
Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

07 - EPC and BPMN

1

http://www.di.unipi.it/~bruni

Object

2

We overview high-level diagrammatic notation

Ch.4.3,4.7, 5.7 of Business Process Management: Concepts, Languages, Architectures
Ch.3, 4 of Fundamental of Business Process Management. M. Dumas et al.

Petri Net Transformations for Business Processes – A Survey 53

Legend

Start u V

XOR

V

f

t

e

m

l

V

XOR

XOR

XOR

Finish
image

Create
thumbnail

Evaluate

Send
image

Send link

Image
sent

Link sent

redo

Image too big

Image small enough

thumbnail failed

finish failed

XOR

XOR

V

V V

VXOR-split –
Exclusive choice

XOR-join –
Simple merge

AND-split –
Parallel split

OR-split –
Multi-choice

AND-join –
Synchronization

OR-join –
Gen. Sync. Merge

Simple flow – Sequence

function functionevent

Start event End event

Fig. 4. The example process as an EPC

Three types of EPC objects can be used to model the control-flow aspect
of a process: functions, events, and connectors. In a natural way, these types
correspond to the BPMN activities, events, and gateways. However, EPCs do
not allow for exceptions, and it supports only a limited set of connectors, which
is shown by Fig. 4. Apart from the full set of connectors, this figure also shows an
the example process as an EPC, and it relates the object types to the workflow
patterns explained in Section 2.2.

4.2 Transformation Challenges

A main challenge in EPCs is the semantics of the constructs that support the
‘Simple Merge’ and ‘General Synchronizing Merge’ patterns, viz. the XOR-join
connector and the OR-join connector. Everybody agrees that the XOR-join con-
nector should be enabled if one of its inputs is enabled, but this agreement is
lacking in case more than one inputs is enabled. Some say that the XOR-join
should be executed for every single enabled input, while others say that the
connector should block if multiple inputs are enabled. An even bigger problem
is the OR-join connector, for which a definitive semantics has lead to exten-
sive discussions in literature and to different solutions, all of which fail for some
EPCs [17,18,19]. As a result, not everybody will agree on a given mapping, as
not everyone will agree with the semantics used by it.

Furthermore, an EPC allows for multiple start events and multiple final
events, but not all combinations of these events are possible. Although the pro-
cess designer might know the possible combinations, an EPC does not contain
this information.

38 Business Process Modeling Notation, v2.0

Figure 7.8 - An example of a stand-alone Process (Orchestration) diagram

3

A closer look at standards:
EPC and BPMN

start / end

links

tasks

join / split

BPMN EPC

EPC Diagrams:
Requirements

4

EPC diagrams:
requirements

5

EPC elements can be combined in a fairly free manner
(possibly including cycles)

The graph must be weakly connected (e.g., no isolated nodes)

Weak connectivity

6

Weakly connected Non weakly connected

EPC diagrams:
requirements

7

EPC elements can be combined in a fairly free manner
(possibly including cycles)

The graph must be weakly connected (e.g., no isolated nodes)

Events have at most one incoming and one outgoing arc
Events have at least one incident arc

There must be at least one start event and one end event

Event connectivity

8

OK

OK

OK NO

NO

NO

EPC diagrams:
requirements

9

EPC elements can be combined in a fairly free manner
(possibly including cycles)

The graph must be weakly connected (e.g., no isolated nodes)

Events have at most one incoming and one outgoing arc
Events have at least one incident arc

There must be at least one start event and one end event

Functions have exactly one incoming and one outgoing arc

Function connectivity

10

NO

OK

NO NO

NO

NO

EPC diagrams:
requirements

11

EPC elements can be combined in a fairly free manner
(possibly including cycles)

The graph must be weakly connected (e.g., no isolated nodes)

Events have at most one incoming and one outgoing arc
Events have at least one incident arc

There must be at least one start event and one end event

Functions have exactly one incoming and one outgoing arc

Connectors have either one incoming arc and multiple outgoing arcs
or viceversa (multiple incoming arcs and one outgoing arc)

Split/Join connectivity

12

NO

NO

NO OK

OK

NO

AND
XOR
OR

AND
XOR
OR

AND
XOR
OR

AND
XOR
OR

AND
XOR
OR

AND
XOR
OR

13

EPC: Example (yEd)

https://www.yworks.com/products/yed

14

EPC: Example (ARIS Express)
Purchase order process "MyFavoriteBookExpress.com"

http://www.ariscommunity.com/aris-express

EPC Diagrams:
Guidelines

15

EPC Diagrams: guidelines

16

Other constraints are sometimes imposed

Unique start / end event

No direct flow between two events
No direct flow between two functions

No event is followed by a decision node
(i.e. (X)OR-split)

EPC guidelines: Example

17

multiple end events

direct flow between
functions

Problem with guidelines

18

From empirical studies:
guidelines are too restrictive and people ignore them
(following rigid guidelines can lead to unnecessarily

complicated diagrams, more difficult to read and understand)

Solution:
It is safe to drop most constraints

(e.g., implicit dummy nodes might always be added later)

EPC: repairing alternation

19

add dummy
functions

to guarantee
alternation

EPC: repairing alternation

20

add dummy
events

to guarantee
alternation

21

XOR

add dummy nodes
to guarantee

no event be followed
by a decision node

((X)OR-split)

EPC: repairing decisions

XOR

EPC: repairing multiple
start events

22

A start event is an event with no incoming arc
it invokes a new instance of the process template

Start events are mutually exclusive

Start1 Start2

XOR

assume an
implicit

XOR split
is present

Start1 Start2

EPC: repairing multiple
end events

23

An end event is an event with no outgoing arc
it indicates completion of some activities

What if multiple end events occur? No unanimity!
they are followed by an implicit join connector

(typically a XOR… but not necessarily so)

End1 End2

AND?
XOR?
OR?

assume an
implicit

join
is present

End1 End2

Other ingredients:
function annotations

24

Organization unit:
determines the person or organization
responsible for a specific function
(ellipses with a vertical line)

Other ingredients:
function annotations

25

Information, material, resource object:
represents objects in the real world
e.g. input data or output data for a function
(rectangles linked to function boxes)
angles with vertical lines on its sides)

Other ingredients:
function annotations

26

Supporting system: technical support
(rectangles with vertical lines on its sides)

Question time:
which connectors?

27

?

?

Question time:
which connectors?

28

?

?

Question time: what's wrong?

29

EPC Sample Diagrams

30

Example:
comments?

31
subsequent process; hierarchical functions point from a function to a refining
sub-process. Keller and Teufel (1998), Rump (1999), and van der Aalst
(1999) provide formal approaches towards EPC syntax definition. Building
on this work, Nüttgens and Rump (2002) introduce the concepts of a flat

Event

Function

Process Interface

Connectors

Control Flow Arc

EPC Symbols

Participant

Application

Data

Relation

St art

List
requirements

Requirements
verified

Specification

Specification
verified

Additional
Requirements

found

Design

Design
verified

Ne w
Design Aspect

found

Implementation

Implementation
tested

New
Implementation
aspect found

Integration

Integration
tested

New
Integration

aspect found

Start

Interview
Potential

User

Requirements
verified

Further
Interviews

needed

Analyst

Minute

Waterfall Model EPC List Requirements EPC

Fig. 1 Event-driven process chains representing the waterfall model for software engi-
neering

EPC markup language (EPML): an XML-based interchange format 247

Jan Mendling Æ Markus Nüttgens

EPC markup language (EPML): an XML-
based interchange format for event-driven
process chains (EPC)

Published online: 22 October 2005
! Springer-Verlag 2005

Abstract This article presents an XML-based interchange format for event-
driven process chains (EPC) that is called EPC markup language (EPML).
EPML builds on EPC syntax related work and is tailored to be a serializa-
tion format for EPC modelling tools. Design principles inspired by other
standardization efforts and XML design guidelines have governed the
specification of EPML. After giving an overview of EPML concepts we
present examples to illustrate its features including flat and hierarchical
EPCs, business views, graphical information, and syntactical correctness.

1 Introduction

Today business process modelling is mainly used in two different contexts:
business analysts use process models for documentation purposes, process
optimization and simulation; information system analysts use them on the
middleware tier in order to glue together heterogeneous systems. For both

J. Mendling (&)
Department of Information Systems and New Media,
Vienna University of Economics and Business Administration,
1180 Vienna, Austria
E-mail: jan.mendling@wu-wien.ac.at

M. Nüttgens
Chair of Information Systems, University of Hamburg,
20146 Hamburg, Germany
E-mail: Markus.Nuettgens@wiso.uni-hamburg.de

ISeB (2006) 4: 245–263
DOI 10.1007/s10257-005-0026-1

ORIGINAL PAPER

Example: any comment?

32

Petri Net Transformations for Business Processes – A Survey 53

Legend

Start u V
XOR

V

f

t

e

m

l

V

XOR

XOR

XOR

Finish
image

Create
thumbnail

Evaluate

Send
image

Send link

Image
sent

Link sent

redo

Image too big

Image small enough

thumbnail failed

finish failed

XOR

XOR

V

V V

VXOR-split –
Exclusive choice

XOR-join –
Simple merge

AND-split –
Parallel split

OR-split –
Multi-choice

AND-join –
Synchronization

OR-join –
Gen. Sync. Merge

Simple flow – Sequence

function functionevent

Start event End event

Fig. 4. The example process as an EPC

Three types of EPC objects can be used to model the control-flow aspect
of a process: functions, events, and connectors. In a natural way, these types
correspond to the BPMN activities, events, and gateways. However, EPCs do
not allow for exceptions, and it supports only a limited set of connectors, which
is shown by Fig. 4. Apart from the full set of connectors, this figure also shows an
the example process as an EPC, and it relates the object types to the workflow
patterns explained in Section 2.2.

4.2 Transformation Challenges

A main challenge in EPCs is the semantics of the constructs that support the
‘Simple Merge’ and ‘General Synchronizing Merge’ patterns, viz. the XOR-join
connector and the OR-join connector. Everybody agrees that the XOR-join con-
nector should be enabled if one of its inputs is enabled, but this agreement is
lacking in case more than one inputs is enabled. Some say that the XOR-join
should be executed for every single enabled input, while others say that the
connector should block if multiple inputs are enabled. An even bigger problem
is the OR-join connector, for which a definitive semantics has lead to exten-
sive discussions in literature and to different solutions, all of which fail for some
EPCs [17,18,19]. As a result, not everybody will agree on a given mapping, as
not everyone will agree with the semantics used by it.

Furthermore, an EPC allows for multiple start events and multiple final
events, but not all combinations of these events are possible. Although the pro-
cess designer might know the possible combinations, an EPC does not contain
this information.

Example:
comments?

33

Example:
comments?

34

4.3 Event-driven Process Chains 163

Order is
received

Analyze
order

XOR

Order is
accepted

Order is
rejected

Check Stock

XOR

Products in
stock

Products not
in stock

XOR

Ship
products

Products
are shipped

Send bill

Bill is sent

Check for
open bills

XOR

Open bills
present

V

Purchase
raw material

Raw
material is
available

Plan
production

Production
plan

available

V

Manufacture
products

Products
are

available

Open bills
not present

XOR

Get
payment

Process
completed

Fig. 4.35. Example event-driven process chain

While most constructs of event-driven process chains can be explained in this
example, the process is a severe simplification of real-world ordering processes.

While the process aspect in terms of the functions and events that occur in
business processes is well captured by event-driven process chains, there are
other types of diagrams that abstract from the relatively fine-granular level
of event-driven process chains.

Example: any comment?

35

166 4 Process Orchestrations

Customer

Enter order

Marketing and
Sales

Analyze order

V

Incoming
Logistics

Enter raw
material order

Supplier

Process
order

V

Operations

Plan
Manufacturing

V

Incoming
Logistics

Pay

Supplier

Receive
payment

Operations

Manufacture
item

Outgoing
Logistics

Ship item

Customer

Accept item

Customer

Ship amount

Marketing and
Sales

Receive
payment

Receive
material Operations

Fig. 4.38. Sample function flow

products are in stock or the products are not in stock and need to be manu-
factured.

Order is
accepted

Check Stock

Order
Document

Stock
status

Check
Result

Operations

XOR

Products in
stock

Products not
in stock

Data or
material

Organizational
entity responsible

Fig. 4.39. Example of extended event-driven process chain

EPC Semantics

36

EPC intuitive semantics

37

A process starts when some initial event(s) occurs

The activities are executed according to the
constraints in the diagram

When the process is finished,
only final events have not been dealt with

If this is always the case, then the EPC is “correct”

Folder-passing semantics

38

The current state of the process is determined by
placing folders over the diagram

A transition relation explains how to move from one
state to the next state

The transition relation is possibly nondeterministic

Folder-passing
semantics: events

39

an event an event

Folder-passing
semantics: functions

40

a function a function

Folder-passing
semantics: AND-split

41

AND AND

Folder-passing
semantics: AND-join

42

AND AND

Folder-passing
semantics: XOR-split

43

XOR

XOR

XOR

XOR join: intended meaning

44

XOR

if both inputs arrive,
it should block the flow

if one input arrives,
it cannot proceed unless

it is informed that
the other input will never arrive

Folder-passing
semantics: XOR-join

45

XOR XOR

XOR XOR

Folder-passing semantics?

