PSC 2022/23 (375AA, 9CFU)
Principles for Software Composition

Roberto Bruni
http:// www.di.unipi.it/~bruni/

http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/start

02 - Preliminaries

http://www.di.unipi.it/~bruni/
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

From syntax to semantics

Programming languages

When we define a programming language, we fix its:

well-formed programs,

1. syntax
y exclude nonsense

reduce allowed programs,

2. types exclude common mistakes

3. pragmatics = how to use constructs and features

4. (semantics) the meaning of (well-typed) programs

Formal syntax

The syntax of a formal language rigorously defines
1. the alphabet which symbols can be used

2. the grammatical structure of programs

which sequences of symbols are valid,
which sequences should be discarded

Standard ways for defining syntax are, e.g.
regular expressions, context-free grammars, BNF notation,
syntax diagrams, ...

Example

A BNF grammar and its corresponding syntax diagram

<numeral> ::= <digit> | <numeral> <digit>
<digit> : :: I|®l| | lllll | |l2l| | ll3ll | ll4ll | I|5ll | ll6ll | |l7l| | ll8ll | ll9ll
o> 0 >0

>

>(2)>

(3

numeral: digit digit: @

(—— S NG

(6>

(7

%

Type systems

Type systems can be used to

1. limit the occurrence of errors

2. allow compiler optimisation different tYPe systems
can be defined

for the same language!
3. reduce the presence of bugs

4. discourage programming malpractices

Type systems are often presented as logic rules

6

Example

bool b := true;

while (b <= (b && 1i)) do {
i = i-1;

}

Benefits of formalisation

Standardisation of the language

programmers write syntactically correct programs
implementors write correct parsers

Formal analysis of language properties

ambiguity, expressiveness,
recognizability, comparability

Automatic implementation of compiler’s front-end
yacc, Bison, xtext, ...

8

Exercise

Take the alphabet A = {(,)}

Define the grammar for strings of balanced parentheses

Pragmatics

Programmers should understand the code they type

Every language manual also contains
1. natural language descriptions of the various constructs
2. sample code fragments and usage patterns

3. examples of malpractices

We call them pragmatics
1. how to exploit the various features
2. how compilers should be designed

3. which auxiliary tools are available

|0

Is it enough?

Natural language descriptions should be
1. as much precise as possible
2. understandable

3. unambiguous but not pedantic

Still ...

1. 1t is difficult (nearly impossible) to cover all cases

2. many points will remain open to different interpretations
3. inconsistencies can arise

4. good practices do not eliminate problems (hide them)

Some I1ssues

How to prove conformance to some specification?

How to prove absence of problems?

How to produce reliable code?

How to prove vendors’ compliance?

How to prove correctness of an implementation”?

How to define the correct outcomes of test cases?

How to early detect ambiguities, anomalies, inconsistencies?

How to expose weaknesses?

Best practices

Code reviews

AND I WROTE A

TEST SCRIPT TO

TEST DILBERT'S
TEST SCRIPT.

I SPENT THE WEEK
WRITING A TEST
SCRIPT FOR OUR

Test-driven PRODUCT.

YOUR SCRIPT WAS

ALMOST PERFECT.

KEEP UP THE GOOD
WORK, BUDDY.

development

Dilbert.com DilbertCartoonist@gmail.com

3241 ©2011 Scott Adams, Inc./Dist. by UFS, Inc.

606 fails US$1.7 trillion

from 314 campanies in financial losses

= IT WORKS

ey | on my machine

3.6 billion 268 years Resolving bug? early and often
s it reduces associated costs

10,000 X

1,000
100 %
ca 10X
cabug] X -ﬁ-

Conception Design Development Testing Release

Stapge arwhich a bug k= faund
T-RAYCUN

Semantics

The word semantics was intfroduced in 1900 as

the study of how words change their meanings (M. Bréal)

Ironically its meaning has now changed to
the study of the attachment between the sentences of a
language (written, spoken or formal) and their meanings
In Computer Science, it is concerned with

the study of the meaning of (well-typed) programs

Formal semantics assigns rigorous non-ambiguous meaning:
it tells programmers the meaning of the code they type
(at some level of abstraction)

Someone will always say

correct by definition

machine-independent?

portability?

how long it will last?

useful abstraction for other programmers?
how to reason on it?

what about competitors?

