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Overview of the basic concepts of
Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html
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Why Petri nets?

Petri net theory can be studied
Business process analysis: at several level of detalils
validation: testing correctness
verification: proving correctness \We study some basic aspects,

performance: planning and relevant to the analysis of
optimization business processes
Use of Petri nets (or alike) Petri nets have a faithful and
visual + formal convenient graphical
tool supported representation, that we

Introduce and motivate next




Approaching Petri nets

Are you familiar with
automata / transition systems?
They are fine for sequential
protocols / systems
but do not capture concurrent
behaviour directly

A Petri net is a mathematical model
of a parallel and concurrent system

In the same way that a finite
automaton is a mathematical model of
a sequential system

Applications
Automata are widely used, e.g., In
protocol analysis,
text parsing,
video game character behaviour,
security analysis,

CPU control units,
natural language processing,
speech recognition,
mechanical devices
(like elevators, vending machines,
traffic lights)
and many more ...




Finite automata
examples



How to define an
automaton

1. ldentify the admissible states of the system
(Optional: mark some states as error states)

2. Add transitions
to move from one state to another
(no transition to recover from error states)

3. Set the initial state

4. (Optional: mark some states as final states)



Example: Turnstile

push
lb card
card




xample: Language Processing
O
cjyo o

return
E E reservation

I want somne information please

morming

non-stop

fare



Example: ATM

bad PIN
/’T}f\ PIN OK__
depOSlt wlthdrawal
¥
account account

insert amount
envelope

withdraw card
confirm?

withdraw card



Other examples

Press “1”

Release “|”

Press “|” :
findaid | nealthpoints =" oyade
Sy
) 2
found player is
aid attacking back player
is idle
player
IS near
wander Y
e playe (:‘
.R out of sight



Finite state automata,
formally



So far, which category
for this course?

Subjects are divided in two categories:
1) too difficult matters, that CANNQOT be studied

2) easy matters, that DO NOT NEED to be studied
- back of a t-shirt

Let us take a U-turn!




Preliminaries



8. Are you familiar with set notation? Piu dettagli

7%

® VYes 51

® No 4

93%



Set notation




9. Are you familiar with functions (f:A->B) and relations? Piu dettagli

9%

® Yes 50

® No 5

91%

10. Do you agree that a subset S of A can be seen as a function from A to the set of

Piu dettagli
Booleans? —

18%

® Yes 40
9%
® No 5

® | do not understand the question 10

73%



Functions, relations

f:A— B

sets as functions
(characteristic function)

fNZN%

A 1l ne N
fn(n) = { 0 otherwise

N =1{n| fn(n) =1}



12. Are you familiar with propositional logic? Piu dettagli

® VYes 44

® No 11




First order logic




13. Logical implication "P implies Q" (also written "P => Q") is equivalent to: Piu dettagli

® PandQ 12 [

® PorQ 2 1

® (notP)orQ 25 . ]
® Por(notQ 3 ]

® (notP)or(notQ) 4 ]

® none of the above 9 I

10 15 20 25

o
w

14. Do you agree that "P implies Q" is logically equivalent to "(not Q) implies (not P)?  Piu dettagli

® VYes 39

® No 16




First order logic




15. Do you remember De Morgan's law about negation, conjunction and disjunction? Piu dettagli

4%

Y 33
® Yes 36%

® No 20

(=P)V (~0)
(ZP)A(—0Q)

® | do not understand the question

(P AQ)
(PV Q)

60%

16. Do you know what are the universal and existential quantifiers in predicate logic? Piu dettagli

42%
® VYes 32

® No 23

—(3x. P)
—(Vx.P)

58%

Vx. P
x. P




First order logic




Sequences

Given a set A of symbols, we denote by A"
the set of finite sequences of exactly n elements in A, i.e.:

A"={aya, -+ a,|a;,ay,...,a, €A}

e, A"=AX -+ XA

~~

n
We denote the empty sequence by ¢

For example, when A = {0,1}
AY = {e) Al=A A% = {00, 01, 10, 11}

24



Kleene-star notation A*

Given a set A of symbols, we denote by A™
the set of all finite sequences of elements in A, i.e.:

A*={a,a, - a,|n>0 A a,ay,...,a, €A}

Clearly, we have A™ = U A"

n>0

For example, when A = {0,1}
A* ={e, 0, 1, 00, 01, 10, 11, 000, ...}

25



17. Do you know what is an inductive definition? Piu dettagli

® Yes 39
® No 16
71%
18. Do you know what is a recursive definition? Piu dettagli
® Yes 41