46

How can we infer the absence of folders?

When and how should such information be
propagated?

Absence of folders:
creation

47

XOR

XOR

XOR

48

a function a function

Absence of folders:
propagation (example)

Folder-passing
semantics: OR-split

49

OR OR

OR

OR

OR join: intended meaning

50

OR

if only one input arrives,
it should release the flow

if both inputs arrive,
it should release only one output

if one input arrives,
it must wait until the other arrives or

it is guaranteed that the other will never arrive

Folder-passing
semantics: OR-join?

51

OR OR

Decorated EPC

52

To remove ambiguous behaviour for join connectors,
designers can further annotate EPC diagrams

In particular we require to know:

corresponding split
which node separated the flows we are joining

(in the case of XOR/OR join)

applicable policy
how to trigger outgoing flow

(avoid OR join ambiguous behaviour)

Candidate split

53

A candidate split for a join node is any split node
whose outputs are connected to the inputs of the join

XOR

OR

XOR

XOR

s1

s2

j1

j2

s1

s1 is a candidate split for j1

s1 and s2 are candidate splits for j2

Corresponding split

54

A corresponding split for a join node
is a chosen candidate split

we choose s1 as a
corresponding split for j1

we choose s2 as a
corresponding split for j2

XOR

OR

XOR

XOR

s1

s2

j1 (s1)

j2 (s2) (we tag each join
with its corresponding split)

Matching split

55

A corresponding split for a join node is called matching
if it has the same type as the join node

s1 is a matching split for j1

s2 is not a matching split for j2

XOR

OR

XOR

XOR

s1

s2

j1 (s1)

j2 (s2)

OR join: policies

56

If an OR join has a matching split, its semantics is
wait-for-all: wait for the completion of all activated paths

Otherwise, also other policies can be chosen:

every-time: trigger the outgoing path on each input

first-come: wait for the first input and ignore the second

Assumption: every OR join is tagged with a policy
(some suggested to have different trapezoid symbols)

Example

57

two OR joins
but no OR split

Example

58

only one
candidate split

Example

59

two candidate
splits

Example

60

assign corresponding splits

Example

61

assign policies

wfa

fc

62

A closer look at standards:
EPC and BPMN

start / end

links

tasks

join / split

BPMN EPC

BPMN

63

Main goal:

to define a graphical notation
that is readily understandable:

by business analysts (initial drafts of processes)

by technical developers (process implementation)

by business people (process management)

64

Before BPMN
BPMD

BP Definition Metamodel OASIS’s BPEL
BP Execution Language

BPMI.org's BPML
BP Modelling Language

UML2 AD
Activity Diagram W3C’s WS CDL

Choreography Description Language

IBM’s WSFL
WS Flow Language

Microsoft’s XLANG

Standardisation

65

In the context of graphical models for business processes

the development of BMPN is an important step in:

reducing the fragmentation that existed
with myriad of process modelling tools and notations

exploiting experiences with many divergent proposals to
consolidate the best ideas

supporting the adoption of inter-operable
business process management systems

66

Business Process Management Initiative
More information: http://www.bpmi.org/

Copyright © 2000-2001, BPMI.org

Business Process Management Initiative
More information: http://www.bpmi.org/

Copyright © 2000-2001, BPMI.org

A joint effort!

Short history

67

2000 - Business Process Management Initiative (BPMI.org)
(independent organization, studying open specifications for the
management of e-Business processes)

2005 - BPMI and the Object Management Group™ (OMG™)
merge their activities on BPM forming the
Business Modeling & Integration Domain Task Force (BMI -DTF)

2006 - BPMN 1.0 approved
2007 - BPMN 1.1 approved
2009 - BPMN 1.2 approved

2009 - BPMN 2.0 Beta 1 proposed
2010 - BPMN 2.0 Beta 2 proposed
2011 - BPMN 2.0 Final delivered

Business process diagrams

68

BPMN defines a standard for
Business Process Diagrams (BPD)

based on flowcharting technique

Four categories of elements

swimlanes flow objects connecting objects artefacts

Events Activities

Artefacts

Graphical connecting objects

Sequence flow mechanism Compensation Association

S
ta

rt

In
te

rm
e
d
ia

te

E
n
d

Message

Timer

Error

Multiple

Link

Rule

Compensation

Cancel

Terminate

General

Event type

A message arrives from a participant and triggers the Event. This causes

process to {start, continue, end} if it was waiting for a message, or changes

the flow if exception happens. End type of message event indicates that a

message is sent to a participant at the conclusion of the process.

Event flow
Description

An event is something that »happens« during the process. These events affect the
flow of the process and usually have a cause (trigger) or an impact (result).
Examples: 'Email received', '3 o'clock', 'Warehouse empty', 'Critical error',...

An activity is a generic type of work that a company performs. An
activity can be atomic (task) or compound (process, sub-process).
Examples: 'Send a letter', 'Write a report', 'Calculate the interests',...

~

Description

Process

Collapsed

sub-process

Expanded

sub-process

Task

Transaction

A task is used to represent the
activity on the lowest abstraction
level.

More information about the
transaction and compensation
attribute can be found under
»Compensation Association«.

Looping

Ad Hoc

Compensation

Task/Subprocess special attributes

The task or sub-process is repeated.

The tasks in the sub-process can not be connected with
sequence flows at design time.

Multiple instances of task or sub-process will be created.

The symbol represents a compensation task or sub-process.

Multiple instances

Gateways
A gateway is used to split or merge multiple process
flows. Thus it will determine branching, forking,
merging and joining of paths. Examples: 'Condition true?

– yes/no', 'Choose colour? – red/green/blue',...

Gateway control types

Data based exclusive decision or
merging. Both symbols have equal
meaning. See also Conditional flow.

Event based exclusive decision only.

Data based inclusive decision or
merging.

Complex condition (a combination of
basic conditions)

Parallel forking and joining
(synchronization).

XOR
(DATA)

XOR
(EVENT)

OR

COM-
PLEX

AND

Swimlanes

P
o

o
l L
a

n
e

Pools and lanes are used to represent organizations,
roles, systems and responsibilities. Examples:

'University', 'Sales division', 'Warehouse', 'ERP system',...

A Lane is a sub-partition within a pool used to organize and
categorize activities.

A Pool represents a participant in a process. It contains a business
process and is used in B2B situations.

A Pool MUST contain 0 or 1
business process.

A Pool can contain 0 or more
lanes.

Two pools can only be connected
with message flows.

Artefacts are used to provide additional information about the process. If
required, modellers and modelling tools are free to add new artefacts.
Examples of data objects: 'A letter', 'Email message', 'XML document',
'Confirmation',...

Set of standardized artefacts

Data object

Group

Annotation

Data objects provide information about what activities are required to be

triggered and/or what they produce. They are considered as Artefacts

because they do not have any direct effect on the Sequence Flow or

Message Flow of the Process. The state of the data object should also be

set.

Grouping can be used for documentation or analysis purposes. Groups

can also be used to identify the activities of a distributed transaction that is

shown across Pools. Grouping of activities does not affect the Sequence

or Message Flow.

Text Annotations are a mechanism for a modeller to provide additional

information for the reader of a BPMN Diagram.

Normal
sequence flow
Conditional
sequence flow
Default
sequence flow

Message flow

Association

There are three ways of connecting Flow objects (Events, Activities,
Gateways) with each other or with other information – using sequence
flows, message flows or associations.

Graphical connecting objects

A Sequence Flow is used to show the order In which the activities in a

process will be performed.

A Message Flow is used to show the flow of messages between two

participants that are prepared to send and receive them. In BPMN,

two separate Pools in a Diagram can represent the two participants.
An Association (directed, non-directed) is used to associate

information with Flow Objects. Text and graphical non-Flow Objects

can be associated with Flow objects.

A Sequence Flow can have condition expressions which are evaluated

at runtime to determine whether or not the flow will be used.

For Data-Based Exclusive Decisions or Inclusive Decisions, one type

of flow is the Default condition flow. This flow will be used only if all

other outgoing conditional flows are NOT true at runtime.

Sequence Flow and Message Flow rules
Only objects that can have an incoming and/or outgoing Sequence Flow / Message
Flow are shown in the Tables Below.

Start

transaction

Successfull

transaction

Task A

Transaction boundary

Undo task A

Task B

Undo task B

Failed transaction

Transaction

exception

Handle through

other services

Wait a few minutes

Try again

Error - compensation

events cannot be

triggered

Task

Compensation activity

In case of transactions it is desired that all activities which constitute
a transaction are finished successfully. Otherwise the transaction fails
and rollback (compensation) activities occur which undo done
activities.

Normal sequence flow

Use of the sequence flow
mechanism

Use of message events and
message flows

Use of flows within lanes Use of gatewaysWrong use of flows in/between
pools

When modelling Pools, sequence flows and start/end events are
often missing, because it is wrongly presumed that message
flows substitute sequence flows. Additionally, sequence flows
are incorrectly used to connect pools.

P
o

o
l
A

Task A

P
o

o
l
B

Task D

Message

flow AD

Message

flow EB

Task B

Task E

Missing sequence flows

Task C

Task F

Missing end event

Missing start event

Model the process in each Pool independently and afterwards
define message flows between Pools.

(Wrong) Use of time events

Task A Task B

Task B ...

Delay

Exception time

(e.g. »after 2 hours«)

Here a time event Is used as

a DELAY mechanism.

Here it represents the

DURATION of a task.

...

An intermediate event

has to be used.

There are two common mistakes when using time events. First,
starting events are often used instead of intermediate events.
Second, intermediate events are often used as a delay
mechanism but modelled as an exception mechanism
(representing the duration of a task) and vice-versa (see the
right use below).

Use of tasks and events

Starting

task A

Receiving

document

X

...
Task A

finished

Document X

...

Task A
...

Normal flow

Document X

Event X

Analysts often wrongly model events and tasks. For
example: events are wrongly modelled as tasks, task states
are modelled as new tasks.

This task is redundant.

Task automatically

starts at input

sequence flow

This task is redundant.

Task A is automatically

finished at output

sequence flow.

This task is redundant.The act of receiving

a document is a task itself.

Task A Task B

Message A

Message B
A

B

Task A Task B

Message A

B

Message B

Starting and intermediate events can not be sources of
message flows.

Both examples are wrong - intermediate

message events can not produce

message flows. Events can be only

triggered by a message flow.

Wrong positioning of

message event

The Start Event indicates where a particular process will start. Intermediate

Events occur between a Start Event and an End Event. It will affect the flow

of the process, but will not start or (directly) terminate the process. The End

Event indicates where a process will end.

A specific time or cycle can be set that will trigger the start of the Process

or continue the process. Intermediate timer can be used to model the time-

based delays.

This type of event is triggered when the conditions for a rule

become true. Rules can be very useful to interrupt the loop process, for

example: 'The number of repeats = N'. Intermediate rule is used only for

exception handling.

A Link is a mechanism for connecting the end (Result) of one

Process to the start (Trigger) of another. Typically, these are

two Sub-Processes within the same parent Process. It can be used, for

example, when the working area (page) is too small – go to another page.

This type of event indicates that there are multiple ways of triggering the

Process. Only one of them will be required to {start, continue, end} the

Process.

This type of End indicates that a named Error should be generated. This

Error will be caught by an Intermediate Event within the Event Context.

This type of End indicates that all activities in the Process should be

immediately terminated. This includes all instances of Multi-Instances. The

Process is terminated without compensation or event handling.

Explanation of Poster Symbols

About the BPMN Poster

Sequence flows are not

allowed between Pools

P
o

o
l
B L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

P
o

o
l
A L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

A message flow is not

allowed within a process
A Pool can contain only one

(1) process

Lanes are often wrongly used in similar ways as Pools. They
wrongly contain more business processes or contain message
flows between different lanes.

Gateways are connected only with sequence flows. Also Avoid
potential deadlocks when using gateways.

Task A

Task B

Decision

information

from Pool X

Message flow cannot

influence the gateway

No output flow from the task

exists.

The decision must

contain at least two

output flows

When using expanded sub-processes, sequence flows should
be connected to the boundaries of sub-processes. Processes
and sub-processes should start and end properly!

Task A

Sub-process »P«

Task B Task C

A sequence flow cannot cross

the boundary of a sub-process

The process should have an

end event

The sub-process should

have a start event

Task A

Sub-process »P«

Task B Task C

Task C

A conditional flow Is not

allowed (necessary) here

Send message to

Pool X A message flow cannot be

a gateway alternative

Analysing

decision

information

Task A

Task B

Task C

Send message

to Pool X

Message to Pool X

Message

from Pool X

Exception flow

Until Loop

~

Ad Hoc –

No flow

The Sequence Flow mechanisms is divided into types: Normal flow, Exception flow,

Conditional flow, Link Events and Ad Hoc (no flow). Refer also to specific

»Workflow Patterns«.

