
15 - HOFL: Consistency?

Models for Programming Paradigms

MPP 2025/26 (0077A, 9CFU)

http://www.di.unipi.it/~bruni/
Roberto Bruni

https://didawiki.di.unipi.it/doku.php/
magistraleinformatica/mpp/start

Filippo Bonchi

http://www.di.unipi.it/~bruni/
https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start
https://didawiki.di.unipi.it/doku.php/magistraleinformatica/mpp/start

HOFL
Operational vs Denotational

2

33

Differences
operational denotational

closed, typeable terms typeable terms
no environment environment

not a congruence congruence
canonical terms mathematical entities

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c

205

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c

205

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c

205

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c

205

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c

205

there is only one
type for which the
implication holds

44

Inconsistency: example
206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

already in canonical forms

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

55

Correctness
TH.

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c

205

proof. we proceed by rule induction

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

10.2 Correctness 207

for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have

10.2 Correctness 207

for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have

obvious

66

10.2 Correctness 207

for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have

assume

10.2 Correctness 207

for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have

we prove

10.2 Correctness 207

for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have

10.2 Correctness 207

for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have

10.2 Correctness 207

for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have

10.2 Correctness 207

for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have

10.2 Correctness 207

for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have

TH.

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c

205

(continue)

77

assume

we prove

10.2 Correctness 207

for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have

10.2 Correctness 207

for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have

10.2 Correctness 207

for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

ifn) analogous (omitted)

TH.

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c

205

(continue)

)

88

assume

we prove

snd) analogous (omitted)

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

TH.

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c

205

(continue)

99

assume

we prove

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr

We have

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr

We have

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

TH.

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c

205

(continue)

1010

assume

we prove

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

TH.

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c

205

(continue)

HOFL convergence
Operational vs Denotational

11

1212

Operational convergence

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

closed

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

¬

<latexit sha1_base64="lQpbfP9ZdFAMq1GCobACuqYMYKg=">AAAB9nicbVC7TsNAEFyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sklOOZ+tuzUisvILtFDRIVp+h4J/wQ4pIGGq0cyudnaCWElLrvvpFFZW19Y3ipulre2d3b3y/kHTRokR2BCRikw74BaV1NggSQrbsUEeBgpbwfgm91sPaKyM9D1NYvRDPtRyIAWnXOpqHPbKFbfqzsCWiTcnFZij3it/dfuRSELUJBS3tuO5MfkpNySFwmmpm1iMuRjzIXYyqnmI1k9nWafsJLGcIhajYVKxmYi/N1IeWjsJg2wy5DSyi14u/ud1Ehpc+anUcUKoRX6IpMLZISuMzEpA1pcGiXieHJnUTHDDidBIxoXIxCRrpZT14S1+v0yaZ1XvvHpxd16pXc+bKcIRHMMpeHAJNbiFOjRAwAie4BlenEfn1Xlz3n9GC8585xD+wPn4BrgpksU=</latexit>

Examples
rec x. x "

<latexit sha1_base64="V8junfonvrjWF3Hd0UZR/4blnLs=">AAACEXicbVDLSgNBEJyNrxhfUY8iDAbBU9iViB6DXjxGMA/IhtA76cQhsw9metWw5OQn+BVe9eRNvPoFHvwXd2MOmljQUFR1093lRUoasu1PK7ewuLS8kl8trK1vbG4Vt3caJoy1wLoIVahbHhhUMsA6SVLYijSC7ylsesOLzG/eojYyDK5pFGHHh0Eg+1IApVK3uO/6QDdeP9Eoxi6/L6flcjeOQOvwrlss2WV7Aj5PnCkpsSlq3eKX2wtF7GNAQoExbceOqJOAJikUjgtubDACMYQBtlMagI+mk0zeGPPD2ACFPELNpeITEX9PJOAbM/K9tDM72sx6mfif146pf9ZJZBDFhIHIFpFUOFlkhJZpPsh7UiMRZJcjlwEXoIEIteQgRCrGaWCFNA9n9vt50jguO5XyyVWlVD2fJpNne+yAHTGHnbIqu2Q1VmeCPbAn9sxerEfr1Xqz3n9ac9Z0Zpf9gfXxDROqnVg=</latexit>

�y. rec x. x #

<latexit sha1_base64="CkMJYNz3EgrFlpO5Y2nczcVc4Rk=">AAACH3icbVC7SgNBFJ31bXxFLW0GgyAIYVciWoo2lgomEbIh3J3c6ODs7DJz1yQs+Qg/wa+w1cpObC38F2djCl+3OpwH994TpUpa8v13b2p6ZnZufmGxtLS8srpWXt9o2CQzAusiUYm5isCikhrrJEnhVWoQ4khhM7o9LfTmHRorE31JwxTbMVxr2ZMCyFGd8l6onLkLfFgNeRgD3US93KAYhXzgmIEju0lfgzFJv1Ou+FV/PPwvCCagwiZz3il/uLDIYtQkFFjbCvyU2jkYkkLhqBRmFlMQt3CNLQc1xGjb+fipEd/JLFDCUzRcKj4m8Xsih9jaYRw5Z3G2/a0V5H9aK6PeUTuXOs0ItSgWkVQ4XmSFka4t5F1pkAiKy5FLzQUYIEIjOQjhyMzVV3J9BL+//wsa+9WgVj24qFWOTybNLLAtts12WcAO2TE7Y+eszgS7Z4/siT17D96L9+q9fVmnvElmk/0Y7/0TTjmitw==</latexit>

if 0 then 1 else rec x. x #

<latexit sha1_base64="J6rZb5Da6MFFRoNhOsK6lLqvKyo=">AAACSHicbVBNS8NAEN3Urxq/qh69LBbBU0lE0aPoxaOC1UJTymSd6uJmE3Ynagn9Y/4E/4EHwauevIk3N7UFvx4svH0zj5l5caakpSB49CoTk1PTM9VZf25+YXGptrxyZtPcCGyKVKWmFYNFJTU2SZLCVmYQkljheXx9WNbPb9BYmepT6mfYSeBSy54UQE7q1k6jBOgq7hWyN4i4H/gRHyt0hXoQ+eE3CZVFJ42/BoUz3TXcK5su0lsNxqS33Vo9aARD8L8kHJE6G+G4W3tyZpEnqEkosLYdBhl1CjAkhcKBH+UWMxDXcIltRzUkaDvF8PoB38gtUMozNFwqPhTxu6OAxNp+ErvOcm/7u1aK/9XaOfX2OoXUWU6oRTmIpMLhICuMdLEiv5AGiaDcHLnUXIABIjSSgxBOzF3Ovssj/H39X3K21Qi3Gzsn2/X9g1EyVbbG1tkmC9ku22dH7Jg1mWD37Jm9sFfvwXvz3r2Pr9aKN/Kssh+oVD4BFiOxlA==</latexit>

(�y. rec x. x) 0 "

<latexit sha1_base64="Zfcy2bcgE8Dc/2ozibM1oaC47Gc=">AAACIXicbVDLSgNBEJz1GeMr6tHLYBD0YNgVRY9BLx4jmAdkQ+iddHRw9sFMrxqW+BN+gl/hVU/exJuI/+JszMFXnYqqarq7gkRJQ6775kxMTk3PzBbmivMLi0vLpZXVholTLbAuYhXrVgAGlYywTpIUthKNEAYKm8Hlce43r1AbGUdnNEiwE8J5JPtSAFmpW9rZ8pVN94APKj73Q6CLoJ9pFEOf31jlZvvWtXqagNbxdbdUdivuCPwv8cakzMaodUsffi8WaYgRCQXGtD03oU4GmqRQOCz6qcEExCWcY9vSCEI0nWz01pBvpgYo5glqLhUfifh9IoPQmEEY2GR+t/nt5eJ/Xjul/mEnk1GSEkYiX0RS4WiREVravpD3pEYiyC9HLiMuQAMRaslBCCumtsCi7cP7/f1f0titeHuV/dO9cvVo3EyBrbMNtsU8dsCq7ITVWJ0Jdsce2CN7cu6dZ+fFef2KTjjjmTX2A877J/Dkovc=</latexit>

rec x. x "

<latexit sha1_base64="V8junfonvrjWF3Hd0UZR/4blnLs=">AAACEXicbVDLSgNBEJyNrxhfUY8iDAbBU9iViB6DXjxGMA/IhtA76cQhsw9metWw5OQn+BVe9eRNvPoFHvwXd2MOmljQUFR1093lRUoasu1PK7ewuLS8kl8trK1vbG4Vt3caJoy1wLoIVahbHhhUMsA6SVLYijSC7ylsesOLzG/eojYyDK5pFGHHh0Eg+1IApVK3uO/6QDdeP9Eoxi6/L6flcjeOQOvwrlss2WV7Aj5PnCkpsSlq3eKX2wtF7GNAQoExbceOqJOAJikUjgtubDACMYQBtlMagI+mk0zeGPPD2ACFPELNpeITEX9PJOAbM/K9tDM72sx6mfif146pf9ZJZBDFhIHIFpFUOFlkhJZpPsh7UiMRZJcjlwEXoIEIteQgRCrGaWCFNA9n9vt50jguO5XyyVWlVD2fJpNne+yAHTGHnbIqu2Q1VmeCPbAn9sxerEfr1Xqz3n9ac9Z0Zpf9gfXxDROqnVg=</latexit>

�y. rec x. x #

<latexit sha1_base64="CkMJYNz3EgrFlpO5Y2nczcVc4Rk=">AAACH3icbVC7SgNBFJ31bXxFLW0GgyAIYVciWoo2lgomEbIh3J3c6ODs7DJz1yQs+Qg/wa+w1cpObC38F2djCl+3OpwH994TpUpa8v13b2p6ZnZufmGxtLS8srpWXt9o2CQzAusiUYm5isCikhrrJEnhVWoQ4khhM7o9LfTmHRorE31JwxTbMVxr2ZMCyFGd8l6onLkLfFgNeRgD3US93KAYhXzgmIEju0lfgzFJv1Ou+FV/PPwvCCagwiZz3il/uLDIYtQkFFjbCvyU2jkYkkLhqBRmFlMQt3CNLQc1xGjb+fipEd/JLFDCUzRcKj4m8Xsih9jaYRw5Z3G2/a0V5H9aK6PeUTuXOs0ItSgWkVQ4XmSFka4t5F1pkAiKy5FLzQUYIEIjOQjhyMzVV3J9BL+//wsa+9WgVj24qFWOTybNLLAtts12WcAO2TE7Y+eszgS7Z4/siT17D96L9+q9fVmnvElmk/0Y7/0TTjmitw==</latexit>

if 0 then 1 else rec x. x #

<latexit sha1_base64="J6rZb5Da6MFFRoNhOsK6lLqvKyo=">AAACSHicbVBNS8NAEN3Urxq/qh69LBbBU0lE0aPoxaOC1UJTymSd6uJmE3Ynagn9Y/4E/4EHwauevIk3N7UFvx4svH0zj5l5caakpSB49CoTk1PTM9VZf25+YXGptrxyZtPcCGyKVKWmFYNFJTU2SZLCVmYQkljheXx9WNbPb9BYmepT6mfYSeBSy54UQE7q1k6jBOgq7hWyN4i4H/gRHyt0hXoQ+eE3CZVFJ42/BoUz3TXcK5su0lsNxqS33Vo9aARD8L8kHJE6G+G4W3tyZpEnqEkosLYdBhl1CjAkhcKBH+UWMxDXcIltRzUkaDvF8PoB38gtUMozNFwqPhTxu6OAxNp+ErvOcm/7u1aK/9XaOfX2OoXUWU6oRTmIpMLhICuMdLEiv5AGiaDcHLnUXIABIjSSgxBOzF3Ovssj/H39X3K21Qi3Gzsn2/X9g1EyVbbG1tkmC9ku22dH7Jg1mWD37Jm9sFfvwXvz3r2Pr9aKN/Kssh+oVD4BFiOxlA==</latexit>

