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Object
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Formalization of basic concepts of 
Petri nets 

Free Choice Nets (book, optional reading) 
https://www7.in.tum.de/~esparza/bookfc.html 

https://www7.in.tum.de/~esparza/bookfc.html


Petri nets: 
occurrence graph
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Occurrence graph  
(aka Reachability graph)
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The reachability graph is a graph that represents 
all possible occurrence sequences of a net 

 Nodes of the graphs = reachable markings 
Arcs of the graphs = firings

Formally, OG(N) = ([M0i, A) where A ✓ [M0i ⇥ T ⇥ [M0i s.t.

(M, t,M
0) 2 A i↵ M

t�! M
0



How to compute OG(N)
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The occurrence graph can be constructed as follows:

1. Nodes = {}, Arcs = {}, Todo = {M0}

2. M = next(Todo)

3. Nodes = Nodes [ {M}, Todo = Todo \ {M}

4. Firings = {(M, t,M 0) | 9t 2 T, 9M 0 2 µ(P ), M
t�! M 0}

5. New = {M 0 | (M, t,M 0) 2 Firings} \ (Nodes [ Todo)

6. Todo = Todo [ New , Arcs = Arcs [ Firings

7. isEmpty(Todo) ? stop : goto 2

Adding all exiting arcs each time: markings to explore

select one marking to explore

update nodes

collect all firings from M

update nodes  
and arcs

repeat if there are still markings 
to be explored

find new markings to explore



Example: traffic light
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Todo = { red }



Example: traffic light
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red

Todo = {  }
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red

green

go-green

Example: traffic light
Todo = { green }
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red

green

go-green

yellow go-yellow

Example: traffic light
Todo = { yellow }
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red

green

go-green

yellow go-yellow

go-red

Example: traffic light
Todo = {  }



Example: two traffic lights
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Todo = { red + red’ }
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red + red’

(we omit arc labels 
for readability issues)

Example: two traffic lights

Todo = {  }
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green + red’

red + green’

Example: two traffic lights
(we omit arc labels 

for readability issues)

red + red’

Todo = { green+red’ , red+green' }
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yellow + red’

green + green’

Example: two traffic lights
(we omit arc labels 

for readability issues)

red + red’

Todo = { yellow+red’ , green+green' , red+green' }

green + red’

red + green’
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yellow + green’

Example: two traffic lights
(we omit arc labels 

for readability issues)

red + red’

green + red’

red + green’

yellow + red’

green + green’

Todo = { yellow+green' , green+green' , red+green' }
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red + yellow’

Example: two traffic lights
(we omit arc labels 

for readability issues)

red + red’

green + red’

red + green’

yellow + green’

yellow + red’

green + green’

Todo = { yellow+green' , green+green' , red+yellow' }
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green + yellow’

Example: two traffic lights
(we omit arc labels 

for readability issues)

red + red’

green + red’

red + green’

yellow + green’

yellow + red’

green + green’

red + yellow’

Todo = { yellow+green' , green+yellow' , red+yellow' }
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yellow + yellow’

Example: two traffic lights
(we omit arc labels 

for readability issues)

red + red’

green + red’

red + green’

yellow + green’

yellow + red’

green + green’

red + yellow’

green + yellow’

Todo = { yellow+yellow' , green+yellow' , red+yellow' }
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Example: two traffic lights
(we omit arc labels 

for readability issues)

red + red’

green + red’

red + green’

yellow + green’

yellow + red’

green + green’

red + yellow’

green + yellow’

yellow + yellow’

Todo = { yellow+yellow' , green+yellow' }
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Example: two traffic lights
(we omit arc labels 

for readability issues)

red + red’

green + red’

red + green’

yellow + green’

yellow + red’

green + green’

red + yellow’

green + yellow’

yellow + yellow’

Todo = { yellow+yellow' }
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Example: two traffic lights
(we omit arc labels 

for readability issues)

red + red’

green + red’

red + green’

yellow + green’

yellow + red’

green + green’

red + yellow’

green + yellow’

yellow + yellow’

Todo = {  }
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Example: two traffic lights
(we omit arc labels 

for readability issues)Todo = { 2red }
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2 red

green + red

Example: two traffic lights
(we omit arc labels 

for readability issues)Todo = { green+red }
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yellow + red

2 green

Example: two traffic lights
(we omit arc labels 

for readability issues)

2 red

green + red

Todo = { 2green , yellow+red }
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green + yellow

Example: two traffic lights
(we omit arc labels 

for readability issues)

