
Business Processes Modelling MPB (6 cfu, 295AA)

Roberto Bruni

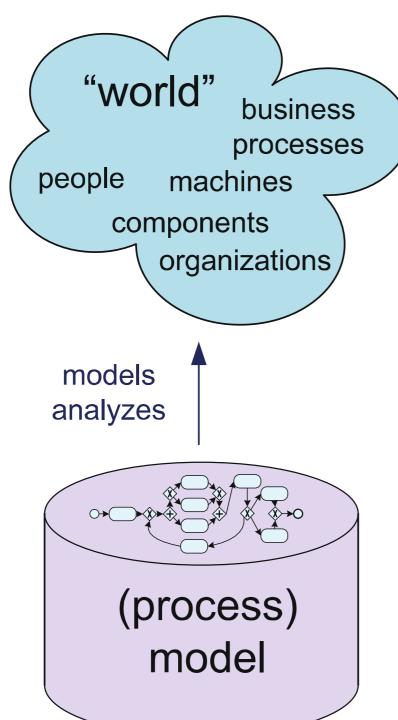
http://www.di.unipi.it/~bruni

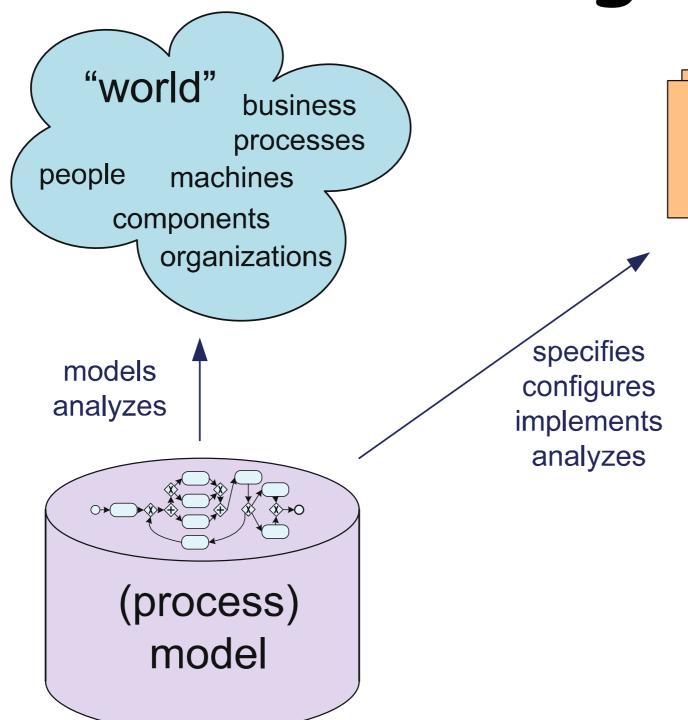
05 - Process Mining

We overview the key principles of process mining

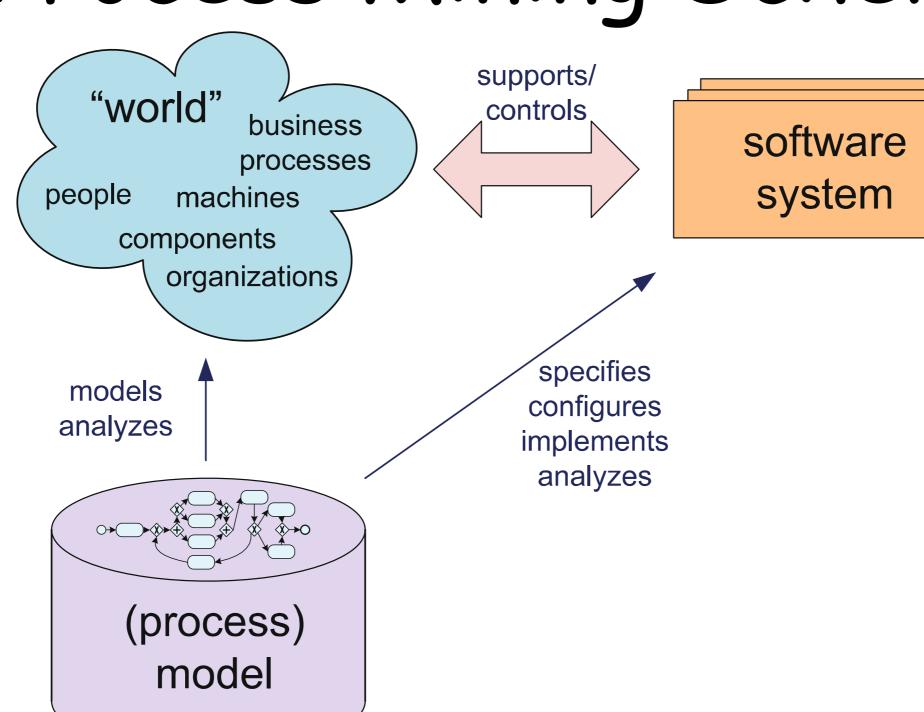
Chapters 1, 6. Process Mining. W. van der Aalst

Process Mining


Process mining is a relative young research discipline that sits between


machine learning and data mining on the one hand

and process modeling and analysis on the other hand.


The idea is to discover, monitor and improve real processes by **extracting knowledge from event logs** readily available in today's systems.

```
"world" business processes people machines components organizations
```


software system

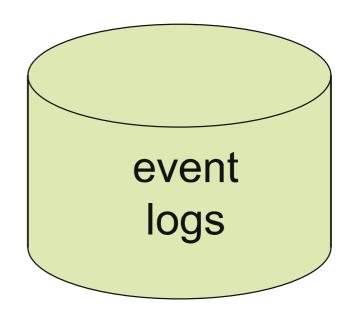
Processes, Cases, Events, Attributes

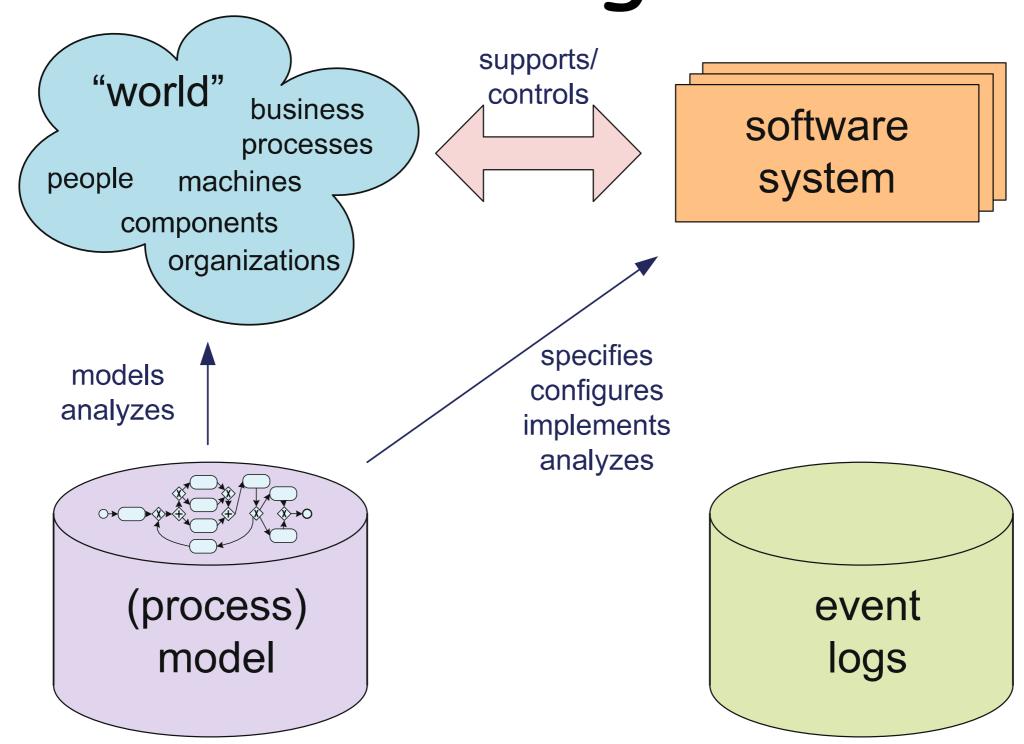
Each process defines a set of cases.

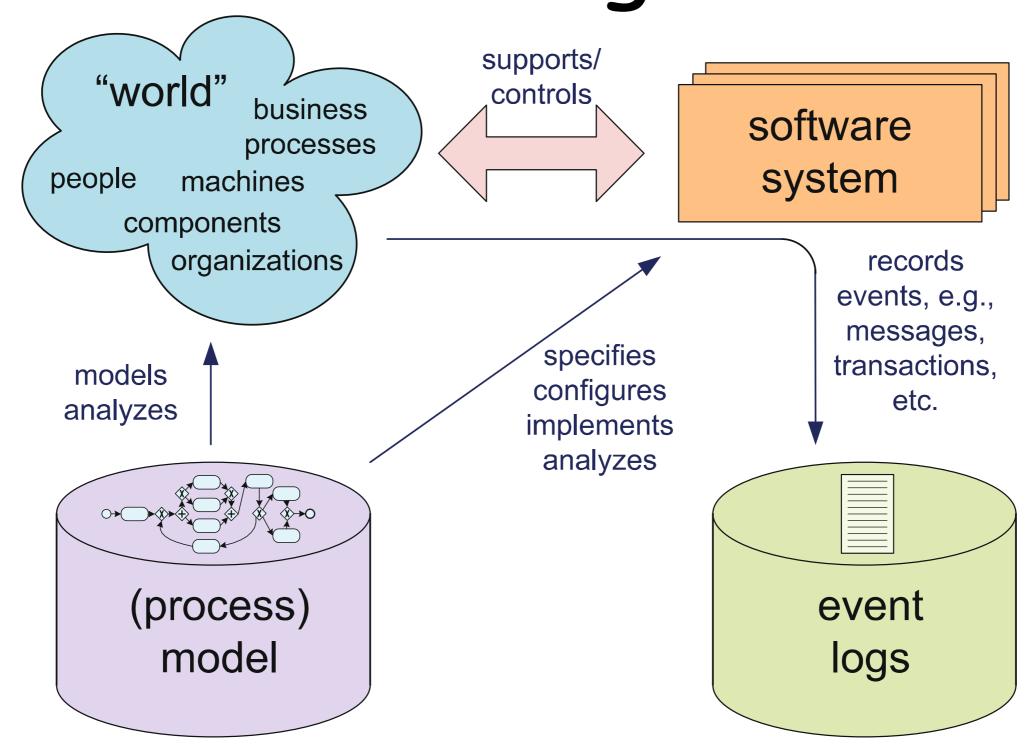
Each case consists of a series of events.

Each event is a unique instance of a task in the process and it relates to exactly one case

Events are ordered in time through their timestamps.


Events can have attributes, like case id, activity, timestamp, duration, cost, and resource.


Event Logs


Let us assume that some software system can record the information about all events:

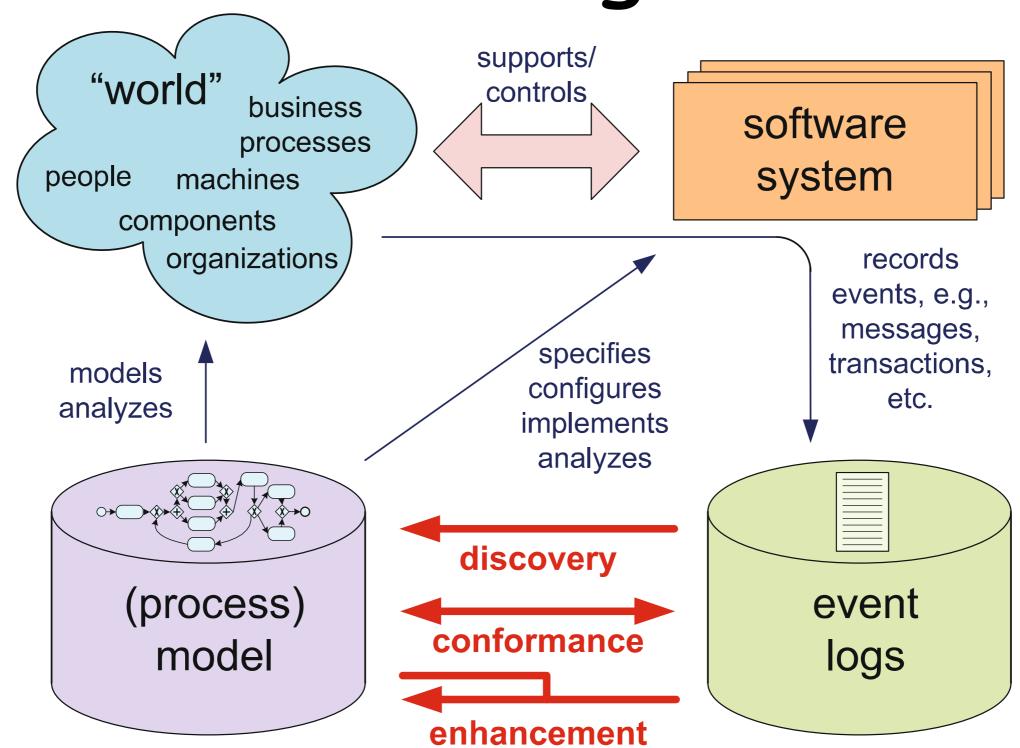
each event is related by "case id" to a particular case (i.e., a process instance).

each event refers a particular "activity" (i.e., a well-defined step in the process)

Event Log Example

Case id Event id		Properties							
		Timestamp	Activity	Resource	Cost	• • •			
1	35654423	30-12-2010:11.02	Register request	Pete	50	• • •			
2	35654483	30-12-2010:11.32	Register request	Mike	50				
2	35654485	30-12-2010:12.12	Check ticket	Mike	100				
2	35654487	30-12-2010:14.16	Examine casually	Pete	400				
1	35654424	31-12-2010:10.06	Examine thoroughly	Sue	400				
2	35654488	05-01-2011:11.22	Decide	Sara	200	• • •			
1	35654425	05-01-2011:15.12	Check ticket	Mike	100				
1	35654426	06-01-2011:11.18	Decide	Sara	200				
1	35654427	07-01-2011:14.24	Reject request	Pete	200				
2	35654489	08-01-2011:12.05	Pay compensation	Ellen	200				

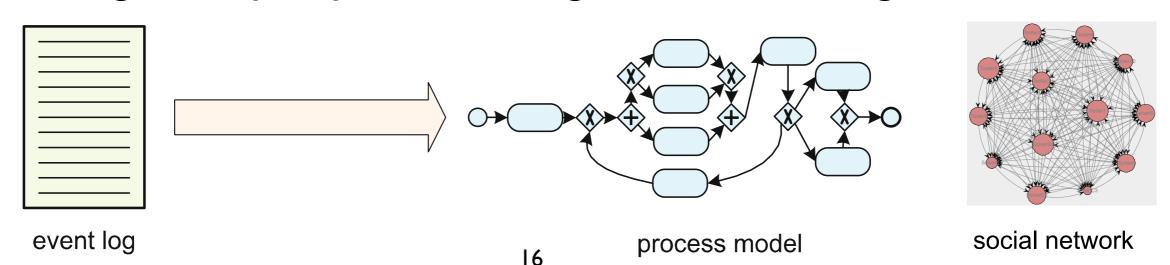
Event Log Example


ordered by Timestamp

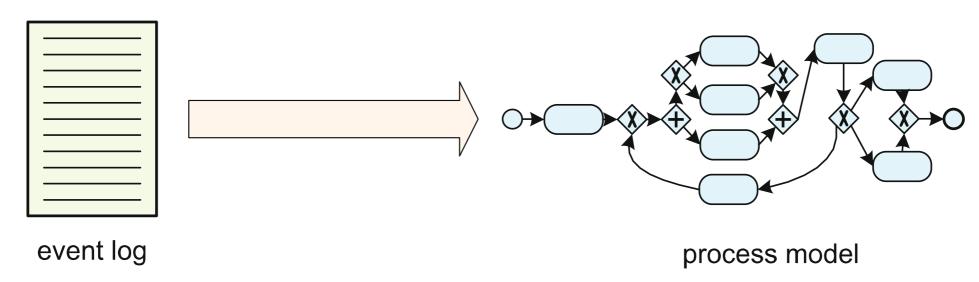
Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost	• • •
1	35654423	30-12-2010:11.02	Register request	Pete	50	• • •
2	35654483	30-12-2010:11.32	Register request	Mike	50	• • •
2	35654485	30-12-2010:12.12	Check ticket	Mike	100	• • •
2	35654487	30-12-2010:14.16	Examine casually	Pete	400	• • •
1	35654424	31-12-2010:10.06	Examine thoroughly	Sue	400	• • •
2	35654488	05-01-2011:11.22	Decide	Sara	200	
1	35654425	05-01-2011:15.12	Check ticket	Mike	100	• • •
1	35654426	06-01-2011:11.18	Decide	Sara	200	• • •
1	35654427	07-01-2011:14.24	Reject request	Pete	200	• • •
2	35654489	08-01-2011:12.05	Pay compensation	Ellen	200	• • •

Event Log Example

grouped by Case id, ordered by Timestamp


Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost	• • •
1	35654423	30-12-2010:11.02	Register request	Pete	50	
	35654424	31-12-2010:10.06	Examine thoroughly	Sue	400	
	35654425	05-01-2011:15.12	Check ticket	Mike	100	
	35654426	06-01-2011:11.18	Decide	Sara	200	
	35654427	07-01-2011:14.24	Reject request	Pete	200	
2	35654483	30-12-2010:11.32	Register request	Mike	50	
	35654485	30-12-2010:12.12	Check ticket	Mike	100	
	35654487	30-12-2010:14.16	Examine casually	Pete	400	
	35654488	05-01-2011:11.22	Decide	Sara	200	
	35654489	08-01-2011:12.05	Pay compensation	Ellen	200	

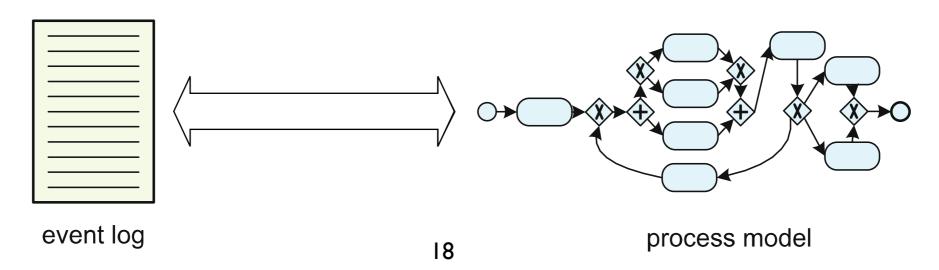
Discovery


A discovery technique takes an event log and produces a model (without using any a-priori information)

If the event log contains information about resources, one can also discover resource-related models, e.g., a social network showing how people work together in an organization.