(�y. rec x. x) 0 "

<latexit sha1_base64="Zfcy2bcgE8Dc/2ozibM1oaC47Gc=">AAACIXicbVDLSgNBEJz1GeMr6tHLYBD0YNgVRY9BLx4jmAdkQ+iddHRw9sFMrxqW+BN+gl/hVU/exJuI/+JszMFXnYqqarq7gkRJQ6775kxMTk3PzBbmivMLi0vLpZXVholTLbAuYhXrVgAGlYywTpIUthKNEAYKm8Hlce43r1AbGUdnNEiwE8J5JPtSAFmpW9rZ8pVN94APKj73Q6CLoJ9pFEOf31jlZvvWtXqagNbxdbdUdivuCPwv8cakzMaodUsffi8WaYgRCQXGtD03oU4GmqRQOCz6qcEExCWcY9vSCEI0nWz01pBvpgYo5glqLhUfifh9IoPQmEEY2GR+t/nt5eJ/Xjul/mEnk1GSEkYiX0RS4WiREVravpD3pEYiyC9HLiMuQAMRaslBCCumtsCi7cP7/f1f0titeHuV/dO9cvVo3EyBrbMNtsU8dsCq7ITVWJ0Jdsce2CN7cu6dZ+fFef2KTjjjmTX2A877J/Dkovc=</latexit>

1313

Denotational converg.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

closed

Examples

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t #) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t #) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt)? . ut

Also the opposite implication t +) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t +) t #).
The property P(t) def

= t +) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 +) t1 # and P(t0)

def
= t0 +) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) +) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j (Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k

Jrec x. xK⇢ *

<latexit sha1_base64="T9+KGP4psqWQ+9e8k6vRYAooa3Q=">AAACQHicbVDLSgNBEJz1/Tbq0ctgEDyFXVHiUfTiUcGokA2hd9LRwdkHPb1qWPIp/oxe9QP8A2+iR0/OxiC+CgaKqm5quqLMaMu+/+SNjI6NT0xOTc/Mzs0vLFaWlk9smpPChkpNSmcRWDQ6wQZrNniWEUIcGTyNLvdL//QKyeo0OeZehq0YzhPd1QrYSe1KPTQmIlCXyDKMgS+ibkGo+qG8qbkXEn25dJGGMmxkQJRetytVv+YPIP+SYEiqYojDduUt7KQqjzFhZcDaZuBn3CqAWCuD/Zkwt5i5JDjHpqMJxGhbxeDAvlzPLXAqMySpjRyI+H2jgNjaXhy5yfIG+9srxf+8Zs7dnVahkyxnTFQZxNrgIMgq0q45lB1NyAzlz1HqRCogYEbSEpRyYu6q/BFoOQbqUafvSgp+V/KXnGzWgq3a9tFWdXdvWNeUWBVrYkMEoi52xYE4FA2hxK24Fw/i0bvznr0X7/VzdMQb7qyIH/DePwAiV7Gu</latexit>

J�y. rec x. xK⇢ +

<latexit sha1_base64="FBmDKh0tlHF1/F17BHf2YywdgXA=">AAACTnicbVDLThtBEJx1IJhHgkmOuYywkDhZu5EROSJIpBxBigHJa1m94zaMPDuz6ukNWCt/UX4mOSb5ixxyQ8mssRCvPpWqqlXdlRVGe47jn1HjxdLyy5Xm6tr6xqvXm62tN6felaSwp5xxdJ6BR6Mt9lizwfOCEPLM4Fk2Oar1s69IXjv7hacFDnK4sHqsFXCghq1PqTEZgZogy9SEvRHIaSeVaQ58mY0rQjVL5XVgrlOiOydduuD56K4sELmrYasdd+L5yKcgWYC2WMzxsPUnHTlV5mhZGfC+n8QFDyog1srgbC0tPRYhCy6wH6CFHP2gmr87kzulB3ayQJLayDmJ9zcqyL2f5llw1l/4x1pNPqf1Sx5/GFTaFiWjVXUQa4PzIK9Ihx5RjjQhM9SXo9RWKiBgRtISlApkGYp9EOg5B5rSaBZKSh5X8hScvu8k3c7eSbd9cLioqyneiW2xKxKxLw7EZ3EsekKJb+KH+CV+R9+jv9FN9O/W2ogWO2/Fg2k0/wNHZrYO</latexit>

J(�y. rec x. x) 0K⇢ *

<latexit sha1_base64="fHWpP1aEiPtrIstdGkUA/2o9a5E=">AAACT3icbVDLbhNBEJw1IeQByUKOuYxiITkXaxc5gmMEEuIYJBxH8lhW77htjzz7UE8vxFqZL+Jn4IbIV+SSG2LW2kOc0KdSVbWqu5LCGsdR9DtoPdl6uv1sZ3dv//mLg8Pw5atLl5eksa9zm9NVAg6tybDPhi1eFYSQJhYHyeJDrQ++IjmTZ194WeAohVlmpkYDe2ocflTWJgR6gSw7yvrFCchlV0mVAs+TaUWoV0pee+b69HukiBq3onnuXf0CiPJv47AddaP1yMcgbkBbNHMxDm/VJNdlihlrC84N46jgUQXERltc7anSYeGDYIZDDzNI0Y2q9b8r+bp0wLkskKSxck3i/Y0KUueWaeKd9RfuoVaT/9OGJU/fjSqTFSVjpusgNhbXQU6T8UWinBhCZqgvR2kyqYGAGclI0NqTpW92I9BxCrSkycqXFD+s5DG4fNONe92zz732+fumrh1xLE5ER8TirTgXn8SF6Astfohf4o+4CX4Gd8HfVmNtBQ04EhvT2v0HaOK1JQ==</latexit>

Jif 0 then 1 else rec x. xK⇢ +

<latexit sha1_base64="fZ/2tNbGF5z8d5QUZfWw0aIF9Rg=">AAACdnicbVFNb9QwEHVSPkr4WuCIhCxWFZxWCSqCYwUcOBaJbSutV6uJd7Zr1Xai8YSyivIrOfE3OMENZwmoH4xk6fnNPD/7uaytCZzn35N058bNW7d372R3791/8HD06PFRqBrSONWVreikhIDWeJyyYYsnNSG40uJxefa+7x9/QQqm8p95U+Pcwak3K6OBI7UYOWVtSaDPkKVywOty1ZpVp2SWZ+ofw2v0ncqKCxTagJH6uyXUUfR1ElemiIYjFa2rKPlQnXsgqs4Xo3E+ybclr4NiAGMx1OFi9EMtK9049KwthDAr8prnLRAbbbHLVBOwjlZwirMIPTgM83YbSyf3mgBcyRpJGiu3JF5UtOBC2LgyTvavCFd7Pfm/3qzh1dt5a3zdMHrdG7GxuDUKmkzMG+XSEDJDf3OUxksNBMxIRoLWkWziB1wyDOyANrTsYkjF1Uiug6NXk2J/8vrT/vjg3RDXrngqnouXohBvxIH4KA7FVGjxTfxK0mQn+Zk+S/fSF39G02TQPBGXKs1/A46pwMU=</latexit>

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

¬

<latexit sha1_base64="lQpbfP9ZdFAMq1GCobACuqYMYKg=">AAAB9nicbVC7TsNAEFyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sklOOZ+tuzUisvILtFDRIVp+h4J/wQ4pIGGq0cyudnaCWElLrvvpFFZW19Y3ipulre2d3b3y/kHTRokR2BCRikw74BaV1NggSQrbsUEeBgpbwfgm91sPaKyM9D1NYvRDPtRyIAWnXOpqHPbKFbfqzsCWiTcnFZij3it/dfuRSELUJBS3tuO5MfkpNySFwmmpm1iMuRjzIXYyqnmI1k9nWafsJLGcIhajYVKxmYi/N1IeWjsJg2wy5DSyi14u/ud1Ehpc+anUcUKoRX6IpMLZISuMzEpA1pcGiXieHJnUTHDDidBIxoXIxCRrpZT14S1+v0yaZ1XvvHpxd16pXc+bKcIRHMMpeHAJNbiFOjRAwAie4BlenEfn1Xlz3n9GC8585xD+wPn4BrgpksU=</latexit>

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t #) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t #) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt)? . ut

Also the opposite implication t +) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t +) t #).
The property P(t) def

= t +) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 +) t1 # and P(t0)

def
= t0 +) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) +) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j (Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k

*

<latexit sha1_base64="u7I/HTUp7GHLPDWUYpK11eRtg4M=">AAACD3icbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xcYAECHnTPLBDz0yn+42GEA6hW72HO+PWI3gNT+AMshCwVpWq91KVCrSSllz3y8mtrK6tb+Q3C1vbO7t7xf2Duo0TI9AXsYpNMwCLSkbokySFTW0QwkBhIxheZ37jAY2VcXRHI42dEAaR7EsBlErNtq/BmPixWyy5ZXcKvky8GSmxGWrd4ne7F4skxIiEAmtbnqupMwZDUiicFNqJRQ1iCANspTSCEG1nPO074SeJBYq5RsOl4lMR/36MIbR2FAbpZQh0bxe9TPzPayXUv+yMZaQTwkhkQSQVToOsMDIdAnlPGiSCrDlyGXEBBojQSA5CpGKSLjMXaCkEMzK9STqStzjJMqmflb1K+fy2UqpezebKsyN2zE6Zxy5Yld2wGvOZYIo9sxf26jw5b8678/F7mnNmP4dsDs7nD61dngQ=</latexit>

Jrec x. xK⇢ *

<latexit sha1_base64="T9+KGP4psqWQ+9e8k6vRYAooa3Q=">AAACQHicbVDLSgNBEJz1/Tbq0ctgEDyFXVHiUfTiUcGokA2hd9LRwdkHPb1qWPIp/oxe9QP8A2+iR0/OxiC+CgaKqm5quqLMaMu+/+SNjI6NT0xOTc/Mzs0vLFaWlk9smpPChkpNSmcRWDQ6wQZrNniWEUIcGTyNLvdL//QKyeo0OeZehq0YzhPd1QrYSe1KPTQmIlCXyDKMgS+ibkGo+qG8qbkXEn25dJGGMmxkQJRetytVv+YPIP+SYEiqYojDduUt7KQqjzFhZcDaZuBn3CqAWCuD/Zkwt5i5JDjHpqMJxGhbxeDAvlzPLXAqMySpjRyI+H2jgNjaXhy5yfIG+9srxf+8Zs7dnVahkyxnTFQZxNrgIMgq0q45lB1NyAzlz1HqRCogYEbSEpRyYu6q/BFoOQbqUafvSgp+V/KXnGzWgq3a9tFWdXdvWNeUWBVrYkMEoi52xYE4FA2hxK24Fw/i0bvznr0X7/VzdMQb7qyIH/DePwAiV7Gu</latexit>