® No 14




Inductive definitions

A natural number is either:
- 0
- Or the successor n + 1 of a natural number n

A sequence over the alphabet A is either:
- the empty sequence ¢
- or the juxtaposition wa of a sequence w with an
element a of A

27



Inductively defined
functions

Let us define the exponential function k"

base case: for any £ > 0 we set
exp( k, 0) =1

inductive case: for any £ > 0, n > 0 we set
exp(k,n+1)=exp(k,n)Xk

28



Inductively defined
functions

Let us define the exponential function k"

base case: for any £ > 0 we set
exp( k, 0) =1

inductive case: for any £ > 0, n > 0 we set
exp(k, n+1)=exp(k, n)Xk

Recursive definition

29



Inductively defined
functions

Let us define the exponential function k"

base case: for any £ > 0 we set
exp( k, 0) =1

inductive case: for any £ > 0, n > 0 we set
exp( k, n+1)=exp(k, n)Xk

More complex Simpler
case case

30



Recursive definitions




Inductive definitions




21. Do you know what is a Finite State Automata? Piu dettagli

29%

® Yes 16

® No 39

71%
22. Do you know what is the language recognized by an automata? Piu dettagli
4%

® VYes 14
® No 39

® | do not understand the question 2




Don't be scared




DFA

A Deterministic Finite Automaton (DFA) is a tuple A = (Q, 3,9, qo, F),
where

e () is a finite set of states;

e X is a finite set of input symbols;

e 0:() x> — () is the transition function;

e (o € ( is the initial state (also called start state);

e I C (Q is the set of final states (also accepting states)

35



Example: Turnstile

push

card

-

. push

card
A Deterministic Finite Automaton (DFA) is a tuple A = (Q, 3,9, qo, F),

where
e () is a finite set of states; Q — {IOCked7 UﬂlOCked}
e Y is a finite set of input symbols; p— {pUSh7 Cd rd}
e J:() xX — (@ is the transition function; 5(|0Cked, Card) — UnlOCked

® (o € ( is the initial state (also called start state);

qgo = locked
36 F = {locked}

e F' C (@ is the set of final states (also accepting states)



Transition function

Given the current state g and the input a
the next state is 0(qg, a)




Extended transition function
(destination function)

Given the current state g and the input sequence w
the state we reachis 0 (g, w)

W=ala2 e

5(q,w) = 68(5( - & ay) . ), a,)




Example: Turnstile

push

card

& push ‘
card

ocked, ¢) = lockec

%

ocked, card) = unlocked

%

ocked, push) = locked ocked, card) = unlocked

%

unlocked, card) = unlocked ocked, card card) = unlockec

Z— N 77N /N /N
&n) &) S2) &)
/N /N /N /N

%

unlocked, push) = locked ocked, card card push) = locked

w
O



Extended transition function
(destination function)

Given A = (Q, X, 9, qo, I'), we define 5 : () x X* — () by induction:

base case: For any g € () we let
0 A
0(q,€) = q

inductive case: Forany g € Q,a € X, w € X* we let

S P

5(q, wa) £ 5(d(q.w) , a)

(g(q,w) returns the state reached from ¢ by observing w)

40



Extended transition function
(destination function)

Given A = (Q, X, 9, qo, I'), we define 5 : () x X* — () by induction:

base case: For any g € () we let
0 A
0(q,€) = q

inductive case: Forany g € Q,a € X, w € X* we let

3(g, wa) £ 5(|6(q, w)|, a)

Recursive definition

AN

(6(q,w) returns the state reached from ¢ by observing w)

4]



Extended transition function
(destination function)

Given A = (Q, X, 9, qo, I'), we define 5 : () x X* — () by induction:

base case: For any g € () we let
0 A
0(q,€) = q

inductive case: Forany g € Q,a € X, w € X* we let

S(q[wa) £ 6(s(¢[@], o)
More complex Simpler
- case case

(6(q,w) returns the state reached from ¢ by observing w)

42



Example: Turnstile

push

card

\? push ‘
0N card

o (locked, card card push)
= d(d(locked, card card), push)
(6 (Iocked card), card), push)