2 red

green + red

yellow + red

2 green

Todo = { 2green , green+yellow }
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green + yellow

Example: two traffic lights
(we omit arc labels 

for readability issues)

2 red

green + red

yellow + red

2 green

Todo = { green+yellow }
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2 yellow

Example: two traffic lights
(we omit arc labels 

for readability issues)

2 red

green + red

yellow + red

2 green

green + yellow

Todo = { 2yellow }
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Example: two traffic lights
(we omit arc labels 

for readability issues)

2 red

green + red

yellow + red

2 green

green + yellow

2 yellow

Todo = {  }
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Example: two traffic lights
(we omit arc labels 

for readability issues)

2 red

green + red

yellow + red

2 green

green + yellow

2 yellow



Question time
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Complete the net in 
such a way that  
the two lights  

can never be green 
at the same time



Question time
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Complete the net in 
such a way that  
the two lights  

can never be green 
at the same time



Exercises
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Draw the reachability graph of the last net



Exercises
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Draw the reachability graph of the last net



Exercises
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Modify the net so to guarantee that  
green alternate on the two traffic lights  
and then draw the reachability graph



Exercises
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Modify the net so to guarantee that  
green alternate on the two traffic lights  
and then draw the reachability graph



Exercises
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Play the “token games” on the previous nets 
using Workflow Petri net Designer:  

http://www.woped.org 

http://www.woped.org/


Exercise:  
German traffic lights
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German traffic lights have an extra phase:  
traffic lights do not turn suddenly from red to green but  

give a red light together with a yellow light before turning to green. 

Identify the possible states and model the automaton that lists all 
possible states and state transitions. 

Design a Petri net that behaves exactly like a German traffic light. 
There should be three places indicating the state of each light and 
make sure that the Petri net does not allow state transitions which 

should not be possible.



German traffic lights

44



German traffic lights
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Exercise:  
Producer and consumer
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Model a process with one producer and one consumer: 
Each one is either busy or free. 

Each one alternates between these two states 
After every production cycle the producer puts a 

product in a buffer and the consumer consumes one 
product from this buffer (when available) per cycle. 

How to model 4 producers and 3 consumers connected 
through a single buffer? 

How to limit the size of the buffer to 2 items? 
Draw the reachability graph



Producer and consumer

47



Producer and consumer
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How to model 4 producers and 3 consumers connected 
through a single buffer?



Producers and consumers
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How to limit the size of the 
buffer to 2 items?



Producers and consumers
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Draw the reachability graph



Producers and consumers
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Exercise:  
Dining philosophers
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The problem is originally due to E.W. Dijkstra (and 
soon elaborated by T. Hoare) as an examination 

question on a synchronization problem where five 
computers competed for access to five shared tape 

drive peripherals.  

It can be used to illustrate several important concepts 
in concurrency (mutual exclusion, deadlock, starvation)



Exercise:  
Dining philosophers
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The life of a philosopher consists of  
an alternation of thinking and eating 

Five philosophers are living in a house where a table is laid 
for them, each philosopher having his own place at the table 

Their only problem (besides those of philosophy) is that the 
dish served is a very difficult kind of spaghetti, that has to be 
eaten with two forks. There are two forks next to each plate, 
so that presents no difficulty: as a consequence, however, 

no two neighbours may be eating simultaneously.



Exercise:  
Dining philosophers
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Design a net for representing the dining 
philosophers problem, then use WoPeD to 

compute the reachability graph

image taken from wikipedia 
philosophers clockwise from top: 

Plato, Konfuzius, Socrates,  
Voltaire and Descartes



Dining philosophers
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Dining philosophers
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Exercise:  
Railway system

57

Use a Petri net to model a circular railway system  
with four stations (st1, st2, st3, st4) and one train 

At each station passengers may  
"hop on" or "hop off" 

(this is impossible when the train is moving) 

The train has a capacity of 50 persons 
(if the train is full no passenger can hop on, 

if the train is empty no passenger can hop off) 

What is the number of reachable states?