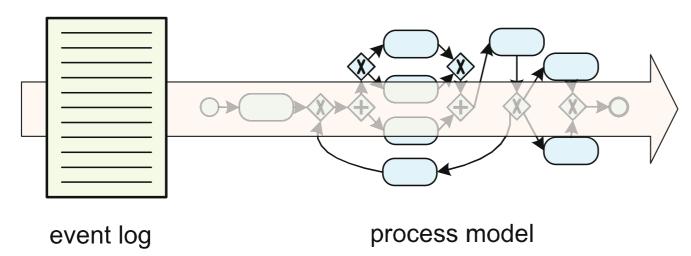
Play-in

Play-In


Mining **Discovery**

Conformance

Conformance checking measures how reality, as recorded in the log, conforms to the process model, and vice versa.

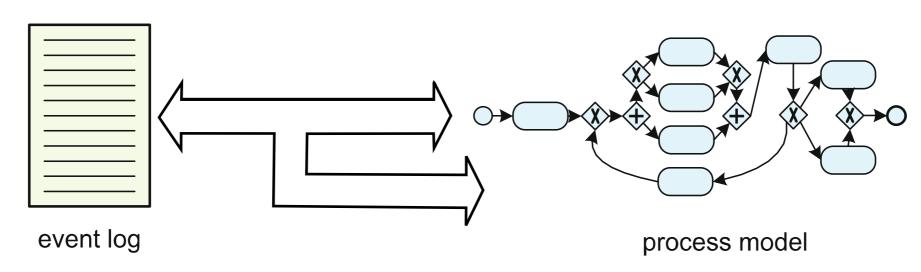

An existing process model is compared with an event log.

Conformance checking may be used to detect, locate and explain deviations, and to measure the severity of these deviations.

Replay

Replay

- extended model showing times, frequencies, etc.
- diagnostics
- predictions
- recommendations


Conformance checking

Performance analysis
Bottlenecks detection
Predictive models (based on past)
Operational support (deviation detection)

Enhancement

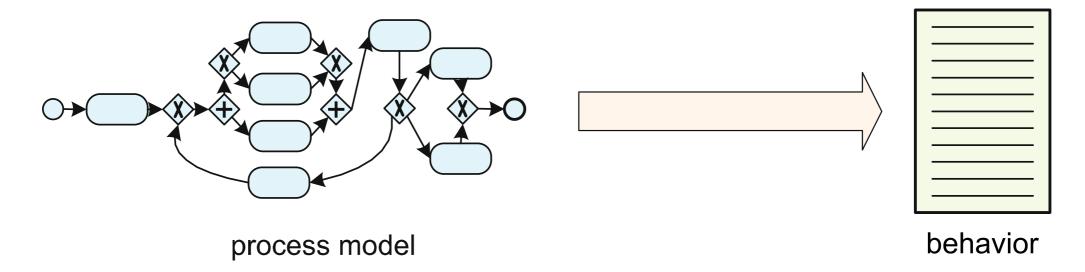
Whereas conformance checking measures the alignment between a model and reality

enhancement aims to extend/improve existing models/systems using information about the actual process recorded in some event log.

Enhancement: Two angles

First viewpoint (the model is supposed to be **descriptive**): the model does not capture the real behavior ("the model is wrong, how to improve it?")

Second viewpoint (the model is **normative**) reality deviates from the desired model ("the event log is wrong, how to control execution?").


Enhancement: Model Repair

One type of enhancement is **repair**, i.e., modifying the model to better reflect reality.

For example, if two activities are modeled sequentially but in reality can happen in any order, then the model may be corrected to reflect this.

Play-out

Play-Out

Workflow engine
Simulation engine
Trace generation
Model checking

Discovery and conformance: an example

Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost	• • •
1	35654423	30-12-2010:11.02	Register request	Pete	50	
	35654424	31-12-2010:10.06	Examine thoroughly	Sue	400	• • •
	35654425	05-01-2011:15.12	Check ticket	Mike	100	• • •
	35654426	06-01-2011:11.18	Decide	Sara	200	• • •
	35654427	07-01-2011:14.24	Reject request	Pete	200	•••
2	35654483	30-12-2010:11.32	Register request	Mike	50	
	35654485	30-12-2010:12.12	Check ticket	Mike	100	• • •
	35654487	30-12-2010:14.16	Examine casually	Pete	400	• • •
	35654488	05-01-2011:11.22	Decide	Sara	200	• • •
	35654489	08-01-2011:12.05	Pay compensation	Ellen	200	• • •

Two cases

Two traces

Ten (ordered) events

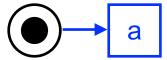
Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost	• • •
1			Register request			
			Examine thoroughly			
			Check ticket			
			Decide			
			Reject request			
2			Register request			
			Check ticket			
			Examine casually			
			Decide			
			Pay compensation			

Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost	• • •
1			a (Register request)		
			b Examine thoroughly	5		
			Check ticket			
			e Decide			
			h (Reject request			
2			a (Register request)		
			Check ticket	5		
			C Examine casually			
			e Decide			
			G Pay compensation			

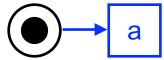
Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost	• • •
1			а			
			b			
			d			
			е			
			h			
2			а			
			d			
			C			
			е			
			g			_

```
Case id
          Event id
                       Properties
                                                                Resource
                       Timestamp
                                          Activity
                                                                            Cost
                               \langle abdeh \rangle
                               <adceg>
```

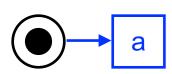
Case id	Event id	Properties					Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost				Timestamp	Activity	Resource	Cost	
1	35654423	30-12-2010:11.02	Register request	Pete	50		6	35654871	06-01-2011:15.02	Register request	Mike	50	
	35654424	31-12-2010:1	Examine thoroughly	Sue	400			33654873	06-01-2011:16.06	E amine casually	Ellen	400	
	35654425	05-01-2011:1	Checlotic	4	100			33031073		C ecl tic et	Mike	100	
	35654426	06-01-2011:1	D c'e	Saa	200	()	() Г	2565 0 5	0100201.0.2	Daila			•••
	35654427	07-01-2011:14.	Reject request	Pele	200		9 4	35654877	16-01-2011:11.47	Pay compensation	Sara Mike	200 200	•••
2	35654483	30-12-2010:11.32	Register request	Mike	50			33034077	10-01-2011.11	1 ay compensation	WIIKC	200	•••
	35654485	30-12-2010:12.12	Check ticket	Mike	100		• • •	•••	•••	•••	•••	•••	•••
	35654487	30-12-2010:14.16	Examine casually	Pete	400								
	35654488	05-01-2011:11.22	Decide	Sara	200								
	35654489	08-01-2011:12.05	Pay compensation	Ellen	200				Table 1.2 A m	nore compact			
3	35654521	30-12-2010:14.32	Register request	Pete	50				representation (of log shown			
	35654522	30-12-2010:15.06	Examine casually	Mike	400				in Table 1.1: <i>a</i>	= register			
	35654524	30-12-2010:16.34	Check ticket	Ellen	100					•			
	35654525	06-01-2011:09.18	Decide	Sara	200				request, b = ex				
	35654526	06-01-2011:12.18	Reinitiate request	Sara	200				thoroughly, c =	= examine			
	35654527	06-01-2011:13.06	Examine thoroughly	Sean	400				casually, $d = c$	check ticket,			
	35654530	08-01-2011:11.43	Check ticket	Pete	100				e = decide, f =	ŕ			
	35654531	09-01-2011:09.55	Decide	Sara	200								
	35654533	15-01-2011:10.45	Pay compensation	Ellen	200				request, $g = pa$	•			
4	35654641	06-01-2011:15.02	Register request	Pete	50				compensation,	and $h = reject$	1		
	35654643	07-01-2011:12.06	Check ticket	Mike	100				request				
	35654644	08-01-2011:14.43	Examine thoroughly	Sean	400		-		1				
	35654645	09-01-2011:12.02	Decide	Sara	200		Case id			Trace			
	35654647	12-01-2011:15.44	Reject request	Ellen	200								
5	35654711	06-01-2011:09.02	Register request	Ellen	50		1			/ n. 1 1 . 1.\			
	35654712	07-01-2011:10.16	Examine casually	Mike	400		1			$\langle a, b, d, e, h \rangle$			
	35654714	08-01-2011:11.22	Check ticket	Pete	100		2			$\langle a, d, c, e, g \rangle$			
	35654715	10-01-2011:13.28	Decide	Sara	200		_						
	35654716	11-01-2011:16.18	Reinitiate request	Sara	200		3			$\langle a, c, d, e, f, l \rangle$	$\langle o, d, e, g \rangle$		
	35654718	14-01-2011:14.33	Check ticket	Ellen	100		Л						
	35654719	16-01-2011:15.50	Examine casually	Mike	400		4			$\langle a, d, b, e, h \rangle$			
	35654720	19-01-2011:11.18	Decide	Sara	200		5			$\langle a, c, d, e, f, a \rangle$	1.c.e.f.	$c.d.\epsilon$	$\langle h \rangle$
	35654721	20-01-2011:12.48	Reinitiate request	Sara	200						i, i, j, j, j	c, c, .	, ,
	35654722	21-01-2011:09.06	Examine casually	Sue	400		6			$\langle a, c, d, e, g \rangle$			
	35654724	21-01-2011:11.34	Check ticket	Pete	100								
	35654725	23-01-2011:13.12	Decide	Sara	200		• • •			• • •			
	35654726	24-01-2011:14.56	Reject request	Mike	200		30						

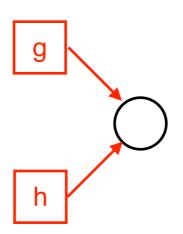

Case id	Trace
1	$\langle a,b,d,e,h \rangle$
2	$\langle a, d, c, e, g \rangle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a,d,b,e,h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$
•••	•••
31	

All cases start with a

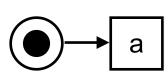

Case id	Trace
1	$\langle a, b, d, e, h \rangle$ $\langle a, d, c, e, g \rangle$ $\langle a, c, d, e, f, b, d, e, g \rangle$ $\langle a, d, b, e, h \rangle$ $\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$ $\langle a, c, d, e, g \rangle$
2	$\langle a, d, c, e, g \rangle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a,d,b,e,h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a,c,d,e,g \rangle$
• • •	

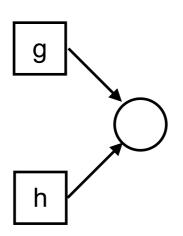
All cases start with a


Trace
$\langle a, b, d, e, h \rangle$ $\langle a, d, c, e, g \rangle$ $\langle a, c, d, e, f, b, d, e, g \rangle$ $\langle a, d, b, e, h \rangle$ $\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$ $\langle a, c, d, e, g \rangle$
$\langle a, d, c, e, g \rangle$
$\langle a, c, d, e, f, b, d, e, g \rangle$
$\langle a,d,b,e,h \rangle$
$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
$\langle a, c, d, e, g \rangle$

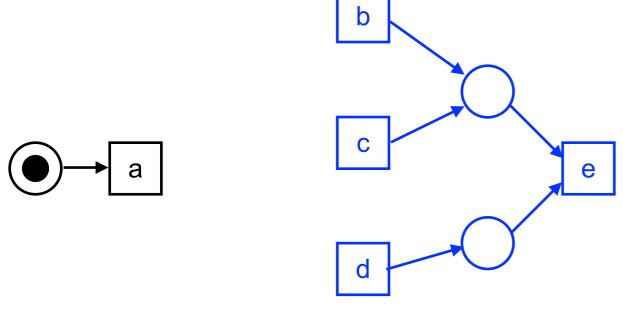


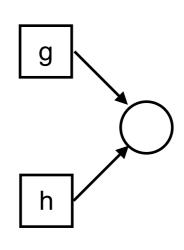
All cases start with a and end with either g or h.


Case id	Trace
1	$\langle a, b, d, e, h \rangle$ $\langle a, d, c, e, g \rangle$ $\langle a, c, d, e, f, b, d, e, g \rangle$ $\langle a, d, b, e, h \rangle$ $\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$ $\langle a, c, d, e, g \rangle$
2	$\langle a, d, c, e g \rangle$
3	$\langle a, c, d, e, f, b, d, e \rangle$
4	$\langle a, d, b, e h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e \mid g \rangle$
•••	
 34	

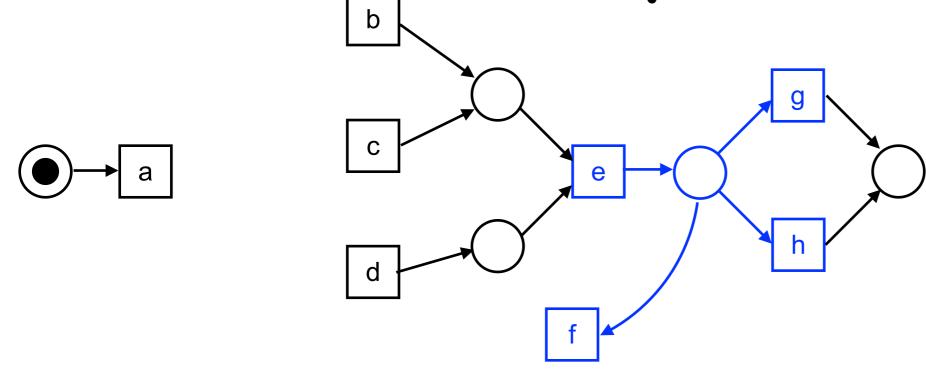


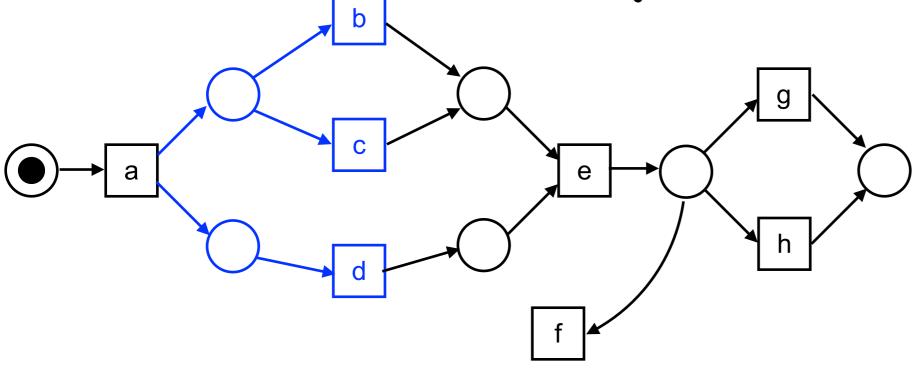
All cases start with a and end with either g or h.