(6(0 (Iocked €), card), card), push)
(6(locked, card), card), push)

d(unlocked, card), push)
unlocked, push) — locked

d(locked, card) = unlocked

(
d(locked, push) = locked
(
(

S Sy

0
d(unlocked, push) = locked

unlocked, card) = unlocked

=0(0
O(
J
J
J



String processing

Given A = (Q, X, 6, qo, F') and w € ¥* we say that A accept w iff

AN

5(q0,w) c F

The language of A = (Q, 2,9, qg, F') is

L(A) ={w | d(qo,w) € F }

44



Transition diagram

We represent A = (Q, X3, 9, qo, F') as a graph s.t.

e () is the set of nodes;

a

e {qg—¢q | ¢ =0d(q,a)} is the set of arcs.

Plus some graphical conventions:

. . .., Start
e there is one special arrow Start with == qq

e nodes in F' are marked by double circles;

e nodes in (Q \ F' are marked by single circles.

45



String processing as
paths

A DFA accepts a string w, if there is a path in its
transition diagram such that:

It starts from the initial state
It ends in one final state

the sequence of labels in the path is exactly w

46



Example: Language Processing
.

L(A) = { )
How much 1s the fare,
I will pay 1n cash, o ° 2 o
I would like a non-stop flight, A pomne
I want some information please, o o
) reservation

} I want some information please




DFA: question time

push
l card
card

What is L(A) ?




Transition table

Conventional tabular representation
its rows are In correspondence with states
its columns are in correspondence with input symbols
its entries are the states reached after the transition
Plus some decoration
start state decorated with an arrow

all final states decorated with *

49



Transition table




NFA

A Non-deterministic Finite Automaton (NFA) is a tuple A = (Q, X, 6, qo, I),
where

e () is a finite set of states;

e > is a finite set of input symbols;
powerset of Q = set of sets over Q

e 0:(Q) XX % Is the transition function:
e (o € ( is the initial state (also called start state);

e F C () is the set of final states (also accepting states)

51



NFA: example

Can you explain why it is not a DFA?

52



NFA: example

Can you explain why it is not a DFA?

53



NFA: example

0 0, 1
QO7Q1} 5(@1170) :@
5(q,0) = 8(qg, 1) = 0
qo } 0(q1,1) = {g2} (2,0) = 0lga, 1)
an you explain why it is not a DFA?

54



Reshaping



ot

#1. get a token
O

o ° a o
make

return

morming

E E reservation
to

some

information

non-stop

please

need

to

make

a
reservation

please



initial state arrow

the
in e
o ° a o
make

morming
return
E E reservation
to
want somne information please

non-stop

fare

the

57



#3: transitions as boxes

morming




#4. forget final states

morming

E iﬁ rvation




#5: add more tokens

na - ‘ morning

e || i .
g E . rvation




allow for more arcs

H6




Terminology

| |Transition

-

S /L

Dl=Fe
mar—c
AVeY

16
o~ L
10 OF




Some facts

Nets are bipartite graphs:
arcs never connect two places
arcs never connect two transitions

Static structure for dynamic systems:
places, transitions, arcs do not change
tokens move around places

Places are passive components
Transitions are active components:
tokens do not flow!

(they are removed or freshly created)

63



Token game: example

O—1—®
M

O—1F—




Token game: example

 —®
M

o—
@/

¢s ®/ )®



Token game: example

 —®
M

o—
@/

66 O/ )®



Token game: example




Token game: example

O
® D<®
M

S D<g



Token game: example




Token game: firing rule

@\ /O Collect one token from
I:I\ each “input” place

@ (o
Produce one token into .
each “output” place O/ e




Example: Coin Handling

Coin handling

READY

o Read
|l .
- ~ COoIih
¥
4 o
' q
In
inserted - -

Reject Accept

71

Ready to
dispense

oL
N,

Coin
biox

r. CB



11. Do you agree that a multiset M of elements in A can be seen as a function from A to the set of natural numbers? Piu dettagli

® Yes 32
® No 10
® | do not understand the question 13 58%

72



Notation: from sets...

Let S be a set.
Let ©(.S) denote the set of sets over S.

Elements A € p(5) (i.e., A C S5)
are In bijective correspondence with

functions f : S — {0, 1}

r e A iff fA(ZE) =1

73



Sets vs Multisets
Set Multiset

Order of elements does not matter Order of elements does not matter

Each element appears at most once Each element can appear multiple times

74



Notation: ... to multisets

Let 11(S) (or S¥) denote the set of multisets over S.