J�y. rec x. xK⇢ +

<latexit sha1_base64="FBmDKh0tlHF1/F17BHf2YywdgXA=">AAACTnicbVDLThtBEJx1IJhHgkmOuYywkDhZu5EROSJIpBxBigHJa1m94zaMPDuz6ukNWCt/UX4mOSb5ixxyQ8mssRCvPpWqqlXdlRVGe47jn1HjxdLyy5Xm6tr6xqvXm62tN6felaSwp5xxdJ6BR6Mt9lizwfOCEPLM4Fk2Oar1s69IXjv7hacFDnK4sHqsFXCghq1PqTEZgZogy9SEvRHIaSeVaQ58mY0rQjVL5XVgrlOiOydduuD56K4sELmrYasdd+L5yKcgWYC2WMzxsPUnHTlV5mhZGfC+n8QFDyog1srgbC0tPRYhCy6wH6CFHP2gmr87kzulB3ayQJLayDmJ9zcqyL2f5llw1l/4x1pNPqf1Sx5/GFTaFiWjVXUQa4PzIK9Ihx5RjjQhM9SXo9RWKiBgRtISlApkGYp9EOg5B5rSaBZKSh5X8hScvu8k3c7eSbd9cLioqyneiW2xKxKxLw7EZ3EsekKJb+KH+CV+R9+jv9FN9O/W2ogWO2/Fg2k0/wNHZrYO</latexit>

J(�y. rec x. x) 0K⇢ *

<latexit sha1_base64="fHWpP1aEiPtrIstdGkUA/2o9a5E=">AAACT3icbVDLbhNBEJw1IeQByUKOuYxiITkXaxc5gmMEEuIYJBxH8lhW77htjzz7UE8vxFqZL+Jn4IbIV+SSG2LW2kOc0KdSVbWqu5LCGsdR9DtoPdl6uv1sZ3dv//mLg8Pw5atLl5eksa9zm9NVAg6tybDPhi1eFYSQJhYHyeJDrQ++IjmTZ194WeAohVlmpkYDe2ocflTWJgR6gSw7yvrFCchlV0mVAs+TaUWoV0pee+b69HukiBq3onnuXf0CiPJv47AddaP1yMcgbkBbNHMxDm/VJNdlihlrC84N46jgUQXERltc7anSYeGDYIZDDzNI0Y2q9b8r+bp0wLkskKSxck3i/Y0KUueWaeKd9RfuoVaT/9OGJU/fjSqTFSVjpusgNhbXQU6T8UWinBhCZqgvR2kyqYGAGclI0NqTpW92I9BxCrSkycqXFD+s5DG4fNONe92zz732+fumrh1xLE5ER8TirTgXn8SF6Astfohf4o+4CX4Gd8HfVmNtBQ04EhvT2v0HaOK1JQ==</latexit>

Jif 0 then 1 else rec x. xK⇢ +

<latexit sha1_base64="fZ/2tNbGF5z8d5QUZfWw0aIF9Rg=">AAACdnicbVFNb9QwEHVSPkr4WuCIhCxWFZxWCSqCYwUcOBaJbSutV6uJd7Zr1Xai8YSyivIrOfE3OMENZwmoH4xk6fnNPD/7uaytCZzn35N058bNW7d372R3791/8HD06PFRqBrSONWVreikhIDWeJyyYYsnNSG40uJxefa+7x9/QQqm8p95U+Pcwak3K6OBI7UYOWVtSaDPkKVywOty1ZpVp2SWZ+ofw2v0ncqKCxTagJH6uyXUUfR1ElemiIYjFa2rKPlQnXsgqs4Xo3E+ybclr4NiAGMx1OFi9EMtK9049KwthDAr8prnLRAbbbHLVBOwjlZwirMIPTgM83YbSyf3mgBcyRpJGiu3JF5UtOBC2LgyTvavCFd7Pfm/3qzh1dt5a3zdMHrdG7GxuDUKmkzMG+XSEDJDf3OUxksNBMxIRoLWkWziB1wyDOyANrTsYkjF1Uiug6NXk2J/8vrT/vjg3RDXrngqnouXohBvxIH4KA7FVGjxTfxK0mQn+Zk+S/fSF39G02TQPBGXKs1/A46pwMU=</latexit>

1414

Consistency on converg.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

closed
proof.

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t #) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t #) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt)? . ut

Also the opposite implication t +) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t +) t #).
The property P(t) def

= t +) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 +) t1 # and P(t0)

def
= t0 +) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) +) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j (Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t #) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t #) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt)? . ut

Also the opposite implication t +) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t +) t #).
The property P(t) def

= t +) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 +) t1 # and P(t0)

def
= t0 +) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) +) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j (Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t #) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t #) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt)? . ut

Also the opposite implication t +) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t +) t #).
The property P(t) def

= t +) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 +) t1 # and P(t0)

def
= t0 +) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) +) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j (Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t #) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t #) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt)? . ut

Also the opposite implication t +) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t +) t #).
The property P(t) def

= t +) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 +) t1 # and P(t0)

def
= t0 +) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) +) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j (Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t #) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t #) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt)? . ut

Also the opposite implication t +) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t +) t #).
The property P(t) def

= t +) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 +) t1 # and P(t0)

def
= t0 +) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) +) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j (Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k

by correctness

by def (for some c)

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t #) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t #) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt)? . ut

Also the opposite implication t +) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t +) t #).
The property P(t) def

= t +) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 +) t1 # and P(t0)

def
= t0 +) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) +) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j (Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k

6= ?

<latexit sha1_base64="cO95UlfSQPKpiE9jgrubpcSLEoQ=">AAACEHicbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xkY8BQt40D+zQ3TN2vzEhhEvoVu/hzrj1Bl7DEzggC0FrVal6L1WpMFbSke9/epml5ZXVtex6bmNza3snv7tXc1FiBVZFpCLbCMGhkgarJElhI7YIOlRYDweXE7/+gNbJyNzQMMa2hr6RPSmAUum2ZfCet8KIOvmCX/Sn4H9JMCMFNkOlk/9qdSORaDQkFDjXDPyY2iOwJIXCca6VOIxBDKCPzZQa0Ojao2nhMT9KHFDEY7RcKj4V8ffHCLRzQx2mlxrozi16E/E/r5lQ77w9kiZOCI2YBJFUOA1ywsp0CeRdaZEIJs2RS8MFWCBCKzkIkYpJOs1coCMNdmi743SkYHGSv6R2UgxKxdPrUqF8MZsryw7YITtmATtjZXbFKqzKBNPsiT2zF+/Re/XevPef04w3+9lnc/A+vgH3QJ4j</latexit>

canonical

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t #) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t #) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt)? . ut

Also the opposite implication t +) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t +) t #).
The property P(t) def

= t +) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 +) t1 # and P(t0)

def
= t0 +) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) +) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j (Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k

6= ?

<latexit sha1_base64="cO95UlfSQPKpiE9jgrubpcSLEoQ=">AAACEHicbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xkY8BQt40D+zQ3TN2vzEhhEvoVu/hzrj1Bl7DEzggC0FrVal6L1WpMFbSke9/epml5ZXVtex6bmNza3snv7tXc1FiBVZFpCLbCMGhkgarJElhI7YIOlRYDweXE7/+gNbJyNzQMMa2hr6RPSmAUum2ZfCet8KIOvmCX/Sn4H9JMCMFNkOlk/9qdSORaDQkFDjXDPyY2iOwJIXCca6VOIxBDKCPzZQa0Ojao2nhMT9KHFDEY7RcKj4V8ffHCLRzQx2mlxrozi16E/E/r5lQ77w9kiZOCI2YBJFUOA1ywsp0CeRdaZEIJs2RS8MFWCBCKzkIkYpJOs1coCMNdmi743SkYHGSv6R2UgxKxdPrUqF8MZsryw7YITtmATtjZXbFKqzKBNPsiT2zF+/Re/XevPef04w3+9lnc/A+vgH3QJ4j</latexit>

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t #) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t #) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt)? . ut

Also the opposite implication t +) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t +) t #).
The property P(t) def

= t +) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 +) t1 # and P(t0)

def
= t0 +) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) +) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j (Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t #) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t #) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt)? . ut

Also the opposite implication t +) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t +) t #).
The property P(t) def

= t +) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 +) t1 # and P(t0)

def
= t0 +) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) +) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j (Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k

by def

TH.

TH.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j (Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j (Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

closed

10.3 Agreement on Convergence 211

Therefore

J(t1 t0)Kr = let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (see above)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by functional application)

= Jt 01[t0/x]Kr (by the Substitution Lemma)

So (t1 t0) + if and only if t 01[
t0/x] +. We would like to conclude by structural induction

that t 01[
t0/x] # and then prove the theorem by using the rule

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

but this is incorrect since t 01[
t0/x] is not a subterm of (t1 t0) and we are not allowed to

assume that P(t 01[
t0/x]) holds.

Theorem 10.3. For any closed typable term t : t we have:

t +) t #

Proof. The proof exploits two suitable logical relations, indexed by HOFL types:

• .c
t✓ Vt ⇥Ct , which relates canonical forms to corresponding values in Vt and is

defined by structural induction over types t;
• .t✓ (Vt)? ⇥Tt , which relates well-formed (closed) terms to values in (Vt)? and

is defined by letting

d .t t def
= 8v 2 Vt . d = bvc) 9c. t ! c^ v .c

t c

In particular, note that, by definition, we have ?(Vt)? .t t for any term t : t .

The logical relation on canonical forms is defined as follows:

ground type: we simply let n .c
int n;

product type: we let (d0,d1) .c
t0⇤t1

(t0, t1) iff d0 .t0 t0 and d1 .t1 t1;
function type: we let j .c

t0!t1
lx. t iff 8d0 2 (Vt0)? and 8t0 : t0 closed, d0 .t0 t0

implies j(d0) .t1 t[t0/x].

Then one can show by structural induction on t : t that

1. 8d,d0 2 (Vt)?. (d v(Vt)? d0 ^d0 .t t)) d .t t;
2. if {di}i2N is a chain in (Vt)? such that 8i 2 N. di .t t, we have

F
i2N di .t t (i.e.,

the predicate · .t t is inclusive).