Railway System
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Solution 

PAGE 73 

arrive 
st1

leave 
st1

arrive 
st2

leave 
st2

arrive 
st4

leave 
st3

arrive 
st4

leave 
st3

hop 
on st1

hop 
off 
st1

move41 move12

move23move34

hop 
on st4

hop 
on st3

hop 
on st2

hop 
off 
st2

hop 
off 
st3

hop 
off 
st4

waiting st1

waiting st3

waiting st4 waiting st2free busy50 
tokens

51 x 4 = 204 states 
st3

st4



Railway System
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waiting st1

free busy50 
tokens

hop 
on st1

hop 
off 
 st1



Railway System
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Solution 

PAGE 73 

arrive 
st1

leave 
st1

arrive 
st2

leave 
st2

arrive 
st4

leave 
st3

arrive 
st4

leave 
st3

hop 
on st1

hop 
off 
st1

move41 move12

move23move34

hop 
on st4

hop 
on st3

hop 
on st2

hop 
off 
st2

hop 
off 
st3

hop 
off 
st4

waiting st1

waiting st3

waiting st4 waiting st2free busy50 
tokens

51 x 4 = 204 states 
51 x 8 = 408 states

st3

st4



Boundedness
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k-Boundedness
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Let k be a natural number  

A place p is k-bounded if no reachable marking has 
more than k tokens in place p 

A net is k-bounded if all of its places are k-bounded 

In other words, if a net is k-bounded, then k is a 
capacity constraint that can be imposed over places 

without any risk of causing “overflow”



Safe nets
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A place p is safe if it is 1-bounded  

A net is safe if all of its places are safe 

In other words, if the net is safe, then we know 
that, in any reachable marking, each place 

contains one token at most



Boundedness
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A place p is bounded if it is k-bounded for some 
natural number k 

A net is bounded if all of its places are bounded 

A net is unbounded if it is not bounded 
(i.e., there is at least one place in which any 

number of tokens can appear)



Boundedness, formally
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(P, T, F,M0)

⌅k ⇥ N, ⇤M ⇥ [M0 ⇧, ⇤p ⇥ P, M(p) � k



Boundedness: example
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Which places are bounded? 
Is the net bounded? 

Which places are safe? 
Is the net safe?



Boundedness: example
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Which places are bounded? 
Is the net bounded? 

Which places are safe? 
Is the net safe?

all
Yes
all

Yes

none
No

none
No



Boundedness and the 
reachability graph
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A system is bounded 
iff  

its reachability graph is finite 



Boundedness implies 
finiteness
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Theorem: If a system is bounded  
then its reachability graph is finite 

Proof: if the system is bounded there exists k 
such that each place contains at most k tokens. 

If there are n places it means that there are at 
most (k+1)n reachable markings. 

Hence the occurrence graph has a finite number 
of nodes



Finiteness implies 
boundedness
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Theorem: A system is bounded  
if its reachability graph is finite 

Proof: for each node M we take kM be the 
maximum number of tokens in the same place. 

Then we let k be the largest among all kM  
k = max {kM | M is a node of the graph}  

(k exists because the reachability graph is finite) 

Clearly the system is k-bounded and thus bounded
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A net is unbounded  

if and only if  

its reachability graph is not finite

Consequence



Exercises
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Which places are bounded? 
Which ones are safe? 
Is the net bounded? 



Exercises
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…

Which places are bounded? 
Which ones are safe? 
Is the net bounded?



Question time
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Which places are bounded? 
Which ones are safe? 
Is the net bounded? 



Question time
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Which places are bounded? 
Which ones are safe? 
Is the net bounded? 
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Which places are bounded? 
Which ones are safe? 
Is the net bounded? 

Question time
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Which places are bounded? 
Which ones are safe? 
Is the net bounded? 

Question time



Coverability

78
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Coverability graph

A coverability graph is a finite 
over-approximation of the reachability graph 

It allows for markings with infinitely many tokens 
in one place (called extended bags) 

B : P �⇥ N ⌅ {⇤}



Suppose

M0
t1�⇤ M1

t2�⇤ M2 ...
ti�⇤ Mi ...

tj�⇤ Mj

with Mi ⇥ Mj

Let M = Mi and M ⇥ = Mj and L = M ⇥ �M

By the monotonicity Lemma we have, for any n ⌅ N:
M ⇤� M + L ⇤� M + 2L ⇤� ... ⇤� M + nL

Hence all places p marked by L (i.e. if L(p) > 0) are unbounded
80

Discover unbounded 
places
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Account for unbounded 
places

Idea:
When computing the RG, if M ⇥ is found s.t.

