PSC 2024/25 (375AA, 9CFU)
Principles for Software Composition

Roberto Bruni
http:// www.di.unipi.it/~bruni/

http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/start

O4 - Logical Systems

http://www.di.unipi.it/~bruni/
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

From your forms

® 5 stelle
© 2 stelle

® 4stelle © 3stelle

® 1 stella

Proof systems

¢

® Sstelle @ 4stelle © 3stelle
© 2 stelle

® 1 stella

Logic programming

(over 13 answers)

Inference rules

Inference rules

premises (one, none, many)

DL o Dp if the premises are valid,

q then the conclusion is also valid

>

conclusion (one)

P1,: - ,Pn,q are formulas

any variable they contain is universally quantified (implicitly)
a rule instance I1s obtained by applying some p to p1,...,p,,¢q

AXioms

no premises

the conclusion is valid

q

>

conclusion (always valid, it is a fact)

Rule instances

EO — N0 E1 — N
(prod) n=ng-m
Eo ®E; —n

p=2[Eg=1,E=1®2,n0=1,n =3,n=23]

an instance (prod) l1—1 192 —3

3=1-3

of (prod) l1®(1e2) — 3
p2[Eg=1,E,=1®2,n9=3,n, =5,n=15]

th|§ |stalso (orod) 1—33 1482 —5

dn Instance pro 15=3-5

of (prod) l1®(1d2) — 15

but it is unlikely that such premises will be valid

6

More instances

EO — N0 E{ — ny
(prod) n=mng - m
E() QE; —n

ExR2—%tF EDPL — 3
E®2)®(E®1) — 3k

an instance

of (prod) (prod)

variables can be shared

Logical System
S T

A logical system is just a set of axioms and inference rules

If an inference rule contains some variables,
we assume all its instances arein R

Derivation

Given a logical system R, a derivation in R, is written

d ”_R q
where

o either d = () € R is an axiom of R;

e Oor d = (dl"('l"d”) for some derivations d; IFg pq1,...,d,, IFR Py

such that (#=22) € R is an inference rule of R.

a derivation is a proof tree (whose leaves are axioms)

9

Example
Su:=€¢ | (S)|SS

R—{ SeLl SpeLl Sleﬁ\>
- |leel’(S)eLl’ SpSieL |

e €L
e c L ()e Ll
d= (€L () e L d1-r ((0)) € £
O)(0) € £

Example

R_{ EO%TLQ E{ — nq E()Hn() Elﬁnl}

N —n’ Eo P E; — ng + ny 7 Eo ® E{ — ng - ny

1]—1 2—52 3—3 4—141

d = (1e2) —3 B3®4) — 7

(162)®@ (344 — 21

diFp (102)®(3d4) — 21

Theorems

Given a logical system R, a theorem of R is written

”_Rq ElddH—Rq

where q is a formula such that
we can find a derivation for g in R

The set of all theorems of R is denoted by Ip

In={q | Frq}

Inline notation

1—1 2—2 3—3 4—14

d= (132 —3 (3d4) —7

(132)® (3@ 4) — 21

(1e2)®(3d4) — 21 goal oriented
N (1®2)—3, Bd4) —7 derivation

N 1—1,2—2 . 3¢4) —T

N 2—2, (304 —7

N 3®4) — 7 nothing left to prove
N 3—3,4—4 N 4—4 X

13

Backtracking

(1®2)®(3d4) — 21 goal oriented
derivation

N 1—1,2—6, (304 — 3
N 2—6, (304 —3

faill need to backtrack to the last choice and retry
N 1—2,2—5, (364 —3
faill need to backtrack to the last choice and retry

alternatively, all possibilities can be explored in parallel
(breadth-first vs depth-first)

| 4

Logic programming

PROLOG

Prolog is a simple, yet powerful declarative programming
language, based on first-order predicate logic

PROgrammation en LOGique

[’70] (Univ. Marseilles) A. Colmerauer, P. Roussel, R. Kowalski
(aimed at processing natural (French) language)

Every psychiatrist is a person.
Every person he analyzes is sick.

Jacques is a psychiatrist in Marseille. TOUT PSYCHIATRE EST UNE PERSONNE.
Is Jacques a person? CHAQUE PERSONNE QU’IL ANALYSE, EST MALADE.
Where is Jacques? JACQUES EST UN PSYCHIATRE A *MARSEILLE.