Case id	Trace
1	$\langle a, b, d, e, h \rangle$ $\langle a, d, c, e, g \rangle$ $\langle a, c, d, e, f, b, d, e, g \rangle$ $\langle a, d, b, e, h \rangle$ $\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$ $\langle a, c, d, e, g \rangle$
2	$\langle a, d, c, e g \rangle$
3	$\langle a, c, d, e, f, b, d, e \rangle$
4	$\langle a, d, b, e h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e \mid g \rangle$
35	



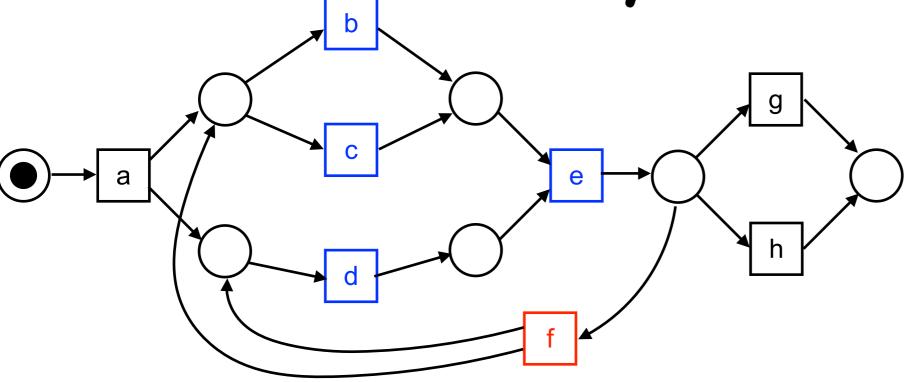
d and one of the examination activities (b or c).


Trace
$\langle a, b, d, e, h \rangle$
$\langle a, d, c, e, g \rangle$ $\langle a, c, d, e, f, b, d, e, g \rangle$
$\langle a, c(d, e, f, b(d, e, g) \rangle$
$\langle a, a, b, e, h \rangle$
$\langle a, c(d, e), f, d(c, e), f, a, d, e, h \rangle$
$\langle a, c d, e, g \rangle$
• • •

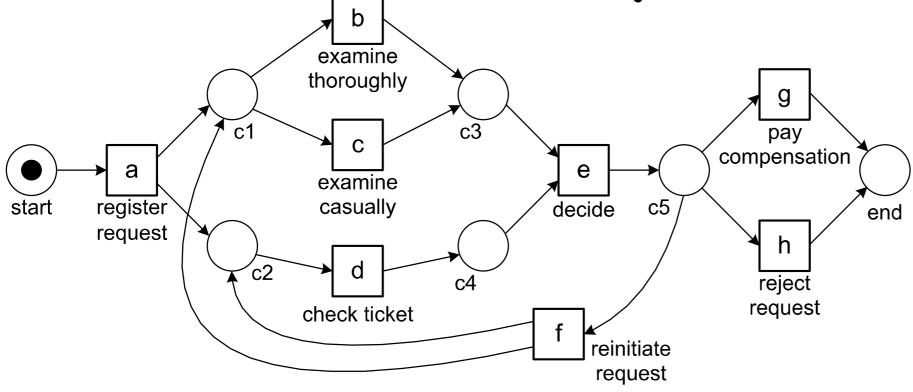

d and one of the examination activities (b or c).

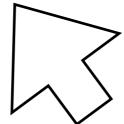
Case id	Trace
1	$\langle a, b, d, e, h \rangle$
2	$\langle a, a, c, e, g \rangle$
3	$\langle a, b, d, e, h \rangle$ $\langle a, a, c, e, g \rangle$ $\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a, a, b, e, h \rangle$
5	$\langle a, c(d, e), f, d(c, e), f, d, d, e, h \rangle$
6	$\langle a, c d, e, g \rangle$
	•••
37	

Moreover, e is always followed by f, g, or h.


Case id	Trace
1	$\langle a, b, d(e, h) \rangle$
2	$\langle a, d, c e, g \rangle$ $\langle a, c, d e, f, b, d e, g \rangle$ $\langle a, d, b e, h \rangle$
3	$\langle a, c, d e, f, b, d e, g \rangle$
4	$\langle a, d, b e, h \rangle$
5	$\langle a, c, d e, f, d, c e, f, c, d e, h \rangle$
6	$\langle a, c, d e, g \rangle$
•••	•••
38	

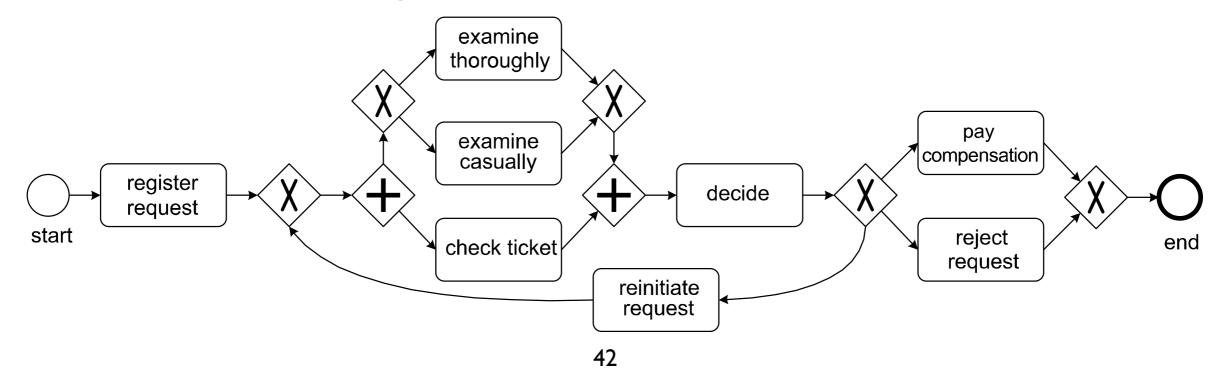
b/c and d
are executed in any order
(bd,db,cd,dc)
which suggests they are

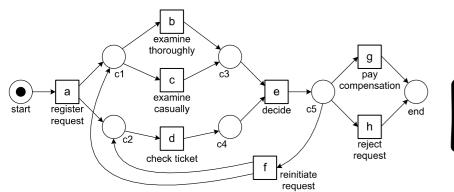

which suggests they are executed in parallel


Case id	Trace
1	$\langle a(b,d,e,h)\rangle$
2	$\langle a(b,d,e,h) \rangle$ $\langle a(d,c,e,g) \rangle$
3	$\langle a(c,d,e,f(b,d)e,g\rangle$
4	$\langle ad, b, e, h \rangle$
5	$\langle a(c,d,e,f(d,c,e,f,c,d,e,h)\rangle$
6	$\langle a c, d, e, g \rangle$
•••	• • •
39	

The repeated execution of b/c, d, and e suggests the presence of a loop (over f).

Trace
$\langle a,b,d,e,h \rangle$
$\langle a,d,c,e,g \rangle$
$\langle a, c, d, e f, b, d, e g \rangle$ $\langle a, d, b, e, h \rangle$
$\langle a,d,b,e,h \rangle$
$\langle a, c, d, e f, d, c, e f, c, d, e h \rangle$ $\langle a, c, d, e, g \rangle$
$\langle a, c, d, e, g \rangle$
•••


Replay:
log features are
adequately captured by
the net


Case id		Trace
1	$L(N) \ni$	$\langle a, b, d, e, h \rangle$
2	$L(N) \ni$	$\langle a, d, c, e, g \rangle$
3	$L(N) \ni$	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$L(N) \ni$	$\langle a, d, b, e, h \rangle$
5	$L(N) \ni$	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$L(N) \ni$	$\langle a, c, d, e, g \rangle$
		• • •
41		

Mining Other Models

We used Petri nets to represent the discovered process models, because Petri nets are a succinct way of representing processes and have unambiguous but intuitive semantics.

However, some mining techniques can apply to other representations as well.

Discussion

Case id	Trace
1	$\langle a,b,d,e,h \rangle$
2	$\langle a, d, c, e, g \rangle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a,d,b,e,h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$

The discovered net also allows for traces not in the log, e.g.

(a, c, d, e, f, c, d, e, f, c, d, e, f, c, d, e, f, b, d, e, g >

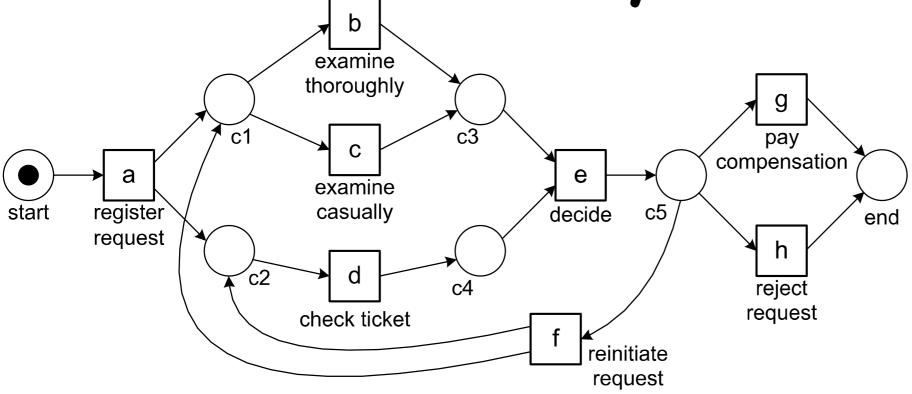
This is a desired phenomenon:

the goal of a discovery procedure is not to represent exactly the particular set of sample traces in the event log.

Process mining algorithms must generalize the behavior contained in the log to show the most likely underlying model that is not invalidated by the next set of observations

Overfitting and Underfitting

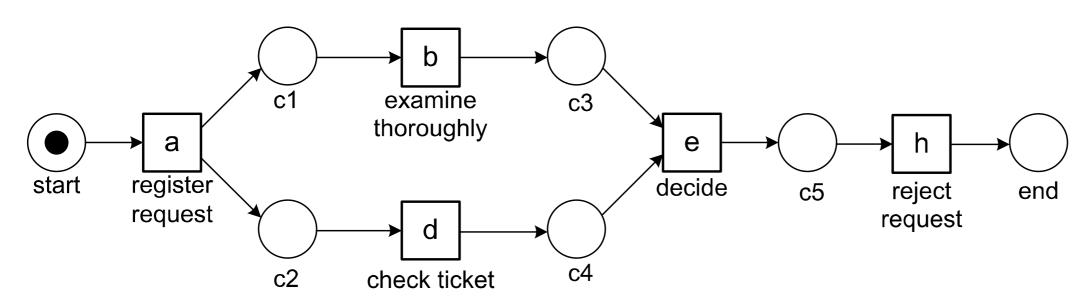
One of the challenges of process mining is to balance between


overfitting:

the model is too specific it only allows for the accidental behavior observed

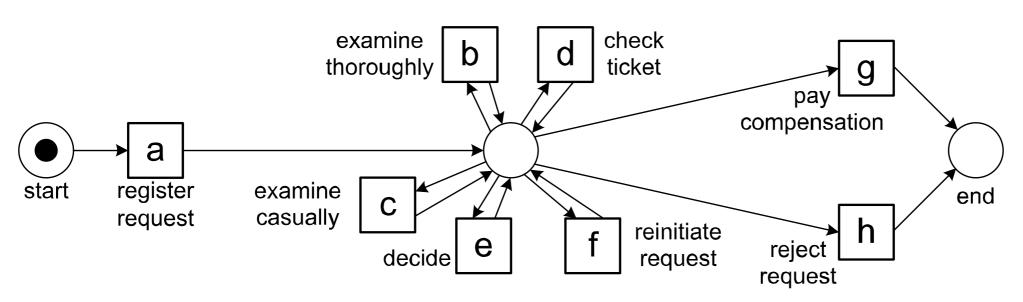
and

underfitting:


the model is too general it allows for behavior unrelated to the behavior observed

When comparing the event log and the model, there seems to be a good balance between "overfitting" and "underfitting".

Case id	Trace
1	$\langle a,b,d,e,h \rangle$
2	$\langle a, d, c, e, g \rangle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a,d,b,e,h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$
•••	•••
45	_


Another Discovery Example

Another net could fail to replay some traces

Case id	Trace
1	$\langle a,b,d,e,h \rangle$
2	$\langle a, d, c, c, g \rangle$
2	(a, a, d, a, f, b, d, a, a)
4	$\langle a, d, b, e, h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, a, c, g \rangle$
	•••

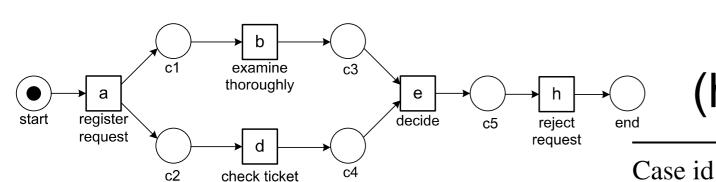
Another Discovery Example

Another net could allow for too many other traces (nets of this kind are called **flower nets**) and deliver little information about the underlying process

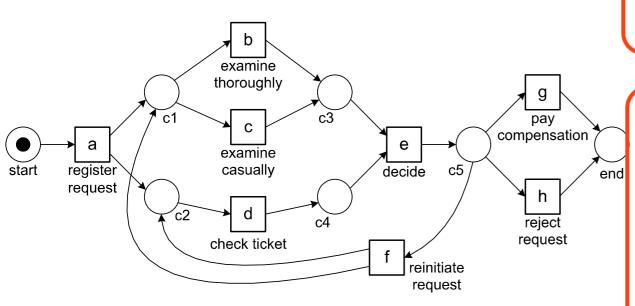
Case id	Trace
1	$\langle a,b,d,e,h \rangle$
2	$\langle a, d, c, e, g \rangle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a,d,b,e,h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$
•••	•••

Conformance Example We would like to measure the

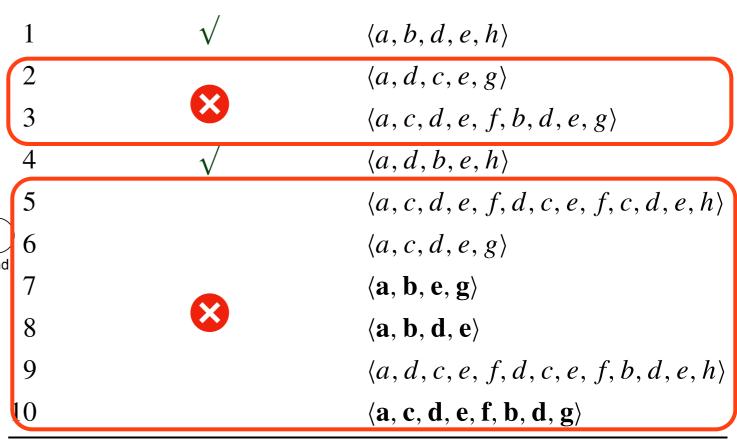
We would like to measure the `conformance' between a net and en event log (how well they pair together)


		Case 1d		Trace
		1		$\langle a,b,d,e,h \rangle$
		2	$\sqrt{}$	$\langle a, d, c, e, g \rangle$
	√ b	3	$\sqrt{}$	$\langle a, c, d, e, f, b, d, e, g \rangle$
	examine thoroughly	4	$\sqrt{}$	$\langle a, d, b, e, h \rangle$
	a c1 c3 pay compensation	5	$\sqrt{}$	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
start		$\downarrow \sim 6$	$\sqrt{}$	$\langle a, c, d, e, g \rangle$
Start	request	end 7		$\langle \mathbf{a}, \mathbf{b}, \mathbf{e}, \mathbf{g} \rangle$
	c2 d c4 reject request	8		$\langle \mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{e} \rangle$
	reinitiate request	9		$\langle a, d, c, e, f, d, c, e, f, b, d, e, h \rangle$
	7 ok out of 10	0	×	$\langle a,c,d,e,f,b,d,g\rangle$

Caga 14


Conformance Example

We would like to measure the `conformance" between a net and en event log (how well they pair together)


Trace

2 ok out of 10

7 ok out of 10

Quality Criteria

"able to replay event log"

fitness

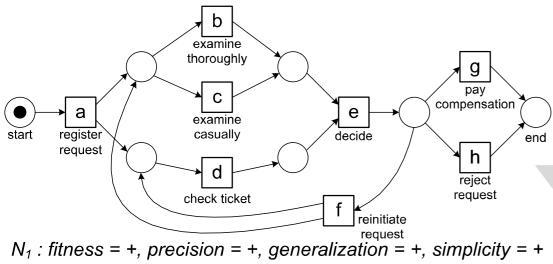
process discovery

generalization

"not overfitting the log"

Other behaviors allowed

Simple structure

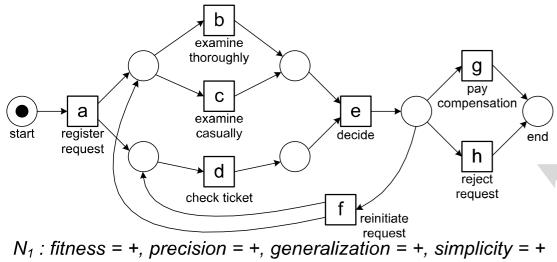

"Occam's razor"

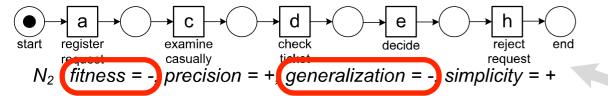
simplicity

precision

"not underfitting the log"

