUFDaSSMkWzLmlvGsGJv77Q7h2RZ/BKfwFfQUEBFh9KmZs84CiB41dN7bzQzL86UtBQEN97c/IePC4ulT/7nL0vLX8srq4c2zY3AjkhVao5isKikxg5JUniUGYQkVtiNz3YLv3uOxspUH9A4w0ECJ1qOpABy0rC8V60DX+d9qUc05vF/Ktb4Bq/+KsyokDfFmv/br0bvpYflSlALHBoNXpCwGYSOtFrNKGrxcGoFQYXN0B6Wb/vHqcgT1CQUWNsLg4wGEzAkhcILv59bzECcwQn2HNWQoB1Mph9f8J+5BUp5hoZLxaciPp+YQGLtOIldMgE6ta+9QnzL6+U0ag4mUmc5oRbFIpIKp4usMNJVifxYGiSC4nLkUnMBBojQSA5CODF33fquj39P8/fJYVQLG7X6/mZle2fWTIl9Zz9YlYVsi22zPdZmHSbYJbtmt+zOu/LuvQfvz1N0zpvNfGMv4P19BJnvp4Q=</latexit>

(5a+1b+1c)� (3a+ 2b+ 4c) = (2a+1b+1c)

90

Compute a reachability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

3. Let B' = B - •t + t•
4. Add B' to N and (B,t,B') to A
5. Repeat steps 2,3,4 until no new arc can be added

(all bags are finite in this case)

91

Compute a coverability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

3. Let B' = B - •t + t•
4. Let Bc' such that for any p ∈ P

1. Bc'(p) = ∞ if there is a node B'' ∈ N such that

1. there is a directed path from B'' to B in the graph (N,A)
2. B'' ⊂ B',
3. B''(p) < B'(p)

2. Bc'(p) = B'(p) otherwise

5. Add Bc' to N and (B,t,Bc') to A
6. Repeat steps 2,3,4,5 until no new arc can be added

B00
�

!!

⇢ B0

B

t
>>

Example

92

Example

93

Example

94

Example

95

Example

96

Example

97

∞

Example

98

∞

Example

99

∞

Example

100

∞

Example

101

∞

Example

102

∞

Properties of
coverability graphs

103

A coverability graph is always finite,
but in general it is not uniquely defined

(it depends on which B and t are selected at step 2)

Every firing sequence has a corresponding path in the CG
(the converse is not necessarily true)

Any path in a CG that visits only finite markings
corresponds to a firing sequence

If the RG is finite, then it coincides with the CG

Reachability analysis
by coverability

104

All possible behaviours of a workflow net are represented
exactly in the Reachability Graph (if finite)

We use Coverability Graph when necessary (RG not finite)

WoPeD computes a Coverability Graph

Example

105