Elements M € u(S) are in bijective correspondence with
functions M : § — N

far(x) is the number of instances of x in M
r € M iff fyr(x) >0

75



Example: sets

JaC /)—1

A(@)_l
fH(H =0




Example: multisets

N N N N’
1
S = N B~



Notation: multisets

Multiset M = {4:161331, koxs, ..., k‘n.ﬁEn}

“.element

multiplicity
(positive, omitted if 1)

78



Notation: multisets

Multiset M = { k121, kaxo, ..., kpx, } as formal sum:

klil’}l -+ ]CQLZ’)Q + ... T knl’n

mn
E kifliz'
i=1

As set Is just a special case: multiplicity Is either O or 1

Ti, + Tjy + ...+ Tj,

k
> T
j=1

79



Marking

A marking M : P — N denotes the number of tokens in each place

The marking of a Petri net represents its state

M (a) = 0 denotes the absence of tokens in place a

80



Notation: sets
(I;ripzy}sie::such that x € 0) for all x € S

Set inclusion:
we write AC Bif x € A impliesx € B

Set strict inclusion:
we write AC BifACBand A# B

Set union:
AUB isthesetst. x € (AUB) iffr€e Aorxz e B

Set difference:
A—Bisthesetst. xr € (A—B)iffre Aandz ¢ B

81



Notation: multisets

Empty multiset:
0 is such that @(x) =0 for all x € S

Multiset containment:
we write M C M'" if M(z) < M'(x) forall x € S

Multiset strict containment:
we write M C M" it M C M' and M # M’

Multiset union:
M + M’ is the multiset s.t. (M + M')(z) = M(z) + M'(x) for all z € S

Multiset difference|(defined only if M O M)
M — M’ is the multiset s.t. (M — M")(x) = M(x) — M'(z) for all x € S

82



Multiset containment

/ <7 &
4 A3
AL AP
& iy
p 7
4

)
¥

~
\ ®®/ \-




Operations on Multisets
4 — o~

\ J
4 O

)

(:) undefined
\ J
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Question time

3a 4+ 2b C 2a + 3b+ ¢
?
3a + 2b O 2a + 3b+ ¢

?
a—+2b C 2a + 3b
(a+2b)+ (2a+c¢) =7
(2a + 3b) — (2a + b) =7

(2 4+2b) — (a+c¢c) =7

85



Question time

3a+2b C 2a+ 3b+ ¢ NoO
?
Ja+2022a+3b+c  No

?
a+2b C 2a+ 3b Yes
(a+2b)+(2a+c)=7 3a+2b+c
(2a +3b) — (2a +b) =7 20

(2a + 2b) — (a+¢) =7 Not defined

86



Petri nets

A Petri net is a tuple (P, T, F, My) where

e P is a finite set of places;
PNT =10
e [’ is a finite set of transitions;

% e FC(PxT)U(T x P)is a flow relation;

o My : P — Nis the initial marking.
(|e My € /L(P))

87



Exercises

p1 receive p2 process
t4
order order order

P = {p1,p2,D3,P4,P5, D6, D7}
T = {t1,t2,t3,t4,15}

F=A{(p1,t1),(t1,p2),...7}
M() — 2]?3 -+ ... 7

88

JoSnEoN

M. Weske: Business Process Management,

© Springer-Verlag Berlin Heidelberg 2007



Exercises

p1 receive p2 process
t4
order order order

P = {p1,p2,p3, P4, D5, D6, P7}
T = {t1,ta,t3,ta,t5}
F={(p1,t1), (t1,p2),... 7}
Mo = 2p3 + ps + p5 + 2ps

89

JoSnEoN

M. Weske: Business Process Management,

© Springer-Verlag Berlin Heidelberg 2007



Pre-set and post-set

Formally:
ox={y | (y,x) e '} pre-set
re={y | (r,y) € '} post-set

90



p1

O ) D D

receive
order

O -

process

p2

t2

p3

order

O ) D D

p4

O

t3

send books

o -

91

update p6
inventory

O ) D D D) N

D1

o
=
ﬂ

|

o

Question time

omplete
order

1O

p7

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2007

TR S
J O Ot = oWwWw NN
® 6 o o o o o

O D) D ) Y D oV



Exercises

92

M. Weske: Business Process Management,

© Springer-Verlag Berlin Heidelberg 2007



E b l ’ M l— (a set can be seen
na l ng as a multiset
whose elements

have multiplicity 1)

