MPP 2025/26 (0077A, 9CFU)

Models for Programming Paradigms

Roberto Bruni Filippo Bonchi
http://www.di.unipi.it/~bruni/

https://didawiki.di.unipi.it/doku.php/
magistraleinformatica/mpp/start

22a - Temporal logic


http://www.di.unipi.it/~bruni/
https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start
https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start

Testing

how do you guarantee that your code is correct?
testing can show the presence of bugs

not their absence
coverage of all cases: difficult to achieve

especially in concurrent systems!
(because of nondeterminism)



Formal logics

what does it mean to be correct? to satisfy some properties
how are these properties expressed? in some syntax
formal logics serve 1o express properties about programs

safety: something bad will never happen

liveness: something good will happen

model checking are certain properties satisfied
(by a model of the program)?



Modal logics

notion of time (discrete, infinite)

properties of states (atomic proposition)

modal operators at the next step

at any next step
(like HM logic)

fix point operators recursively defined formulas
minimal / maximal fixpoint

(meaning of a formula:
the set of states where it holds)
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Temporal logics

notion of time (discrete, infinite)
properties of states (atomic proposition)

linear operators at the next instant
always
never
eventually

path quantifiers  (nondeterministic systems)
for all possible futures
In a possible future
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LTL
Linear temporal logic



Linear Temporal Loglc

models T N T N e LT ™ L

o
0 1 2 n
syntax

v oou= tt [ | Y [ Yo A | o Vi
p atomic proposition p € P

Oy NEXT: ¥ holds at the next instant of time
F) FINALLY: ¥ holds sometimes in the future

G GLOBALLY: ¥ holds always in the future
YwoU¥1 UNTIL: v holds until 1 is true

O sometimes written X or N
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Linear Structure

S: P — p(N)

,//

set of atomic propositions

S(p) IS the set of time Iinstants
in which p holds

S(p) = {n | p holds at n}

Shift Sk P — o(N)
S*(p)={n—k|n>kAneS(p))}
S*(p) = {m | m+k € S(p)}
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Example

S: P — p(N)
in,aty  {p}  {q} {q,7}

S(p) =1{0,1,...} S(r)y={n,...}  S(q) ={0,2,n,...}
S?:P— p(N) S%q)={0,n—-2,..}

=\ /\.A

(.) n-2
Q} {q,r}
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LTL: satisfaction

LTL formula

szw/
/

linear structure




LTL: satisfaction

S = tt current time: O
S = ) iff S b= 1

S = Ay iff S =1 and S = 9y

S =V iff S =1 or S =y

g = iff 0 € S(p)

S = Oy iff ST =

S = Fy iff 3k e N. S* = ¢

S | Gy iff Vk € N. S* |=

S

= oUtp1  iff Fk € N. S¥ =9y and Vi < k. S* |= 1o




/—& =\ /‘$~ X =
SEO P ® ®
0 1 2 n

S - F /A _—A 9 _— — A, @ _—
— p @ o ® . ®
0 1 2 n

—=\ A = s
S=Gop ° ° ° : °

0 1 2 n

—p U ¢ ° ° ° ®
0 1 2

n
Cop Y Lopd Loply Lopy {og.)




LTL: equivalent formulas

Yo =11 IfF VS, S =Yg &= S =

Fy=tt Uy
G ¢ = —(F )
E—l(ttU_l?ﬁ)

o = 1 = by V g



Examples

G —error
error will never arise

press = F error

If you press now, an error will arise
G F enter

enter will happen infinitely often (fairness)
F G idle
the system will stay idle from some time in the future onward
G (req = (req U eval))

whenever a request is made, it holds until evaluated



LTL
automata-like models



models

syntax

P

LTL, again

/N/—&/'& /‘\‘/-&

®
0 1 2 N

tt [ fF |~ | Yo A1 | Yo Vb
p

atomic proposition p € P

O NEXT: ¥ holds at the next instant of time
Fu FINALLY: ¥ holds sometimes in the future

G GLOBALLY: ¥ holds always in the future
oU¥1 UNTIL: ¥ holds until 1 is true

O sometimes written X or N
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Automata-like models

\p} {Q} {p7 T}

)

{p, q}

the formula must be satisfied along all (infinite) traces

(if we enter a deadlock state, the last state is repeated forever)



k Exercise

~ Fq Q (v} {p} {p} -
C}- ~e #Gp Q (v} {a} {a} -
who oy U Q (v} (v} {0} -+
= qUp v,
= Glg=6Gq) @&

the formula must be satisfied along all (infinite) traces

(if we enter a deadlock state, the last state is repeated forever)



k Exercise

~ G(gUp) Q{p} - {p}{a} {a} -

Co >oi> :Gp\/Fq Q
{p}\v L Fg=-Gp @ {0} (g} {poa} -

{p:q} = Gq=0q) @

the formula must be satisfied along all (infinite) traces

(if we enter a deadlock state, the last state is repeated forever)



CTL*, CTL
Computational tree logic
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Computational Tree Logic

e
models T
e
\ ()
\o—>
\0
syntax (CTL")
Y = tt | fF | Y | Yo Ay | Yo V1 classical ops
p| Oy | Fy | Gy | YgUry linear ops