Finally, by structural induction on terms, one can prove that 8t : t with fv(t) ✓ {x1 :
t1, . . . ,xk : tk}, if 8i 2 [1,k]. di .ti ti then JtKr[d1/x1 , ...,

dk /xk].t t[t1/x1 , ...,
tk /xk]. In

fact, taking t : t closed, it follows from the definition of .t that if t +, i.e., JtKr = bvc
for some v 2 Vt , then t ! c for some canonical form c, i.e., t #. ut

the proof is not part of the program of the course
(structural induction would not work)

HOFL equivalence
Operational vs Denotational

15

1616

HOFL equivalences

closed

t0 ⌘op t1 i↵ 8c. t0 ! c , t1 ! c

<latexit sha1_base64="KSQqedYzzQoQEHg+iL344BECdWc=">AAACa3icbVBNbxMxFHSWAm34CvTW9mARVeIU7aIiOFZw4cChSE1bKY5Wb523qVV7vbWfC9Fq/x9/gR8BBy5wxJumUr/eaTTznmc8Ra2VpzT92UserD189Hh9o//k6bPnLwYvXx15G5zEsbTaupMCPGpV4ZgUaTypHYIpNB4XZ586/fgCnVe2OqRFjVMD80qVSgJFKh8UlKdc4HlQF3kjDNCpM42t25ZTnvXFeYBZX5jCfm9UWbZXRGkdaM3lSMS1VJDlUnDxBUtyan5K4Jz91j2wVPLBMB2ly+F3QbYCQ7aag3zwR8ysDAYrkhq8n2RpTdMGHCmpMYYIHmuQZzDHSYQVGPTTZtlFy3eDh+hao+MqJuxIvH7RgPF+YYq42f3W39Y68j5tEqj8MG1UVQfCSnZGpDQujbx0KpaMfKYcEkGXHLmquAQHROgUBykjGWLrNww9GXALN2tjSdntSu6Co7ejbG/07uvecP/jqq51ts1eszcsY+/ZPvvMDtiYSfaD/WZ/2b/er2Qz2Up2LleT3upmk92YZPc/84a+Jg==</latexit>

t0, t1 : ⌧

<latexit sha1_base64="+n8au7TPgM5RMgEmJ3sG6HSv6uk=">AAACFHicbVDLSgNBEJyNrxhfUY9eBoPgQcKuRBRPQS8eI5gHJMvSO+nEIbMPZ3qFEPIbetX/8CZevfsbfoG7MQeTWKeiqpsqyo+VNGTbX1ZuaXlldS2/XtjY3NreKe7uNUyUaIF1EalIt3wwqGSIdZKksBVrhMBX2PQH15nffERtZBTe0TBGN4B+KHtSAKWSS559wslzLjsEiVcs2WV7Ar5InCkpsSlqXvG7041EEmBIQoExbceOyR2BJikUjgudxGAMYgB9bKc0hACNO5qUHvOjxABFPEbNpeITEf9+jCAwZhj46WUAdG/mvUz8z2sn1LtwRzKME8JQZEEkFU6CjNAyXQN5V2okgqw5chlyARqIUEsOQqRiks4zE2goAD3U3XE6kjM/ySJpnJadSvnstlKqXk3nyrMDdsiOmcPOWZXdsBqrM8Ee2DN7Ya/Wk/VmvVsfv6c5a/qzz2Zgff4A7pefHQ==</latexit>

t0 ⌘den t1 i↵ 8⇢. Jt0K⇢ = Jt1K⇢

<latexit sha1_base64="bthbFV1BdzNyetHkGaOf9JGnyyM=">AAACiHicbVHLbtRAEBybV9jwWF4nLiNWSJxWNgoKHJCicOEYJDaJtLOy2uN2Mso8nJl2xMqy+E4+gB/gCxgvRmIT+lRT1T3Vqi4brQJl2Y8kvXX7zt17O/cnuw8ePno8ffL0OLjWS1xIp50/LSGgVhYXpEjjaeMRTKnxpLz4NOgnV+iDcvYrrRtcGTizqlYSKFLF9DsVGRd42aqrohMG6NybrkLb95yKfCIuW6gmwpTuW6fquv9L1M6D1lz4czcXXGhdepAXSHEoE96Pr0HmH7flfFsuprNsnm2K3wT5CGZsrKNi+ktUTrYGLUkNISzzrKFVB56U1BgXbAM28Xs4w2WEFgyGVbcJquev2wDkeIOeK803JP470YEJYW3K2DlEEa5rA/k/bdlS/X7VKdu0hFYORqQ0boyC9CpeAHmlPBLBsDlyZbkED0ToFQcpI9nGk2wZBjLg177qY0j59UhuguO383xv/u7L3uzgcIxrh71kr9gblrN9dsA+syO2YJL9THaT58mLdJJm6X764U9rmowzz9hWpYe/AYANxvU=</latexit>

1717

Op is more concrete
⌘op ✓ ⌘den

<latexit sha1_base64="Oya+y4Yqi6DiuoZBYkcZKI4WKno=">AAACRHicbVA9axtBEN2T7cRRPiw7ZZolIpBK3AWFGNKIuHHpQPQBOiHmViN50e7eeXdWII77MfkzdmuX/g+uHNKG3CkqIsmverz3hpl5SaakozC8D2p7+wfPnh++qL989frNUeP4pOdSbwV2RapSO0jAoZIGuyRJ4SCzCDpR2E/mZ5XfX6B1MjU/aJnhSMPMyKkUQKU0bnyN8crLxTiPNdCl1XmaFQWvx/XY+cQh4VXFtzITNFVo3GiGrXAFvkuiNWmyNS7Gjcd4kgqv0ZBQ4NwwCjMa5WBJCoVFPfYOMxBzmOGwpAY0ulG+erLgH7wDSnmGlkvFVyL+P5GDdm6pkzJZnem2vUp8yht6mp6OcmkyT2hEtYikwtUiJ6ws20M+kRaJoLocuTRcgAUitJKDEKXoyzo3FjrSYJd2UpQlRduV7JLep1bUbn3+3m52vq3rOmTv2Hv2kUXsC+uwc3bBukywn+yG3bK74Dp4CH4Fv/9Fa8F65i3bQPDnL6XDs2M=</latexit>

proof. take closed, such that t0 ⌘op t1

<latexit sha1_base64="Hvc2vSgnTOIq4oLNTEz+MomkIqQ=">AAACJnicbVBNS8NAEN34bf2qehRhsQieSiKKHkUvHhWsLbQlTLbTunQ3ibsToYSc/DN61f/hTcSbv8FfYFJ7sK3v9HhvhjfzglhJS6776czMzs0vLC4tl1ZW19Y3yptbtzZKjMCaiFRkGgFYVDLEGklS2IgNgg4U1oP+ReHXH9BYGYU3NIixraEXyq4UQLnkl3fJd3kL7xP54KctDXRndBrFWcbJ90p+ueJW3SH4NPFGpMJGuPLL361OJBKNIQkF1jY9N6Z2CoakUJiVWonFGEQfetjMaQgabTsdvpHx/cQCRTxGw6XiQxH/bqSgrR3oIJ8sDrWTXiH+5zUT6p62UxnGCWEoiiCSCodBVhiZ94O8Iw0SQXE5chlyAQaI0EgOQuRikhc2FmhJgxmYTpaX5E1WMk1uD6veUfX4+qhydj6qa4ntsD12wDx2ws7YJbtiNSbYI3tmL+zVeXLenHfn43d0xhntbLMxOF8/SAKmpQ==</latexit>

either 9c. t0 ! c ^ t1 ! c

<latexit sha1_base64="xc7hUQs+zKKAugHVLju3LybP0sU=">AAACMnicbZC9SgNBFIVn/Y3xL2ppMxgEbcKuKFqKNpYRjArZZbk7uYmDsz/M3FVDyDP4Mtrqc2gntlY+gbMxhUk81eG793JmTpQpach135yp6ZnZufnSQnlxaXlltbK2fmnSXAtsiFSl+joCg0om2CBJCq8zjRBHCq+i29NifnWH2sg0uaBuhkEMnUS2pQCyKKzs+vhgUwwXNZ9T6HKfUi587t9jq4MF8n5ROaxU3Zo7EJ803tBU2VD1sPLtt1KRx5iQUGBM03MzCnqgSQqF/bKfG8xA3EIHm9YmEKMJeoMv9fl2bsDGZqi5VHwA8e9FD2JjunFkN2OgGzM+K+B/s2ZO7aOgJ5MsJ0xEEURS4SDICC1tV8hbUiMRFC9HLhMuQAMRaslBCAtzW95IoKEYdFe3+rYkb7ySSXO5V/P2awfn+9Xjk2FdJbbJttgO89ghO2ZnrM4aTLBH9sxe2Kvz5Lw7H87n7+qUM7zZYCNyvn4Ai5ipkQ==</latexit>

or t0 " ^ t1 "

<latexit sha1_base64="6EEqfbM3kMz5MuBtL0V6epRA5o4=">AAACK3icbVDLTgJBEJzFF+IL9ehlAjHxRHYNRo9ELx4xkUfCkk3v0OCE2UdmeiWEcPdn9Kr/4Unj1R/wC1yQGAHrVKnqTnWXHytpyLbfrMzK6tr6RnYzt7W9s7uX3z+omyjRAmsiUpFu+mBQyRBrJElhM9YIga+w4fevJn7jHrWRUXhLwxjbAfRC2ZUCKJW8fIE8m7tJDFpHA+4OsNNDl5Pn/Io5L1+0S/YUfJk4M1JkM1S9/JfbiUQSYEhCgTEtx46pPQJNUigc59zEYAyiDz1spTSEAE17NP1lzI8TAxTxGDWXik9F/LsxgsCYYeCnkwHQnVn0JuJ/Xiuh7kV7JMM4IQzFJIikwmmQEVqmJSHvSI1EMLkcuQy5AA1EqCUHIVIxSVubCzQUgB7qzjgtyVmsZJnUT0tOuXR2Uy5WLmd1ZdkRK7AT5rBzVmHXrMpqTLAH9sSe2Yv1aL1a79bHz2jGmu0csjlYn99DWaga</latexit>

if 9c. t0 ! c ^ t1 ! c

<latexit sha1_base64="xc7hUQs+zKKAugHVLju3LybP0sU=">AAACMnicbZC9SgNBFIVn/Y3xL2ppMxgEbcKuKFqKNpYRjArZZbk7uYmDsz/M3FVDyDP4Mtrqc2gntlY+gbMxhUk81eG793JmTpQpach135yp6ZnZufnSQnlxaXlltbK2fmnSXAtsiFSl+joCg0om2CBJCq8zjRBHCq+i29NifnWH2sg0uaBuhkEMnUS2pQCyKKzs+vhgUwwXNZ9T6HKfUi587t9jq4MF8n5ROaxU3Zo7EJ803tBU2VD1sPLtt1KRx5iQUGBM03MzCnqgSQqF/bKfG8xA3EIHm9YmEKMJeoMv9fl2bsDGZqi5VHwA8e9FD2JjunFkN2OgGzM+K+B/s2ZO7aOgJ5MsJ0xEEURS4SDICC1tV8hbUiMRFC9HLhMuQAMRaslBCAtzW95IoKEYdFe3+rYkb7ySSXO5V/P2awfn+9Xjk2FdJbbJttgO89ghO2ZnrM4aTLBH9sxe2Kvz5Lw7H87n7+qUM7zZYCNyvn4Ai5ipkQ==</latexit>