A

A

Intermediate

link used as

GOTO

Important note, explanation

Warning or error in the BPMN model

Recommendation

Wrong model

Right (corrected) model

This poster is licensed under the Creative Commons Attribution-
Noncommercial-No Derivative Works 2.5 Slovenia License

Authors:
Gregor Polan!i! & Tomislav Rozman

Email: info@itposter.net
University of Maribor

Faculty of Electrical Engineering and Computer Science
Institute of Informatics

Poster version: 1.0.9 (4th June 2008)
Literature used: BPMN Specification 1.0 @ http://www.bpmi.org

http://bpmn.itposter.net

This is used for compensation handling--both setting and performing

compensation. It calls for compensation if the Event is part of a Normal

Flow. It reacts to a named compensation call when attached to the

boundary of an activity. Very useful for modelling roll-back actions within

the transaction.

This type of Event is used within a Transaction Sub-Process. This type of

Event MUST be attached to the boundary of a Sub-Process. It SHALL be

triggered if a Cancel End Event is reached within the Transaction Sub-

Process.

Workflow patterns
Normal sequence flow

Parallel split, uncontrolled flow

Multiple merge, uncontrolled flow

Exclusive choice with

decision gateway

Simple merge,

uncontrolled flow

Synchronization

(pararel join)

Parallel split,

forking gateway

Discriminator,

merging gateway

Multiple choice

Alter. 3

Alter. 1

Alter. 2

Event based decision Complex decision

(gateway)

Multiple choice, inclusive

decision gateway Synchronization merge,

merging gateway

Simple merge,

uncontrolled flow

Intermediate link

used as GOTO

No Expanded sub-process

Looped subprocess

Interrupt

loop rule

B

B ~ Collapsed adhoc sub-process

F
ro

m
:

To:

F
ro

m
:

To:

L
a

n
e[state]

Check for the latest version at: http://bpmn.itposter.net

Example of a

deadlock

Exception X

Exception X

Exception X

Performing

task A

Conditional flow

Although it is recommended that a process has an explicit start and end
event, this is not a rule. In fact start and end events can be hidden in a sub
process, if needed, or attached to the boundary of the task so as not to
interrupt the normal sequence flow between the sub-process and the rest of
the process.

Document Y

Event Y

Exception flow

Cancel - compensation events are triggered.

Cancel event can be used only with transaction.

...

...

......

... ...

...

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

BPTrends July, 2004 Introduction to BPMN

(c) 2004 Stephen A. White. All Rights Reserved. www.bptrends.com

6

Artifacts

BPMN was designed to allow modelers and modeling tools some flexibility in extending the basic
notation and in providing the ability to add context appropriate to a specific modeling situation,
such as for a vertical market (e.g., insurance or banking). Any number of Artifacts can be added to a
diagram, as appropriate for the context of the business processes being modeled. The current
version of the BPMN specification pre-defines only three types of BPD Artifacts, which are:

Data Object

Data Objects are a mechanism to show how

data is required or produced by activities.

They are connected to activities through
Associations.

Group

A Group is represented by a rounded corner
rectangle drawn with a dashed line (see the

figure to the right). The grouping can be used
for documentation or analysis purposes, but

does not affect the Sequence Flow.

Annotation

Annotations are a mechanism for a modeler
to provide additional text information for the

reader of a BPMN Diagram (see the figure to
the right).

Modelers can create their own types of Artifacts, which add more details about how the process is
performed—quite often to show the inputs and outputs of activities in the Process. However, the
basic structure of the Process, as determined by the Activities, Gateways, and Sequence Flow, is not
changed with the addition of Artifacts in the diagram, as you can see by comparing Figure 4 and
Figure 5.

BPTrends July, 2004 Introduction to BPMN

(c) 2004 Stephen A. White. All Rights Reserved. www.bptrends.com

6

Artifacts

BPMN was designed to allow modelers and modeling tools some flexibility in extending the basic
notation and in providing the ability to add context appropriate to a specific modeling situation,
such as for a vertical market (e.g., insurance or banking). Any number of Artifacts can be added to a
diagram, as appropriate for the context of the business processes being modeled. The current
version of the BPMN specification pre-defines only three types of BPD Artifacts, which are:

Data Object

Data Objects are a mechanism to show how

data is required or produced by activities.

They are connected to activities through
Associations.

Group

A Group is represented by a rounded corner
rectangle drawn with a dashed line (see the

figure to the right). The grouping can be used
for documentation or analysis purposes, but

does not affect the Sequence Flow.

Annotation

Annotations are a mechanism for a modeler
to provide additional text information for the

reader of a BPMN Diagram (see the figure to
the right).

Modelers can create their own types of Artifacts, which add more details about how the process is
performed—quite often to show the inputs and outputs of activities in the Process. However, the
basic structure of the Process, as determined by the Activities, Gateways, and Sequence Flow, is not
changed with the addition of Artifacts in the diagram, as you can see by comparing Figure 4 and
Figure 5.

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

69

BPMN vs EPC (roughly)

Events Activities

Artefacts

Graphical connecting objects

Sequence flow mechanism Compensation Association

S
ta

rt

In
te

rm
e
d
ia

te

E
n
d

Message

Timer

Error

Multiple

Link

Rule

Compensation

Cancel

Terminate

General

Event type

A message arrives from a participant and triggers the Event. This causes

process to {start, continue, end} if it was waiting for a message, or changes

the flow if exception happens. End type of message event indicates that a

message is sent to a participant at the conclusion of the process.

Event flow
Description

An event is something that »happens« during the process. These events affect the
flow of the process and usually have a cause (trigger) or an impact (result).
Examples: 'Email received', '3 o'clock', 'Warehouse empty', 'Critical error',...

An activity is a generic type of work that a company performs. An
activity can be atomic (task) or compound (process, sub-process).
Examples: 'Send a letter', 'Write a report', 'Calculate the interests',...

~

Description

Process

Collapsed

sub-process

Expanded

sub-process

Task

Transaction

A task is used to represent the
activity on the lowest abstraction
level.

More information about the
transaction and compensation
attribute can be found under
»Compensation Association«.

Looping

Ad Hoc

Compensation

Task/Subprocess special attributes

The task or sub-process is repeated.

The tasks in the sub-process can not be connected with
sequence flows at design time.

Multiple instances of task or sub-process will be created.

The symbol represents a compensation task or sub-process.

Multiple instances

Gateways
A gateway is used to split or merge multiple process
flows. Thus it will determine branching, forking,
merging and joining of paths. Examples: 'Condition true?

– yes/no', 'Choose colour? – red/green/blue',...

Gateway control types

Data based exclusive decision or
merging. Both symbols have equal
meaning. See also Conditional flow.

Event based exclusive decision only.

Data based inclusive decision or
merging.

Complex condition (a combination of
basic conditions)

Parallel forking and joining
(synchronization).

XOR
(DATA)

XOR
(EVENT)

OR

COM-
PLEX

AND

Swimlanes
P

o
o

l L
a

n
e

Pools and lanes are used to represent organizations,
roles, systems and responsibilities. Examples:

'University', 'Sales division', 'Warehouse', 'ERP system',...

A Lane is a sub-partition within a pool used to organize and
categorize activities.

A Pool represents a participant in a process. It contains a business
process and is used in B2B situations.

A Pool MUST contain 0 or 1
business process.

A Pool can contain 0 or more
lanes.

Two pools can only be connected
with message flows.

Artefacts are used to provide additional information about the process. If
required, modellers and modelling tools are free to add new artefacts.
Examples of data objects: 'A letter', 'Email message', 'XML document',
'Confirmation',...

Set of standardized artefacts

Data object

Group

Annotation

Data objects provide information about what activities are required to be

triggered and/or what they produce. They are considered as Artefacts

because they do not have any direct effect on the Sequence Flow or

Message Flow of the Process. The state of the data object should also be

set.

Grouping can be used for documentation or analysis purposes. Groups

can also be used to identify the activities of a distributed transaction that is

shown across Pools. Grouping of activities does not affect the Sequence

or Message Flow.

Text Annotations are a mechanism for a modeller to provide additional

information for the reader of a BPMN Diagram.

Normal
sequence flow
Conditional
sequence flow
Default
sequence flow

Message flow

Association

There are three ways of connecting Flow objects (Events, Activities,
Gateways) with each other or with other information – using sequence
flows, message flows or associations.

Graphical connecting objects

A Sequence Flow is used to show the order In which the activities in a

process will be performed.

A Message Flow is used to show the flow of messages between two

participants that are prepared to send and receive them. In BPMN,

two separate Pools in a Diagram can represent the two participants.
An Association (directed, non-directed) is used to associate

information with Flow Objects. Text and graphical non-Flow Objects

can be associated with Flow objects.

A Sequence Flow can have condition expressions which are evaluated

at runtime to determine whether or not the flow will be used.

For Data-Based Exclusive Decisions or Inclusive Decisions, one type

of flow is the Default condition flow. This flow will be used only if all

other outgoing conditional flows are NOT true at runtime.

Sequence Flow and Message Flow rules
Only objects that can have an incoming and/or outgoing Sequence Flow / Message
Flow are shown in the Tables Below.

Start

transaction

Successfull

transaction

Task A

Transaction boundary

Undo task A

Task B

Undo task B

Failed transaction

Transaction

exception

Handle through

other services

Wait a few minutes

Try again

Error - compensation

events cannot be

triggered

Task

Compensation activity

In case of transactions it is desired that all activities which constitute
a transaction are finished successfully. Otherwise the transaction fails
and rollback (compensation) activities occur which undo done
activities.

Normal sequence flow

Use of the sequence flow
mechanism

Use of message events and
message flows

Use of flows within lanes Use of gatewaysWrong use of flows in/between
pools

When modelling Pools, sequence flows and start/end events are
often missing, because it is wrongly presumed that message
flows substitute sequence flows. Additionally, sequence flows
are incorrectly used to connect pools.

P
o

o
l
A

Task A

P
o

o
l
B

Task D

Message

flow AD

Message

flow EB

Task B

Task E

Missing sequence flows

Task C

Task F

Missing end event

Missing start event

Model the process in each Pool independently and afterwards
define message flows between Pools.

(Wrong) Use of time events

Task A Task B

Task B ...

Delay

Exception time

(e.g. »after 2 hours«)

Here a time event Is used as

a DELAY mechanism.

Here it represents the

DURATION of a task.

...

An intermediate event

has to be used.

There are two common mistakes when using time events. First,
starting events are often used instead of intermediate events.
Second, intermediate events are often used as a delay
mechanism but modelled as an exception mechanism
(representing the duration of a task) and vice-versa (see the
right use below).

Use of tasks and events

Starting

task A

Receiving

document

X

...
Task A

finished

Document X

...

Task A
...

Normal flow

Document X

Event X

Analysts often wrongly model events and tasks. For
example: events are wrongly modelled as tasks, task states
are modelled as new tasks.

This task is redundant.

Task automatically

starts at input

sequence flow

This task is redundant.

Task A is automatically

finished at output

sequence flow.

This task is redundant.The act of receiving

a document is a task itself.

Task A Task B

Message A

Message B
A

B

Task A Task B

Message A

B

Message B

Starting and intermediate events can not be sources of
message flows.

Both examples are wrong - intermediate

message events can not produce

message flows. Events can be only

triggered by a message flow.

Wrong positioning of

message event

The Start Event indicates where a particular process will start. Intermediate

Events occur between a Start Event and an End Event. It will affect the flow

of the process, but will not start or (directly) terminate the process. The End

Event indicates where a process will end.

A specific time or cycle can be set that will trigger the start of the Process

or continue the process. Intermediate timer can be used to model the time-

based delays.

This type of event is triggered when the conditions for a rule

become true. Rules can be very useful to interrupt the loop process, for

example: 'The number of repeats = N'. Intermediate rule is used only for

exception handling.

A Link is a mechanism for connecting the end (Result) of one

Process to the start (Trigger) of another. Typically, these are

two Sub-Processes within the same parent Process. It can be used, for

example, when the working area (page) is too small – go to another page.

This type of event indicates that there are multiple ways of triggering the

Process. Only one of them will be required to {start, continue, end} the

Process.

This type of End indicates that a named Error should be generated. This

Error will be caught by an Intermediate Event within the Event Context.

This type of End indicates that all activities in the Process should be

immediately terminated. This includes all instances of Multi-Instances. The

Process is terminated without compensation or event handling.

Explanation of Poster Symbols

About the BPMN Poster

Sequence flows are not

allowed between Pools

P
o

o
l
B L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

P
o

o
l
A L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

A message flow is not

allowed within a process
A Pool can contain only one

(1) process

Lanes are often wrongly used in similar ways as Pools. They
wrongly contain more business processes or contain message
flows between different lanes.

Gateways are connected only with sequence flows. Also Avoid
potential deadlocks when using gateways.