M0 ⇤� M ⇤� M ⇥ with M ⇥ M ⇥

Add the extended bag B (instead of M ⇥) to the graph

where B(p) =

�
M ⇥(p) if M ⇥(p)�M(p) = 0
⌅ otherwise
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A few remarks

Idea: mark unbounded places by ⇧

Remind: M ⇤ M ⇥ means that M � M ⇥ � M ⌥= M ⇥, i.e.,
1. for any p ⌃ P , M ⇥(p) ⇥ M(p)
2. there exists at least one place q ⌃ P such that M ⇥(q) > M(q)

Remark:
Requiring M0 ⌅� M ⌅� M ⇥ is di�erent that
requiring M,M ⇥ ⌃ [M0  

than
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Operations on extended 
bags

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N
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Operations on extended 
bags: examples

<latexit sha1_base64="/ridejGQt6QgT7fp90cT2X525Cc="></latexit>

2a+ b+1c ✓ 2a+ 2b+1c ✓ 2a+1b+1c

<latexit sha1_base64="XLDewD6HfNW9zFOzYvp2jl+gWj4="></latexit>

2a+ b+1c 6✓ a+ 2b+1c 6✓ 2a+1b+ 3c

<latexit sha1_base64="wtbf86x7SgQ8fQ8+Rn0ynwmJFLU=">AAACRHicdVDLSgNBEJz1GddX1KOXwSBEAmE3Pi9C0IvHCEaFJITeSUeHzM4uM71CCP6Wn+A/CHrUkzfxKm5iQE20Dk1R1U13VxAracnzHpyJyanpmdnMnDu/sLi0nF1ZPbdRYgRWRaQicxmARSU1VkmSwsvYIISBwougc9z3L27QWBnpM+rG2AjhSsu2FECp1MxW8tvAC7wUpKUudZu6XGy5BZ4vwbfyy+TuoZvf/ddtZnNe0RuAjxN/SHJsiEoz+1RvRSIJUZNQYG3N92Jq9MCQFApv3XpiMQbRgSuspVRDiLbRG3x+yzcTCxTxGA2Xig9E/DnRg9DabhiknSHQtR31+uJfXi2h9kGjJ3WcEGrRX0RS4WCRFUamkSJvSYNE0L8cudRcgAEiNJKDEKmYpBm7aR7+6Pfj5LxU9PeKu6c7ufLRMJkMW2cbLM98ts/K7IRVWJUJdsce2TN7ce6dV+fNef9qnXCGM2vsF5yPTxk9qjE=</latexit>

(3a+ 2b+1c) + (2a+1b+1c) = (5a+1b+1c)
<latexit sha1_base64="cJjCzY+dT2q9AUPbeHygIog0Pfg="></latexit>

(5a+1b+1c)� (3a+ 2b+1c) =?

must be a marking!
<latexit sha1_base64="WpQBT3uoLkDHmYpTdbGDoKbeUF0="></latexit>

(5a+1b+1c)� (3a+ 2b+ 4c) = (2a+1b+1c)
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Compute a reachability graph
1. Initially N = { M0 } and A = ∅ 
2. Take a bag B ∈ N and a transition t ∈ T such that 

1. B enables t and there is no arc labelled t leaving from B 

3. Let B' = B - •t + t• 
4. Add B' to N and (B,t,B') to A 
5. Repeat steps 2,3,4 until no new arc can be added

(all bags are finite in this case)
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Compute a coverability graph
1. Initially N = { M0 } and A = ∅ 
2. Take a bag B ∈ N and a transition t ∈ T such that 

1. B enables t and there is no arc labelled t leaving from B 

3. Let B' = B - •t + t• 
4. Let Bc' such that for any p ∈ P  

1. Bc'(p) = ∞ if there is a node B'' ∈ N such that  

1. there is a directed path from B'' to B in the graph (N,A) 
2. B'' ⊂ B',  
3. B''(p) < B'(p) 

2. Bc'(p) = B'(p) otherwise 

5. Add Bc' to N and (B,t,Bc') to A 
6. Repeat steps 2,3,4,5 until no new arc can be added

B00
�

!!

⇢ B0

B

t
>>



Example
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Example
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Example
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Example
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Example
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Example
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∞



Example
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∞



Example
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∞



Example
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∞



Example

101

∞



Example
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∞



Properties of 
coverability graphs
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A coverability graph is always finite,  
but in general it is not uniquely defined 

(it depends on which B and t are selected at step 2) 

Every firing sequence has a corresponding path in the CG 
(the converse is not necessarily true) 

Any path in a CG that visits only finite markings 
corresponds to a firing sequence 

If the RG is finite, then it coincides with the CG



Reachability analysis  
by coverability

104

All possible behaviours of a workflow net are represented 
exactly in the Reachability Graph (if finite) 

We use Coverability Graph when necessary (RG not finite) 

WoPeD computes a Coverability Graph



Example
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