Ee) POSSIBLY: there is a path that satisfies
AY ALWAYS: every path satisfies
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Infinite Tree

/
\

/N

T=(V,—) directed graph

free
vo € V root: a distinguished vertex (no incoming arc)

exactly one directed path from vy to any other vertex v € V'
infinite
every node has a child
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Branching Structure
T = (V,—) infinite tree S: P — p(V)

S(p) = {x € V | z satisfies p}

/

T .
./ \. .
T~
\‘ D

> @

\p
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Infinite Path

T =(V,—) S:P — p(V) branching structure

infinite path T'=(V,—) #7#:N—=V (mr=wvovy---)

such that Vk € N. v — v

path Shlftlng T = VU1 * * - 7Tk = VpUktq " "

mT: N—V NV
7Tk(2) =m(k +1)
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CTL™: satisfaction

infinite path CTL* formula

e

S, m =

/

branching structure




0 CTL™: satisfaction

S, m = tt

S, (v iff S, m 7%=

S =g Ay iff S, =1y and S, = iy

S, m =gV, ES,m =g or S,m =

S, mEDp iff 7(0) € S(p)

S, = Oy iff S, 7! = state ops
S = Fy iff 3k e N. S, 7" &= 4

S = Gy iff Vk € N. S, 7" = 4

S,mE YUty iff Ik e N. S, 7% =1 and Vi < k. S, 7* = g

S, 7 = Ey iff 37", 7' (0)
S, m =AY iff Vo', 7' (0)

7'('(0) and S, 7T/ — w path Ops
7(0) implies S, 7' =
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CTL*: equivalent formulas

o =y iff VS V. S,mEYy e S, E Y

A =-(E )
AAp=A
AE ¢ =Eq

LTL formulas as CTL* ones

W A
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Examples

EO v analogous to HML formula &)

A O o analogous to HML formula O

AGp p holds at any reachable state
EFp p holds at some reachable state
AFp on every path there is a state where p holds

E (pUgq) thereis apath where p holds until g
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Example



Example

> @






CTL
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CTL formulas

each path op (A/E) appears immediately before a linear op

each linear op (O/F/G/U) appears immediately after a path op
EO ¢ EF EG E (00 U 1)
A O A F 9 A G 1 A (o U 1)

AGF+ CTL* not CTL
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CTL formulas

AO @ EO¢ AG ¢ EG ¢

A[¢ 9) ¢2] E[¢ 9] ¢2]

m m M m
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CTL: minimal set of ops

~. .v. EO- EG- E(U)

AF ) = —(EG —) EF ¢ = E(tt U )

— —IE(tt U_Iw)

A (Yo U 1) =—(EG =1 VE(=P1 U =(10o V 1)))
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Expressiveness




Temporal logics
exercises
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Shared resource

Two processes p; and py, want to access a single shared resource r.
Consider the atomic propositions:
req;: holds when process p; 1s requesting access to r;
use;: holds when process p; has had access to r;
rel;: holds when process p; has released r.
with ¢ € |1, 2]. Use LTL formulas to specify the following properties:

1. mutual exclusion: r is accessed by only one process at a time;
2. release: every time p; accesses r, it releases r after some time;
3. priority: whenever both p; and py require r, p; is granted access first;

4. no starvation: whenever p; requires r, it is eventually granted access.
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Shared resource

req; USE; rel;
AN AN AN
p; requests r p; has access to r p; releases r
mutual exclusion G —(use; N uses)
release G (use; = F rely)

priority G ((reg; A reqy) = ((—uses) U (user A —usesz)))

no starvation G (req; = F usey)

1. mutual exclusion: r is accessed by only one process at a time;
2. release: every time p; accesses r, it releases r after some time;
3. priority: whenever both p; and py require r, p; is granted access first;

4. no starvation: whenever p; requires r, it is eventually granted access.



Exercise: dogs

Three dogs live in a house with two couches and a front garden.
Let couch; ; represent the predicate “the dog ¢ sits on couch j7 and garden;
represent the predicate “the dog ¢ plays in the front garden”.

1. Write an LTL formula expressing the fact that whenever dog 1 plays
in the garden then he keeps playing until he sits on some couch (but
he may also play forever).

2. Write a CTL formula expressing the fact that dog 2 eventually plays
in the garden whenever couch 1 is occupied by another dog.
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Exercise: dogs

couch; ; garden,
N\ . .
1 Sits on ¢ plays in the garden

LTL
G (garden; = ((G gardeny) V (garden; U (couchi 1V couchy2))))

CTL AG ((couchi 1 V couchs 1) = AF garden,)

u-calculus  vz. ((—couchs 1 V —couchs o) A Ux)

1. Write an LTL formula expressing the fact that whenever dog 1 plays
in the garden then he keeps playing until he sits on some couch (but
he may also play forever).

2. Write a CTL formula expressing the fact that dog 2 eventually plays
in the garden whenever couch 1 is occupied by another dog.

3. Write a p-calculus formula expressing the fact that no more than one
couch is occupied at any time by dog 3.
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