Task A

Task B

Decision

information

from Pool X

Message flow cannot

influence the gateway

No output flow from the task

exists.

The decision must

contain at least two

output flows

When using expanded sub-processes, sequence flows should
be connected to the boundaries of sub-processes. Processes
and sub-processes should start and end properly!

Task A

Sub-process »P«

Task B Task C

A sequence flow cannot cross

the boundary of a sub-process

The process should have an

end event

The sub-process should

have a start event

Task A

Sub-process »P«

Task B Task C

Task C

A conditional flow Is not

allowed (necessary) here

Send message to

Pool X A message flow cannot be

a gateway alternative

Analysing

decision

information

Task A

Task B

Task C

Send message

to Pool X

Message to Pool X

Message

from Pool X

Exception flow

Until Loop

~

Ad Hoc –

No flow

The Sequence Flow mechanisms is divided into types: Normal flow, Exception flow,

Conditional flow, Link Events and Ad Hoc (no flow). Refer also to specific

»Workflow Patterns«.

A

A

Intermediate

link used as

GOTO

Important note, explanation

Warning or error in the BPMN model

Recommendation

Wrong model

Right (corrected) model

This poster is licensed under the Creative Commons Attribution-
Noncommercial-No Derivative Works 2.5 Slovenia License

Authors:
Gregor Polan!i! & Tomislav Rozman

Email: info@itposter.net
University of Maribor

Faculty of Electrical Engineering and Computer Science
Institute of Informatics

Poster version: 1.0.9 (4th June 2008)
Literature used: BPMN Specification 1.0 @ http://www.bpmi.org

http://bpmn.itposter.net

This is used for compensation handling--both setting and performing

compensation. It calls for compensation if the Event is part of a Normal

Flow. It reacts to a named compensation call when attached to the

boundary of an activity. Very useful for modelling roll-back actions within

the transaction.

This type of Event is used within a Transaction Sub-Process. This type of

Event MUST be attached to the boundary of a Sub-Process. It SHALL be

triggered if a Cancel End Event is reached within the Transaction Sub-

Process.

Workflow patterns
Normal sequence flow

Parallel split, uncontrolled flow

Multiple merge, uncontrolled flow

Exclusive choice with

decision gateway

Simple merge,

uncontrolled flow

Synchronization

(pararel join)

Parallel split,

forking gateway

Discriminator,

merging gateway

Multiple choice

Alter. 3

Alter. 1

Alter. 2

Event based decision Complex decision

(gateway)

Multiple choice, inclusive

decision gateway Synchronization merge,

merging gateway

Simple merge,

uncontrolled flow

Intermediate link

used as GOTO

No Expanded sub-process

Looped subprocess

Interrupt

loop rule

B

B ~ Collapsed adhoc sub-process

F
ro

m
:

To:

F
ro

m
:

To:

L
a

n
e[state]

Check for the latest version at: http://bpmn.itposter.net

Example of a

deadlock

Exception X

Exception X

Exception X

Performing

task A

Conditional flow

Although it is recommended that a process has an explicit start and end
event, this is not a rule. In fact start and end events can be hidden in a sub
process, if needed, or attached to the boundary of the task so as not to
interrupt the normal sequence flow between the sub-process and the rest of
the process.

Document Y

Event Y

Exception flow

Cancel - compensation events are triggered.

Cancel event can be used only with transaction.

...

...

......

... ...

...

swimlanes

event event

activity function

gateway connector

sequence flow control flow

message flow

organization unit

70

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

BPMN 1.0 poster

BPMN 2.0 vs 1.0

71

Updated (new markers):
Events

Activities
Gateways
Artefacts

Added:
Choreographies
Full metamodel

XML Serialization
Diagram Interchange

BPMN Execution Semantics (verbal)

72

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

BPMN 2.0 poster

73

Attività
Conversazioni

Eventi

Gateways

Diagramma di conversazione

Non definiti: punti di inizio,
cambi di stato, o stati finali.

Messaggio: invio e ricezione
di messaggi

Timer: eventi a tempo.

Errore: attiva o si occupa di
un errore.

Cancel: reagisce a delle
transazioni cancellate o causa
una cancellazione.

Compensazione: gestisce o
innesca la compensazione.

Condizionale: reagisce a
condizioni di business cambiate
o integra regole di business.

Signal: comunica con più
processi. Lo stesso segnale può
essere intercettato più volte.

Multiplo: intercetta uno tra
vari eventi. Gestisce tutti gli
eventi definiti.

Link:
Due corrispondenti link events
sono uguali ad un flusso
sequenziale.

Terminate: causa la fine
immediata di un processo.

Escalation: passa ad un livello
più alto di responsabilità.

Parallelo Multiplo: intercetta
tutti gli eventi.

Inizio FineIntermedio

C
a
tc

h
in

g

T
h
ro

w
in

g

In
te

rr
u
z
io

n
e
 d

i
so

tt
o
p
ro

c
e
ss

i

A
lt

o
 l
iv

e
ll
o

N
o
n
‐i

n
te

rr
u
z
io

n
e

d
i
so

tt
o
p
ro

c
e
ss

i

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Flusso sequenziale

definisce l’ordine di
esecuzione delle
attività.

Flusso condizionale

ha una condizione
assegnata che definisce
se usare o meno il
flusso.

Flusso predefinito

è il ramo predefinito
da scegliere se tutte
le altre condizioni
vengono valutate
come false.

Task

Transazione

Sottoprocesso
basato su

eventi

Call Activity

Task di invio

Task di ricezione

Utente

Task manuale

Regole di business

Service

Script

Sottoprocesso

Loop

Esecuzione in parallelo

Esecuzione
sequenziale

~ Ad hoc

Compensazione

Una comunicazione definisce un
insieme di scambi di messaggi collegati
logicamente. Se annotati con un
simbolo indicano una
comunicazione interna ad un’altra
conversazione.

Un forked conversation link connette
le comunicazioni e molteplici
partecipanti.

Un conversation link connette le
comunicazioni ed i partecipanti.

Inclusivo
In caso di splitting, uno o più
rami sono attivati. Il flusso va
avanti solamente quando
l’esecuzione di tutti i rami è
terminata.

Complesso
Gestioni di merging e
branching che non sono
gestite da altri gateways.

Esclusivo basato su eventi
All’attivazione di ogni evento
successivo, viene avviata una
nuova istanza di processo.

Parallelo basato su eventi
All’attivazione di tutti gli eventi
successivi, viene avviata una
nuova istanza di processo.

Pool
(compresso)

Multi Instance Pool
(compresso)

Comunicazione

Sub‐Conversation

Pool
(compresso)

Participant B

L’ ordine degli scambi
di messaggi può
essere specificato
associando il flusso di
messaggi e il flusso
sequenziale.

P
o
o
l

P
o
o
l

Pools (Partecipanti) e
Lanes(corsie)
rappresentano le responsabilità
per le attività in un processo.
Esse possono essere
un’organizzazione, un ruolo o un
sistema. Le corsie suddividono
le pools o altre corsie

gerarchicamente.

C
o
rs

ia

Task

C
o
rs

ia

Task

P
o
o
l

Flusso di messaggi
rappresenta il flusso di
informazioni. Un flusso di
messagi può essere unito
a pools, attività, o eventi
di messaggi.

Data
TaskInput Out-

put

Data Store

Un Data Object rappresenta le informazioni che
attraversano l’intero processo, come ad
esempio documenti di business, e‐mails, o
lettere.

Un Data Store è un luogo dove il processo può
leggere oppure scrivere dati, ad esempio un
database. Esso si mantiene oltre la durata
dell’istanza del processo.

Un Data Input è un input esterno usato
all’interno del processo. Può essere letto da
un’attività.

Un Data Output è una variabile disponibile
come risultato di un intero processo.

Un messaggio è usato per rappresentare i
contenuti di una comunicazione tra due
partecipanti.

Un Collection Data Object rappresenta una
collezione di informazioni, come ad esempio
una lista di elementi ordinati.

Pool (compresso)

Collaboration Diagram

P
o
o
l
(e

sp
a
n
so

)

C
o
rs

ia
C
o
rs

ia

 Coreografie

Diagramma di coreografia

Un Task di coreografia
rappresenta
un’interazione(scambio di
messaggi) tra due
partecipanti.

Task di
coreografia

Partecipante A

Partecipante B

Un Processo di
coreografia contiene una
coreografia rifinita con
molte interazioni.

Il simbolo Multiple
Participants denota un
insieme di partecipanti della
stessa tipologia.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Sottoprocesso ad hoc

Task

Task

~

Evento iniziale
di messaggio

Messaggio di flusso

Data Object

Sottoprocesso
compresso

Gateway

Escalation
Evento finale

Evento a
tempo

intermedio

Task di
ricezione

Allegato
Evento a tempo

intermedio

Link
Evento

Intermedio

Task manuale

Evento
finale

Data

Store

Evento
intermedio

Link

Evento
intermedio
Parallelo
Multiplo

Annotazioni di testo

Gruppo

Multi Instance
Task (Parallel)

Evento finale
di messaggio

Task di invio

Gateway
parallelo

Gateway
esclusivo

Evento
intermedio di

errore
allegato

Evento
Finale
di
segnala
zione

Call Activity

Sottoprocesso

Sottoprocesso basato su eventi

Evento iniziale
Condizionale

Evento finale
di errore

Evento
iniziale

Evento
finale

Looped
Sub‐Process

condizione

http://bpmb.de/poster

Partecipante A

Partecipante C
Partecipante B

Task di
coreografia

Partecipante A

Partecipante B

Task di
coreografia

Partecipante A

Partecipante C

Messagio iniziale

Messaggio di
risposta

Task di
coreografia

Partecipante B

Partecipante A

Tradotto da:

In caso di splitting, il flusso sequenziale viene diretto
esattamente verso uno dei rami in uscita. In caso di
merging, il flusso aspetta che un ramo in entrata
arrivi a termine prima di andare avanti.

Esclusivo(xor)

Questo simbolo è sempre seguito da intercettazioni di
eventi o tasks di ricezione. Il flusso sequenziale
prosegue verso il sucessivo task/evento che accade
per primo.

Basato su eventi

Quando viene usato per dividere il flusso sequenziale,
tutti i rami in uscita sono attivati simultaneamente.
Invece quando viene usato per unire rami paralleli, il
flusso aspetta il completamento di tutti i rami in
entrata prima di andare avanti.

Parallelo

Sottoprocesso di
coreografia

Partecipante A

Partecipante C

Partecipante B

Un task è un unità di lavoro, cioè il lavoro da
svolgere. Quando si annota con il simbolo
indica un sottoprocesso, cioè un’attività che
può essere perfezionata.

Una transazione è un insieme di attività che si
legano logicamente; essa potrebbe seguire uno
specifico protocollo.

Un sottoprocesso basato su eventi si trova
all'interno di un processo o sottoprocesso. Si
avvia quando il suo evento di inizio viene
attivato e può interrompere il processo di
livello superiore oppure eseguire in parallelo
(senza interruzioni) in base all'evento di
inizio.

Una call activity è un contenitore di un
sottoprocesso definito globalmente o un task
che può essere riusato nel processo attuale.

Simboli per attività
I seguenti simboli indicano il
comportamento di esecuzione delle
attività:

Tipologie di tasks

Le tipologie specificano la
natura dell’azione da eseguire

BPMN 2.0 poster (in Italian)

BPMN 2.0 (2009/11) FAQ

74

What is BPMN?

BPMN is a graphical notation that depicts the steps
(end to end flow) in a business process.

Specifically designed to coordinate
the sequence of processes and

the messages that flow between participants
in a related set of activities.

Why is BPMN important?

The world of business processes has changed
dramatically over the past few years.

Processes can be coordinated from behind,
within and over organizations boundaries.
A business process now spans multiple

participants and coordination can be complex.

Until BPMN, there has not been a standard
modelling technique developed that addresses

these issues. BPMN provides users with a
royalty free notation.

This will benefit users in a similar manner in
which UML standardised the world of software

engineering.
There will be training courses, books and a body
of knowledge that users can access in order to

better implement a business process.

Will there be a major rewrite?

Not for 2 or 3 years…

(good work! 13+ years and still no revision is planned)

Pros and Cons

75

Strengths of BPMN

Simplicity:
A small set of basic symbols

Extensibility:
many decorations available

(new ones can be added in the
future)

Graphical design: intuitive

Generality: orchestration +
collaboration + choreography

Tool availability:
.bpmn exchange format

Weaknesses of BPMN

over 100 graphical elements

verbose description (500 pages)

difficult to learn comprehensively:
different readings of the same

diagram are possible

different BPMN vendors implement
the execution of

BPMN diagrams in different ways
(and for different subsets)

BPMN basics

76

Swimlanes
(pools, lanes)

77

Swimlanes

78

A swimlane is a mechanism
to organise activities into separate visual categories

to illustrate different capabilities or responsibilities

Present in many process modelling methodologies

BPMN supports two main swimlane objects:

pool lanes

Pools

79

A pool represents a participant (or role) in a process
(represented as a rectangle with a name)

Lanes

80

A lane is a hierarchical sub-partition within a pool
that is used to organise and categorise activities

(inner rectangle that extends to the entire length of the pool

Collapsed pools

81

Internal process is not exposed
(like a black-box)

82

Events Activities

Artefacts

Graphical connecting objects

Sequence flow mechanism Compensation Association

S
ta

rt

In
te

rm
e

d
ia

te

E
n

d

Message

Timer

Error

Multiple

Link

Rule

Compensation

Cancel

Terminate

General

Event type

A message arrives from a participant and triggers the Event. This causes

process to {start, continue, end} if it was waiting for a message, or changes

the flow if exception happens. End type of message event indicates that a

message is sent to a participant at the conclusion of the process.