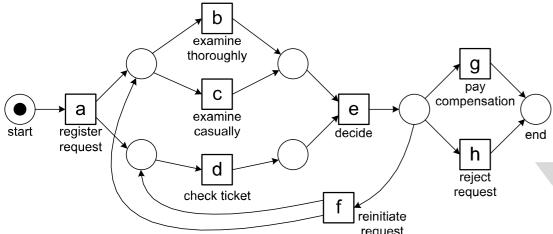
No completely unrelated behavior

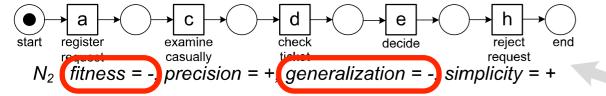


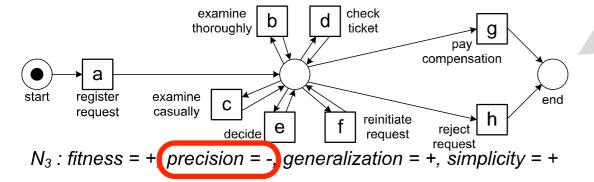

455	acdeh		
191	abdeg		
177	adceh		
144	abdeh		
111	acdeg		
82	adceg		
56	adbeh		
47	acdefdbeh	"able to replay event log"	"Occam's razor"
38	adbeg	fitness	simplicity
33	acdefbdeh		
14	acdefbdeg	process discovery	
11	acdefdbeg	ganaralization	nyaajajan
9	adcefcdeh	generalization "not overfitting the log"	precision "not underfitting the log"
8	adcefdbeh	not overnuing the log	not undermang the log
5	adcefbdeg		
3	acdefbdefdbeg		
2	adcefdbeg		
2	adcefbdefbdeg		
1	adcefdbefbdeh		
1	adbefbdefdbeg		
		1	

1391

1 adcefdbefcdefdbeg


trace




		1	,
455	acdeh		
191	abdeg		
177	adceh		
144	abdeh		
111	acdeg		
82	adceg		
56	adbeh		
47	acdefdbeh	"able to replay event log"	"Occam's razor"
38	adbeg	fitness	simplicity
33	acdefbdeh	Process	
14	acdefbdeg	process discovery	
11	acdefdbeg	approlization	procision
9	adcefcdeh	generalization "not overfitting the log"	precision "not underfitting the log"
8	adcefdbeh	not overnang the log	not undernaing the log
5	adcefbdeg		
3	acdefbdefdbeg		
2	adcefdbeg		
2	adcefbdefbdeg		
1	adcefdbefbdeh		
1	adbefbdefdbeg		
1	adcefdbefcdefdbeg		

trace

 N_1 : fitness = +, precision = +, generalization = +, simplicity = +

#	trace
455	acdeh
191	abdeg
177	adceh
144	abdeh
111	acdeg
82	adceg
56	adbeh
47	acdefdbeh
38	adbeg
33	acdefbdeh
14	acdefbdeg
11	acdefdbeg
9	adcefcdeh
8	adcefdbeh
5	adcefbdeg
3	acdefbdefdbeg
2	adcefdbeg
2	adcefbdefbdeg
1	adcefdbefbdeh
1	adbefbdefdbeg
1	adcefdbefcdefdbeg
1391	

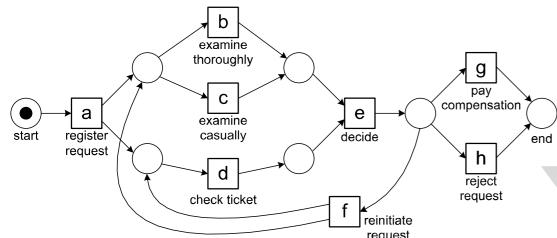
"able to replay event log"

fitness

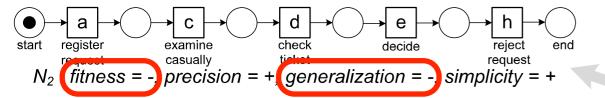
process discovery

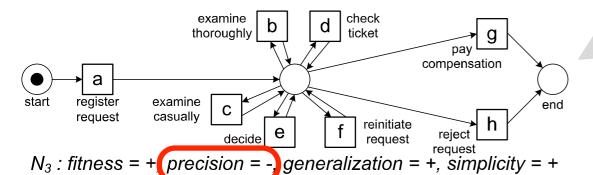
generalization

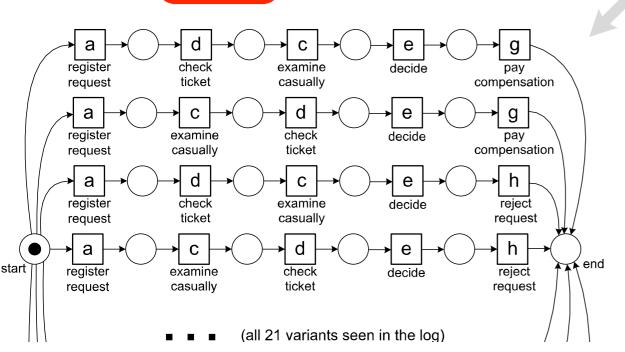
"not overfitting the log"


"Occam's razor"

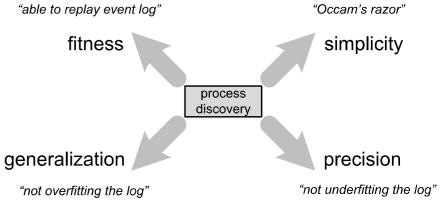
simplicity

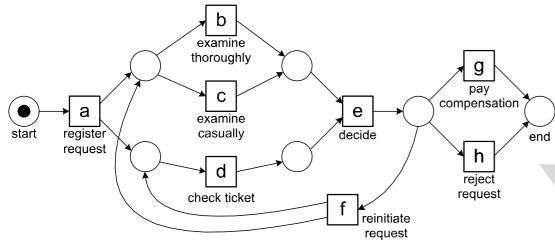

process discovery

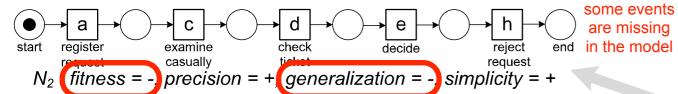

precision

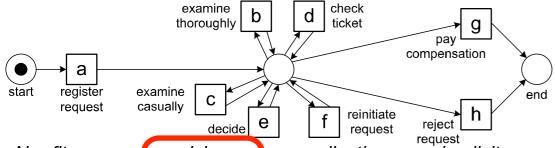

"not underfitting the log"

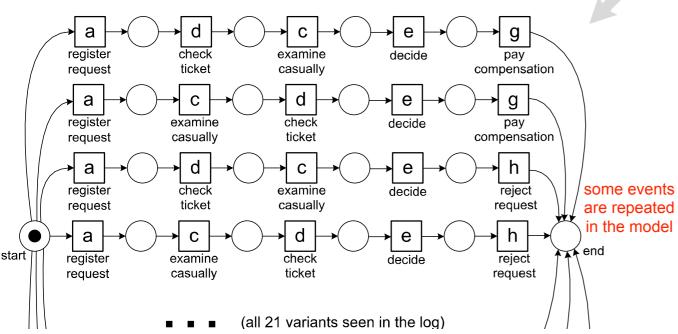
 N_1 : fitness = +, precision = +, generalization = +, simplicity = +

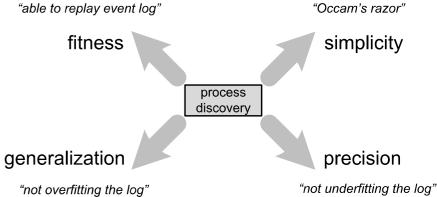





N_4 : fitness = +, precision = +	generalization = -,	simplicity = -


#	trace
455	acdeh
191	abdeg
177	adceh
144	abdeh
111	acdeg
82	adceg
56	adbeh
47	acdefdbeh
38	adbeg
33	acdefbdeh
14	acdefbdeg
11	acdefdbeg
9	adcefcdeh
8	adcefdbeh
5	adcefbdeg
3	acdefbdefdbeg
2	adcefdbeg
2	adcefbdefbdeg
1	adcefdbefbdeh
1	adbefbdefdbeg
1	adcefdbefcdefdbeg
1391	


 N_1 : fitness = +, precision = +, generalization = +, simplicity = +



generalization = +, simplicity = + N_3 : fitness = precision = -

 N_4 : fitness = +, precision = + generalization = - simplicity = -

#	trace
455	acdeh
191	abdeg
177	adceh
144	abdeh
111	acdeg
82	adceg
56	adbeh
47	acdefdbeh
38	adbeg
33	acdefbdeh
14	acdefbdeg
11	acdefdbeg
9	adcefcdeh
8	adcefdbeh
5	adcefbdeg
3	acdefbdefdbeg
2	adcefdbeg
2	adcefbdefbdeg
1	adcefdbefbdeh
1	adbefbdefdbeg
1	adcefdbefcdefdbeg

1391

Quality Measures

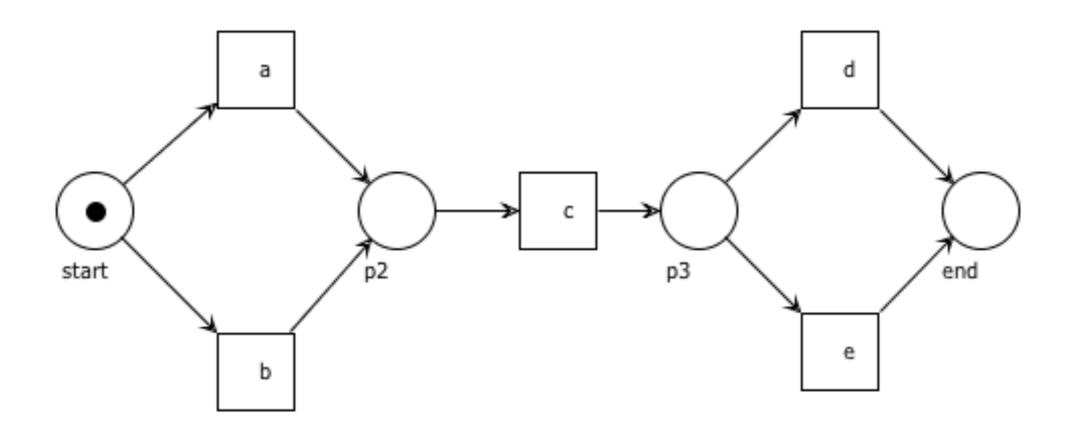
We have seen four quality criteria: fitness, precision, generalization, and simplicity.

In the example, for each of these models, a subjective judgment is given with respect to the four quality criteria. As the models are rather extreme, the scores +/- for the various quality criteria are easy to assign.

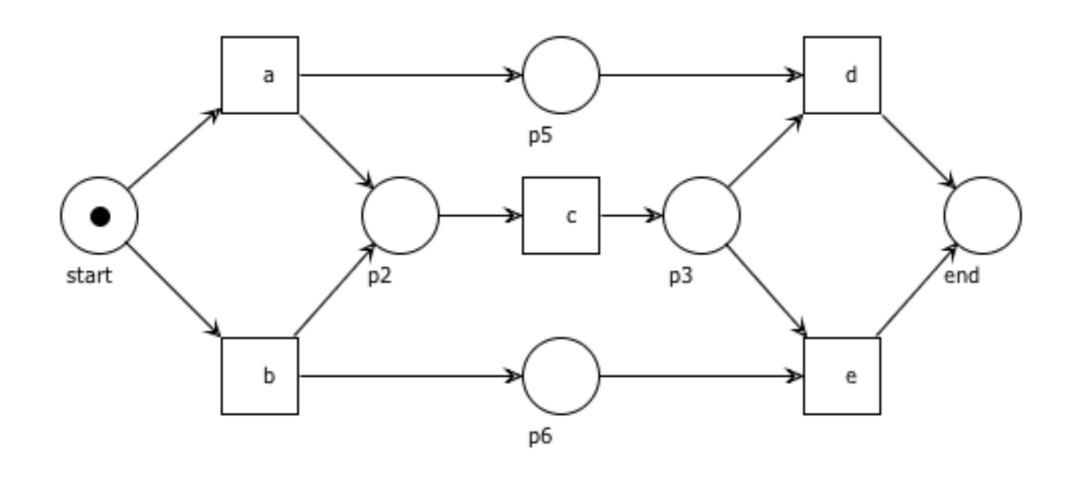
However, in a more realistic setting it would be much more difficult to judge the quality of a model.

We will discuss how the notion of fitness can be quantified.

```
Suppose you are given a log with: #6 traces of the form 〈 a , c , d 〉 #3 traces of the form 〈 b , c , e 〉
```


Which model (i.e., Petri net) would you infer?

The Petri net you derive must have exactly five transitions named a, b, c, d, e (and the places / arcs you like)


can start with a or b

can end with d or e

c is always executed in between

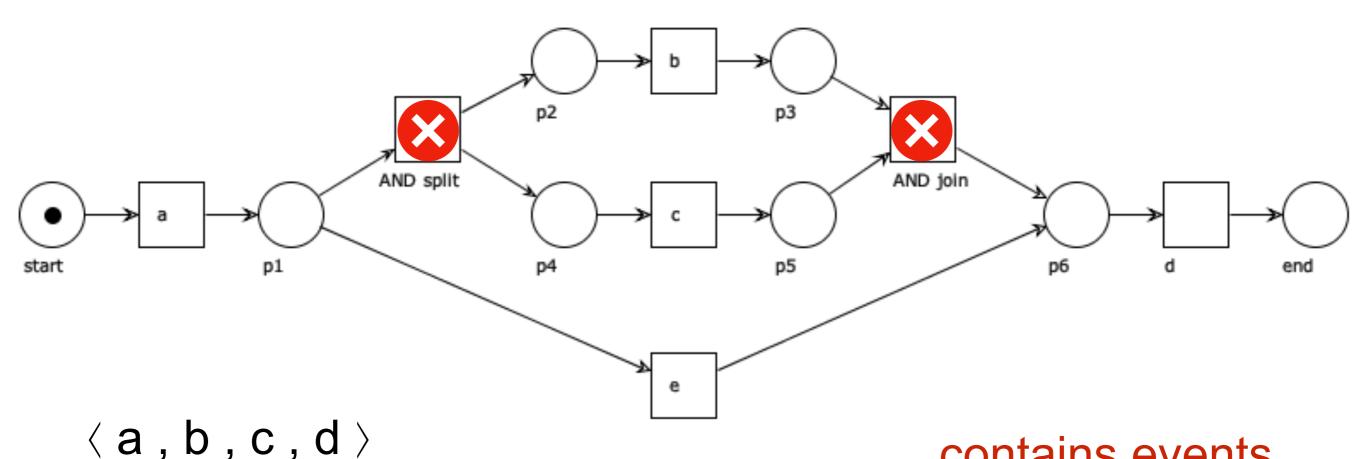
also allowed:

nothing else allowed!

```
Suppose you are given a log with: #3 traces of the form 〈 a , b , c , d 〉
```

```
#1 traces of the form 〈a,e,d〉
#2 traces of the form 〈a,c,b,d〉
```

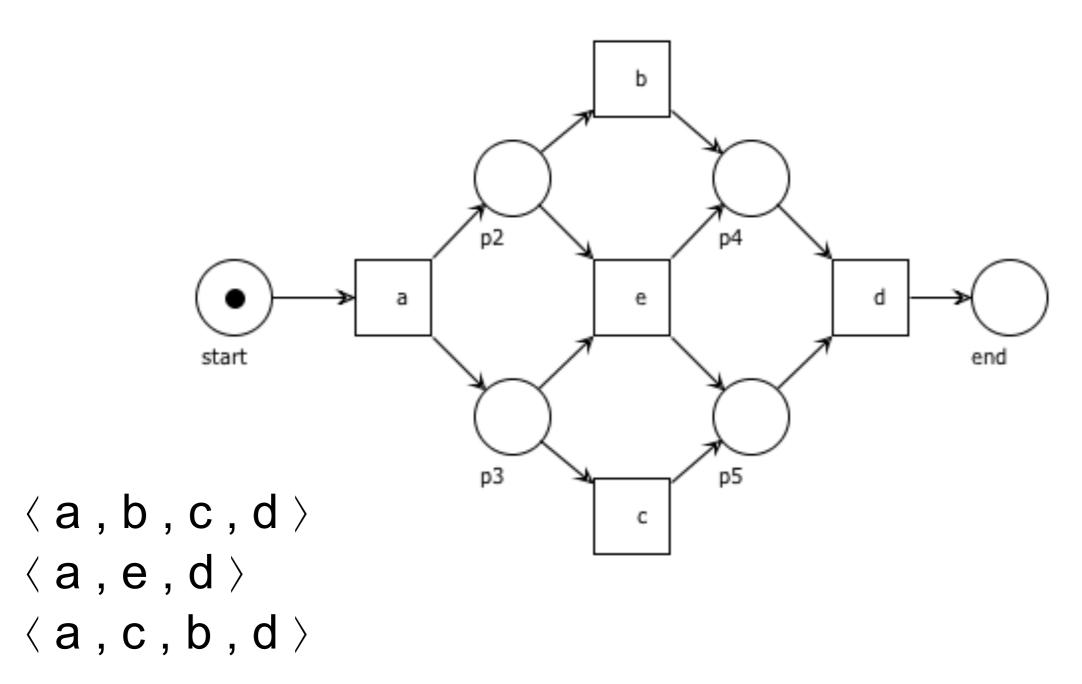
Which model (i.e., Petri net) would you infer?


