PSC 2022/23 (375AA, 9CFU)
Principles for Software Composition

Roberto Bruni
http:// www.di.unipi.it/~bruni/

http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/start

|O - Consistency and congruence

http://www.di.unipi.it/~bruni/
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

Operational equivalence

Operational equivalence

ay ~op ag iff Vo,n. ((a1,0) = n < (az,0) > n)
b1 ~op b- it \V/O',U.(<b1,0'>%’0<:><b2,0'>%?])

c1 ~op C2 Iff Vo,0'. ({c1,0) = 0" < {(ca,0) = 0’)

termination and determinacy does not matter:
operational equivalence is always well-defined

Congruence

ay ~op ag iff Vo,n. ((a1,0) = n < (az,0) > n)

take any context A][-] e.g. 2 x ([]+5)

is it the case that a1 ~op a2 = Alai] ~op Alas| ?

that is: can we replace a subexpressions with
any equivalent one without changing the outcome?

Contexts

what are the possible contexts for arithmetic expressions?

45
2 X (|-] +95)
2 % (-] +5) <50
2% ([]+95) <50)ANz =1y
r:=2 X ([-]+5)
while z < 100 do x := 2 x ([-] + 5)

Contexts

what are the possible contexts for arithmetic expressions?

Al = 1)
' opa Cl-] == x:=Al
Allope CH] s b
c; C[]
if B|-| then c else ¢
B[] == A[]cmpa if b then C|-] else c
a cmp A[] if b then c else C|']
~BJ] while B|-| do c
IB%H bop b while b do CH
b bop B/

Proof obligations

many proof obligations to deal with:
Va,a1,as. (a1 ~op G2 = a1 Op G ~op A2 OP a)
Va,a1,as. (a1 ~op G2 = @ Op G1 ~op G OP A2)

Va,ai,as. (a1 ~op @2 = a cmMp aj ~op @ CMP ay)

Va,a1,as. (a1 ~op G2 = a1 CMp a ~qp G2 CMP a)

Vx,a1,as. (a1 ~op G2 = X :=a1 ~op T =02)

similarly for boolean expressions and commands

Denotational equivalence

Denotational equivalence

A1 ~Yden 42 lff A|[a1]] — AI[CLQ]]
by ~den by iff B[bi] = B[bs]

C1 ~Yden €2 1t C|[(31]] —+ CHCQ]]

(two functions are the same
if they coincide on all arguments)

Compositionality principle
a1 ~den a2 iff Ala1] = Afas]

take any context A|-]

is it the case that @1 ~den a2 = Ala1] ~den Alas]|?

YES! it is guaranteed by the compositionally
principle of denotational semantics:

the meaning of a compound expression is solely
determined by the meaning of its constituents

Consistency

if we guarantee the consistency between
the operational semantics and

the denotational semantics

then the congruence property is guaranteed
for the operational semantics too

?
Vayi,as. ((a ~op A2 <7 A1 ~den G2)

Vb1, ba. (by ~op ba <5 b1 ~den b2)

?
Ver,co. (€ ~op C2 < C1 ~den C2)

Consistency: expressions

VacAexpVo e€X. (a,0) — o a] o

Pla)E Vo cX. (a,6) = o [d]o

by structural induction

VbeBexp Vo c X. (b,0) — A[b] o

PH)EVocX. (bo)— Blb|o

by structural induction

12

Consistency: commands

Ve e Com.Vo,0' €X. (c,0) >0 & E|c]Jo=0o

can we write it as
Ve € Com.VoeX. (c,0)—>%|c]|o ?

no, because there is no such formula as
(c,0) = L

Consistency: commands

Ve e Com.Vo,0' €X. (c,0) >0 & E|c]Jo=0o

Ve € Com.Vo,0' € X.

Correctness

P({c,0) — 0') = e

% [c] o = 6’ by rule induction

Ve € Com.