Event flow
Description

An event is something that »happens« during the process. These events affect the
flow of the process and usually have a cause (trigger) or an impact (result).
Examples: 'Email received', '3 o'clock', 'Warehouse empty', 'Critical error',...

An activity is a generic type of work that a company performs. An
activity can be atomic (task) or compound (process, sub-process).
Examples: 'Send a letter', 'Write a report', 'Calculate the interests',...

~

Description

Process

Collapsed

sub-process

Expanded

sub-process

Task

Transaction

A task is used to represent the
activity on the lowest abstraction
level.

More information about the
transaction and compensation
attribute can be found under
»Compensation Association«.

Looping

Ad Hoc

Compensation

Task/Subprocess special attributes

The task or sub-process is repeated.

The tasks in the sub-process can not be connected with
sequence flows at design time.

Multiple instances of task or sub-process will be created.

The symbol represents a compensation task or sub-process.

Multiple instances

Gateways
A gateway is used to split or merge multiple process
flows. Thus it will determine branching, forking,
merging and joining of paths. Examples: 'Condition true?

– yes/no', 'Choose colour? – red/green/blue',...

Gateway control types

Data based exclusive decision or
merging. Both symbols have equal
meaning. See also Conditional flow.

Event based exclusive decision only.

Data based inclusive decision or
merging.

Complex condition (a combination of
basic conditions)

Parallel forking and joining
(synchronization).

XOR
(DATA)

XOR
(EVENT)

OR

COM-
PLEX

AND

Swimlanes

P
o

o
l L
a

n
e

Pools and lanes are used to represent organizations,
roles, systems and responsibilities. Examples:

'University', 'Sales division', 'Warehouse', 'ERP system',...

A Lane is a sub-partition within a pool used to organize and
categorize activities.

A Pool represents a participant in a process. It contains a business
process and is used in B2B situations.

A Pool MUST contain 0 or 1
business process.

A Pool can contain 0 or more
lanes.

Two pools can only be connected
with message flows.

Artefacts are used to provide additional information about the process. If
required, modellers and modelling tools are free to add new artefacts.
Examples of data objects: 'A letter', 'Email message', 'XML document',
'Confirmation',...

Set of standardized artefacts

Data object

Group

Annotation

Data objects provide information about what activities are required to be

triggered and/or what they produce. They are considered as Artefacts

because they do not have any direct effect on the Sequence Flow or

Message Flow of the Process. The state of the data object should also be

set.

Grouping can be used for documentation or analysis purposes. Groups

can also be used to identify the activities of a distributed transaction that is

shown across Pools. Grouping of activities does not affect the Sequence

or Message Flow.

Text Annotations are a mechanism for a modeller to provide additional

information for the reader of a BPMN Diagram.

Normal
sequence flow
Conditional
sequence flow
Default
sequence flow

Message flow

Association

There are three ways of connecting Flow objects (Events, Activities,
Gateways) with each other or with other information – using sequence
flows, message flows or associations.

Graphical connecting objects

A Sequence Flow is used to show the order In which the activities in a

process will be performed.

A Message Flow is used to show the flow of messages between two

participants that are prepared to send and receive them. In BPMN,

two separate Pools in a Diagram can represent the two participants.
An Association (directed, non-directed) is used to associate

information with Flow Objects. Text and graphical non-Flow Objects

can be associated with Flow objects.

A Sequence Flow can have condition expressions which are evaluated

at runtime to determine whether or not the flow will be used.

For Data-Based Exclusive Decisions or Inclusive Decisions, one type

of flow is the Default condition flow. This flow will be used only if all

other outgoing conditional flows are NOT true at runtime.

Sequence Flow and Message Flow rules
Only objects that can have an incoming and/or outgoing Sequence Flow / Message
Flow are shown in the Tables Below.

Start

transaction

Successfull

transaction

Task A

Transaction boundary

Undo task A

Task B

Undo task B

Failed transaction

Transaction

exception

Handle through

other services

Wait a few minutes

Try again

Error - compensation

events cannot be

triggered

Task

Compensation activity

In case of transactions it is desired that all activities which constitute
a transaction are finished successfully. Otherwise the transaction fails
and rollback (compensation) activities occur which undo done
activities.

Normal sequence flow

Use of the sequence flow
mechanism

Use of message events and
message flows

Use of flows within lanes Use of gatewaysWrong use of flows in/between
pools

When modelling Pools, sequence flows and start/end events are
often missing, because it is wrongly presumed that message
flows substitute sequence flows. Additionally, sequence flows
are incorrectly used to connect pools.

P
o

o
l
A

Task A

P
o

o
l
B

Task D

Message

flow AD

Message

flow EB

Task B

Task E

Missing sequence flows

Task C

Task F

Missing end event

Missing start event

Model the process in each Pool independently and afterwards
define message flows between Pools.

(Wrong) Use of time events

Task A Task B

Task B ...

Delay

Exception time

(e.g. »after 2 hours«)

Here a time event Is used as

a DELAY mechanism.

Here it represents the

DURATION of a task.

...

An intermediate event

has to be used.

There are two common mistakes when using time events. First,
starting events are often used instead of intermediate events.
Second, intermediate events are often used as a delay
mechanism but modelled as an exception mechanism
(representing the duration of a task) and vice-versa (see the
right use below).

Use of tasks and events

Starting

task A

Receiving

document

X

...
Task A

finished

Document X

...

Task A
...

Normal flow

Document X

Event X

Analysts often wrongly model events and tasks. For
example: events are wrongly modelled as tasks, task states
are modelled as new tasks.

This task is redundant.

Task automatically

starts at input

sequence flow

This task is redundant.

Task A is automatically

finished at output

sequence flow.

This task is redundant.The act of receiving

a document is a task itself.

Task A Task B

Message A

Message B
A

B

Task A Task B

Message A

B

Message B

Starting and intermediate events can not be sources of
message flows.

Both examples are wrong - intermediate

message events can not produce

message flows. Events can be only

triggered by a message flow.

Wrong positioning of

message event

The Start Event indicates where a particular process will start. Intermediate

Events occur between a Start Event and an End Event. It will affect the flow

of the process, but will not start or (directly) terminate the process. The End

Event indicates where a process will end.

A specific time or cycle can be set that will trigger the start of the Process

or continue the process. Intermediate timer can be used to model the time-

based delays.

This type of event is triggered when the conditions for a rule

become true. Rules can be very useful to interrupt the loop process, for

example: 'The number of repeats = N'. Intermediate rule is used only for

exception handling.

A Link is a mechanism for connecting the end (Result) of one

Process to the start (Trigger) of another. Typically, these are

two Sub-Processes within the same parent Process. It can be used, for

example, when the working area (page) is too small – go to another page.

This type of event indicates that there are multiple ways of triggering the

Process. Only one of them will be required to {start, continue, end} the

Process.

This type of End indicates that a named Error should be generated. This

Error will be caught by an Intermediate Event within the Event Context.

This type of End indicates that all activities in the Process should be

immediately terminated. This includes all instances of Multi-Instances. The

Process is terminated without compensation or event handling.

Explanation of Poster Symbols

About the BPMN Poster

Sequence flows are not

allowed between Pools

P
o

o
l
B L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

P
o

o
l
A L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

A message flow is not

allowed within a process
A Pool can contain only one

(1) process

Lanes are often wrongly used in similar ways as Pools. They
wrongly contain more business processes or contain message
flows between different lanes.

Gateways are connected only with sequence flows. Also Avoid
potential deadlocks when using gateways.

Task A

Task B

Decision

information

from Pool X

Message flow cannot

influence the gateway

No output flow from the task

exists.

The decision must

contain at least two

output flows

When using expanded sub-processes, sequence flows should
be connected to the boundaries of sub-processes. Processes
and sub-processes should start and end properly!

Task A

Sub-process »P«

Task B Task C

A sequence flow cannot cross

the boundary of a sub-process

The process should have an

end event

The sub-process should

have a start event

Task A

Sub-process »P«

Task B Task C

Task C

A conditional flow Is not

allowed (necessary) here

Send message to

Pool X A message flow cannot be

a gateway alternative

Analysing

decision

information

Task A

Task B

Task C

Send message

to Pool X

Message to Pool X

Message

from Pool X

Exception flow

Until Loop

~

Ad Hoc –

No flow

The Sequence Flow mechanisms is divided into types: Normal flow, Exception flow,

Conditional flow, Link Events and Ad Hoc (no flow). Refer also to specific

»Workflow Patterns«.

A

A

Intermediate

link used as

GOTO

Important note, explanation

Warning or error in the BPMN model

Recommendation

Wrong model

Right (corrected) model

This poster is licensed under the Creative Commons Attribution-
Noncommercial-No Derivative Works 2.5 Slovenia License

Authors:
Gregor Polan!i! & Tomislav Rozman

Email: info@itposter.net
University of Maribor

Faculty of Electrical Engineering and Computer Science
Institute of Informatics

Poster version: 1.0.9 (4th June 2008)
Literature used: BPMN Specification 1.0 @ http://www.bpmi.org

http://bpmn.itposter.net

This is used for compensation handling--both setting and performing

compensation. It calls for compensation if the Event is part of a Normal

Flow. It reacts to a named compensation call when attached to the

boundary of an activity. Very useful for modelling roll-back actions within

the transaction.

This type of Event is used within a Transaction Sub-Process. This type of

Event MUST be attached to the boundary of a Sub-Process. It SHALL be

triggered if a Cancel End Event is reached within the Transaction Sub-

Process.

Workflow patterns
Normal sequence flow

Parallel split, uncontrolled flow

Multiple merge, uncontrolled flow

Exclusive choice with

decision gateway

Simple merge,

uncontrolled flow

Synchronization

(pararel join)

Parallel split,

forking gateway

Discriminator,

merging gateway

Multiple choice

Alter. 3

Alter. 1

Alter. 2

Event based decision Complex decision

(gateway)

Multiple choice, inclusive

decision gateway Synchronization merge,

merging gateway

Simple merge,

uncontrolled flow

Intermediate link

used as GOTO

No Expanded sub-process

Looped subprocess

Interrupt

loop rule

B

B ~ Collapsed adhoc sub-process

F
ro

m
:

To:

F
ro

m
:

To:

L
a

n
e[state]

Check for the latest version at: http://bpmn.itposter.net

Example of a

deadlock

Exception X

Exception X

Exception X

Performing

task A

Conditional flow

Although it is recommended that a process has an explicit start and end
event, this is not a rule. In fact start and end events can be hidden in a sub
process, if needed, or attached to the boundary of the task so as not to
interrupt the normal sequence flow between the sub-process and the rest of
the process.

Document Y

Event Y

Exception flow

Cancel - compensation events are triggered.

Cancel event can be used only with transaction.

...

...

......

... ...

...