The Petri net you derive must have exactly five transitions named a, b, c, d, e (and the places / arcs you like)

must start with a

must end with d

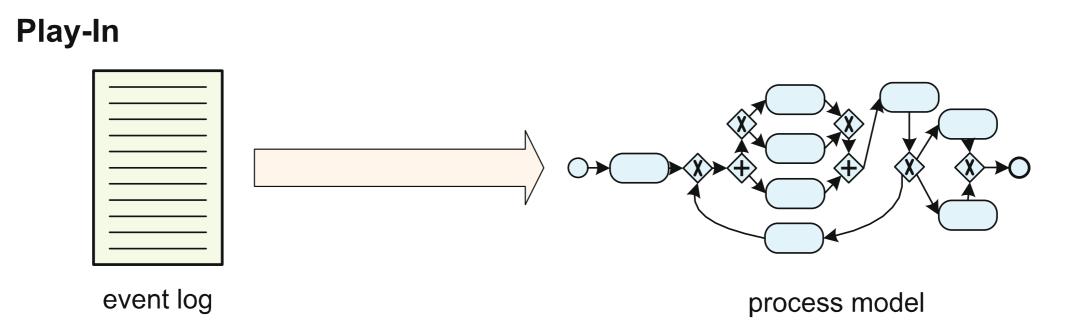
b/c in any order OR just e


```
<a, b, c, d><a, e, d><a, e, d><a, e, d><a, c, b, d><a, c, b, d><a
```


<a, b, c, d, <a / (a, e, d)

 $\langle a, c, b, d \rangle$

contains events
that are not
present in the log



Process Discovery: α -Algorithm

Process Discovery

A process discovery algorithm is a function that maps an event log L onto a process model M such that the model M is "representative" for the behaviour seen in the event log L.

We focus on *simple event logs* and Petri net models (possibly sound workflow nets).

Simple Event Log

Let A be a set of activities.

A **simple trace** σ over A is a finite sequence of activities.

A simple event log L over A is a multiset of traces.

trace multiplicity multiplicity
$$L_1 = \left[\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle \right]$$

$$L_2 = \left[\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^4, \langle a, b, c, e, f, b, c, d \rangle^2, \langle a, b, c, e, f, c, b, d \rangle, \langle a, c, b, e, f, b, c, d \rangle^2, \langle a, c, b, e, f, b, c, e, f, c, b, d \rangle \right]$$

α -Algorithm

The α -algorithm was one of the first process discovery algorithms that could adequately deal with concurrency.

It has several limitations, but it provides a good introduction into the topic: The α -algorithm is simple and many of its ideas have been embedded in more complex and robust techniques.

The α -algorithm uses the **play-in** strategy to scan the event log for particular patterns, called **log-based ordering relations**, to create a **footprint** matrix of the log.

Log-based Ordering Relations

a is (sometimes) immediately followed by b

 $(a >_L b)$ if and only if there is a trace $\sigma = \langle t_1, t_2, t_3, \dots, t_n \rangle$ and $i \in \{1, \dots, n-1\}$ such that $\sigma \in L$ and $t_i = a$ and $t_{i+1} = b$

Example:
$$L = \{ \langle a, c, d \rangle, \langle b, c, e \rangle \}$$

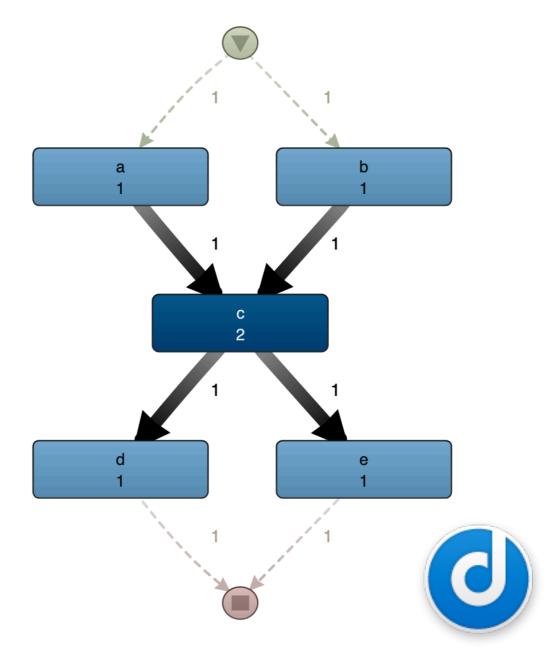
$$a >_L c \qquad b >_L c$$

$$c >_L d \qquad c >_L e$$

$$a >_L d \quad \text{No!}$$

Directly Follow Graphs

A Directly Follows Graph (DFG) is a graph that represents the observed behaviour in an event log, by showing how activities can immediately follow other activities


One node per each activity il the log

One edge from node a to node b whenever $a >_L b$ (optionally: arcs are weighted by frequencies, i.e., how often a is immediately followed by b)

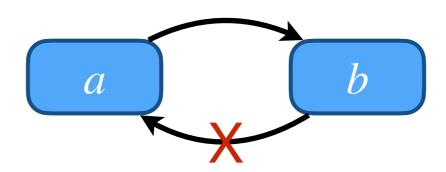
Relation $>_L$ as DFG

Example: $L = \{ \langle a, c, d \rangle, \langle b, c, e \rangle \}$

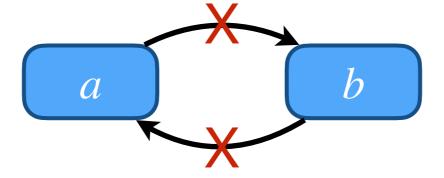
$$a >_L c$$
 $c >_L d$
 $b >_L c$ $c >_L e$

Log-based Ordering Relations

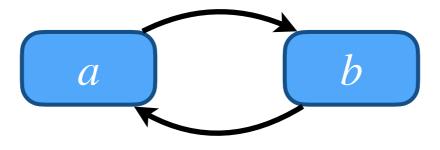
a is (sometimes) immediately followed by b


 $(a >_L b)$ if and only if there is a trace $\sigma = \langle t_1, t_2, t_3, \dots, t_n \rangle$ and $i \in \{1, \dots, n-1\}$ such that $\sigma \in L$ and $t_i = a$ and $t_{i+1} = b$

- $(a \rightarrow_L b)$ if and only if $a >_L b$ and $b \not>_L a$ (causality)
- $(a \#_L b)$ if and only if $a \not>_L b$ and $b \not>_L a$ (mutual exclusion)
- $(a \parallel_L b)$ if and only if $a >_L b$ and $b >_L a$ (concurrency)


$$x \rightarrow_L y$$
, $y \rightarrow_L x$, $x \#_L y$, or $x \parallel_L y$

Log-based Ordering Relations


$$a \to_L b$$
$$b \leftarrow_L a$$

$$a \#_L b$$

$$a \parallel_L b$$

Log-based Ordering Relations

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

$$>_{L_1} = \{(a,b), (a,c), (a,e), (b,c), (c,b), (b,d), (c,d), (e,d)\}$$

$$||_{L_1} = \{(b, c), (c, b)\}$$

$$\rightarrow_{L_1} = \{(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)\}$$

$$\#_{L_1} = \{(a,a), (a,d), (b,b), (b,e), (c,c), (c,e), (d,a), (d,d), (e,b), (e,c), (e,e)\}$$

Footprint Matrix

We can record all information about log-based ordering relations in a concise way as a matrix:

one row for each event one column for each event the entry in row a and column b tells us their relation

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

a b c d e

c \parallel_{L_1} d

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

 \boldsymbol{a}

b

(

d

e

 \boldsymbol{a}

 $\rightarrow L_1$

 $\rightarrow L_1$

 $\rightarrow L_1$

b

 \leftarrow_{L_1}

 $\|_{L_1}$

 \mathcal{C}

 \leftarrow_{L_1}

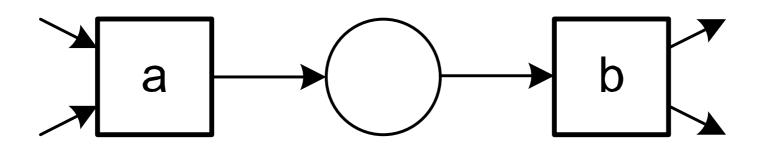
 $\|_{L_1}$

d

 $e \leftarrow_{L_1}$

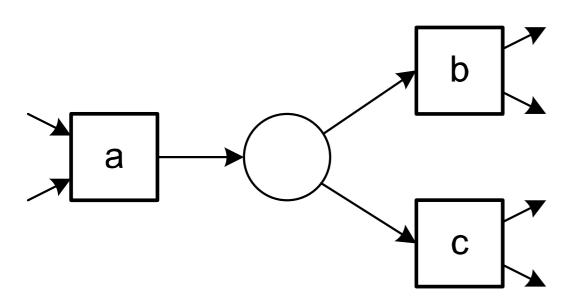
$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

	a	b	\mathcal{C}	d	e
a		\rightarrow_{L_1}	\rightarrow_{L_1}		\rightarrow_{L_1}
b	\leftarrow_{L_1}		$\ _{L_1}$	$\rightarrow L_1$	
С	\leftarrow_{L_1}	$\ _{L_1}$		\rightarrow_{L_1}	
d		\leftarrow_{L_1}	\leftarrow_{L_1}		\leftarrow_{L_1}
e	\leftarrow_{L_1}			\rightarrow_{L_1}	


$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

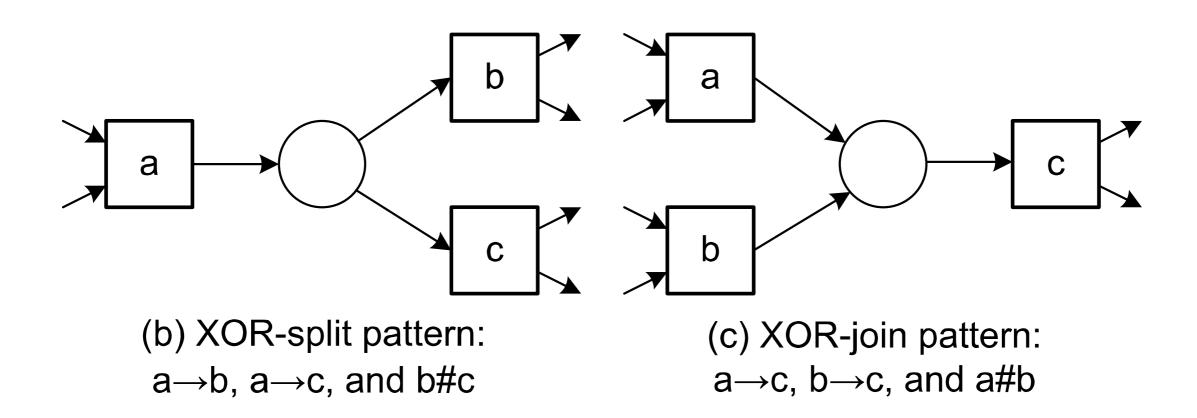
	a	b	$\boldsymbol{\mathcal{C}}$	d	e
a	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	$\rightarrow L_1$	
C	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	$\rightarrow L_1$	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$

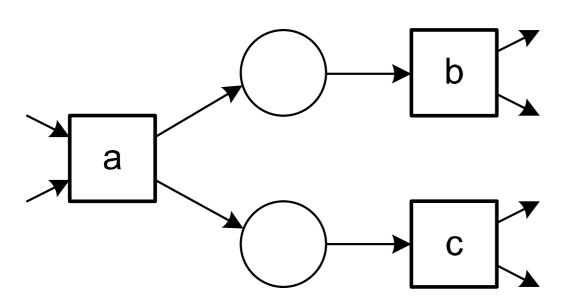
Note the symmetry w.r.t. the diagonal


	a	b	С	d	e
\overline{a}	•# _{1.1} •	\rightarrow_{L_1}	\rightarrow L_1	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	\parallel_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$
C	\leftarrow_{L_1}	\parallel_{L_1}	$\#_{L_1}$	$\rightarrow L_1$	$\#_{L_1}$
d	$\left(\begin{array}{c} \#_{L_1} \end{array} \right)$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	$\rightarrow L_1$	$\#_{L_1}$

Footprints are useful to discover typical patterns of activities in the corresponding process model

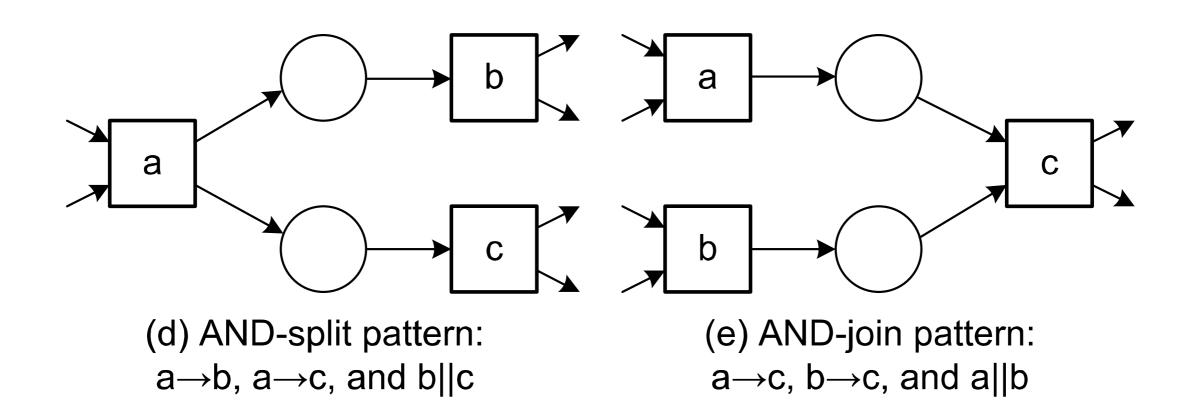
(a) sequence pattern: a→b


Footprints are useful to discover typical patterns of activities in the corresponding process model


(b) XOR-split pattern:

a→b, a→c, and b#c

Footprints are useful to discover typical patterns of activities in the corresponding process model



Footprints are useful to discover typical patterns of activities in the corresponding process model

(d) AND-split pattern: a→b, a→c, and b||c

Footprints are useful to discover typical patterns of activities in the corresponding process model

The α -Algorithm

- 1. $T_L = \{ t \in T \mid \exists_{\sigma \in L} \ t \in \sigma \}$ transitions
- 2. $T_I = \{ t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma) \}$ start events
- 3. $T_O = \{ t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma) \}$ end events

$$4. \ X_L = \left\{ \begin{array}{cccc} A, B \subseteq T_L & \wedge & A, B \neq \emptyset & \wedge \\ \forall a \in A} \forall_{b \in B} & a \rightarrow_L b & \wedge \\ \forall_{a_1, a_2 \in A} & a_1 \#_L a_2 & \wedge \\ \forall_{b_1, b_2 \in B} & b_1 \#_L b_2 & \end{array} \right\} \quad \text{decision points}$$

5.
$$Y_L = \left\{ \begin{array}{ll} A \subseteq A' \wedge B \subseteq B' \\ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} & \Rightarrow \\ (A',B') = (A,B) \end{array} \right\} \text{ max. dec. points}$$

6. $P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{ i_L, o_L \}$ places

7.
$$F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \} \cup \{ (i_L,t) \mid t \in T_I \} \cup \{ (t,o_L) \mid t \in T_O \}$$
 arcs

8. $\alpha(L) = (P_L, T_L, F_L, i_L)$ net

The α -Algorithm

one transition for each event in the log

1.
$$T_L = \{ t \in T \mid \exists_{\sigma \in L} \ t \in \sigma \}$$
 transitions

2.
$$T_I = \{ t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma) \}$$
 start events