16

Exercise

1. DO NOT ask questions
2. open your favourite text editor

3. Implement as fast as possible the following primitive,

by writing the corresponding code in your favourite
imperative programming language

repeat c until b

4. DO NOT show your solution to others

5. send your code to bruni@di.unipi.it with subject “I did it”

|7

mailto:bruni@di.unipi.it

Benefits of formalisation

Standardisation of the reference model of the language

official, machine-independent
a mental model for programmers
a benchmark for implementors

Formal analysis of language properties

subtleties, expressiveness, type safety,
program compliance, subject reduction

Automatic implementation of compiler’s back-end
prototypical interpreter for experimentation

|18

Still...

semantics is harder to formalize than syntax!

different methods o

heavy math and logic involved

r-A—-mnmn Anid b-8
I'-1'4— 8 AVA—<BFHEB
I"AFSB

TUAFDRD
AF A

r-A—8B Alta i
r '4—n AN'A—DNn DI
r'A-B

l'ua-85
Al A

IHld—® AiA S BrE

| T
I'C A a2
S
a4, . ALy
14— A A=Br¥y

and then...

/s

vlv
v'v
SOFTWARE BUGS IN HISTORY

The Ariane 5 Disaster SOFTWARE BUGS IN HISTORY

Mars Climate
Orbiter Disassembly

-
SOFTWARE BUGS IN HISTORY

\YJ\"Y4
Therac-25 ‘

SOFTWARE BUGS IN HISTORY

Losing $460m in 45 minutes

20

and then...

Heathrow Airport has apologised for disruption after the west London hub
was hit by "technical issues".

One passenger said the situation was "utter chaos" after a problem with the
airport's IT system saw staff called in to help passengers get to gates on the
second day of the half-term weekend.

SOFTW

The A

B @ Heathrow Airport £ @HeathrowAirport - 16 feb 2020 000

Today’s technical issue has now been resolved and Heathrow's systems

are returning to normal. We apologise for the inconvenience caused. Our
teams will continue to monitor our systems and be on hand to provide V
assistance to passengers as we work to resume our regular operations. "

O 29 11 36 QO 97 T
SOF'

Risposte

I - v 2020

In risposta a @HeathrowAirport
Someone turned the system off and back on again?

Q) (! O 1 Ty

hutes

21

Semantics

22

Different approaches

Roughly, semantics definition methods fall into three groups

it is of interest how the effect

1. Operational ¢ he computation is achieved

only the effect is of interest,

2. Denotational o ¢how it is obtained

the focus is on valid assertions
about the computation

3. Axiomatic

23

OPZPGTIO l semantics

as opposed to a
physical existing device

Idea: define some kind of abstract machine and describe the
meaning of a program in terms of the steps or instructions
that this machine executes to perform the task

the emphasis is
on states and state
transformations

Rationale:
explain computations

Sop —7S1 —7S8S9 —2 ¢+ —=>8, —=7T

24

Founding fathers

[’70] small-step: semantics of LISP by John MCCarthy

l]h]

(1960) and of Algol 68 (1975) 0 Their Computation by Macking, Part 1
Johr Me(larthy, Massachnsatts Inst:tute of Technclogy, Cambridze, Mass

[’80] SOS approach: Gordon Plotkin introduced the
structural (syntax-oriented and inductively defined)
operational semantics in 1981 (one of the most cited
technical reports in computer science, published in a journal
only more than 20 years later). leo, o) — (el o)

(eg +e1,0) — (e + €1,0)

[’90] big-step: Gilles Kahn introduced the natural semantics
in 1987, where the result is computed in a single step

So —7 T

25

Overview

Nowadays the transition relation is typically defined
inductively, by axioms and inference rules according to the
syntax of the program (SOS style).