A transition t is enabled at marking M iff of C M
and we write M —— (also M [t))

A transition is enabled if each of its input places
contains at least one token

93



[ [ ,
Firing M[t)M
A transition ¢ that is enabled at M can fire.
The firing of ¢ at M changes the state to
M = M — ot + te

and we write M —— M’ (also M [t) M’)

When a transition fires
it consumes a token from each input place
it produces a token into each output place

94



Some remarks

Firing is an atomic action

Our semantics is interleaving:
multiple transitions may be enabled,
but only one fires at a time

The network Is static, but
the overall number of tokens may vary over time
(if transitions are fired for which the number of input
places is not equal to the number of output places)

95
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Notation

We write M — if M - for some transition ¢
We write M — M’ if M - M’ for some transition t
We write M 7@ if transition ¢ is not enabled at M

We write M -4 if no transition is enabled at M

97



Example

Mo =p1 +p2+p3+ps+ ps

o > We can write that

p2 t2

L
/ o M() — D1 -+ D4 -+ D6 (by firing t2)

LATIA enens

98

o Z\/_ZO ——> (there are enabled transitions, e.g., t1)




Firing sequence
Let 0 = t1ts...t,,—1 € T™ be a sequence of transitions.

We write M = M’ (and M =) if;
there is a sequence of markings M, ..., M,
with M = M; and M’ = M,

t; :
and MiHMH—l forl <i1<n

99



@ 1 enabled
pl tl/l\ p2
<€ >
<€

100




Example

pl

1 enabled

t3

P| fired
pl tl
enabled [€ o
t2 p3
<€
t4

101

| v

P2 + p3

lt2/t3



Example i

t1 12
¥{ enabled v
‘ enable 01 + p2
pl tl p2 l t1
fired [<€ 3} -
t2 p3 t3
<€

t4 P4

102



Example

pl

21 enabled

t3

P| fired
pl tl
enabled [€ ¢
t2 p3
<€
t4

103

p1

t1 t2 t1

\4

2p2 + p3
lt2/t3



Reachable markings [M)

We write M = M’ if M % M’ for some o € T*
A marking M’ is reachable from M if M = M’
Note that M — M for € the empty sequence

The set of markings reachable from M is often denoted:

reach(M) or also |[M)

|04



td

Example

Which of the following holds true?

P1
P1
P1

105

I I I3

A

>

b1y L

>

A

>

>



Example

Which of the following holds true?

td

>
tl p2 P1 nhhk > Yes
/k . pl LWzl b ) YeS
>T/ - P 1545 . No (3 not enabled)
P 55 . No (t3 not enabled)
<€

106



Example

td

- €

t4 p4

107

" We have that:
I 1) I3
tl p2 pl > p4
A
>
y P1 P1



Infinite sequence

Let 0 = t1ts... € T be an infinite sequence of transitions.
We write M = if:

there is an infinite sequence of markings My, M, ...

with M = Ml and Mz t%z M’i—l—l for 1 < 7

108



Example

td

" We have that:
tl t3 t4 t2 tl t3 t4 t2 tl t3 t4 t2”‘

- p )

tl p2 1
o
p3 t3
<€

t4 p4

109



Concatenation & prefix

Concatenation: given  o,=a,:--a, o©,=b--b,,
0,0, =a,+a,b,--b, finite + finite = finite
Concatenation: given  o=a,---a, o0©,=bb,--
010, =, +a,D Dy finite + infinite = infinite

Prefix: finite

o, is a proper prefix of o if ©6,0,=0c for some o,#¢€

o, is a prefix of o if 0,=0c or 6,0,=0c for some o,%¢

finite or infinite
110



Example: prefixes

t1t4tot3 sequence L1471 TaT7t1 T4t - - -
€ €
t1 | t1
tits prefixes tits
t1t4to t1taty
t1tatots t1tat-t1
t1tat7t 114

L1t4t7T1T4t7t1 T4t - - -



Enabled sequence

We say that an occurrence sequence o is enabled if M —

(o0 can be finite or infinite)

Note that an infinite sequence can be represented as
amapo:N— T, where o(i) = t;