Requirements

Naming conventions:
a noun possibly preceded by an adjective

the label is often obtained by "nominalizing" the verb
that describes the main action in the process

(e.g., claim handling, order fulfillment)

Avoid long labels
Articles are often omitted

83

Example

84

Example

85

Example

Flow Objects
(events, activities, gateways)

86

Flow objects

87

Rationale:

 fix a small set of core elements
so that modellers must learn a small number of shapes:

events activities gateways

Flow objects

88

Rationale:

 fix a small set of core elements
so that modellers must learn a small number of shapes:

events activities gateways

use different border styles and internal markers
to add many more information

(this way the notation is extensible)

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

+

Flow objects: Events

89

Events

90

An event is something that “happens” during
the course of a business process

An event is represented as a circle
different borders define the type of the event

start intermediate end

Naming conventions

91

Events:
the label should begin with a noun and
end with a verb in past participle form

to indicate something that just happened
(e.g., Invoice emitted)

the noun can be preceded by an adjective
(e.g., Urgent order sent)

Avoid long labels
Articles are often omitted

Flow objects: Activities

92

Activities

93

An activity is some “unit of work” (job) to be done
during the course of a business process

An activity is represented as a rounded box
BPMN has two main types of activities

atomic (task) or compound (sub-process)

+

Sub-processes

94

Large process models are hard to parse:
we improve readability

by hiding certain parts within sub-processes

A sub-process is a self-contained, composite activity
that can be broken into smaller units of work

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Sub-processes

95

Large process models are hard to parse:
we improve readability

by hiding certain parts within sub-processes

A sub-process is a self-contained, composite activity
that can be broken into smaller units of work

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

implicit start / end

Naming conventions

96

Activities:
verb in the imperative form followed by a noun

(e.g., Approve order)

the noun can be preceded by an adjective
(e.g., Issue driver license)

the verb may be followed by a complement
(e.g., Renew driver license via offline agencies)

Avoid long labels
Articles are often omitted

Flow objects: Gateways

97

Gateways

98

A gateway is used to split/join the sequence flow
 (conditional, fork, wait)

A gateway is represented as a diamond shape
internal markers indicate the nature of behaviour control Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Connecting objects
(sequence flow, message flow, association)

99

Connecting objects

100

The Flow objects are connected together in a diagram to
create the basic skeletal structure of a business process

Three connecting objects can be used:

Sequence flow Message flow Association

to be discussed later

connected objects must
reside in the same pool

(but they can be in
different lanes)

connected objects must
reside in different pools

to be discussed later

connects flow objects
with artefacts

Sequence flow

101

A sequence flow is used to show the order
in which activities are to be performed

the term “control flow” is generally avoided in BPMN

A sequence flow is represented by
a solid line with a solid arrowhead

Requirements

102

Events Activities

Artefacts

Graphical connecting objects

Sequence flow mechanism Compensation Association

S
ta

rt

In
te

rm
e
d
ia

te

E
n
d

Message

Timer

Error

Multiple

Link

Rule

Compensation

Cancel

Terminate

General

Event type

A message arrives from a participant and triggers the Event. This causes

process to {start, continue, end} if it was waiting for a message, or changes

the flow if exception happens. End type of message event indicates that a

message is sent to a participant at the conclusion of the process.

Event flow
Description

An event is something that »happens« during the process. These events affect the
flow of the process and usually have a cause (trigger) or an impact (result).
Examples: 'Email received', '3 o'clock', 'Warehouse empty', 'Critical error',...

An activity is a generic type of work that a company performs. An
activity can be atomic (task) or compound (process, sub-process).
Examples: 'Send a letter', 'Write a report', 'Calculate the interests',...

~

Description

Process

Collapsed

sub-process

Expanded

sub-process

Task

Transaction

A task is used to represent the
activity on the lowest abstraction
level.

More information about the
transaction and compensation
attribute can be found under
»Compensation Association«.

Looping

Ad Hoc

Compensation

Task/Subprocess special attributes

The task or sub-process is repeated.

The tasks in the sub-process can not be connected with
sequence flows at design time.

Multiple instances of task or sub-process will be created.

The symbol represents a compensation task or sub-process.

Multiple instances

Gateways
A gateway is used to split or merge multiple process
flows. Thus it will determine branching, forking,
merging and joining of paths. Examples: 'Condition true?

– yes/no', 'Choose colour? – red/green/blue',...

Gateway control types

Data based exclusive decision or
merging. Both symbols have equal
meaning. See also Conditional flow.

Event based exclusive decision only.

Data based inclusive decision or
merging.

Complex condition (a combination of
basic conditions)

Parallel forking and joining
(synchronization).

XOR
(DATA)

XOR
(EVENT)

OR

COM-
PLEX

AND

Swimlanes

P
o

o
l L
a

n
e

Pools and lanes are used to represent organizations,
roles, systems and responsibilities. Examples:

'University', 'Sales division', 'Warehouse', 'ERP system',...

A Lane is a sub-partition within a pool used to organize and
categorize activities.

A Pool represents a participant in a process. It contains a business
process and is used in B2B situations.

A Pool MUST contain 0 or 1
business process.

A Pool can contain 0 or more
lanes.

Two pools can only be connected
with message flows.

Artefacts are used to provide additional information about the process. If
required, modellers and modelling tools are free to add new artefacts.
Examples of data objects: 'A letter', 'Email message', 'XML document',
'Confirmation',...

Set of standardized artefacts

Data object

Group

Annotation

Data objects provide information about what activities are required to be

triggered and/or what they produce. They are considered as Artefacts

because they do not have any direct effect on the Sequence Flow or

Message Flow of the Process. The state of the data object should also be

set.

Grouping can be used for documentation or analysis purposes. Groups

can also be used to identify the activities of a distributed transaction that is

shown across Pools. Grouping of activities does not affect the Sequence

or Message Flow.

Text Annotations are a mechanism for a modeller to provide additional

information for the reader of a BPMN Diagram.

Normal
sequence flow
Conditional
sequence flow
Default
sequence flow

Message flow

Association

There are three ways of connecting Flow objects (Events, Activities,
Gateways) with each other or with other information – using sequence
flows, message flows or associations.

Graphical connecting objects

A Sequence Flow is used to show the order In which the activities in a

process will be performed.

A Message Flow is used to show the flow of messages between two

participants that are prepared to send and receive them. In BPMN,

two separate Pools in a Diagram can represent the two participants.
An Association (directed, non-directed) is used to associate

information with Flow Objects. Text and graphical non-Flow Objects

can be associated with Flow objects.

A Sequence Flow can have condition expressions which are evaluated

at runtime to determine whether or not the flow will be used.

For Data-Based Exclusive Decisions or Inclusive Decisions, one type

of flow is the Default condition flow. This flow will be used only if all

other outgoing conditional flows are NOT true at runtime.

Sequence Flow and Message Flow rules
Only objects that can have an incoming and/or outgoing Sequence Flow / Message
Flow are shown in the Tables Below.

Start

transaction

Successfull

transaction

Task A

Transaction boundary

Undo task A

Task B

Undo task B

Failed transaction

Transaction

exception

Handle through

other services

Wait a few minutes

Try again

Error - compensation

events cannot be

triggered

Task

Compensation activity

In case of transactions it is desired that all activities which constitute
a transaction are finished successfully. Otherwise the transaction fails
and rollback (compensation) activities occur which undo done
activities.

Normal sequence flow

Use of the sequence flow
mechanism

Use of message events and
message flows

Use of flows within lanes Use of gatewaysWrong use of flows in/between
pools

When modelling Pools, sequence flows and start/end events are
often missing, because it is wrongly presumed that message
flows substitute sequence flows. Additionally, sequence flows
are incorrectly used to connect pools.

P
o

o
l
A

Task A

P
o

o
l
B

Task D

Message

flow AD

Message

flow EB

Task B

Task E

Missing sequence flows

Task C

Task F

Missing end event

Missing start event

Model the process in each Pool independently and afterwards
define message flows between Pools.

(Wrong) Use of time events

Task A Task B

Task B ...

Delay

Exception time

(e.g. »after 2 hours«)

Here a time event Is used as

a DELAY mechanism.

Here it represents the

DURATION of a task.

...

An intermediate event

has to be used.

There are two common mistakes when using time events. First,
starting events are often used instead of intermediate events.
Second, intermediate events are often used as a delay
mechanism but modelled as an exception mechanism
(representing the duration of a task) and vice-versa (see the
right use below).

Use of tasks and events

Starting

task A

Receiving

document

X

...
Task A

finished

Document X

...

Task A
...

Normal flow

Document X

Event X

Analysts often wrongly model events and tasks. For
example: events are wrongly modelled as tasks, task states
are modelled as new tasks.

This task is redundant.

Task automatically

starts at input

sequence flow

This task is redundant.

Task A is automatically

finished at output

sequence flow.

This task is redundant.The act of receiving

a document is a task itself.

Task A Task B

Message A

Message B
A

B

Task A Task B

Message A

B

Message B

Starting and intermediate events can not be sources of
message flows.

Both examples are wrong - intermediate

message events can not produce

message flows. Events can be only

triggered by a message flow.

Wrong positioning of

message event

The Start Event indicates where a particular process will start. Intermediate

Events occur between a Start Event and an End Event. It will affect the flow

of the process, but will not start or (directly) terminate the process. The End

Event indicates where a process will end.

A specific time or cycle can be set that will trigger the start of the Process

or continue the process. Intermediate timer can be used to model the time-

based delays.

This type of event is triggered when the conditions for a rule

become true. Rules can be very useful to interrupt the loop process, for

example: 'The number of repeats = N'. Intermediate rule is used only for

exception handling.

A Link is a mechanism for connecting the end (Result) of one

Process to the start (Trigger) of another. Typically, these are

two Sub-Processes within the same parent Process. It can be used, for

example, when the working area (page) is too small – go to another page.

This type of event indicates that there are multiple ways of triggering the

Process. Only one of them will be required to {start, continue, end} the

Process.

This type of End indicates that a named Error should be generated. This

Error will be caught by an Intermediate Event within the Event Context.

This type of End indicates that all activities in the Process should be

immediately terminated. This includes all instances of Multi-Instances. The

Process is terminated without compensation or event handling.

Explanation of Poster Symbols

About the BPMN Poster

Sequence flows are not

allowed between Pools

P
o

o
l
B L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

P
o

o
l
A L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

A message flow is not

allowed within a process
A Pool can contain only one

(1) process

Lanes are often wrongly used in similar ways as Pools. They
wrongly contain more business processes or contain message
flows between different lanes.

Gateways are connected only with sequence flows. Also Avoid
potential deadlocks when using gateways.

Task A

Task B

Decision

information

from Pool X

Message flow cannot

influence the gateway

No output flow from the task

exists.

The decision must

contain at least two

output flows

When using expanded sub-processes, sequence flows should
be connected to the boundaries of sub-processes. Processes
and sub-processes should start and end properly!

Task A

Sub-process »P«

Task B Task C

A sequence flow cannot cross

the boundary of a sub-process

The process should have an

end event

The sub-process should

have a start event

Task A

Sub-process »P«

Task B Task C

Task C

A conditional flow Is not

allowed (necessary) here

Send message to

Pool X A message flow cannot be

a gateway alternative

Analysing

decision

information

Task A

Task B

Task C

Send message

to Pool X

Message to Pool X

Message

from Pool X

Exception flow

Until Loop

~

Ad Hoc –

No flow

The Sequence Flow mechanisms is divided into types: Normal flow, Exception flow,

Conditional flow, Link Events and Ad Hoc (no flow). Refer also to specific

»Workflow Patterns«.

A

A

Intermediate

link used as

GOTO

Important note, explanation

Warning or error in the BPMN model

Recommendation

Wrong model

Right (corrected) model

This poster is licensed under the Creative Commons Attribution-
Noncommercial-No Derivative Works 2.5 Slovenia License

Authors:
Gregor Polan!i! & Tomislav Rozman

Email: info@itposter.net
University of Maribor

Faculty of Electrical Engineering and Computer Science
Institute of Informatics

Poster version: 1.0.9 (4th June 2008)
Literature used: BPMN Specification 1.0 @ http://www.bpmi.org

http://bpmn.itposter.net

This is used for compensation handling--both setting and performing

compensation. It calls for compensation if the Event is part of a Normal

Flow. It reacts to a named compensation call when attached to the

boundary of an activity. Very useful for modelling roll-back actions within

the transaction.

This type of Event is used within a Transaction Sub-Process. This type of

Event MUST be attached to the boundary of a Sub-Process. It SHALL be

triggered if a Cancel End Event is reached within the Transaction Sub-

Process.

Workflow patterns
Normal sequence flow

Parallel split, uncontrolled flow

Multiple merge, uncontrolled flow

Exclusive choice with

decision gateway

Simple merge,

uncontrolled flow

Synchronization

(pararel join)

Parallel split,

forking gateway

Discriminator,

merging gateway

Multiple choice

Alter. 3

Alter. 1

Alter. 2

Event based decision Complex decision

(gateway)

Multiple choice, inclusive

decision gateway Synchronization merge,

merging gateway

Simple merge,

uncontrolled flow

Intermediate link

used as GOTO

No Expanded sub-process

Looped subprocess

Interrupt

loop rule

B

B ~ Collapsed adhoc sub-process

F
ro

m
:

To:

F
ro

m
:

To:

L
a

n
e[state]

Check for the latest version at: http://bpmn.itposter.net

Example of a

deadlock

Exception X

Exception X

Exception X

Performing

task A

Conditional flow

Although it is recommended that a process has an explicit start and end
event, this is not a rule. In fact start and end events can be hidden in a sub
process, if needed, or attached to the boundary of the task so as not to
interrupt the normal sequence flow between the sub-process and the rest of
the process.

Document Y

Event Y

Exception flow

Cancel - compensation events are triggered.

Cancel event can be used only with transaction.

...

...

......

... ...

...

each event:
at most one incoming and

at most one outgoing
sequence flow

each activity:
exactly one incoming and

exactly one outgoing
sequence flow

each gateway:
one-to-many,
many-to-one,
many-to-many

103

Multiple flows and
implicit gateways

In principle each activity should have exactly:
one incoming arc, one outgoing arc

Be careful if this is not the case!

stands for

Multiple incoming flows are mutually exclusive

104

stands for

Multiple outgoing flows are activated in parallel
(unless conditions are attached to them)

In principle each activity should have exactly:
one incoming arc, one outgoing arc

Be careful if this is not the case!