EST-CE QUE *xJACQUES EST UNE PERSONNE?
0U EST *xJACQUES?

EST-CE QUE *JACQUES EST MALADE?

Yes. In Marseille. OUI. A MARSEILLE. JE NE SAIS PAS.

I don’t know.

Is Jacques sick?

Algorithm

algorithm = logic 4+ control

what how
(problem description) (steps to reach a solution)

Horn clauses resolution

PROLOG PROLOG
database iInterpreter

Formulas

X ={z,y,...} a set of variables
>, = {3, }» a signature of function symbols ¢, f, g, ...

IT = {II,,},, a signature of predicate symbols p, g, ...

p € 11,

. a=p(t,...,t
atomic formula p(ty n) b1, ..,tn € Iy x

a possibly empty conjunction
of atomic formulas

formula ai, ..., An

Example

X =1{5,Sp, 51, ...} a set of variables
>0 ={€,(,)} a set of constants
Yo = {_ _} a binary (infix) operator

[I, ={_€ L} a unary predicate symbol

atomic formula S)e L

formula S)e L£,55)) € L

Example

X ={N,E, Egy, Eq,...,n,n09,n1,...} a set of variables
Yo =10,1,2,...,0,1,2, ...} a set of constants
Yo ={_® ., _®_} a set of binary (infix) operators

II, = {_- — _} a binary (infix) predicate symbol

atomic formula E®2 —5

formula E®2 —5ER7—n

20

Logic programs

an atomic formula h — r a formula
Horn clause (the HEAD) ' (the BODY)

a’l...an

a — ai,...,@n gnalogous to
a

a set (or list) of Horn clauses

logic program L L=< h:—r.

21

Applications

a logic program serves to answer the following question:
given a formula g that we want to prove,
what are the valid instances of g?

— 12)B8394) —n, ndE— 26

22

SLD resolution

Idea: iteratively reduce the initial goal g
by applying one of the Horn clauses in L
to one of the atomic formulas in the goal;

each application computes a most general unifier (mgu),
replaces the selected formula with the body of the
selected clause and applies the mgu to the new goal

f— g \0'1 g1
\0'2 92
’\03 c.
Nom

then goi05...0,, 1s @ theorem

23

SLD resolution

) WIKIPEDIA [O search wikipedia
T The Free Encyclopedia

R

| |

Search

The origin of the name "SLD" edi)

The name "SLD resolution" was given by Maarten van Emden for the unnamed inference rule introduced by Robert Kowalski.l!! Its
name is derived from SL resolution,?! which is both sound and refutation complete for the unrestricted clausal form of logic. "SLD"
stands for "SL resolution with Definite clauses".

In both, SL and SLD, "L" stands for the fact that a resolution proof can be restricted to a linear sequence of clauses:
017027'”,Cl

where the "top clause" (' is an input clause, and every other clause C;_1 is a resolvent one of whose parents is the previous
clause C; . The proof is a refutation if the last clause C] is the empty clause.

In SLD, all of the clauses in the sequence are goal clauses, and the other parent is an input clause. In SL resolution, the other parent
is either an input clause or an ancestor clause earlier in the sequence.

In both SL and SLD, "S" stands for the fact that the only literal resolved upon in any clause C; is one that is uniquely selected by a
selection rule or selection function. In SL resolution, the selected literal is restricted to one which has been most recently introduced
into the clause. In the simplest case, such a last-in-first-out selection function can be specified by the order in which literals are
written, as in Prolog. However, the selection function in SLD resolution is more general than in SL resolution and in Prolog. There is
no restriction on the literal that can be selected.

24

SLD resolution

T—aq, ... ey QU

repeat the following until no goal is left:

1.

~ W

select a clause of the goal a; (e.g., the first);

select a Horn clause h:— b4, ..., b, in L whose head unifies with a;;

. let 0 be a most general unifier (a;0 = ho);

replace a; with b1, ..., b,;

. apply the computed substitution ¢ to the goal (a1, ..., b1, ...

25

Pay attention

atomic goals can share variables: the substitution must
be applied to all of them to propagate the information

9

(&1, Sooc bl, e bn, e (Zk)()' ai,y ..., (bl, Sooo bn)()', ooy AL

X

26

Pay attention

the same clause can be reused many times:
each time its variables must be renamed (before unification)
with fresh identifiers to avoid clashes

repeat the following until no goal is left:

1.
2.