Advantages:

immediate translation to Horn clauses in logic programming;
prototype Prolog interpreter (almost) for free;

strong connections to the syntax of the language;

rules for different constructs are neatly separated;

useful to detect underspecified behaviours;

involved mathematics is usually not much complicated,;
SOS descriptions are easy to read, even for non-specialists;
could appear in any manual (but usually it won't)

26

Denotational semantics

Idea: the meaning of a program is some mathematical
object (e.g. a function from input to output) and the steps
taken to calculate the result are unimportant

|-] : Programs — Domains

Rationale: functions are independent of their means of
computation and hence are simpler than the step-by-step
sequence of operations of operational semantics

27

Founding fathers

[’60/°70]: Christopher Strachey and Dana Scott

OUTLINE OF A MATHEMATICAL
THEORY OF COMPUTATION

Princeton University

Compositionally principle: the semantics takes the form of
a function that assigns an element of some mathematical
domain to each individual construct in such a way that

the meaning of a composite construct
does not depend on the particular
form of the constituent constructs, but
only on their meanings

28

Overview

Advantages:

mathematically elegant;

useful to detect underspecified behaviours;

can be used to derive prototype implementations;

has served as inspiration for many programming languages;
difficult to apply to concurrent, interactive systems

29

Axiomatic semantics

Idea: describe the constructs in a programming language by
providing logical axioms that are satisfied by these constructs

Rationale: prove the correctness of a program with respect
to a given specification

- P} c Q]

30

Founding fathers

[’60]. Robert W. Floyd (1967) and Tony Hoare (1969)

Robert W. Floyd An Axiomatic Basis for
Compuler Programming

C. A. H. Hoarg
ASSIGNING MEANINGS TO PROGRAMS: The Queen’s Univeraity of Belfast,™ Northern Ireland

Hoare logic: a statement is accompanied by a precondition
(the state before the execution) and a postcondition (after
the execution)

the meaning of a program is a logical
proposition that states some property
of the output whenever some
properties of the input are met

31

Overview

Advantages:

emphasis on proof correctness from the very start;
strikingly elegant proof systems;

can be used to prove absence of bugs;

difficult to apply to concurrent, interactive systems

32

Make love not war

Different semantics are often seen in opposition one each
other, but this should not be the case!
We would gain much more from their combination!

This course

We focus on operational and denotational semantics

We will present the fundamental ideas and methods behind
these approaches and stress their relationship, by proving
some relevant correspondence theorems.

Sg — T |-] : Programs — Domains

34

A taste of semantics methods

35

A simple language
Informal syntax of numerical expressions

e any numeral N Is an expression;
e if E; and Ey are expressions, then E; @ E5 is an expression;

e if E; and Ey are expressions, then E; ® E5 is an expression.

N numerals vs numbers n,
syntax for ° mathematical objects
writing 101 b5 N . ’
concepts
numbers

five

36

Formal syntax

E:=N| E®E | EQE

©3®4 not awell-formed numerical expression

a string
1923 we use brackets
@/@)\3 /\ 16 (2® 3)
1/ \2 / \ or fix operators

precedence to

solve ambiguities
two abstract syntax trees

37

Assigh meaning

E:=N| E®E | EQE
this is just syntax!
IS N necessarily a number?
IS ® necessarily the arithmetic sum?

IS ® necessarily the arithmetic product?

maybe we are speaking about
matrices with addition and multiplication

or sets with union and intersection

or strings with concatenation and least common prefix

or trees with branching and merging

38

Informal semantics

Informal semantics of numerical expressions

e a numeral N evaluates to its corresponding number n;

e to evaluate an expression of the form E; & E5 we evaluate E; and E5 and sum
their values;

e to evaluate an expression of the form E; ® E5 we evaluate E; and E5 and
multiply their values.

Three rules are enough to determine the value of any
well-formed expression, no matter how large

Note that we are not telling the order in which
arguments are evaluated: is it important?

39

Pragmatics

We can provide some examples

e 2 evaluates to 2;
e (14 2)® 3 evaluates to 9;

e (1®2)®(3d4) evaluates to 21

40

Small-step semantics

Runtime numerical expressions
E:=n | N| E®E | EQE

the state of the abstract machine can mix
intermediate results with expressions

a step Eo — E4
an evaluation Eo - E1 > Es— - = Ex —n
also written Eo 2™ n
we also expect n +#»

How to define the transition relation?

41

Inference rules

remaises .
Inference rules (rule name) ! side condition

conclusion

If the premises and the side condition are met
then the conclusion can be drawn

The conclusion is a single judgement

The premises consist of one, none or more judgements
The side condition Is a logical predicate

The rule name is just a convenient label

42

SOS rules

(num)
N —n to be completed together

n = ng -+ N d
(sum)no e (prod)

Eo — E6
L L
(sum)EO S (prodL)
E, — E;
(sumR) 1 L (prodR)

Eo ® E1 — Eo @ E]

43

(prodL)

Some derivations

(sumL)

(num) 3=

(1d2) — (1

G 2)

(1e2)® (34 — (1

(prodL)

(num)

$2)® (3® 4)

2 — 2

(sumR)

(192) — (142)

(12) 3344 - (192)® (344)

A computation

(132)® (3®4) —* 21

45

Another computation

(102) B34 - (1D2)® (3D 4)
- (1P2)®(3d4
- (102)® (3®4)
= (182)®7
= (1P2)RT7
— 37
— 21
Ve

(102)® (Bd4) —* 21

46

Confluence?