8⇢. Jt0K⇢ = JcK⇢ = Jt1K⇢

<latexit sha1_base64="F+L0gnkgNM7EEbEAr0uhB24H9eE=">AAACcHicfZDLSsNAFIan8X6vuhFcOFoEcVESUXQjFN24rGBVaEo4mZ7WwcmFMydCKX1EH8DX0K2CSc3CqnhW//zfuQx/mBpt2XVfKs7U9Mzs3PzC4tLyyupadX3j1iYZKWypxCR0H4JFo2NssWaD9ykhRKHBu/DxsuB3T0hWJ/END1LsRNCPdU8r4NwKqn2/lxAYI316SOq+9I0JCdQjsuTA9YnKV4Hl+Xes/oMceJM4qNbcujsu+Vt4paiJsppB9dXvJiqLMGZlwNq256bcGQKxVgZHi35mMc3XQx/buYwhQtsZjgMZyf3MAicyRZLayLGJ3yeGEFk7iMK8MwJ+sD9ZYf7F2hn3zjpDHacZY6yKQ6wNjg9ZRTpPGmVXEzJD8XOUOpYKCJiRtASlcjPLo584aDkCGlB3lIfk/Yzkt7g9qnvH9ZPr41rjooxrXmyLPXEgPHEqGuJKNEVLKPEs3sS7+Ki8OlvOjrP71epUyplNMVHO4ScF+cEl</latexit>

by correctness thus t0 ⌘den t1

<latexit sha1_base64="xwIL5ils9fS96BOyJBMRS/aXuTI=">AAACJ3icbVDLSgNBEJz1bXxFPQoyGARPYVcUPYpePCoYDSRh6Z10dHBmdp3pFcKyN39Gr/of3kSP/oJf4G7MQRPrVFR1U90VJUo68v0Pb2Jyanpmdm6+srC4tLxSXV27dHFqBTZErGLbjMChkgYbJElhM7EIOlJ4Fd2elP7VPVonY3NB/QQ7Gq6N7EkBVEhhdZNCn7fxLpX3YdbWQDdWZ100ec4pDCphtebX/QH4OAmGpMaGOAurX+1uLFKNhoQC51qBn1AnA0tSKMwr7dRhAuIWrrFVUAMaXScb/JHz7dQBxTxBy6XiAxF/b2SgnevrqJgsL3WjXin+57VS6h12MmmSlNCIMoikwkGQE1YWBSHvSotEUF6OXBouwAIRWslBiEJMi8b+BDrSYPu2mxclBaOVjJPL3XqwV98/36sdHQ/rmmMbbIvtsIAdsCN2ys5Ygwn2wJ7YM3vxHr1X7817/xmd8IY76+wPvM9vCNWnBw==</latexit>

if t0 " ^ t1 "

<latexit sha1_base64="6EEqfbM3kMz5MuBtL0V6epRA5o4=">AAACK3icbVDLTgJBEJzFF+IL9ehlAjHxRHYNRo9ELx4xkUfCkk3v0OCE2UdmeiWEcPdn9Kr/4Unj1R/wC1yQGAHrVKnqTnWXHytpyLbfrMzK6tr6RnYzt7W9s7uX3z+omyjRAmsiUpFu+mBQyRBrJElhM9YIga+w4fevJn7jHrWRUXhLwxjbAfRC2ZUCKJW8fIE8m7tJDFpHA+4OsNNDl5Pn/Io5L1+0S/YUfJk4M1JkM1S9/JfbiUQSYEhCgTEtx46pPQJNUigc59zEYAyiDz1spTSEAE17NP1lzI8TAxTxGDWXik9F/LsxgsCYYeCnkwHQnVn0JuJ/Xiuh7kV7JMM4IQzFJIikwmmQEVqmJSHvSI1EMLkcuQy5AA1EqCUHIVIxSVubCzQUgB7qzjgtyVmsZJnUT0tOuXR2Uy5WLmd1ZdkRK7AT5rBzVmHXrMpqTLAH9sSe2Yv1aL1a79bHz2jGmu0csjlYn99DWaga</latexit>

t0 * ^ t1 *

<latexit sha1_base64="+elzbNs1uI6nUsI+2EAffa0BeR0=">AAACK3icbVDLTgJBEJzFF+IL9ehlAjHxRHYNRo9ELx4xkUfCkk3v0OCE2UdmeiWEcPdn9Kr/4Unj1R/wC1yQGAHrVKnqTnWXHytpyLbfrMzK6tr6RnYzt7W9s7uX3z+omyjRAmsiUpFu+mBQyRBrJElhM9YIga+w4fevJn7jHrWRUXhLwxjbAfRC2ZUCKJW8fIE8m7u1GLSOBtwdYKeHLifP+RVzXr5ol+wp+DJxZqTIZqh6+S+3E4kkwJCEAmNajh1TewSapFA4zrmJwRhEH3rYSmkIAZr2aPrLmB8nBijiMWouFZ+K+HdjBIExw8BPJwOgO7PoTcT/vFZC3Yv2SIZxQhiKSRBJhdMgI7RMS0LekRqJYHI5chlyARqIUEsOQqRikrY2F2goAD3UnXFakrNYyTKpn5accunsplysXM7qyrIjVmAnzGHnrMKuWZXVmGAP7Ik9sxfr0Xq13q2Pn9GMNds5ZHOwPr8B1eqn2g==</latexit>

i.e. thus t0 ⌘den t1

<latexit sha1_base64="xwIL5ils9fS96BOyJBMRS/aXuTI=">AAACJ3icbVDLSgNBEJz1bXxFPQoyGARPYVcUPYpePCoYDSRh6Z10dHBmdp3pFcKyN39Gr/of3kSP/oJf4G7MQRPrVFR1U90VJUo68v0Pb2Jyanpmdm6+srC4tLxSXV27dHFqBTZErGLbjMChkgYbJElhM7EIOlJ4Fd2elP7VPVonY3NB/QQ7Gq6N7EkBVEhhdZNCn7fxLpX3YdbWQDdWZ100ec4pDCphtebX/QH4OAmGpMaGOAurX+1uLFKNhoQC51qBn1AnA0tSKMwr7dRhAuIWrrFVUAMaXScb/JHz7dQBxTxBy6XiAxF/b2SgnevrqJgsL3WjXin+57VS6h12MmmSlNCIMoikwkGQE1YWBSHvSotEUF6OXBouwAIRWslBiEJMi8b+BDrSYPu2mxclBaOVjJPL3XqwV98/36sdHQ/rmmMbbIvtsIAdsCN2ys5Ygwn2wJ7YM3vxHr1X7817/xmd8IY76+wPvM9vCNWnBw==</latexit>

by agreement on convergence

t0, t1 : ⌧

<latexit sha1_base64="mDb7h6v7sJ9cOEjLzSMHgwpsc9Q=">AAACE3icbVBLSgNBFOyJvxh/UZduGoPgQsKMRBRXQTcuI5gPZIbhTeclNun50P1GCCHH0K3ew5249QBewxM4GbMw0VoVVe9RRQWJkoZs+9MqLC2vrK4V10sbm1vbO+XdvZaJUy2wKWIV604ABpWMsEmSFHYSjRAGCtvB8Hrqtx9QGxlHdzRK0AthEMm+FECZ5JJvn5DvXLoEqV+u2FU7B/9LnBmpsBkafvnL7cUiDTEiocCYrmMn5I1BkxQKJyU3NZiAGMIAuxmNIETjjfPOE36UGqCYJ6i5VDwX8ffHGEJjRmGQXYZA92bRm4r/ed2U+hfeWEZJShiJaRBJhXmQEVpmYyDvSY1EMG2OXEZcgAYi1JKDEJmYZuvMBRoKQY90b5KN5CxO8pe0TqtOrXp2W6vUr2ZzFdkBO2THzGHnrM5uWIM1mWAJe2LP7MV6tF6tN+v957RgzX722Rysj2+Szp7z</latexit>

8⇢. Jt0K⇢ = ?D⌧ = Jt1K⇢

<latexit sha1_base64="NjoU6JTZyBKMo42OioV7OZsze3E=">AAACY3icbVBNT9tAEN24QPkmpdwqpBUREqfIRqByqYQKhx5BagCRjazxZgKrrL3W7BgpsvLf+jf6A9orqL+gdvCBAHN6896bfauX5NZ4DsPfreDDwuLSx+WV1bX1jc2t9qftK+8K0tjTzjq6ScCjNRn22LDFm5wQ0sTidTI+q/XrByRvXPaTJzkOUrjLzMho4IqK27dq5AislYruXVdJZW1CoMfIkuNQETVbLctvUiWO4/I8VgzFtN5f2qN5e9zuhN1wNvItiBrQEc1cxO1/auh0kWLG2oL3/SjMeVACsdEWp6uq8JhXz8Md9iuYQYp+UM46mMr9wgM7mSNJY+WMxJcXJaTeT9KkcqbA9/61VpPvaf2CRyeD0mR5wZjpOoiNxVmQ12SqclEODSEz1D9HaTKpgYAZyUjQuiKLqu25QM8p0ISG06qk6HUlb8HVYTc66h5fHnVOvzd1LYsvYk8ciEh8Fafih7gQPaHFL/FXPIqn1p9gLdgOdp6tQau5+SzmJtj9D+4Pu5A=</latexit>

TH.

1818

Den is strictly more
abstract

proof.

⌘den 6✓ ⌘op

<latexit sha1_base64="dCh9wgpysyOOyUlIakmgMXCFnL4=">AAACSHicbVBNTxsxFPQGCmnKR6DHXiyiSpyiXQSCGwguHFOpAaRsFL11HqkV27uxn5Gi1f4c/kx7hQP/AvVScWN3m0MJfafxzDzN8ySZko7C8ClorKx+WFtvfmx92tjc2m7v7F651FuBfZGq1N4k4FBJg32SpPAmswg6UXidTC8q/foOrZOp+U7zDIcaJkbeSgFUUqP2aYwzL+9GeayBflidj9EUBW/FrdikFDufOCScVe8lY5pVvlG7E3bDevh7EC1Ahy2mN2r/jsep8BoNCQXODaIwo2EOlqRQWLRi7zADMYUJDkpoQKMb5vVHC/7VO6CUZ2i5VLwm8d+NHLRzc52UzupKt6xV5P+0gafbk2EuTeYJjaiCSCqsg5ywsmwQ+VhaJILqcuTScAEWiNBKDkKUpC8rfRPoSIOd23FRlhQtV/IeXB10o8Pu0bfDztn5oq4m+8L22D6L2DE7Y5esx/pMsHv2iz2wx+Bn8Bz8CV7+WhvBYuczezONxitbmbQ5</latexit>

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x)
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt)? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

see previous counterexample

TH.