3.
$$T_O = \{ t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma) \}$$
 end events

transitions that start/end at least one trace

Steps 1-3: Example

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

```
1. T_L = \{ t \in T \mid \exists_{\sigma \in L} \ t \in \sigma \} transitions

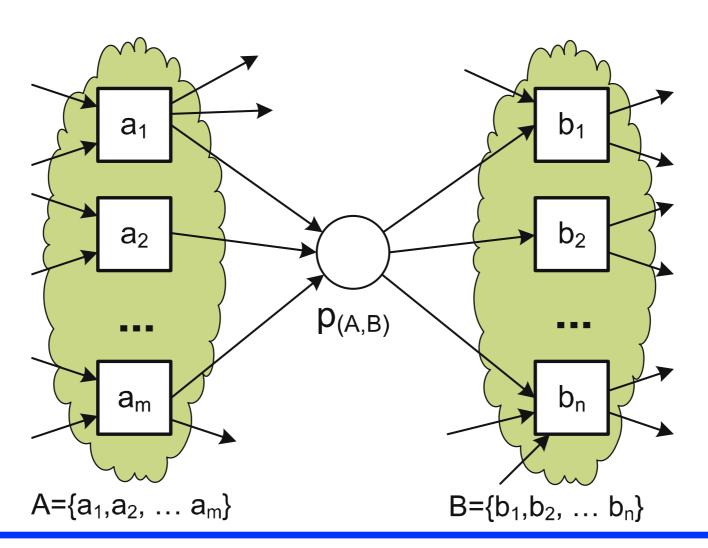
2. T_I = \{ t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma) \} start events

3. T_O = \{ t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma) \} end events
```

$$T_L = \{a, b, c, d, e\}$$

$$T_I = \{a\}$$

$$T_O = \{d\}$$


The α -Algorithm

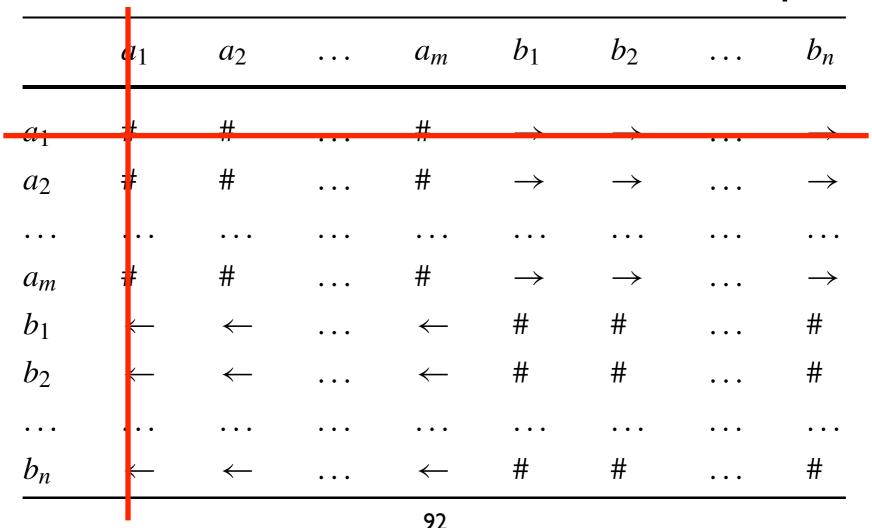
we collect pairs of sets of events with certain features

$$4. \ X_L = \left\{ \begin{array}{cccc} A, B \subseteq T_L & \wedge & A, B \neq \emptyset & \wedge \\ \forall a \in A} \forall_{b \in B} & a \rightarrow_L b & \wedge \\ \forall_{a_1, a_2 \in A} & a_1 \#_L a_2 & \wedge \\ \forall_{b_1, b_2 \in B} & b_1 \#_L b_2 & \end{array} \right\} \quad \text{decision points}$$

each event in A causes all events in B all events in A are mutually exclusive all events in B are mutually exclusive

The Core of the α -Algorithm: Steps 4, 5

we are going to insert a place for each pair (A,B) to represent some sort of decision point


α -Algorithm: Steps 4, 5

α -Algorithm: Step 5

```
\forall_{a \in A} \forall_{b \in B}
\forall_{a_1, a_2 \in A}
\forall_{b_1, b_2 \in B}
```

```
a \rightarrow_L b
a_1 \#_L a_2
b_1 \#_L b_2
```

If (A,B) forms a decision point any pair (A',B') with $A'\subseteq A,B'\subseteq B$ is still a decision point

α -Algorithm: Step 5

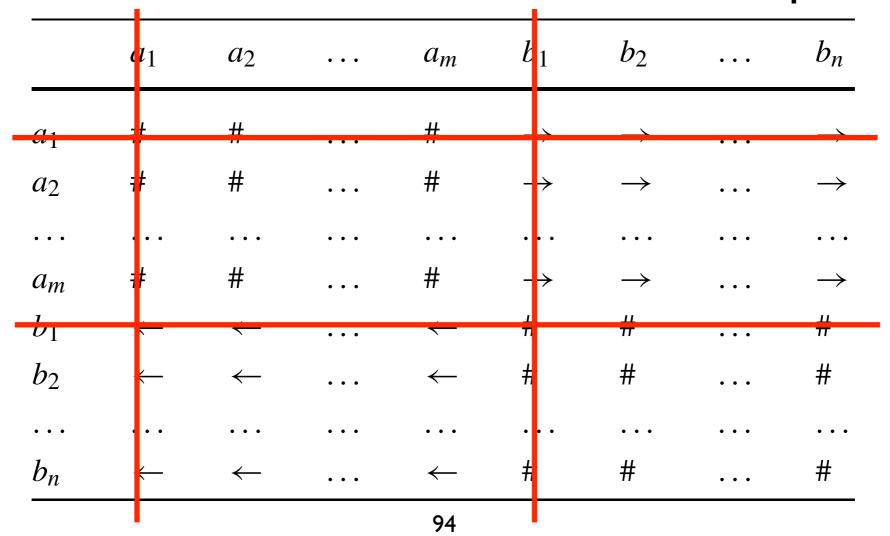
```
\forall_{a \in A} \forall_{b \in B}
\forall_{a_1, a_2 \in A}
\forall_{b_1, b_2 \in B}
```

$$a \to_L b$$

$$a_1 \#_L a_2$$

$$b_1 \#_L b_2$$

If (A,B) forms a decision point any pair (A',B') with $A'\subseteq A,B'\subseteq B$ is still a decision point

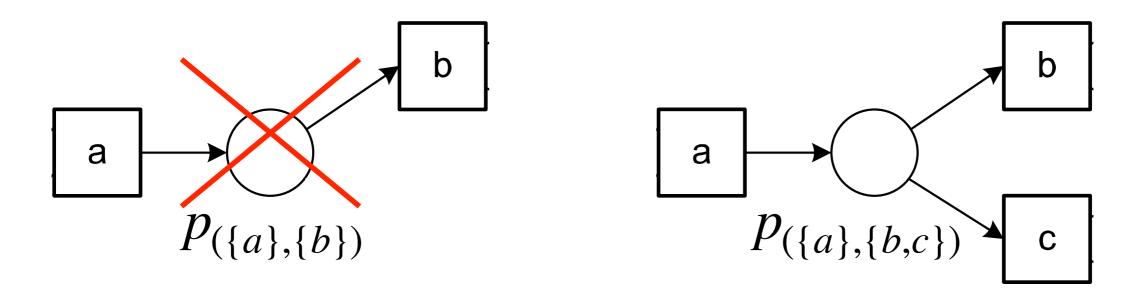

	a_1	a_2		a_m	t_1	b_2		b_n
						_		
a_1	#	#	• • •	#	\rightarrow	\rightarrow	• • •	\rightarrow
a_2	#	#	• • •	#	→	\rightarrow	• • •	\rightarrow
• •	• • •	• • •	• • •	• • •		• • •	• • •	
a_m	#	#	• • •	#	\rightarrow	\rightarrow	• • •	\rightarrow
7]	-	-	• • •	-	<u> </u>	#	• • •	#
b_2	\leftarrow	\leftarrow	• • •	\leftarrow	#	#	• • •	#
• •	• • •	• • •	• • •	• • •		• • •	• • •	
b_n	\leftarrow	\leftarrow	• • •	\leftarrow	#	#	• • •	#

α -Algorithm: Step 5

```
\forall_{a \in A} \forall_{b \in B}
\forall_{a_1, a_2 \in A}
\forall_{b_1, b_2 \in B}
```

```
a \to_L b
a_1 \#_L a_2
b_1 \#_L b_2
```

If (A,B) forms a decision point any pair (A',B') with $A'\subseteq A,B'\subseteq B$ is still a decision point



The α -Algorithm

We take only the largest pairs (A,B)

5.
$$Y_L = \left\{ \begin{array}{ll} (A,B) \in X_L \mid \forall_{(A',B') \in X_L} & A \subseteq A' \land B \subseteq B' \\ (A',B') = (A,B) \end{array} \right\}$$
 max. dec. points

 Y_L contains all pairs in X_L that are not dominated by other pairs

	а	b	С	d	e
a	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
C	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

	a	b	C	d	e
\overline{a}	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
C	\leftarrow_{L_1}	\parallel_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$

$$X_{L_1} = \{ (\{a\}, \{b\}) \} (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\})) (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

 $(\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}))$

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

and so on for the other pairs

We take only the largest pairs

 $Y_{L_1} = \{ \{a\}, \{b, e\}\}, (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$

$$a \qquad b \qquad c \qquad d \qquad e$$

$$a \qquad \#_{L_1} \qquad \to_{L_1} \qquad \to_{L_1} \qquad \#_{L_1} \qquad \to_{L_1}$$

$$b \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \|L_1 \qquad \to_{L_1} \qquad \#_{L_1}$$

$$c \qquad \leftarrow_{L_1} \qquad \|L_1 \qquad \#_{L_1} \qquad \to_{L_1} \qquad \#_{L_1}$$

$$d \qquad \#_{L_1} \qquad \leftarrow_{L_1} \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \leftarrow_{L_1}$$

$$e \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \#_{L_1} \qquad \to_{L_1} \qquad \#_{L_1}$$

$$X_{L_1} = \left\{ (\{a\}, \{b\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \right\}$$

$$(\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \right\}$$

We take only the largest pairs

 $Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$

We take only the largest pairs

 $Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$

$$X_{L_1} = \{(\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\})\}\}$$

$$Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

We take only the largest pairs

The α -Algorithm

One place for each pair

Initial Final

6.
$$P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{ i_L, o_L \}$$
 places

Connect decision points

7.
$$F_L = \{ \ (a,p_{(A,B)}) \ | \ (A,B) \in Y_L \ \land \ a \in A \ \} \cup \{ \ (p_{(A,B)},b) \ | \ (A,B) \in Y_L \ \land \ b \in B \ \} \cup \{ \ (i_L,t) \ | \ t \in T_I \ \} \cup \text{From the initial place to each initial transition} \}$$

8.
$$\alpha(L) = (P_L, T_L, F_L, i_L)$$
 net

(remind that T_L is the set of all events)

The α -Algorithm

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

1.
$$T_L = \{ t \in T \mid \exists_{\sigma \in L} \ t \in \sigma \}$$
 transitions

2.
$$T_I = \{ t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma) \}$$
 start events

3.
$$T_O = \{ t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma) \}$$
 end events

$$4. \ \, X_L = \left\{ \begin{array}{cccc} A, B \subseteq T_L & \wedge & A, B \neq \emptyset & \wedge \\ \forall a_{0} \in A \forall_{b \in B} & a \to_L b & \wedge \\ \forall a_{1}, a_{2} \in A & a_{1} \#_L a_{2} & \wedge \\ \forall b_{1}, b_{2} \in B & b_{1} \#_L b_{2} & \end{array} \right\} \quad \text{decision points} \\ X_{L_1} = \left\{ \left(\{a\}, \{b\} \right), \left(\{a\}, \{c\} \right), \left(\{a\}, \{e\} \right), \left(\{a\}, \{b, e\} \right), \left(\{a\}, \{c, e\} \right), \left(\{a\}, \{c\} \right), \left(\{a\}, \{c\}$$

5.
$$Y_L = \left\{ \begin{array}{l} A \subseteq A' \land B \subseteq B' \\ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} & \Rightarrow \\ (A',B') = (A,B) \end{array} \right\}$$
 max. dec. points

6.
$$P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{ i_L, o_L \}$$
 places

7.
$$F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \} \cup \{ (i_L,t) \mid t \in T_I \} \cup \{ (t,o_L) \mid t \in T_O \}$$
 arcs

8.
$$\alpha(L) = (P_L, T_L, F_L, i_L)$$
 net

$$T_L = \{a, b, c, d, e\}$$

$$T_I = \{a\}$$

$$T_O = \{d\}$$

$$X_{L_1} = \{(\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\})\}\}$$
 max. dec. points

$$Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

1.
$$T_L = \{ t \in T \mid \exists_{\sigma \in L} \ t \in \sigma \}$$
 transitions

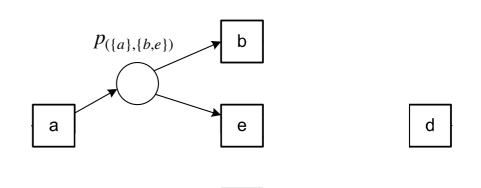
2.
$$T_I = \{ t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma) \}$$
 start events

3.
$$T_O = \{ t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma) \}$$
 end events

5.
$$Y_L = \left\{ \begin{array}{l} A \subseteq A' \land B \subseteq B' \\ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} & \Rightarrow \\ (A',B') = (A,B) \end{array} \right\}$$
 max. dec. points

6.
$$P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{ i_L, o_L \}$$
 places

7.
$$F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \} \cup \{ (i_L,t) \mid t \in T_I \} \cup \{ (t,o_L) \mid t \in T_O \}$$
 arcs


8.
$$\alpha(L) = (P_L, T_L, F_L, i_L)$$
 net

$$T_L = \{a, b, c, d, e\}$$
$$T_I = \{a\}$$

$$T_O = \{d\}$$

$$X_{L_1} = \left\{ \left(\{a\}, \{b\} \right), \left(\{a\}, \{c\} \right), \left(\{a\}, \{e\} \right), \left(\{a\}, \{b, e\} \right), \left(\{a\}, \{c, e\} \right), \\ \left(\{b\}, \{d\} \right), \left(\{c\}, \{d\} \right), \left(\{b\}, \{d\} \right), \left(\{b, e\}, \{d\} \right), \left(\{c, e\}, \{d\} \right) \right\} \\ \text{max. dec. points}$$

$$Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

 $L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$

1.
$$T_L = \{ t \in T \mid \exists_{\sigma \in L} \ t \in \sigma \}$$
 transitions

2.
$$T_I = \{ t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma) \}$$
 start events

3.
$$T_O = \{ t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma) \}$$
 end events

$$4. \ X_L = \left\{ \begin{array}{cccc} A, B \subseteq T_L & \wedge & A, B \neq \emptyset & \wedge \\ \forall a \in A} \forall_{b \in B} & a \rightarrow_L b & \wedge \\ \forall_{a_1, a_2 \in A} & a_1 \#_L a_2 & \wedge \\ \forall_{b_1, b_2 \in B} & b_1 \#_L b_2 & \end{array} \right\} \quad \text{decision points}$$

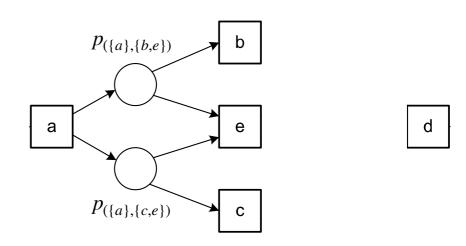
$$X_{L_1} = \{(\{a\}, \{b\}), (\{a\}, \{b\}), (\{a\}, \{b\}), (\{a\}, \{b\}), \{b\}), (\{a\}, \{b\}), \{b\}), (\{a\}, \{b\}), \{b\}) \}$$

5.
$$Y_L = \left\{ \begin{array}{l} A \subseteq A' \land B \subseteq B' \\ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} & \Rightarrow \\ (A',B') = (A,B) \end{array} \right\}$$
 max. dec. points

6.
$$P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{ i_L, o_L \}$$
 places

7.
$$F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \} \cup \{ (i_L,t) \mid t \in T_I \} \cup \{ (t,o_L) \mid t \in T_O \}$$
 arcs

8.
$$\alpha(L) = (P_L, T_L, F_L, i_L)$$
 net


$$T_L = \{a, b, c, d, e\}$$

$$T_I = \{a\}$$

$$T_O = \{d\}$$

$$X_{L_1} = \left\{ \left(\{a\}, \{b\} \right), \left(\{a\}, \{c\} \right), \left(\{a\}, \{e\} \right), \left(\{a\}, \{b, e\} \right), \left(\{a\}, \{c, e\} \right), \\ \left(\{b\}, \{d\} \right), \left(\{c\}, \{d\} \right), \left(\{b\}, \{d\} \right), \left(\{b, e\}, \{d\} \right), \left(\{c, e\}, \{d\} \right) \right\} \\ \text{max. dec. points}$$

$$Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

1.
$$T_L = \{ t \in T \mid \exists_{\sigma \in L} \ t \in \sigma \}$$
 transitions

2.
$$T_I = \{ t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma) \}$$
 start events