Completeness

()derGG cX. €|cJlo=06" = (c,0)—=0

by structural induction

Correctness

Ve € Com, Vo,0' € X

P((c,0) = 6") L €[c]o =0

by rule induction

(skip,0) — ©
We want to prove
P((skip,o0) — o) e [skip]o =o0©

Obviously the proposition 1s true by the definition of the denotational
semantics.

(a,0) — m

(x:=a,0) — o |"/4]

We assume (a,6) — m and hence o7 [a] 6 = m by the equivalence of the
operational and denotational semantics of arithmetic expressions.
We want to prove

m def m
P((x:=a,0) > c|"/]) = €|x:=aloc=0c"/,
By the definition of the denotational semantics

¢ x:=ao=o["1°/]=0["/]

We assume

/!

]
Q

/! /

N
]
Q

We want to prove

P(<Co;61,6> — G/) déf((oﬂ[[c();cl]] O = G/
By the denotational semantics definition and the inductive hypotheses
C [[C();Cl]] c=% [[Cl]]* (cg [[C()]] G) =% [[Cl]]* G” =% [[Cl]] G” — G/

Note that the lifting operator can be removed because ¢” # 1 by the
inductive hypothesis.

(b,0) — true {cg,0) — 0’

(if b then ¢ else ¢|,0) — o'

We assume

e (b,0)— true and therefore 4 |b] 6 = true by the correspondence
between the operational and denotational semantics for boolean ex-
pressions;

e P({cy,0)— 0’) déf%[[co]] c=0

We want to prove

P({if b then ¢y else c;,0) — ¢’) déf%[[if b then ¢ else c|]| o = ¢

In fact, we have

Cg[[if b then c(else Cl]]G = 35’[[[9]]6 — Cg[[CQ]] G,Cg[[cl]]G
= true — 6',% [c1] o
— G/

(b,) — false

(while b do c,0) — ©

We assume (b, o) — false and therefore % |b] o = false.
We want to prove

P((while b do ¢,0) — ¢) & € [while b do c]o =

By the fixpoint property ot the denotational semantics

¢ [while b do c] o = Z[b] o — € [while b do c]* (¢ [c]o),0
— false — ¢ [while b do c]" (¢ [c]o),0
=

20

(b,0) —true (c,0) — c” (while b do ¢,6") — o’

(while b do ¢,0) — o'

We assume

e (b,0) — true and therefore £ [b]| o = true
e P({c,0)—0c") déf%[[c]] c=o0"
o P({while b do c,6") — ¢') & € [while b do]c” = o

We want to prove

P({while b do c,0) — ¢’) & € [while b do c] o = o’

By the definition of the denotational semantics and the inductive hypotheses
% [while b do c] o = B [b] o — € [while b do] (¢ [c]o),0
— true — % [while b do ¢]" 6", 0
= % [while b do c]* o”
= % [while b do c] c”
— o’

Note that the lifting operator can be removed since 6" # 1.
21

Completeness

Ve € Com

P(c) dt

Vo,0' €X. ¢[c]Jo=0 = (c,0)—0

by structural induction

22

/

We prove P(skip) e Vo,o0’'. € [skip] o = 6’ = (skip,0) — ©

Assume % [skip] o = o’
Then o' =0

By rule (Sklp) <skip7cy> vo=o0"

23

)< '

We prove P(x:=a)= Vo, 0. ¢[x=alo=0"=(x:=a,0)— 0
Assume € [x:=a]jo =0

Then o' = o[#ldo)

By consistency for expressions (a,0) — <7 [a] ©

By rule (asgn) (x:=a,c)— o[“lo/] = o

24

P(cp) Yvo,0". € lco] 0 = 6" = {(cy,0) — 0"

ASsSum
SsSUme P(ci) Lve' o € c1] 6" = o' = {(c1,6") — &'