1919

Consistency on int

proof.

t : int

<latexit sha1_base64="HlGv7TteQSw+BFhL2Xhqr65hlUA=">AAACFXicbVC7TsNAEDyHVwivACXNiQiJKrIRCEQVQUMZJPKQEhOtL5twyvmhuzVSFOU7oIX/oEO01PwGX4BtXJCEqUYzu9rZ8SIlDdn2l1VYWl5ZXSuulzY2t7Z3yrt7TRPGWmBDhCrUbQ8MKhlggyQpbEcawfcUtrzRdeq3HlEbGQZ3NI7Q9WEYyIEUQIl0T5ddH+hB0kQGNO2VK3bVzsAXiZOTCstR75W/u/1QxD4GJBQY03HsiNwJaJJC4bTUjQ1GIEYwxE5CA/DRuJMs9ZQfxQYo5BFqLhXPRPy7MQHfmLHvJZNpRjPvpeJ/XiemwYWbPBTFhIFID5FUmB0yQsukDuR9qZEI0uTIZcAFaCBCLTkIkYhx0s/MQUM+6LHupyU585UskuZJ1Tmtnt2eVmpXeV1FdsAO2TFz2DmrsRtWZw0mmGbP7IW9Wk/Wm/VuffyOFqx8Z5/NwPr8AcxXoMg=</latexit>

closed t ! n , 8⇢.JtK⇢ = bnc

<latexit sha1_base64="bNv30IgPTxrsmgFM974E3EwlESo=">AAACa3icbZBPbxMxEMWdpYWyFAj0RnuwiCpxinZREVyQKrhw4FCkpq0UR9GsM5tY9drLeBYURfl+fAU+BBy4wBFvmkr9N6ef3pvRs19RWxM4y352knsbm/cfbD1MH20/fvK0++z5SfANaRxobz2dFRDQGocDNmzxrCaEqrB4Wpx/bP3Tb0jBeHfM8xpHFUydKY0GjtK4W7BU7KVL1dcGJqn6jCWTmc4YiPz3S7X0BNZKRTPfl8ragkCfI0tWRJfcmvJ9dEvrPUmn6ALScbeX9bPVyNuQr6En1nM07v5RE6+bCh1rCyEM86zm0QKIjba4TFUTsI6hMMVhRAcVhtFi1cVS7jcB4odqJGmsXIl49WIBVQjzqoibFfAs3PRa8S5v2HD5brQwrm4YnW6D2FhcBQVNJpaMcmIImaF9OUrjpAYCZiQjQesoNrH1a4GBK6A5TZaxpPxmJbfh5HU/P+i/+XLQO/ywrmtL7IqX4pXIxVtxKD6JIzEQWvwQv8Vf8a/zK9lJXiR7F6tJZ32zI65Nsv8fFwq9uw==</latexit>

))

<latexit sha1_base64="I64RwQnpgpTL1aB2iIIXjiNJS6Y=">AAACE3icbVBLTgJBFOzxi/hDXbrpSEx0Q2YMRpdENy7RyCdhCHnTPKBDzyfdbzSEcAzd6j3cGbcewGt4AodxFgLWqlL1XqpSXqSkIdv+spaWV1bX1nMb+c2t7Z3dwt5+3YSxFlgToQp10wODSgZYI0kKm5FG8D2FDW94PfUbD6iNDIN7GkXY9qEfyJ4UQInkuneyPyDQOnw87RSKdslOwReJk5Eiy1DtFL7dbihiHwMSCoxpOXZE7TFokkLhJO/GBiMQQ+hjK6EB+Gja47TzhB/HBijkEWouFU9F/PsxBt+Yke8llz7QwMx7U/E/rxVT77I9lkEUEwZiGkRSYRpkhJbJGMi7UiMRTJsjlwEXoIEIteQgRCLGyTozgYZ80CPdnSQjOfOTLJL6Wckpl85vy8XKVTZXjh2yI3bCHHbBKuyGVVmNCRaxZ/bCXq0n6816tz5+T5es7OeAzcD6/AGVwJ+O</latexit>

if thent ! n

<latexit sha1_base64="w2FV7JMFUbb7Pj4c+MfouZHnS68=">AAACDXicbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xkU8CE/KmeWBLT8+k+40JIZxBt3oPd8atZ/AansABZyFgrSpV76UqFcRKWnLdLye3srq2vpHfLGxt7+zuFfcPGjZKjMC6iFRkWgFYVFJjnSQpbMUGIQwUNoPh9dRvPqKxMtJ3NIrRD2GgZV8KoFRqUIcirrvFklt2Z+DLxMtIiWWodYvfnV4kkhA1CQXWtj03Jn8MhqRQOCl0EosxiCEMsJ1SDSFafzxrO+EniYU0NUbDpeIzEf9+jCG0dhQG6WUIdG8Xvan4n9dOqH/pj6WOE0ItpkEkFc6CrDAynQF5Txokgmlz5FJzAQaI0EgOQqRiku4yF2gpBDMyvUk6krc4yTJpnJW9Svn8tlKqXmVz5dkRO2anzGMXrMpuWI3VmWAP7Jm9sFfnyXlz3p2P39Ock/0csjk4nz+oRJzl</latexit>

JtK⇢ = JnK⇢ = bnc

<latexit sha1_base64="EPO5MVbWSSDolI0c81D1+ye1K24=">AAACVnicbZDLSgNBEEU74/s96tJNYxBchRlRdCOIbtwICkaFTAg1nYo29nQP1TVCCPkqf0a3+gd+gDgZI/iq1eHeKm73TXOjPUfRcy2YmJyanpmdm19YXFpeCVfXrrwrSGFTOePoJgWPRltssmaDNzkhZKnB6/T+ZORfPyB57ewl93NsZ3BrdU8r4FLqhGeJMSmBukeWnBB9cUJ3Th7Kb66V/9k94xxJm1AFnbAeNaJq5F+Ix1AX4znvhG9J16kiQ8vKgPetOMq5PQBirQwO55PCY15Gwi22SrSQoW8Pqm8P5VbhgZ3MkaQ2shLx+8UAMu/7WVpuZsB3/rc3Ev/zWgX3DtoDbfOC0apREGuDVZBXpMs+UXY1ITOMXo5SW6mAgBlJS1CqFIuy4B+BnjOgPnWHZUnx70r+wtVOI95t7F3s1o+Ox3XNig2xKbZFLPbFkTgV56IplHgUz+JFvNaeau/BVDDzuRrUxjfr4scE4QeXk7ck</latexit>

if it meansJtK⇢ = bnc

<latexit sha1_base64="+/eLgHe9Ju+JL4DNVVTn9Mk/ERk=">AAACOXicbZDLSgNBEEV7fBtfUZduGoPgKsyIohsh6MalglEhE0JNp6KNPd1DdY0QQn7Dn9Gt/oNLd+JSf8BJjODrrg63qrjdN8mM9hyGT8HY+MTk1PTMbGlufmFxqby8cuZdTgrryhlHFwl4NNpinTUbvMgIIU0MnifXh4P5+Q2S186ecjfDZgqXVne0Ai6sVjmMjUkI1DWy5Jjoi2O6cnJfxqZjnCNpY/qEUqtcCavhUPIvRCOoiJGOW+W3uO1UnqJlZcD7RhRm3OwBsVYG+6U495gVoXCJjQItpOibveHP+nIj98BOZkhSGzk08ftFD1Lvu2lSbKbAV/73bGD+N2vk3Nlr9rTNckarBkGsDQ6DvCJdVIayrQmZYfBylNpKBQTMSFqCUoWZFx3+CPScAnWp3S9Kin5X8hfOtqrRdnXnZLtSOxjVNSPWxLrYFJHYFTVxJI5FXShxK+7Fg3gM7oLn4CV4/VwdC0Y3q+KHgvcPDuyuDQ==</latexit>

t +

<latexit sha1_base64="gEMMlDn+cAI3YM/4GXBOPSyhdNU=">AAACE3icbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdEXbjERD4JEPKmeWCHnp5J9xsJIRxDt3oPd8atB/AansBhZCFgrSpV76Uq5UdKWnLdLyezsrq2vpHdzG1t7+zu5fcPajaMjcCqCFVoGj5YVFJjlSQpbEQGIfAV1v3B9dSvP6KxMtT3NIqwHUBfy54UQInUIt66CYcajAmHnXzBLbop+DLxZqTAZqh08t+tbijiADUJBdY2PTei9hgMSaFwkmvFFiMQA+hjM6EaArTtcdp5wk9iCxTyCA2Xiqci/v0YQ2DtKPCTywDowS56U/E/rxlT77I9ljqKCbWYBpFUmAZZYWQyBvKuNEgE0+bIpeYCDBChkRyESMQ4WWcu0FIAZmS6k2Qkb3GSZVI7K3ql4vldqVC+ms2VZUfsmJ0yj12wMrtlFVZlgkXsmb2wV+fJeXPenY/f04wz+zlkc3A+fwCbuZ+T</latexit>

by agreement on convergence t #

<latexit sha1_base64="dvUiAb9JJbeOojYxXYpDZb7kjag=">AAACE3icbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xETCBCXnTPLBDT8+k+42EEI6hW72HO+PWA3gNT+AwshCwVpWqV6mXCmIlLbnul5NbWV1b38hvFra2d3b3ivsHDRslRmBdRCoy9wFYVFJjnSQpvI8NQhgobAaD66nffERjZaTvaBSjH0Jfy54UQKnUJt7uRkMNxkTDTrHklt0MfJl4M1JiM9Q6xe80LJIQNQkF1rY8NyZ/DIakUDgptBOLMYgB9LGVUg0hWn+c/TzhJ4kFiniMhkvFMxH/JsYQWjsKg/QyBHqwi95U/M9rJdS79MdSxwmhFtMikgqzIiuMTMdA3pUGiWD6OXKpuQADRGgkByFSMUnXmSu0FIIZme4kHclbnGSZNM7KXqV8flspVa9mc+XZETtmp8xjF6zKbliN1ZlgMXtmL+zVeXLenHfn4/c058wyh2wOzucP0Tmfsw==</latexit>

thus for somet ! m

<latexit sha1_base64="u93oeA74pqbR5slNarXZ5gUfQHE=">AAACDnicbVBLSgNBFOyJvxh/UZduGoPgKsyIosugG5cRzAeSIbzpvMQm3TND9xshhNxBt3oPd+LWK3gNT+BknIVJrFVR9R5VVBAracl1v5zCyura+kZxs7S1vbO7V94/aNooMQIbIlKRaQdgUckQGyRJYTs2CDpQ2ApGNzO/9YjGyii8p3GMvoZhKAdSAKVSi3iXIq575YpbdTPwZeLlpMJy1Hvl724/EonGkIQCazueG5M/AUNSKJyWuonFGMQIhthJaQgarT/J6k75SWIhTY3RcKl4JuLfjwloa8c6SC810INd9Gbif14nocGVP5FhnBCGYhZEUmEWZIWR6Q7I+9IgEcyaI5chF2CACI3kIEQqJukwc4GWNJix6U/TkbzFSZZJ86zqnVcv7s4rtet8riI7YsfslHnsktXYLauzBhNsxJ7ZC3t1npw35935+D0tOPnPIZuD8/kDAVGdDg==</latexit>

m

<latexit sha1_base64="MfABq4duxMm6Hs2P77lS0IQ18E8=">AAACCHicbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4hkU8CE/KmeWCH7plJ9xsTQriAbvUe7oxbb+E1PIEDzkLAWlWq3ktVKoiVtOS6X05ubX1jcyu/XdjZ3ds/KB4eNW2UGIENEanItAOwqGSIDZKksB0bBB0obAWj25nfekRjZRTe0zhGX8MwlAMpgFKprnvFklt25+CrxMtIiWWo9Yrf3X4kEo0hCQXWdjw3Jn8ChqRQOC10E4sxiBEMsZPSEDRafzIvOuVniQWKeIyGS8XnIv79mIC2dqyD9FIDPdhlbyb+53USGlz7ExnGCWEoZkEkFc6DrDAyXQB5Xxokgllz5DLkAgwQoZEchEjFJJ1kIdCSBjM2/Wk6krc8ySppXpS9SvmyXilVb7K58uyEnbJz5rErVmV3rMYaTDBkz+yFvTpPzpvz7nz8nuac7OeYLcD5/AHpAprf</latexit>

but then by correctness JtK⇢ = JmK⇢ = bmc

<latexit sha1_base64="yfMcsPLAvlMV3JmORbwNJfWWL3k=">AAACVnicbZDLSgNBEEU74/s96tJNYxBchRlRdCOIbtwICkaFTAg1nYo2dk8P1TVCCPkqf0a3+gd+gDgZI/iq1eHeKm73TXOjPUfRcy2YmJyanpmdm19YXFpeCVfXrrwrSGFTOePoJgWPRmfYZM0Gb3JCsKnB6/T+ZORfPyB57bJL7ufYtnCb6Z5WwKXUCc8SY1ICdY8sOSH64oTunDyU31wr/7N7xjmSNqEKOmE9akTVyL8Qj6EuxnPeCd+SrlOFxYyVAe9bcZRzewDEWhkczieFx7yMhFtslZiBRd8eVN8eyq3CAzuZI0ltZCXi94sBWO/7Ni03LfCd/+2NxP+8VsG9g/ZAZ3nBmKlREGuDVZBXpMs+UXY1ITOMXo5SZ1IBATOSlqBUKRZlwT8CPVugPnWHZUnx70r+wtVOI95t7F3s1o+Ox3XNig2xKbZFLPbFkTgV56IplHgUz+JFvNaeau/BVDDzuRrUxjfr4scE4QeUIbci</latexit>