S

select a clause of the goal a; (e.g., the first);

select a Horn clause h:—b1,...,b, In L;

let p: X — X rename the variables in vars(h:— b1, ...,b,) to fresh ones;

(h:—b1,...,b,)p is called a variant of the original clause;

5. let 0 be a most general unifier (a;0 = (hp)o);

. replace a; with (by,...,b,)p;

. apply the computed substitution ¢ to the goal (a, ...

27

, (bl, coes bn)p,

7ak)0

Pay attention

in the computed substitutions, only the variables that
appears in the goal are of some interest to us

o X — Iy x (z) 2 o(x) ifxeY
Y C X Y\ = otherwise

we only record this partial information

Ay eeny iy ey O NG (A1, .0y (b1, b0)py vy)0

28

Computed answer
substitution

‘— g \81 g1
\82 g2
7\83 c.
NG,

0:81-82-83---8m

is called cas (computed answer substitution)

where

t(o1 - 02) = toroe = oa(01(t)) = (03 0 01)(t)

29

Example

EO — {O, } Hg — {sum, }
21 — {S,...}

sum as a predicate sum(z,y,2) means T +y=2

in PROLOG
each statement
ends with dot

(a fact)
\L sum(0, v, y). —— —
sum(s(z), y, s(z)) :— sum(z, y, z)./

L

30

Structural recursion

the previous definition is an example of structural recursion

® Sstelle @ 4stelle © 3stelle
® 2stelle @ 1stella

Structural recursion

A
¥
A
v,

(over 13 answers)

31

{sum(s(s(0)),s(s(0)),n) = sum(0,y',y")} fails
= sum(

= sum(s(0),s(s(0)), z1)

32

our new
goal sum(s(0),s(s(0)), 21). sum(o, 4.0
sum(s(x),y,s(z)) :—sum(x,y, 2).

0+2=?

our new
oal sum(0,s(s(0)), 22). sum(0,4,)
9 sum(s(x),y,s(z)) :—sum(x,y, 2).

{sum(0,s(s(0)), z2) s sum(0, y3,y3)} succeeds

o3 = |ys =s(s(0)), 22 = s(s(0))]
o3 = |22 = s(s(0))]

um(s(s(0)), 5(s(0)),m) X5, sum(s(0),s(s(0)), z1) Holix:
5, sum(0,s(s(0)), z2)

AN

03

010203 = |n =5s(s(s(s(0))))]

34

sum(0,y",y")} fails

O+n=2?

L
our new
sum(O, T, S(S(O>)) sum (0,7,).
goal m(s(x), y, 5(2)) i— sum(z, y, =)
{sum(0,7,5(s(0))) = sum(0, 1, 1)} succeeds

Jumping creatures

Assuming that:

1. All jumping creatures are green
2. All small jumping creatures are Martians
3. All green Martians are intelligent intelligent(1V)
4. Ngtrks is small and green N green(IW), martian(11)
5. Pgvdrk is a jumping Martian <. jumping(V/") , martian(1V')
Who is intelligent? "\ martian(pgvdrk)

N (W = pgvdrk|
green (X) :- Jjumping (X)
martian(X) :- small(X) , Jjumping (X)
intelligent (X) :- green(X) , martian(X) . martian(ngtrks)
small (ngtrks) _ .
green (ngtrks) . . small(ngtrks) , jumping(ngtrks)
Jjumping (pgvdrk) : :
martian (pgvdrk) . N\ S (i)

faal!

?— intelligent(1V).

37

Badge exercise

A binary tree T is either empty (nil)
or it is composed of a root value and two successors,
which are binary trees themselves.

T is symmetric if you can draw a vertical line through the
root node and then the right subtree is the mirror image
of the left subtree (we are only interested in the
structure, values are not relevant).

1. Given the signature below, write the Horn clauses to
check whether one tree is the mirror image of another.
2. Then extend the code to check if a tree is symmetric.

Yo = {nil,a,b,...} Y3 ={node} II; = {sym} Il = {mirror}

38

Badge exercise

example:
trees as terms

node(a, node(b, node(d, nil, nil),
nil),
node(¢, node(e, nil, nil),

nil))

39

Badge exercise

an example of and one that is
symmetric tree not symmetric
(2
(o) ()
O 0
o (= O
O ONOENO

40