Multiple flows and
implicit gateways

105

Hidden issue!

106

In your final projects

Please avoid

Typical patterns

107

108

Sequence:
order fulfilment

64 3 Essential Process Modeling

Fig. 3.1 The diagram of a simple order fulfillment process

In this chapter we will become familiar with the core set of symbols provided by
BPMN. As stated earlier, a business process involves events and activities. Events
represent things that happen instantaneously (e.g. an invoice has been received)
whereas activities represent units of work that have a duration (e.g. an activity to
pay an invoice). Also, we recall that in a process, events and activities are logically
related. The most elementary form of relation is that of sequence, which implies that
one event or activity A is followed by another event or activity B. Accordingly, the
three most basic concepts of BPMN are event, activity, and arc. Events are repre-
sented by circles, activities by rounded rectangles, and arcs (called sequence flows
in BPMN) are represented by arrows with a full arrow-head.

Example 3.1 Figure 3.1 shows a simple sequence of activities modeling an order
fulfillment process in BPMN. This process starts whenever a purchase order has
been received from a customer. The first activity that is carried out is confirming the
order. Next, the shipment address is received so that the product can be shipped to
the customer. Afterwards, the invoice is emitted and once the payment is received
the order is archived, thus completing the process.

From the example above we notice that the two events are depicted with two
slightly different symbols. We use circles with a thin border to capture start events
and circles with a thick border to capture end events. Start and end events have an
important role in a process model: the start event indicates when instances of the
process start whereas the end event indicates when instances complete. For exam-
ple, a new instance of the order fulfillment process is triggered whenever a purchase
order is received, and completes when the order is fulfilled. Let us imagine that
the order fulfillment process is carried out at a seller’s organization. Every day this
organization will run a number of instances of this process, each instance being
independent of the others. Once a process instance has been spawned, we use the
notion of token to identify the progress (or state) of that instance. Tokens are cre-
ated in a start event, flow throughout the process model until they are destroyed in
an end event. We depict tokens as colored dots on top of a process model. For ex-
ample Fig. 3.2 shows the state of three instances of the order fulfillment process:
one instance has just started (black token on the start event), another is shipping the
product (red token on activity “Ship product”), and the third one has received the
payment and is about to start archiving the order (green token in the sequence flow
between “Receive payment” and “Archive order”).

While it comes natural to give a name (also called label) to each activity, we
should not forget to give labels to events as well. For example, giving a name to
each start event allows us to communicate what triggers an instance of the process,

O
rd

er
 fu

lfi
lm

en
t

78 3 Essential Process Modeling

Fig. 3.13 A process model for addressing ministerial correspondence

the end event “Ministerial correspondence addressed”), the other which goes back
to before activity “Prepare ministerial response”. We use an XOR-join to reconnect
this branch to the point of the process model just before the repetition block. The
model for our example is illustrated in Fig. 3.13.

Question Why do we need to merge the loopback branch of a repetition block with
an XOR-join?

The reason for using an XOR-join is that this gateway has a very simple seman-
tics: it moves any token it receives in its input arc to its output arc, which is what
we need in this case. In fact, if we merged the loopback branch with the rest of the
model using an AND-join we would deadlock since this gateway would try to syn-
chronize the two incoming branches when we know that only one of them can be
active at a time: if we were looping we would receive the token from the loopback
branch; otherwise we would receive it from the other branch indicating that we are
entering the repetition block for the first time. An OR-join would work but is an
overkill since we know that only one branch will be active at a time.

Exercise 3.4 Model the following fragment of a business process for assessing loan
applications.

Once a loan application is received by the loan provider, and before proceeding with its
assessment, the application itself needs to be checked for completeness. If the application is
incomplete, it is returned to the applicant, so that they can fill out the missing information
and send it back to the loan provider. This process is repeated until the application is found
complete.

We have learned how to combine activities, events, and gateways to model basic
business processes. For each such element we have showed its graphical represen-
tation, the rules for combining it with other modeling elements and explained its
behavior in terms of token rules. All these aspects fall under the term components of
a modeling language. If you want to know more about this topic, you can read the
box “Components of a modeling language”.

COMPONENTS OF A MODELING LANGUAGE
A modeling language consists of three parts: syntax, semantics, and notation.
The syntax provides a set of modeling elements and a set of rules to govern

109

Rework and repetition:
ministerial correspondence

A repetition block starts with a XOR-join
and ends with a decision gateway (XOR-split)

M
in

is
te

ria
l c

or
re

sp
on

de
nc

e

110

Parallel activities:
airport security check

70 3 Essential Process Modeling

Fig. 3.5 An example of the use of AND gateways

undergoing the required security checks. After the first activity, and before the last
one, we need to perform two activities which can be executed in any order, i.e. which
do not depend on each other: “Pass personal security screening” and “Pass luggage
screening”. To model this situation we use an AND-split linking activity “Proceed
to security check” with the two screening activities, and an AND-join linking the
two screening activities with activity “Proceed to departure level” (see Fig. 3.5).

The AND-split splits the token coming from activity “Proceed to security check”
into two tokens. Each of these tokens independently flows through one of the two
branches. This means that when we reach an AND-split, we take all outgoing
branches (note that an AND-split may have multiple outgoing arcs). As we said
before, a token is used to indicate the state of a given instance. When multiple to-
kens of the same color are distributed across a process model, e.g. as a result of
executing an AND-split, they collectively represent the state of an instance. For ex-
ample, if a token is on the arc emitting from activity “Pass luggage screening” and
another token of the same color is on the arc incident to activity “Pass personal
security screening”, this indicates an instance of the security check process where
a passenger has just passed the luggage screening but not yet started the personal
security screening.

The AND-join of our example waits for a token to arrive from each of the two
incoming arcs, and once they are all available, it merges the tokens back into one.
The single token is then sent to activity “Proceed to departure level”. This means that
we proceed when all incoming branches have completed (note again that an AND-
join may have multiple incoming arcs). This behavior of waiting for a number of
tokens to arrive and then merging the tokens into one is called synchronization.

Example 3.4 Let us extend the order fulfillment example of Fig. 3.1 by assuming
that a purchase order is only confirmed if the product is in stock, otherwise the pro-
cess completes by rejecting the order. Further, if the order is confirmed, the shipment
address is received and the requested product is shipped while the invoice is emit-
ted and the payment is received. Afterwards, the order is archived and the process
completes.

The resulting model is shown in Fig. 3.6. Let us make a couple of remarks. First,
this model has two activities that are mutually exclusive: “Confirm order” and “Re-

S
ec

ur
ity

 c
he

ck

111

Multiple start events:
order fulfilment

Multiple start events are often considered as a convenient notation
(they capture mutually exclusive triggers to start a process instance)

72 3 Essential Process Modeling

Fig. 3.7 A variant of the order fulfillment process with two different triggers

credit history check on the applicant, which is performed by a financial officer. Once both
the loan risk assessment and the property appraisal have been performed, a loan officer can
assess the applicant’s eligibility. If the applicant is not eligible, the application is rejected,
otherwise the acceptance pack is prepared and sent to the applicant.

There are two situations when a gateway can be omitted. An XOR-join can be
omitted before an activity or event. In this case, the incoming arcs to the XOR-join
are directly connected to the activity/event. An example of this shorthand notation
is shown in Fig. 1.6, where there are two incident arcs to activity “Select suitable
equipment”. An AND-split can also be omitted when it follows an activity or event.
In this case, the outgoing arcs of the AND-split emanate directly from the activ-
ity/event.

3.2.3 Inclusive Decisions

Sometimes we may need to take one or more branches after a decision activity.
Consider the following business process.

Example 3.5 Order distribution process.

A company has two warehouses that store different products: Amsterdam and Hamburg.
When an order is received, it is distributed across these warehouses: if some of the relevant
products are maintained in Amsterdam, a sub-order is sent there; likewise, if some relevant
products are maintained in Hamburg, a sub-order is sent there. Afterwards, the order is
registered and the process completes.

Can we model the above scenario using a combination of AND and XOR gate-
ways? The answer is yes. However, there are some problems. Figures 3.8 and 3.9
show two possible solutions. In the first one, we use an XOR-split with three alter-
native branches: one taken if the order only contains Amsterdam products (where
the sub-order is forwarded to the Amsterdam warehouse), another taken if the order
only contains Hamburg products (similarly, in this branch the sub-order is forwarded

O
rd

er
 fu

lfi
lm

en
t

112

Multiple end events:
order fulfilment

Multiple end events are often considered as a convenient notation
(they are mutually exclusive in the example)

BPMN adopts implicit termination semantics:
a case ends only when each ``token’’ reaches the end

3.2 Branching and Merging 71

Fig. 3.6 A more elaborated version of the order fulfillment process diagram

ject order”, thus we preceded them with an XOR-split (remember to put an activity
before an XOR-split to allow the decision to be taken, such as a check like in this
case, or an approval). Second, the two sequences “Get shipment address”–“Ship
product” and “Emit invoice”–“Receive payment” can be performed independently
of each other, so we put them in a block between an AND-split and an AND-join. In
fact, these two sets of activities are typically handled by different resources within
a seller’s organization, like a sales clerk for the shipment and a financial officer for
the invoice, and thus can be executed in parallel (note the word “meantime” in the
process description, which indicates that two or more activities can be performed at
the same time).

Let us compare this new version of the order fulfillment process with that in
Fig. 3.1 in terms of events. The new version features two end events while the first
version features one end event. In a BPMN model we can have multiple end events,
each capturing a different outcome of the process (e.g. balance paid vs. arrears pro-
cessed, order approved vs. order rejected). BPMN adopts the so-called implicit ter-
mination semantics, meaning that a process instance completes only when each to-
ken flowing in the model reaches an end event. Similarly, we can have multiple start
events in a BPMN model, each event capturing a different trigger to start a process
instance. For example, we may start our order fulfillment process either when a new
purchase order is received or when a revised order is resubmitted. If a revised order
is resubmitted, we first retrieve the order details from the orders database, and then
continue with the rest of the process. This variant of the order fulfillment model is
shown in Fig. 3.7. An instance of this process model is triggered by the first event
that occurs (note the use of an XOR-join to merge the branches coming from the
two start events).

Exercise 3.2 Model the following fragment of a business process for assessing loan
applications.

A loan application is approved if it passes two checks: (i) the applicant’s loan risk assess-
ment, done automatically by a system, and (ii) the appraisal of the property for which the
loan has been asked, carried out by a property appraiser. The risk assessment requires a

O
rd

er
 fu

lfi
lm

en
t

113

Exclusive decisions:
invoice checking process68 3 Essential Process Modeling

Fig. 3.4 An example of the use of XOR gateways

forked with an XOR-split. An XOR gateway is indicated with an empty diamond
or with a diamond marked with an “X”. From now on, we will always use the “X”
marker.

Example 3.2 Invoice checking process.

As soon as an invoice is received from a customer, it needs to be checked for mismatches.
The check may result in either of these three options: i) there are no mismatches, in which
case the invoice is posted; ii) there are mismatches but these can be corrected, in which
case the invoice is re-sent to the customer; and iii) there are mismatches but these cannot
be corrected, in which case the invoice is blocked. Once one of these three activities is
performed the invoice is parked and the process completes.

To model this process we start with a decision activity, namely “Check invoice
for mismatches” following a start event “Invoice received”. A decision activity is
an activity that leads to different outcomes. In our example, this activity results
in three possible outcomes, which are mutually exclusive; so we need to use an
XOR-split after this activity to fork the flow into three branches. Accordingly, three
sequence flows will emanate from this gateway, one towards activity “Post invoice”,
performed if there are no mismatches, another one towards “Re-send invoice to
customer”, performed if mismatches exist but can be corrected, and a third flow
towards “Block invoice”, performed if mismatches exist which cannot be corrected
(see Fig. 3.4). From a token perspective, an XOR-split routes the token coming from
its incoming branch towards one of its outgoing branches, i.e. only one outgoing
branch can be taken.

When using an XOR-split, make sure each outgoing sequence flow is annotated
with a label capturing the condition upon which that specific branch is taken. More-
over, always use mutually exclusive conditions, i.e. only one of them can be true
every time the XOR-split is reached by a token. This is the characteristic of the
XOR-split gateway. In our example an invoice can either be correct, or contain mis-
matches that can be fixed, or mismatches that cannot be fixed: only one of these
conditions is true per invoice received.

It is useful to annotate
branches with the conditions
under which they are taken

In
vo

ic
e

ch
ec

k

114

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

read as
``otherwise’’

Annotated sequence flow

3.2 Branching and Merging 73

Fig. 3.8 Modeling an inclusive decision: first trial

Fig. 3.9 Modeling an inclusive decision: second trial

to the Hamburg warehouse), and a third branch to be taken in case the order con-
tains products from both warehouses (in which case sub-orders are forwarded to
both warehouses). These three branches converge in an XOR-join which leads to
the registration of the order.