and it must be m = n

<latexit sha1_base64="p7mGH2HCdDo2uQZ3Uf4XtMf/YCs=">AAACCnicbVBLTgJBFOzBH+IPdemmIzFxRWYMRjcmRDcuMconAULeNA/s0N0z6X5jQgg30K3ew51x6yW8hidwQBaC1qpS9V6qUmGspCPf//QyS8srq2vZ9dzG5tb2Tn53r+aixAqsikhFthGCQyUNVkmSwkZsEXSosB4OriZ+/QGtk5G5o2GMbQ19I3tSAKXSrb4wnXzBL/pT8L8kmJECm6HSyX+1upFINBoSCpxrBn5M7RFYkkLhONdKHMYgBtDHZkoNaHTt0bTqmB8lDijiMVouFZ+K+PtjBNq5oQ7TSw107xa9ifif10yod94eSRMnhEZMgkgqnAY5YWW6AfKutEgEk+bIpeECLBChlRyESMUkHWUu0JEGO7TdcTpSsDjJX1I7KQal4ulNqVC+nM2VZQfskB2zgJ2xMrtmFVZlgvXZE3tmL96j9+q9ee8/pxlv9rPP5uB9fANMzZue</latexit>

()

<latexit sha1_base64="G41eHNcWw/g4Ip7CkZDdR4gEE3g=">AAAB/XicbVA9SwNBEN3zM8avqKXNYhC0CXcSiGXQxsIigvmASwhzm0lcsrd37M4p4Qj+Clut7MTW32Lhf/ESU2jiqx7vzTBvXhAracl1P52l5ZXVtfXcRn5za3tnt7C337BRYgTWRaQi0wrAopIa6yRJYSs2CGGgsBkMLyd+8x6NlZG+pVGMnRAGWvalAMokv32NfQJjoofTbqHoltwp+CLxZqTIZqh1C1/tXiSSEDUJBdb6nhtTJwVDUigc59uJxRjEEAboZ1RDiLaTTiOP+XFigSIeo+FS8amIvzdSCK0dhUE2GQLd2XlvIv7n+Qn1zzup1HFCqMXkEEmF00NWGJl1gbwnDRLBJDlyqbkAA0RoJAchMjHJyslnfXjz3y+SxlnJK5cqN+Vi9WLWTI4dsiN2wjxWYVV2xWqszgSL2BN7Zi/Oo/PqvDnvP6NLzmzngP2B8/EN7hGVsg==</latexit>

TH.

TH.

2020

Equivalence on int

proof.

t0, t1 : int

<latexit sha1_base64="iQhRZZ1KfR1DqxmEszbAbnGAOQI=">AAACHXicbVDLSgNBEJyNrxhf6+PmZTAIHiTsSkTxFPTiMYJ5QBKW3kknDpl9MNMrxJBv0av+hzfxKv6GX+BuzMFE61RUddPV5cdKGnKcTyu3sLi0vJJfLaytb2xu2ds7dRMlWmBNRCrSTR8MKhlijSQpbMYaIfAVNvzBVeY37lEbGYW3NIyxE0A/lD0pgFLJs/fIc47Jcy/aAdCdpJEMaezZRafkTMD/EndKimyKqmd/tbuRSAIMSSgwpuU6MXVGoEkKheNCOzEYgxhAH1spDSFA0xlN0o/5YWKAIh6j5lLxiYi/N0YQGDMM/HQyy2jmvUz8z2sl1DvvpA/FCWEoskMkFU4OGaFlWgvyrtRIBFly5DLkAjQQoZYchEjFJO1p5qChAPRQd7OS3PlK/pL6Scktl05vysXK5bSuPNtnB+yIueyMVdg1q7IaE+yBPbFn9mI9Wq/Wm/X+M5qzpju7bAbWxzci0aL0</latexit>

t0 ⌘op t1 , t0 ⌘den t1

<latexit sha1_base64="nUKOCsALf4aoj2eGHXyyrqqR2WE=">AAACV3icbVDLTuNAEJyYVzDLEpYjlxER0p4ie8UKjgguHFYIJAJIcWS1J50wYmbsnWmDIst/xc/AFb6AHwA7+MCrTqXqKnV3JZmSjoLgvuXNzS8sLrWX/ZUfqz/XOuu/zl2aW4F9karUXibgUEmDfZKk8DKzCDpReJFcH9bzixu0TqbmjKYZDjVMjBxLAVRJceeY4oBH+D+XN3ERaaArq4s0K0tOcehHfvQPx2Tl5IrA2vQ28r/zj9A0gbjTDXrBDPwrCRvSZQ1O4s5zNEpFrtGQUODcIAwyGhZgSQqFpR/lDjMQ1zDBQUUNaHTDYvZ3ybdzB5TyDC2Xis9EfJ8oQDs31UnlrC91n2e1+N1skNN4b1hIk+WERtSLSCqcLXLCyqpQ5CNpkQjqy5FLwwVYIEIrOQhRiXnV8IeFjjTYqR2VVUnh50q+kvM/vXCn9/d0p7t/0NTVZptsi/1mIdtl++yInbA+E+yOPbBH9tS6b714i177zeq1mswG+wBv/RXvnLfQ</latexit>

we know t0 ⌘op t1) t0 ⌘den t1

<latexit sha1_base64="TBjWkKNuW6GTVPLLYYEw+AmjMF8=">AAACU3icbVDBTttAEN240IJp2hSOvawaIfUU2ShVe0T0UnGiqEmQ4sgabybJKrtrd3cMiiz/U38GpJ7gG3rlgh18aIB3enrvjWbmJZmSjoLgb8t7tbX9+s3Orr/3tv3ufefD/tCluRU4EKlK7UUCDpU0OCBJCi8yi6AThaNk+b32R5donUzNL1plONEwN3ImBVAlxZ1TigMe4e9cXsZFpIEWVhdpVpac4tCP/OhczhcE1qZXkf9SdoqmCcedbtAL1uDPSdiQLmtwFnf+RdNU5BoNCQXOjcMgo0kBlqRQWPpR7jADsYQ5jitqQKObFOufS36YO6CUZ2i5VHwt4v8TBWjnVjqpkvWl7qlXiy9545xm3yaFNFlOaES9iKTC9SInrKzKRD6VFomgvhy5NFyABSK0koMQlZhX7W4sdKTBruy0rEoKn1bynAyPemG/9+Vnv3t80tS1wz6yT+wzC9lXdsx+sDM2YIL9YTfslt21rlv3nudtPUa9VjNzwDbgtR8AJVG1/Q==</latexit>

assume t0 ⌘den t1

<latexit sha1_base64="xwIL5ils9fS96BOyJBMRS/aXuTI=">AAACJ3icbVDLSgNBEJz1bXxFPQoyGARPYVcUPYpePCoYDSRh6Z10dHBmdp3pFcKyN39Gr/of3kSP/oJf4G7MQRPrVFR1U90VJUo68v0Pb2Jyanpmdm6+srC4tLxSXV27dHFqBTZErGLbjMChkgYbJElhM7EIOlJ4Fd2elP7VPVonY3NB/QQ7Gq6N7EkBVEhhdZNCn7fxLpX3YdbWQDdWZ100ec4pDCphtebX/QH4OAmGpMaGOAurX+1uLFKNhoQC51qBn1AnA0tSKMwr7dRhAuIWrrFVUAMaXScb/JHz7dQBxTxBy6XiAxF/b2SgnevrqJgsL3WjXin+57VS6h12MmmSlNCIMoikwkGQE1YWBSHvSotEUF6OXBouwAIRWslBiEJMi8b+BDrSYPu2mxclBaOVjJPL3XqwV98/36sdHQ/rmmMbbIvtsIAdsCN2ys5Ygwn2wJ7YM3vxHr1X7817/xmd8IY76+wPvM9vCNWnBw==</latexit>

we prove t0 ⌘den t1) t0 ⌘op t1

<latexit sha1_base64="/iLnelnZYkbQnLCHoa0PCCyOZT8=">AAACU3icbVDBTttAEN240IJp2hSOvawaIfUU2ShVe0T0UnGiqEmQ4sgabybJKrtrd3cMiiz/U38GpJ7gG3rlgh18aIB3enrvjWbmJZmSjoLgb8t7tbX9+s3Orr/3tv3ufefD/tCluRU4EKlK7UUCDpU0OCBJCi8yi6AThaNk+b32R5donUzNL1plONEwN3ImBVAlxZ1TigMe4e9cXsZFpIEWVhdTNGXJKQ79yI/O5XxBYG16FfkvhdOsycadbtAL1uDPSdiQLmtwFnf+RdNU5BoNCQXOjcMgo0kBlqRQWPpR7jADsYQ5jitqQKObFOufS36YO6CUZ2i5VHwt4v8TBWjnVjqpkvWh7qlXiy9545xm3yaFNFlOaES9iKTC9SInrKzKRD6VFomgvhy5NFyABSK0koMQlZhX7W4sdKTBruy0rEoKn1bynAyPemG/9+Vnv3t80tS1wz6yT+wzC9lXdsx+sDM2YIL9YTfslt21rlv3nudtPUa9VjNzwDbgtR8AJDa1/Q==</latexit>

either 8⇢. Jt0K⇢ = ?Z? = Jt1K⇢

<latexit sha1_base64="J5xIdJi81cz0nOzuYSMUwn/rWEs=">AAACbHicbVDBbhMxFHQWCqVQmgK3Cskiouop2q2K2gtSBBeOQSJtRRytnp2X1op3vXp+Wyla7QfyCfwESJzgxm7YQ9PyTuOZNx57dOFs4Dj+3osePNx69Hj7yc7TZ7vP9/r7L86DL8ngxHjn6VJDQGdznLBlh5cFIWTa4YVefmz1ixukYH3+hVcFzjK4yu3CGuCGSvtGLTyBc1LRtR8qqZzTBGaJLDmNFVF3amX5XirtOa1UBnytdfW1TluiboXbvmTTl/YH8TBej7wPkg4MRDfjtP9Lzb0pM8zZOAhhmsQFzyogtsZhvaPKgEVzPVzhtIE5ZBhm1bqMWr4tA7CXBZK0Tq5JvO2oIAthlelms/1GuKu15P+0acmLs1ll86JkzE0bxNbhOigYsk3LKOeWkBnal6O0uTRAwIxkJRjTkGVT+0Zg4AxoRfO6KSm5W8l9cH48TE6G7z6fDEYfurq2xYF4I45EIk7FSHwSYzERRnwTP8Vv8af3I3oVHUSv/61Gvc7zUmxMdPgX1gG/vQ==</latexit>