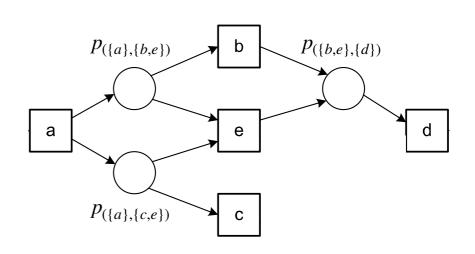
3.
$$T_O = \{ t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma) \}$$
 end events

5.
$$Y_L = \left\{ \begin{array}{l} A \subseteq A' \land B \subseteq B' \\ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} & \Rightarrow \\ (A',B') = (A,B) \end{array} \right\}$$
 max. dec. points

6.
$$P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{ i_L, o_L \}$$
 places

7.
$$F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \} \cup \{ (i_L,t) \mid t \in T_I \} \cup \{ (t,o_L) \mid t \in T_O \}$$
 arcs

8.
$$\alpha(L) = (P_L, T_L, F_L, i_L)$$
 net


$$T_L = \{a, b, c, d, e\}$$

$$T_I = \{a\}$$

$$T_O = \{d\}$$

$$X_{L_1} = \left\{ \left(\{a\}, \{b\} \right), \left(\{a\}, \{c\} \right), \left(\{a\}, \{e\} \right), \left(\{a\}, \{b, e\} \right), \left(\{a\}, \{c, e\} \right), \\ \left(\{b\}, \{d\} \right), \left(\{c\}, \{d\} \right), \left(\{b\}, \{d\} \right), \left(\{b, e\}, \{d\} \right), \left(\{c, e\}, \{d\} \right) \right\} \\ \text{max. dec. points}$$

$$Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

1.
$$T_L = \{ t \in T \mid \exists_{\sigma \in L} \ t \in \sigma \}$$
 transitions

2.
$$T_I = \{ t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma) \}$$
 start events

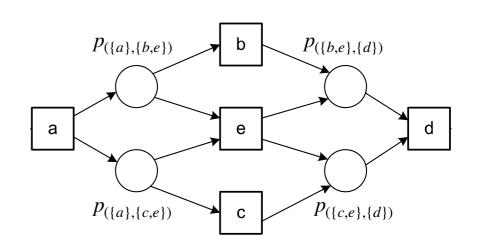
3.
$$T_O = \{ t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma) \}$$
 end events

5.
$$Y_L = \left\{ \begin{array}{l} A \subseteq A' \land B \subseteq B' \\ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} & \Rightarrow \\ (A',B') = (A,B) \end{array} \right\}$$
 max. dec. points

6.
$$P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{ i_L, o_L \}$$
 places

7.
$$F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \} \cup \{ (i_L,t) \mid t \in T_I \} \cup \{ (t,o_L) \mid t \in T_O \}$$
 arcs

8.
$$\alpha(L) = (P_L, T_L, F_L, i_L)$$
 net


$$T_L = \{a, b, c, d, e\}$$

$$T_I = \{a\}$$

$$T_O = \{d\}$$

$$X_{L_1} = \left\{ \left(\{a\}, \{b\} \right), \left(\{a\}, \{c\} \right), \left(\{a\}, \{e\} \right), \left(\{a\}, \{b, e\} \right), \left(\{a\}, \{c, e\} \right), \\ \left(\{b\}, \{d\} \right), \left(\{c\}, \{d\} \right), \left(\{b\}, \{d\} \right), \left(\{b, e\}, \{d\} \right), \left(\{c, e\}, \{d\} \right) \right\} \\ \text{max. dec. points}$$

$$Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

1.
$$T_L = \{ t \in T \mid \exists_{\sigma \in L} \ t \in \sigma \}$$
 transitions

2.
$$T_I = \{ t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma) \}$$
 start events

3.
$$T_O = \{ t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma) \}$$
 end events

$$4. \ X_L = \left\{ \begin{array}{cccc} A, B \subseteq T_L & \wedge & A, B \neq \emptyset & \wedge \\ \forall a \in A} \forall_{b \in B} & a \rightarrow_L b & \wedge \\ \forall_{a_1, a_2 \in A} & a_1 \#_L a_2 & \wedge \\ \forall_{b_1, b_2 \in B} & b_1 \#_L b_2 & \end{array} \right\} \quad \text{decision points}$$

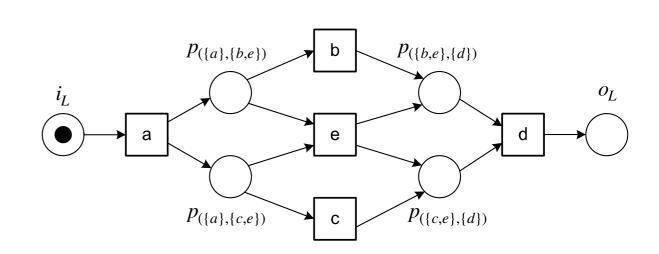
$$X_{L_1} = \{(\{a\}, \{b\}), (\{a\}, \{b\}), (\{a\}, \{b\}), (\{a\}, \{b\}), \{b\}), (\{a\}, \{b\}), \{b\}), (\{a\}, \{b\}), \{b\}) \}$$

5.
$$Y_L = \left\{ \begin{array}{l} A \subseteq A' \land B \subseteq B' \\ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} & \Rightarrow \\ (A',B') = (A,B) \end{array} \right\}$$
 max. dec. points

6.
$$P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{ i_L, o_L \}$$
 places

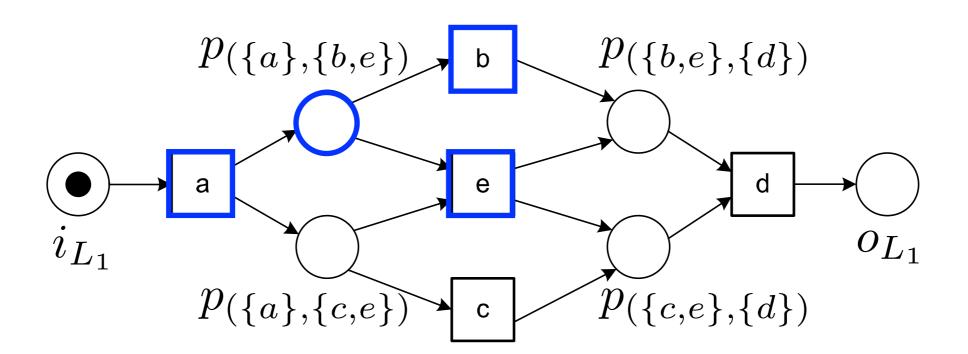
7.
$$F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \} \cup \{ (i_L,t) \mid t \in T_I \} \cup \{ (t,o_L) \mid t \in T_O \}$$
 arcs

8.
$$\alpha(L) = (P_L, T_L, F_L, i_L)$$
 net

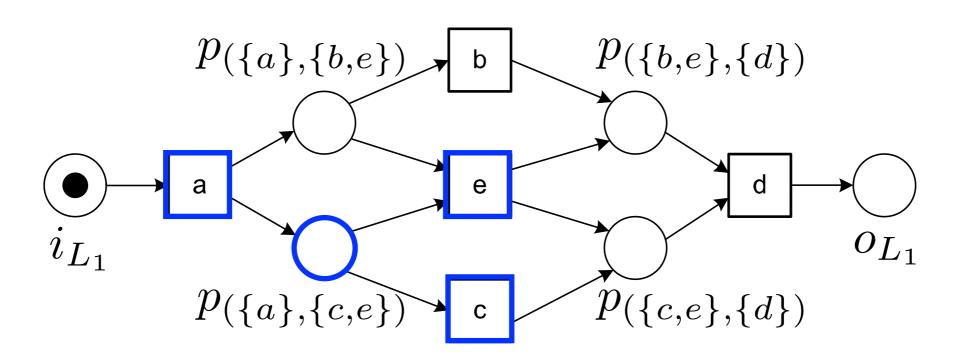

$$T_L = \{a, b, c, d, e\}$$

$$T_I = \{a\}$$

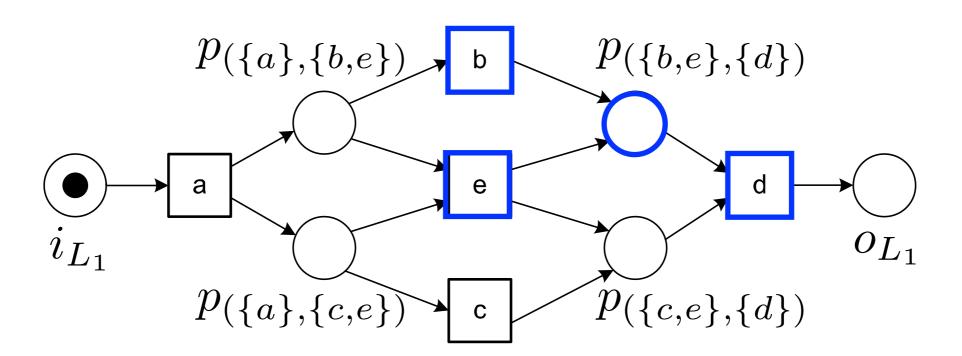
$$T_O = \{d\}$$


$$X_{L_1} = \left\{ \left(\{a\}, \{b\} \right), \left(\{a\}, \{c\} \right), \left(\{a\}, \{e\} \right), \left(\{a\}, \{b, e\} \right), \left(\{a\}, \{c, e\} \right), \\ \left(\{b\}, \{d\} \right), \left(\{c\}, \{d\} \right), \left(\{b\}, \{d\} \right), \left(\{b, e\}, \{d\} \right), \left(\{c, e\}, \{d\} \right) \right\} \\ \text{max. dec. points}$$

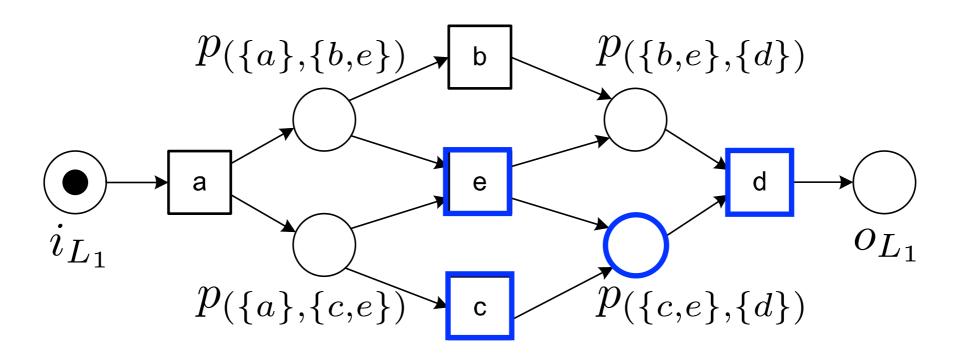
$$Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$


$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

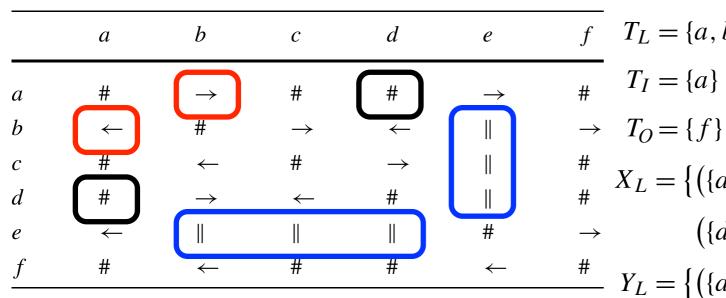
$$Y_{L_1} = \{ \{a\}, \{b, e\}\}, (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

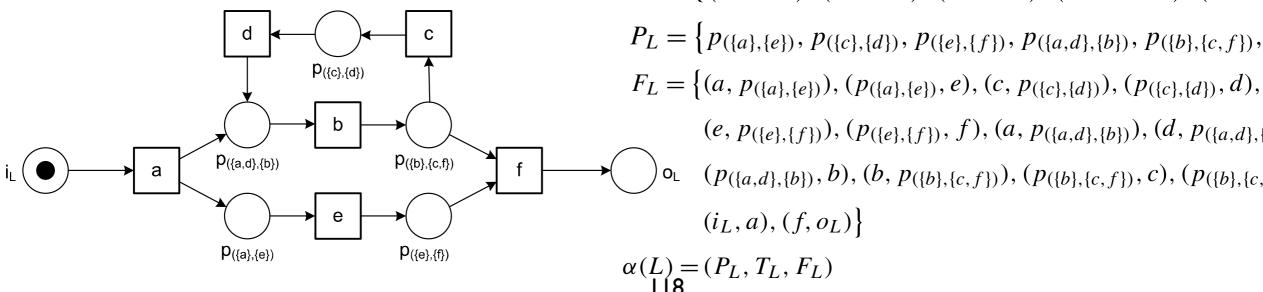

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

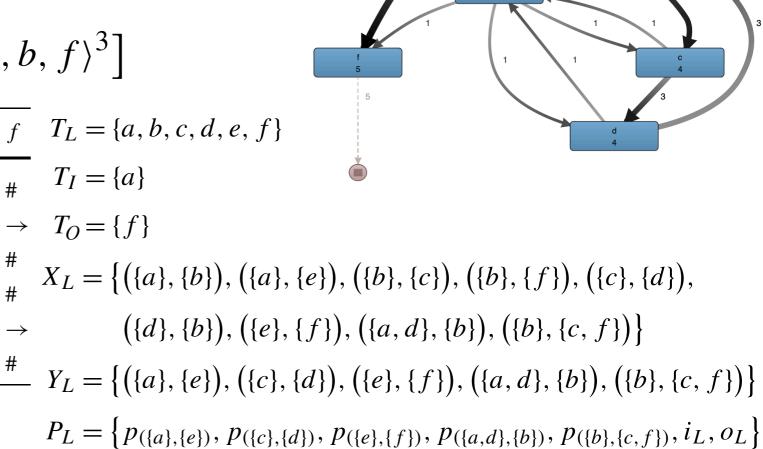
$$Y_{L_1} = \{(\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\})\}\}$$


$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

$$Y_{L_1} = \{(\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\})\}\}$$


$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

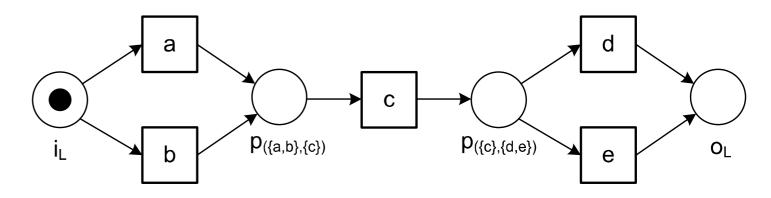

$$Y_{L_1} = \{(\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\})\}\}$$



Another Example

 $L_5 = \left[\langle a, b, e, f \rangle^2, \langle a, b, e, c, d, b, f \rangle^3, \langle a, b, c, e, d, b, f \rangle^2, \right]$ $\langle a, b, c, d, e, b, f \rangle^4, \langle a, e, b, c, d, b, f \rangle^3$

 $(e, p_{\{e\},\{f\}\}}), (p_{\{e\},\{f\}\}}, f), (a, p_{\{a,d\},\{b\}\}}), (d, p_{\{a,d\},\{b\}\}}),$


 $(i_L, a), (f, o_L)$

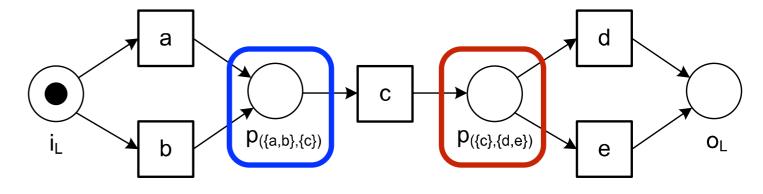
 $(p_{(\{a,d\},\{b\})},b),(b,p_{(\{b\},\{c,f\})}),(p_{(\{b\},\{c,f\})},c),(p_{(\{b\},\{c,f\})},f),$

$$L_4 = \left[\langle a, c, d \rangle^{45}, \langle b, c, d \rangle^{42}, \langle a, c, e \rangle^{38}, \langle b, c, e \rangle^{22} \right]$$

	a	b	c	d	e
a	#	#	\rightarrow	#	#
b	#	#	\rightarrow	#	#
c	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow
d	#	#	\leftarrow	#	#
e	#	#	\leftarrow	#	#

Check in full autonomy that the footprint matrix corresponds to the log and that the net below is the one discovered by the alpha-algorithm

$$L_{4} = \begin{bmatrix} \langle a, c, d \rangle^{45}, \langle b, c, d \rangle^{42}, \langle a, c, e \rangle^{38}, \langle b, c, e \rangle^{22} \end{bmatrix}$$