While this model captures our scenario correctly, the resulting diagram is some-
what convoluted, since we need to duplicate the two activities that forward sub-
orders to the respective warehouses twice. And if we had more than two warehouses,
the number of duplicated activities would increase. For example, if we had three
warehouses, we would need an XOR-split with seven outgoing branches, and each
activity would need to be duplicated four times. Clearly this solution is not scal-
able.

115

Inclusive decisions:
order distribution

Only XOR / AND gateways, but the diagram is convoluted!
What if we had three or more warehouses? (does not scale)

O
rd

er
 d

is
tri

bu
tio

n

3.2 Branching and Merging 73

Fig. 3.8 Modeling an inclusive decision: first trial

Fig. 3.9 Modeling an inclusive decision: second trial

to the Hamburg warehouse), and a third branch to be taken in case the order con-
tains products from both warehouses (in which case sub-orders are forwarded to
both warehouses). These three branches converge in an XOR-join which leads to
the registration of the order.

While this model captures our scenario correctly, the resulting diagram is some-
what convoluted, since we need to duplicate the two activities that forward sub-
orders to the respective warehouses twice. And if we had more than two warehouses,
the number of duplicated activities would increase. For example, if we had three
warehouses, we would need an XOR-split with seven outgoing branches, and each
activity would need to be duplicated four times. Clearly this solution is not scal-
able.

116

Inclusive decisions:
order distribution

Only XOR / AND gateways, the diagram can ``scale’’,
but is it correct? (also the case no-warehouse is now possible)

O
rd

er
 d

is
tri

bu
tio

n

117

Inclusive decisions
(one, many)

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

74 3 Essential Process Modeling

Fig. 3.10 Modeling an inclusive decision with the OR gateway

In the second solution we use an AND-split with two outgoing arcs, each
of which leads to an XOR-split with two alternative branches. One is taken
if the order contains Amsterdam (Hamburg) products, in which case an ac-
tivity is performed to forward the sub-order to the respective warehouse; the
other branch is taken if the order does not contain any Amsterdam (Hamburg)
products, in which case nothing is done until the XOR-join, which merges
the two branches back. Then an AND-join merges the two parallel branches
coming out of the AND-split and the process completes by registering the or-
der.

What is the problem with this second solution? The example scenario allows
three cases: the products are in Amsterdam only, in Hamburg only, or in both ware-
houses, while this solution allows one more case, i.e. when the products are in
neither of the warehouses. This case occurs when the two empty branches of the
two XOR-splits are taken and results in doing nothing between activity “Check or-
der line items” and activity “Register order”. Thus this solution, despite being more
compact than the first one, is wrong.

To model situations where a decision may lead to one or more options be-
ing taken at the same time, we need to use an inclusive (OR) split gateway. An
OR-split is similar to the XOR-split, but the conditions on its outgoing branches
do not need to be mutually exclusive, i.e. more than one of them can be true
at the same time. When we encounter an OR-split, we thus take one or more
branches depending on which conditions are true. In terms of token seman-
tics, this means that the OR-split takes the input token and generates a num-
ber of tokens equivalent to the number of output conditions that are true, where
this number can be at least one and at most as the total number of outgoing
branches. Similar to the XOR-split gateway, an OR-split can also be equipped
with a default flow, which is taken only when all other conditions evaluate to
false.

Figure 3.10 shows the solution to our example using the OR gateway. After the
sub-order has been forwarded to either of the two warehouses or to both, we use
an OR-join to synchronize the flow and continue with the registration of the order.
An OR-join proceeds when all active incoming branches have completed. Waiting
for an active branch means waiting for an incoming branch that will ultimately de-

118

Inclusive decisions:
order distribution

using OR gateways, the diagram can ``scale’’,
but all the issues with unmatched OR-joins in EPC are still valid!

Use OR-gateways only when strictly necessary

O
rd

er
 d

is
tri

bu
tio

n

119

XOR + AND + OR:
order fulfilment3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Better if gateways are balanced

O
rd

er
 fu

lfi
lm

en
t

120

XOR + AND + OR:
order fulfillment3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Better if gateways are balanced

O
rd

er
 fu

lfi
lm

en
t

121

XOR + AND + OR:
order fulfillment3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Better if gateways are balanced

O
rd

er
 fu

lfi
lm

en
t

Placing items in lanes

122

events: must be placed in the proper lane

activities: must be placed in the proper lane

gateways:
(X)OR-splits: same lane as preceding decision activity

AND-split: placement is irrelevant
 (any kind of) join: placement is irrelevant

data-objects: placement is irrelevant

123

Resources as lanes:
order fulfillment

Identify sub-processes

124

98 4 Advanced Process Modeling

Fig. 4.1 Identifying sub-processes in the order fulfillment process of Fig. 3.12

materials from Supplier 1(2)”, lead together to the acquisition of raw materials.
Thus these activities, and their connecting gateways, can be encapsulated in a sub-
process. In other words, they can be seen as the internal steps of a macro-activity
called “Acquire raw materials”. Similarly, the two parallel branches for shipping and
invoicing the order can be grouped under another sub-process activity called “Ship
and invoice”. Figure 4.1 illustrates the resulting model, where the above activities
have been enclosed in two sub-process activities. We represent such activities with
a large rounded box which encloses the internal steps. As we can observe from
Fig. 4.1, we also added a start event and an end event inside each sub-process activ-
ity, to explicitly indicate when the sub-process starts and completes.

Recall that our initial objective was to simplify a process model. Once we have
identified the boundaries of the sub-processes, we can simplify the model by hid-
ing the content of its sub-processes, as shown in Fig. 4.2. This is done by replacing
the macro-activity representing the sub-process with a standard-size activity. We
indicate that this activity hides a sub-process by marking it with a small square
with a plus sign (+) inside (like if we could expand the content of that activity
by pressing the plus button). This operation is called collapsing a sub-process. By
collapsing a sub-process we reduce the total number of activities (the order ful-
fillment process has only six activities now), thus improving the model readabil-
ity. In BPMN, a sub-process which hides its internal steps is called collapsed sub-
process, as opposed to an expanded sub-process which shows its internal steps (as
in Fig. 4.1).

O
rd

er
 fu

lfi
lm

en
t

implicit XOR

4.1 Process Decomposition 99

Fig. 4.2 A simplified version of the order fulfillment process after hiding the content of its sub-
processes

Exercise 4.1 Identify suitable sub-processes in the process for assessing loan ap-
plications modeled in Exercise 3.5.

Hint Use the building blocks that you created throughout Exercises 3.1–3.4.

Collapsing a sub-process does not imply losing its content. The sub-process
is still there, just defined at an abstraction level below. In fact, we can nest sub-
processes in multiple levels, so as to decompose a process model hierarchically. An
example is shown in Fig. 4.3, which models a business process for disbursing home
loans. In the first level we identified two sub-processes: one for checking the appli-
cant’s liability, the other for signing the loan. In the second level, we factored out
the scheduling of the loan disbursement within the process for signing loans into a
separate sub-process.

As we go down the hierarchical decomposition of a process model, we can add
more details. For example, we may establish a convention that at the top level we
only model core business activities, at the second level we add decision points, and
so on all the way down to modeling exceptions and details that are only relevant for
process automation.

Question When should we decompose a process model into sub-processes?

We should use sub-processes whenever a model becomes too large that is hard to
understand. While it is hard to precisely define when a process model is “too large”,
since understandability is subjective, it has been shown that using more than ap-
proximately 30 flow objects (i.e. activities, events, gateways) leads to an increased
probability of making mistakes in a process model (e.g. introducing behavioral is-
sues). Thus, we suggest to use as few elements as possible per each process model
level, and in particular to decompose a process model if this has more than 30 flow
objects.

Reducing the size of a process model, for example by collapsing its sub-
processes, is one of the most effective ways of improving a process model’s read-
ability. Other structural aspects that affect the readability include the density of the

Collapsed sub-processes

125

O
rd

er
 fu

lfi
lm

en
t

implicit XOR

Exercise: basics

126

Draw the EPC diagram that corresponds to
the BPMN diagram below

Exercise: basics

127

Draw the EPC diagram that corresponds to
the BPMN diagram below

128

68 3 Essential Process Modeling

Fig. 3.4 An example of the use of XOR gateways

forked with an XOR-split. An XOR gateway is indicated with an empty diamond
or with a diamond marked with an “X”. From now on, we will always use the “X”
marker.

Example 3.2 Invoice checking process.

As soon as an invoice is received from a customer, it needs to be checked for mismatches.
The check may result in either of these three options: i) there are no mismatches, in which
case the invoice is posted; ii) there are mismatches but these can be corrected, in which
case the invoice is re-sent to the customer; and iii) there are mismatches but these cannot
be corrected, in which case the invoice is blocked. Once one of these three activities is
performed the invoice is parked and the process completes.

To model this process we start with a decision activity, namely “Check invoice
for mismatches” following a start event “Invoice received”. A decision activity is
an activity that leads to different outcomes. In our example, this activity results
in three possible outcomes, which are mutually exclusive; so we need to use an
XOR-split after this activity to fork the flow into three branches. Accordingly, three
sequence flows will emanate from this gateway, one towards activity “Post invoice”,
performed if there are no mismatches, another one towards “Re-send invoice to
customer”, performed if mismatches exist but can be corrected, and a third flow
towards “Block invoice”, performed if mismatches exist which cannot be corrected
(see Fig. 3.4). From a token perspective, an XOR-split routes the token coming from
its incoming branch towards one of its outgoing branches, i.e. only one outgoing
branch can be taken.

When using an XOR-split, make sure each outgoing sequence flow is annotated
with a label capturing the condition upon which that specific branch is taken. More-
over, always use mutually exclusive conditions, i.e. only one of them can be true
every time the XOR-split is reached by a token. This is the characteristic of the
XOR-split gateway. In our example an invoice can either be correct, or contain mis-
matches that can be fixed, or mismatches that cannot be fixed: only one of these
conditions is true per invoice received.

In
vo

ic
e

ch
ec

k

Exercise: basics
Draw the EPC diagram that corresponds to

the BPMN diagram below

129

68 3 Essential Process Modeling

Fig. 3.4 An example of the use of XOR gateways

forked with an XOR-split. An XOR gateway is indicated with an empty diamond
or with a diamond marked with an “X”. From now on, we will always use the “X”
marker.

Example 3.2 Invoice checking process.

As soon as an invoice is received from a customer, it needs to be checked for mismatches.
The check may result in either of these three options: i) there are no mismatches, in which
case the invoice is posted; ii) there are mismatches but these can be corrected, in which
case the invoice is re-sent to the customer; and iii) there are mismatches but these cannot
be corrected, in which case the invoice is blocked. Once one of these three activities is
performed the invoice is parked and the process completes.

To model this process we start with a decision activity, namely “Check invoice
for mismatches” following a start event “Invoice received”. A decision activity is
an activity that leads to different outcomes. In our example, this activity results
in three possible outcomes, which are mutually exclusive; so we need to use an
XOR-split after this activity to fork the flow into three branches. Accordingly, three
sequence flows will emanate from this gateway, one towards activity “Post invoice”,
performed if there are no mismatches, another one towards “Re-send invoice to
customer”, performed if mismatches exist but can be corrected, and a third flow
towards “Block invoice”, performed if mismatches exist which cannot be corrected
(see Fig. 3.4). From a token perspective, an XOR-split routes the token coming from
its incoming branch towards one of its outgoing branches, i.e. only one outgoing
branch can be taken.

When using an XOR-split, make sure each outgoing sequence flow is annotated
with a label capturing the condition upon which that specific branch is taken. More-
over, always use mutually exclusive conditions, i.e. only one of them can be true
every time the XOR-split is reached by a token. This is the characteristic of the
XOR-split gateway. In our example an invoice can either be correct, or contain mis-
matches that can be fixed, or mismatches that cannot be fixed: only one of these
conditions is true per invoice received.

Exercise: basics
Draw the EPC diagram that corresponds to

the BPMN diagram below

130

3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

O
rd

er
 fu

lfi
lm

en
t

Exercise: basics
Draw the EPC diagram that corresponds to

the BPMN diagram below

131

3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Exercise: basics
Draw the EPC diagram that corresponds to

the BPMN diagram below

AND

AND

Exercises

132

Transfer the following verbal description into an EPC diagram

You are tasked with modeling the Customer Order Process of a small
e-commerce company.
The process starts when a customer places an order online and ends
when the order is successfully delivered.
The process must involve at least the following activities:
checking if the items are available in stock,
a notification to the customer if the items are not available,
the preparation of the order for shipment,
and the processing of the payment.

Send your solutions to: bruni@di.unipi.it

mailto:bruni@di.unipi.it

133

Exercises
Draw the BPMN diagram that corresponds to

the EPC diagram below
Travel request

Receive dates

Book Hotel Book Flight

is car needed?

Book Car

Confirm Cancel

Change dates

Success Failure

Send your solutions to:
 bruni@di.unipi.it

mailto:bruni@di.unipi.it