112



Enabledness

Proposition: M — iff M —— for every prefix ¢’ of o

(=) immediate from definition
(«=) trivial if o is finite (o itself is a prefix of o)

When ¢ is infinite: taken any ¢ € N we need to prove that ¢; = o(¢) is enabled
after the firing of the prefix o’ = t1tq...t;_1 of 0.
But this is obvious, because

t 4 t;— t;
M =% My 2 ... 2= M,_{ — M,
: .. : t;
is also a finite prefix of o and therefore M, —

113



Exercises



DFA: example

—

|15

— *qO

d1
q2
d3

g2
q3
q0
d1

d1
q0
q3
g2



DFA: exercise

Start @ Does it accept 100 ? No
1 Does it accept 1010 ? Yes

| 0 _

0N o+ [ 1 What is L(A) ?
j 0

m

16



DFA: exercise

even number of 0

even number of 0 even number of 0
even number of 1 odd number of 1

Start ‘ |
0
i

even number of 1 odd number of 1

0

odd number of O
l odd number of 1

0

odd number of O
even number of 1

odd number of 0

: The set of all binary strings
What IS L(A) ? with an even number of occurrences of 0 and 1
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Exercises

{2 t3

t1 t4

Determine the pre- and post-set of each element

Which transitions are currently enabled?
For each of them, which state would the firing lead to?

What are the reachable states?
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Exercises

{2 t3

t1 t4

Determine the pre- and post-set of each element
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Exercises

{2 t3

t1 t4

Which transitions are currently enabled?
t17t37t4
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Exercises

{2 t3

t1 t4

Which transitions are currently enabled?
t17t37t4

For each of them, which state would its firing lead to?

¢ ¢ ¢
p2 + p3 — p1 + p3 p2 + p3 — 2p3 P2 + p3 — P2

121



Exercises

{2 t3

t1 t4

What are the reachable states?

122



c( , >9 Exercises

P2 + P3
P1 + 3
t2 t3




Exercises

JORBIEEO}
Q—’ t1 HQ—’ t2 3 send books PS t5 4>Q
p1 receive p2 process complete p7

t4
order order order

p4 update p6
inventory

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2007

Which transitions are currently enabled?
For each of them, which state would the firing lead to?

What are the reachable states?
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Q—’ t1 HQ—’ 2 3 send books P t5 4>Q

p1

Exercises
foEngoN

gement,

Mana

Process
© Springer-Verlag Berlin Heidelberg 2007

receive p2 process complete p7
t4
order order order

M. Weske: Business

2p3 + psa + ps + 2ps

Which are the currently enabled transitions?
{3, t4, t5
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Exercises

JORBIEEO}
Q—’ t1 4’0—’ t2 P3 send books PS t5 4>Q
p1 receive p2 process complete p7

t4
order order order

p4 update p6
inventory

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2007

2p3 + psa + ps + 2ps

Which are the currently enabled transitions?

t3 t4 {5
For each of them, which state would their firing lead to?
p3s + pa + 2ps + 2ps 2p3 + pa + pst pr7

2Pp3 + ps + 3Ps

6



Exercises

t1

OL©
—»Q—» 2 p3 send books PS t5 —»Q

receive p2 process complete p7
t4
order order order

p4 update p6
inventory

What are the reachable states?

127
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[ (203 p4 ps 296) |
RN

t3: send bookst5: complete order

|

[(p3 p4 2p5 2p6)] [(2p3 p53p6)] (2p3 p4p6p7)]

/ N\ />SN

t5: conrt4: update inventorysend bookt5: complete orderdate inventory

/

[(p3p49596p7) [(p32953p6)]

Y

( p4 3p5 2p6)] ( 2p3 2p6 p7)]

I o~ S S

t4: update it3: t5t5: complete order t5: complete t4: update invento

l

[(p3p52p6p7) [(p42p5p6p7)]

ry

(p3 p4 2p7 )] (3p5 3p6 )

\ /N S\

t3: set5: complete ordervert5: complete ort3: send books

\

[(2p5296p7) (p3 p6 2p7) (P4 p5 2p7)

N | /

t5: complete ordersend books)date inventory

NS

[(95p62p7 )}
|

t5: complete order :
p1

FO

t3
t1 —»@—» t2 p3 send books
receive p2 process
order order

128

E:)—>t4
p4

update
inventory

p5

p6

complete
order

s ()

p7
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