/

We want to prove P(co;c1) Evo,0". € eo;c1] 6 =6 = (cpie1,0) » 0
Assume % [co;c1]o =0

we have % |[co;ci]o=€[c1]" (€ [co]o)=0"# L

thus € [co] o = 0" for some o” # L

and ¢ [ci1]o” = o’

by inductive hypotheses (cy,0) =+ " (c1,0") — o0

/

By rule (SeCI) <CQ;C1,G> — 0’

25

P(co) défVG o'. 6 [co]l o =0"= {(cy,0) = 0

ASSUME b)) ¥ yo,0". ¢ [e] 0 = 0’ = (c1.0) &

We prove P(if b then ¢ else c) Lo Vo,o'. € [if b then ¢ else ¢;] o = ¢’
= (if b then ¢ else ¢;,0) —> ©

Assume ¢ [if b then ¢ else ¢;] ¢ = o’
we have ¥ lf b then c(else Cl]] o= [[b]] c— % [[C()]] 0,6 [[Cl]] c =0
either #[b]| o =false or %[b]|oc = true

/

if % [b] o = false % [if b then ¢y else ¢;] 6 =€ [c1] o = o’
(b,0) — false by inductive hypotheses (ci,0) — o’

By rule (ifff) (if 5 then ¢ else ¢;,0) — o’
if A |b] o = true ¢ [if b then ¢ else ¢;] o6 = € [co]o =0’
(b,0) — true by inductive hypotheses (co,0) — o’

By rule (iftt) (if b then ¢ else ¢;,0) — o’

26

Assume P(c)Evo,6". €[c]o =0" = (c,0) = &

We prove P(while b do ¢) “Vo,0’. € [while b do] o = ¢

= (while b do ¢,0) — o’

we have & [while b do] =fix I} . 0 = (uneN Fb”CL) o
% [while b do c]| 6 = ¢’ = (while b do ¢,0) — ¢’
iff (UHGN Fb”CL) o = ¢’ = (while b do ¢,0) — ¢’

f (FneN. (I Lo=0") =
<

= (while b do ¢,0) — o’
ff vneN. (I, Lo = o' = (while b do ¢,G) —

G’)
let A(n) € Vo,0'. I, L6 = ¢’ = (while b do ¢,6) — ¢

we prove VneN.A(n) by mathematical induction

27

Assume P(c)¥vo,6”. €[c]o =0o" = (c,0) — o

det /

we prove Ve N.A(n) = Vo,0’. I)' lo= o' = (while b do ¢c,0) > ©

A(0) ¥ Vo,0'. I} L6 = ¢’ = (while b do ¢,6) — ¢

I)lo=1c=1
the premise I, lo=0¢" isfalse o # 1

A(O) is true

28

Assume P(c) ¥ vo,6". ¢[c]o =0o" = (c,0) — o

det ;

we prove Ve N.A(n) = Vo,0’. I)' lo= o' = (while b do ¢c,0) > ©

assume A(n) C Vo, 0. I'. 1o =0'= (while b do c,0) — ¢

we prove A(n+1)<

Vo,6’. ' Lo = ¢’ = (while b do ¢,c) — ¢’

assume Lo =n, (IL)o=0'# 1
by def Z[b]o — (I} L) (¢[c]o),0 =0 by rule (whiff)

If %[b]c ="false (b,0)— false c=0" (while bdoc,0) > 0o
p— G/

if 4[b]|o =true (b,o)— true (179’;‘6__)* (€[c]o)=0" # L
(I'I;”CL) " =0’ thus ¢'[c] o = ¢” for some ¢” # L

(while b do ¢,6") — o (c,0) = o

By rule (whtt)

. (while b do ¢,0) — o'

Final remarks

Commands
Big-step operational semantics Denotational semantics

Termination €3
(partial functions)
Determinacy @&

Operational equivalence Denotational equivalence

IS a congruence
Consistency

(correctness + completeness)

Operational equivalence = Denotational equivalence
they are congruences

Well-founded induction Kleene’s fixpoint theorem

30