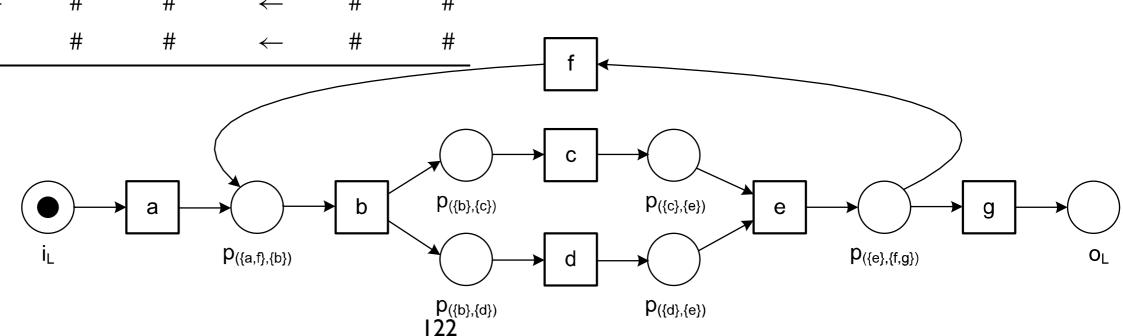

$$a >_{L_{4}} c \qquad b >_{L_{4}} c \qquad a >_{L_{4}} c \qquad b >_{L_{4}} c$$

$$c >_{L_{4}} d \qquad c >_{L_{4}} d \qquad c >_{L_{4}} e \qquad c >_{L_{4}} e$$

	a	b	c	d	e
a	#	#	$\qquad \qquad \longrightarrow$	#	#
b	#	#	\rightarrow	#	#
c	\leftarrow	\leftarrow	#	$\bigcirc\!$	$\bigcirc\!$
d	#	#	\leftarrow	#	#
e	#	#	\leftarrow	#	#

$$L_4 = \left[\langle a, c, d \rangle^{45}, \langle b, c, d \rangle^{42}, \langle a, c, e \rangle^{38}, \langle b, c, e \rangle^{22} \right]$$

	a	b	c	d	e
a	#	#	\rightarrow	#	#
b	#	#	\rightarrow	#	#
c	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow
d	#	#	\leftarrow	#	#
e	#	#	\leftarrow	#	#



 $L_3 = [\langle a, b, c, d, e, f, b, d, c, e, g \rangle, \langle a, b, d, c, e, g \rangle^2,$

 $\langle a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g \rangle$

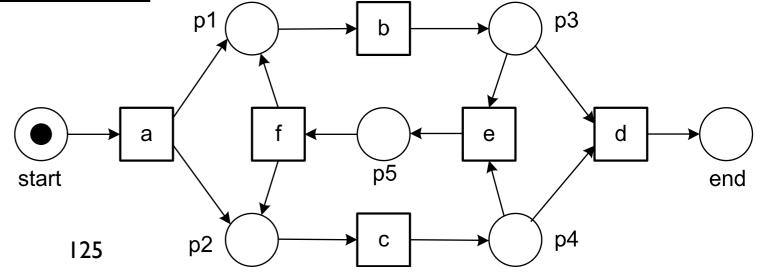
	а	b	С	d	e	f	g
a	#	\rightarrow	#	#	#	#	#
b	 ←	#	$\overset{''}{\rightarrow}$	$\overset{\cdot \cdot \cdot}{\rightarrow}$	#	 ←	#
c	#	\leftarrow	#		\rightarrow	#	#
d	#	\leftarrow		#	\rightarrow	#	#
e	#	#	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow
f	#	\rightarrow	#	#	\leftarrow	#	#
g	#	#	#	#	\leftarrow	#	#

Check in full autonomy that the footprint matrix corresponds to the log and that the net below is the one discovered by the alpha-algorithm


```
c >_{L_3} d \quad f >_{L_3} b \quad c >_{L_3} e \qquad d >_{L_3} c 
b >_{L_3} c \quad e >_{L_3} f \quad d >_{L_3} c \qquad b >_{L_3} d \quad e >_{L_3} g 
a >_{L_3} b \quad d >_{L_3} e \quad b >_{L_3} d \quad e >_{L_3} g \quad a >_{L_3} b \quad c >_{L_3} e 
L_3 = \left[ \langle a, b, c, d, e, f, b, d, c, e, g \rangle, \langle a, b, d, c, e, g \rangle^2, \langle a, b, c, d, e, f, b, d, c, e, g \rangle \right] 
a >_{L_3} b \quad d >_{L_3} e \quad b >_{L_3} c \quad e >_{L_3} f \quad d >_{L_3} c 
b >_{L_3} c \quad e >_{L_3} f \quad c >_{L_3} d \quad f >_{L_3} b \quad c >_{L_3} e 
c >_{L_3} d \quad f >_{L_3} b \quad d >_{L_3} e \quad b >_{L_3} d \quad e >_{L_3} g
```

	а	b	С	d	e	f	g
a	#	\rightarrow	#	#	#	#	#
b	\leftarrow	#	\rightarrow	\rightarrow	#	\leftarrow	#
С	#	\leftarrow	#		\rightarrow	#	#
d	#			#	\rightarrow	#	#
e	#	#		\leftarrow	#	\rightarrow	\rightarrow
f	#	\rightarrow	#	#	\leftarrow	#	#
g	#	#	#	#	←	#	#

 $L_3 = \left[\langle a, b, c, d, e, f, b, d, c, e, g \rangle, \langle a, b, d, c, e, g \rangle^2, \langle a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g \rangle \right]$


	а	b	c	d	e	f	g				
a	#	\rightarrow	#	#	#	#	#				
b	\leftarrow	#	\rightarrow	\rightarrow	#	\leftarrow	#				
c	#	\leftarrow	#		\rightarrow	#	#				
d	#	\leftarrow		#	\rightarrow	#	#				
e	#	#	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow				
f	#	\rightarrow	#	#	\leftarrow	#	#				
g	#	#	#	#	\leftarrow	#	#				
			• • • • • • • • • • • • • • • • • • •	a		b	p _({b},{c})		({c},{e}) e	g	→ (
			iL		$p_{(\{a,f\},\{b\})}$		*	\rightarrow d		$p_{(\{e\},\{f,g\})}$	
							$p_{(\{b\},\{d\})}$	p ₍	({d},{e})		

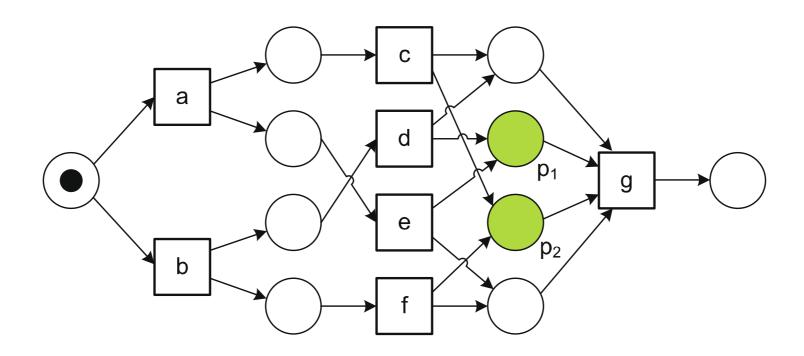
 $L_2 = \left[\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^4, \langle a, b, c, e, f, b, c, d \rangle^2, \langle a, b, c, e, f, c, b, d \rangle, \right]$

 $\langle a, c, b, e, f, b, c, d \rangle^2, \langle a, c, b, e, f, b, c, e, f, c, b, d \rangle$

	а	b	c	d	e	f
a	#	\rightarrow	\rightarrow	#	#	#
b	\leftarrow	#		\rightarrow	\rightarrow	\leftarrow
C	\leftarrow		#	\rightarrow	\rightarrow	\leftarrow
d	#	\leftarrow	\leftarrow	#	#	#
e	#	\leftarrow	\leftarrow	#	#	\rightarrow
f	#	\rightarrow	\rightarrow	#	\leftarrow	#

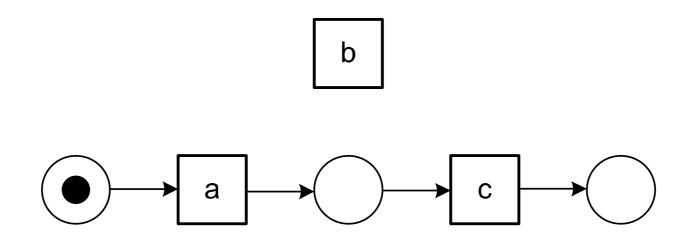

Check in full autonomy that the footprint matrix corresponds to the log and that the net below is the one discovered by the alpha-algorithm

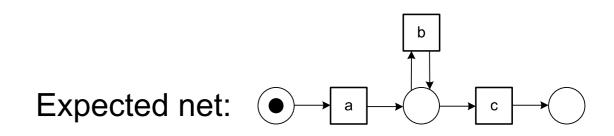
$$c >_{L_{2}} d \qquad b >_{L_{2}} c \qquad c >_{L_{2}} b \qquad c >_{L_{2}} d \qquad c >_{L_{2}} d \qquad c >_{L_{2}} d \qquad c >_{L_{2}} f \qquad b >_{L_{2}} d \qquad c >_{L_{2}} f \qquad b >_{L_{2}} d \qquad c >_{L_{2}} f \qquad b >_{L_{2}} d \qquad c >_{L_{2}} f \qquad c >_{L_{2}} d \qquad c >_{L_{2}} d \qquad c >_{L_{2}} d \qquad c >_{L_{2}} b \qquad c >_{L_{2}} d \qquad c >_{L_{2}}$$


 $L_2 = \left[\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^4, \langle a, b, c, e, f, b, c, d \rangle^2, \langle a, b, c, e, f, c, b, d \rangle, \langle a, c, b, e, f, b, c, d \rangle^2, \langle a, c, b, e, f, b, c, e, f, c, b, d \rangle \right]$

						•
	a	b	$\boldsymbol{\mathcal{C}}$	d	e	f
a	#	\rightarrow	\rightarrow	#	#	#
	• • • • • • • • • • • • • • • • • • • •	,		,,	.,	,,
b	\leftarrow	#		\rightarrow	\rightarrow	\leftarrow
c	\leftarrow		#	\rightarrow	\rightarrow	\leftarrow
		11				
d	#	\leftarrow	\leftarrow	#	#	#
e	#	_	\leftarrow	#	#	\rightarrow
E	π			π	π	
f	#	\rightarrow	\rightarrow	#	\leftarrow	#

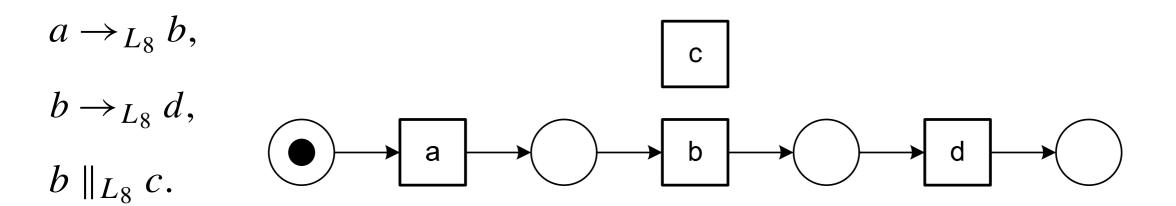
Limitation: Implicit Dependencies


$$L_6 = \left[\langle a, c, e, g \rangle^2, \langle a, e, c, g \rangle^3, \langle b, d, f, g \rangle^2, \langle b, f, d, g \rangle^4 \right]$$

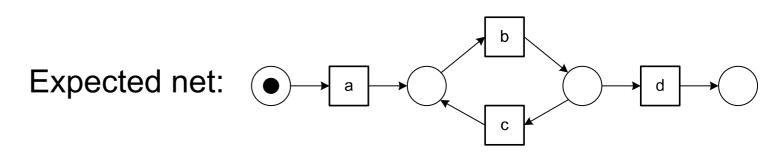

p₁ and p₂ are redundant

Limitation: Short Loop

$$L_7 = \left[\langle a, c \rangle^2, \langle a, b, c \rangle^3, \langle a, b, b, c \rangle^2, \langle a, b, b, b, b, c \rangle^1 \right]$$



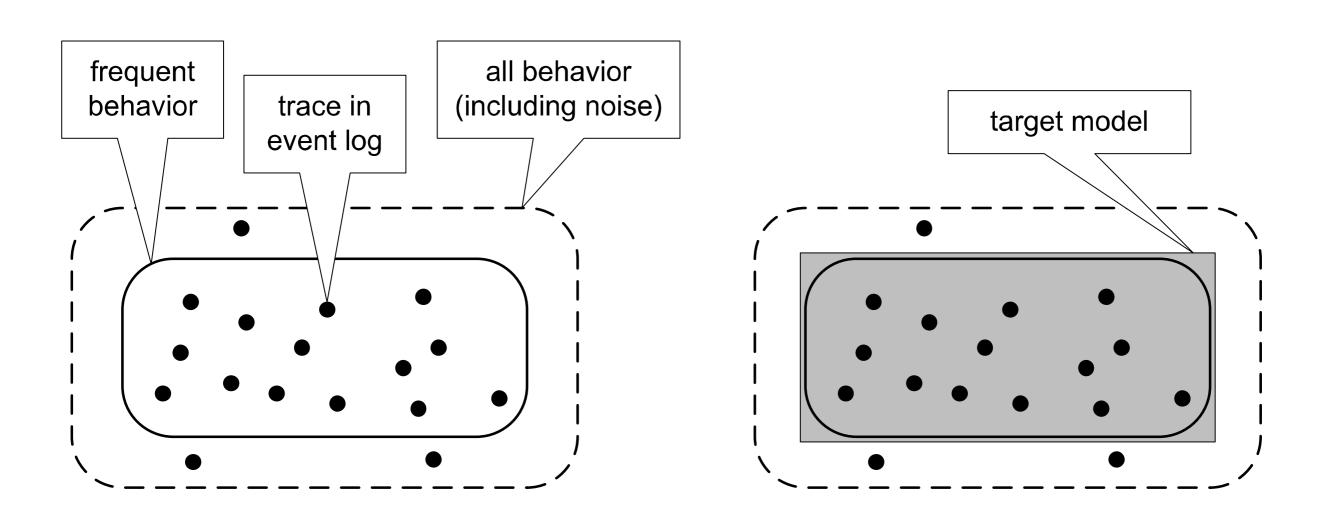
b is disconnected from the model



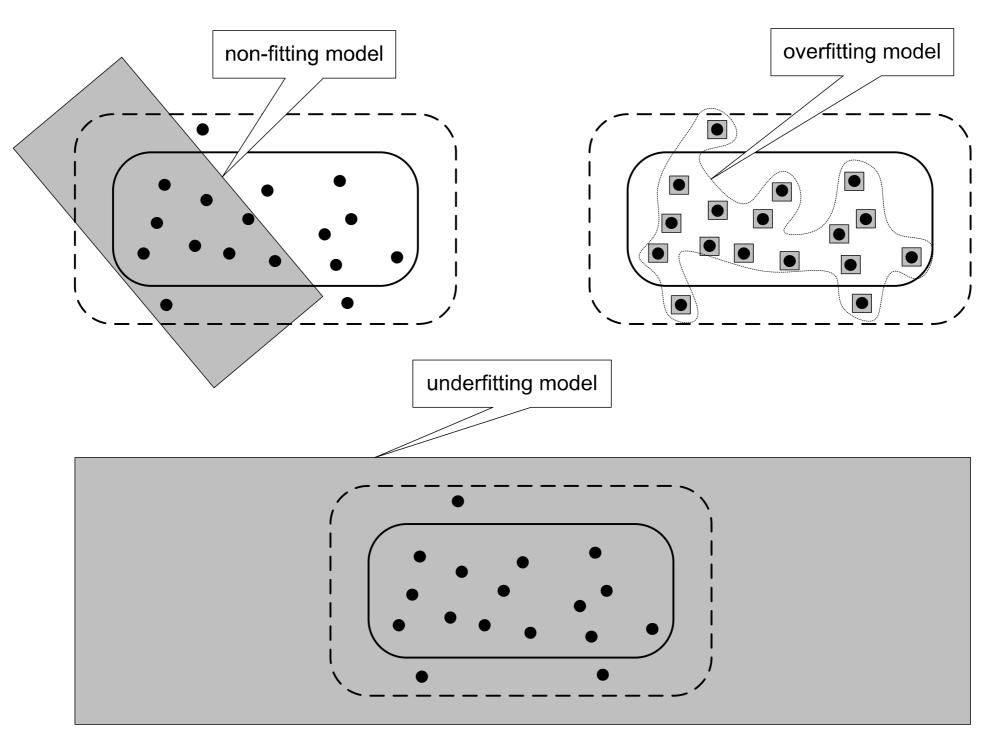
Limitation: Short Loop

$$L_8 = \left[\langle a, b, d \rangle^3, \langle a, b, c, b, d \rangle^2, \langle a, b, c, b, c, b, d \rangle \right]$$

c is disconnected from the model



Limitation: Noise


We use the term "noise" to refer to rare and infrequent behaviour rather than errors related to event logging.

For example, frequencies are not taken into account by the α -algorithm (should we disregard less frequent traces?).

Limitation: Noise

Limitation: Noise