We have seen that there are many different
evaluation sequences (non-determinism)

Are we guaranteed they all lead to the same outcome?

We can change the inference rules to impose
some specific evaluation strategy (determinism)

For example, we can impose a left-to-right
evaluation of arguments by changing rules
(sumR) and (prodR)

47

Evaluation strategies

(num)
N —n to be completed together

n =mno -+ ni d
(sum)no e (prod)

Eo — E
(sumlL) L)

(prodL)

EO@El%Eé)@El

E: — E;
(sumR) 1 L

(prodR)

no@El%no@Ell

48

A computation

it is the only possible
computation

(102)® (Bd4) —* 21

49

Big-step semantics

a step Eo — n

represents a whole
computation!

How to define the transition relation?
Usually simpler than small-step rules

Can correspond to an efficient interpreter

50

SOS rules

(prod)

to be completed together

51

A derivation

((num)) 1 — 1 (num)2 — 2 (num)3 — 3 (num)4 — 4
- (1e2) — 3 (sum) 3®4) — 7
(prod)

(192)® (3d4) — 21

cannot express non-terminating computations

(derivations are possible only for terminating programs)

52

Denotational semantics

domain + interpretation function

N El-]: BFxp —» N
the choice of the domain has a term
Immediate consequences: (a piece of syntax)
lon h

anyone knows already that . ocione answer
expressions are deterministic 8[?]}
and normalising every expression

g has an answer ~—

/

different syntactic categories may its denotation
require different domains! (a semantic object)

53

Structural induction

EIN] =n
E|Eo ® E1| = E|Eo| + E|Eq]
E[Eo ® E1] = E[Eo] - EE4]

compositionality principle

the meaning of a composite construct
does not depend on the particular
form of the constituent constructs, but
only on their meanings

54

An evaluation

Slle2)2Bad)] =E[1a2]- 3o 4]
= (E[1] + &[2]) - (€13] + £[4])
—(1+2) (3+4)
= 21

55

Comparison

E—"n E—n EIE] =n

normalisation / termination?

VE. dn. E =" n VE. dn. E — n VE. dn. E|E| = n
must be proved must be proved obvious

56

Comparison

determinacy?

E—>*n

VE, n, m. A\ — N =m must be proved
E—>*m
E—n

VE, n, m. A -~ n =m must be proved
E— m

EIE] =n
VE, n, m. A\ =>n=m obvious

E[E] =m

57

Comparison

E—>*n E—n EIE] =n

consistency?
VE,n. (E—-"n < E—n << E|E]=n)

must be proved

58

Comparison

induced equivalences

EO =s El
Vn. (EO — n & E, — TL)

Eo = Ex
vn. (Ep — n & Ey — n)

Eo =4 E4
E[Eo] = EE4]
do they all coincide?

59

Comparison

then we can prove / disprove:

properties of specific expressions

2R6=,3x4
properties of generic expressions

VE,E1,Es. E® (E1 @ Es) =4 (E®QRE;) @ (E® Es)

60

Comparison

congruences?
Cle| :=|o] | Clo|] DE | E®Cle] | Cle] ®E | E® C|e]

contexts with a hole Cle]
filled context ClE]

VEq, E1, Cle]. (Eg =5 E; = C|Eg| =5 C|[E1]) must be proved
VEq, E1,Cle]. (Eg =y E1 = C|Eg] =, C|[E1]) must be proved
VEq, E1, Cle|. (Eg =4 E1 = C|Eg] =4 C|E4]) obvious

61

Exercise

Expressions with variables E ::=z | N | E®GE | EQE

How to evaluate expressions suchas (r@4)®y ?

Need some memories M = {0 |c: X — N}

machine states (E, o)

interpretation function &[] : Exp —» (M — N)

Let’s redefine the various semantics and properties

62