or 8⇢. Jt0K⇢ = bnc = Jt1K⇢

<latexit sha1_base64="gmjlvkDr27SJ1aoHt2iwa/BtIi0=">AAACZnicbVBNSyNBEO2Mn+uuGpVlD16aDQuewowo7kUQvexRwaiQGUJNp6KNPd1Ddc1CCPl1/gr/gV71D2xPnIPRrdPr9+rVa15eGu05jh9b0cLi0vLK6pe1r9/WNzbbW9tX3lWksKeccXSTg0ejLfZYs8GbkhCK3OB1fn9W69d/kbx29pLHJWYF3Fo90go4UIN2lo4cgTEypTvXTWVqTE6g7pElD+KUqHnVsjwO8sg4R9Km9AaO5x3JvGPQ7sTdeDbyM0ga0BHNnA/aL+nQqapAy8qA9/0kLjmbALFWBqdraeWxDOfhFvsBWijQZ5NZDVP5q/LATpZIUhs5I/G9YwKF9+MiD5sF8J3/qNXk/7R+xaPf2UTbsmK0qg5ibXAW5BXp0C/KoSZkhvrnKLWVCgiYkbQEpQJZhcLnAj0XQGMaTkNJycdKPoOr/W5y0D28OOicnDZ1rYpd8VPsiUQciRPxR5yLnlDiQTyLF/Haeoo2ou/Rj7fVqNV4dsTcRPIfqiO81Q==</latexit>

for some n

<latexit sha1_base64="qtha8fmcmO0W77OgreEwKiiWH8o=">AAACCHicbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4hkU8CE/KmeWCHnp5J9xsTQriAbvUe7oxbb+E1PIEDzkLAWlWq3ktVKoiVtOS6X05ubX1jcyu/XdjZ3ds/KB4eNW2UGIENEanItAOwqKTGBklS2I4NQhgobAWj25nfekRjZaTvaRyjH8JQy4EUQKlU171iyS27c/BV4mWkxDLUesXvbj8SSYiahAJrO54bkz8BQ1IonBa6icUYxAiG2EmphhCtP5kXnfKzxAJFPEbDpeJzEf9+TCC0dhwG6WUI9GCXvZn4n9dJaHDtT6SOE0ItZkEkFc6DrDAyXQB5Xxokgllz5FJzAQaI0EgOQqRikk6yEGgpBDM2/Wk6krc8ySppXpS9SvmyXilVb7K58uyEnbJz5rErVmV3rMYaTDBkz+yFvTpPzpvz7nz8nuac7OeYLcD5/AHqpprg</latexit>

if 8⇢. Jt0K⇢ = ?Z? = Jt1K⇢

<latexit sha1_base64="J5xIdJi81cz0nOzuYSMUwn/rWEs=">AAACbHicbVDBbhMxFHQWCqVQmgK3Cskiouop2q2K2gtSBBeOQSJtRRytnp2X1op3vXp+Wyla7QfyCfwESJzgxm7YQ9PyTuOZNx57dOFs4Dj+3osePNx69Hj7yc7TZ7vP9/r7L86DL8ngxHjn6VJDQGdznLBlh5cFIWTa4YVefmz1ixukYH3+hVcFzjK4yu3CGuCGSvtGLTyBc1LRtR8qqZzTBGaJLDmNFVF3amX5XirtOa1UBnytdfW1TluiboXbvmTTl/YH8TBej7wPkg4MRDfjtP9Lzb0pM8zZOAhhmsQFzyogtsZhvaPKgEVzPVzhtIE5ZBhm1bqMWr4tA7CXBZK0Tq5JvO2oIAthlelms/1GuKu15P+0acmLs1ll86JkzE0bxNbhOigYsk3LKOeWkBnal6O0uTRAwIxkJRjTkGVT+0Zg4AxoRfO6KSm5W8l9cH48TE6G7z6fDEYfurq2xYF4I45EIk7FSHwSYzERRnwTP8Vv8af3I3oVHUSv/61Gvc7zUmxMdPgX1gG/vQ==</latexit>

then t0 *, t1 *

<latexit sha1_base64="OMdc3rm1xUjF+jnJvGC+lH01bxY=">AAACIXicbVDLSgNBEJyNrxhfUS+Cl8EgeJCwKxE9Br14jGAekISld9KJQ2YfzPQqYYk/o1f9D2/iTfwLv8BNjGAS61RT1U31lBcpaci2P6zMwuLS8kp2Nbe2vrG5ld/eqZkw1gKrIlShbnhgUMkAqyRJYSPSCL6nsO71L0d+/Q61kWFwQ4MI2z70AtmVAiiV3PweuXarGoHW4f0xJ9f5fbj5gl20x+DzxJmQApug4ua/Wp1QxD4GJBQY03TsiNoJaJJC4TDXig1GIPrQw2ZKA/DRtJPxD4b8MDZAIY9Qc6n4WMS/Gwn4xgx8L530gW7NrDcS//OaMXXP24kMopgwEKMgkgrHQUZomVaDvCM1EsHocuQy4AI0EKGWHIRIxTjtairQkA96oDvDtCRntpJ5UjspOqXi6XWpUL6Y1JVl++yAHTGHnbEyu2IVVmWCPbAn9sxerEfr1Xqz3n9GM9ZkZ5dNwfr8Bg7QpHQ=</latexit>

by agreement on convergence t0 ", t1 "

<latexit sha1_base64="jSCiPrPZtq6iBwho3LRlB9nt0rU=">AAACIXicbVDLSgNBEJyNrxhfUS+Cl8EgeJCwKxE9Br14jGAekISld9KJQ2YfzPQqYYk/o1f9D2/iTfwLv8BNjGAS61RT1U31lBcpaci2P6zMwuLS8kp2Nbe2vrG5ld/eqZkw1gKrIlShbnhgUMkAqyRJYSPSCL6nsO71L0d+/Q61kWFwQ4MI2z70AtmVAiiV3PweuXYrjkDr8P6Yk+v8Ptx8wS7aY/B54kxIgU1QcfNfrU4oYh8DEgqMaTp2RO0ENEmhcJhrxQYjEH3oYTOlAfho2sn4B0N+GBugkEeouVR8LOLfjQR8Ywa+l076QLdm1huJ/3nNmLrn7UQGUUwYiFEQSYXjICO0TKtB3pEaiWB0OXIZcAEaiFBLDkKkYpx2NRVoyAc90J1hWpIzW8k8qZ0UnVLx9LpUKF9M6sqyfXbAjpjDzliZXbEKqzLBHtgTe2Yv1qP1ar1Z7z+jGWuys8umYH1+A3rwpLQ=</latexit>

thus t0 ⌘op t1

<latexit sha1_base64="Hvc2vSgnTOIq4oLNTEz+MomkIqQ=">AAACJnicbVBNS8NAEN34bf2qehRhsQieSiKKHkUvHhWsLbQlTLbTunQ3ibsToYSc/DN61f/hTcSbv8FfYFJ7sK3v9HhvhjfzglhJS6776czMzs0vLC4tl1ZW19Y3yptbtzZKjMCaiFRkGgFYVDLEGklS2IgNgg4U1oP+ReHXH9BYGYU3NIixraEXyq4UQLnkl3fJd3kL7xP54KctDXRndBrFWcbJ90p+ueJW3SH4NPFGpMJGuPLL361OJBKNIQkF1jY9N6Z2CoakUJiVWonFGEQfetjMaQgabTsdvpHx/cQCRTxGw6XiQxH/bqSgrR3oIJ8sDrWTXiH+5zUT6p62UxnGCWEoiiCSCodBVhiZ94O8Iw0SQXE5chlyAQaI0EgOQuRikhc2FmhJgxmYTpaX5E1WMk1uD6veUfX4+qhydj6qa4ntsD12wDx2ws7YJbtiNSbYI3tmL+zVeXLenHfn43d0xhntbLMxOF8/SAKmpQ==</latexit>

if then
thus t0 ⌘op t1

<latexit sha1_base64="Hvc2vSgnTOIq4oLNTEz+MomkIqQ=">AAACJnicbVBNS8NAEN34bf2qehRhsQieSiKKHkUvHhWsLbQlTLbTunQ3ibsToYSc/DN61f/hTcSbv8FfYFJ7sK3v9HhvhjfzglhJS6776czMzs0vLC4tl1ZW19Y3yptbtzZKjMCaiFRkGgFYVDLEGklS2IgNgg4U1oP+ReHXH9BYGYU3NIixraEXyq4UQLnkl3fJd3kL7xP54KctDXRndBrFWcbJ90p+ueJW3SH4NPFGpMJGuPLL361OJBKNIQkF1jY9N6Z2CoakUJiVWonFGEQfetjMaQgabTsdvpHx/cQCRTxGw6XiQxH/bqSgrR3oIJ8sDrWTXiH+5zUT6p62UxnGCWEoiiCSCodBVhiZ94O8Iw0SQXE5chlyAQaI0EgOQuRikhc2FmhJgxmYTpaX5E1WMk1uD6veUfX4+qhydj6qa4ntsD12wDx2ws7YJbtiNSbYI3tmL+zVeXLenHfn43d0xhntbLMxOF8/SAKmpQ==</latexit>

8⇢. Jt0K⇢ = bnc = Jt1K⇢

<latexit sha1_base64="gmjlvkDr27SJ1aoHt2iwa/BtIi0=">AAACZnicbVBNSyNBEO2Mn+uuGpVlD16aDQuewowo7kUQvexRwaiQGUJNp6KNPd1Ddc1CCPl1/gr/gV71D2xPnIPRrdPr9+rVa15eGu05jh9b0cLi0vLK6pe1r9/WNzbbW9tX3lWksKeccXSTg0ejLfZYs8GbkhCK3OB1fn9W69d/kbx29pLHJWYF3Fo90go4UIN2lo4cgTEypTvXTWVqTE6g7pElD+KUqHnVsjwO8sg4R9Km9AaO5x3JvGPQ7sTdeDbyM0ga0BHNnA/aL+nQqapAy8qA9/0kLjmbALFWBqdraeWxDOfhFvsBWijQZ5NZDVP5q/LATpZIUhs5I/G9YwKF9+MiD5sF8J3/qNXk/7R+xaPf2UTbsmK0qg5ibXAW5BXp0C/KoSZkhvrnKLWVCgiYkbQEpQJZhcLnAj0XQGMaTkNJycdKPoOr/W5y0D28OOicnDZ1rYpd8VPsiUQciRPxR5yLnlDiQTyLF/Haeoo2ou/Rj7fVqNV4dsTcRPIfqiO81Q==</latexit>

t0 ! n , t1 ! n

<latexit sha1_base64="HHxnMdOStStUoWIF+EYejLnSJnw=">AAACIHicbVC7TsNAEDzzDOEVoKCgOREhUaDIRkFQRtBQBomESHFkrS8bOHE+W3drpCjKz0AL/0GHKOEz+AJsk4IEppqb2dXsTZgoacl1P5y5+YXFpeXSSnl1bX1js7K13bZxagS2RKxi0wnBopIaWyRJYScxCFGo8Ca8v8j9mwc0Vsb6moYJ9iK41XIgBVAmBZVdClzuU8y1z4/8MgVe8SgHlapbcwvwv8SbkCqboBlUvvx+LNIINQkF1nY9N6HeCAxJoXBc9lOLCYh7uMVuRjVEaHuj4gNjfpBayGITNFwqXoj4e2MEkbXDKMwmI6A7O+vl4n9eN6XBWW8kdZISapEHkVRYBFlhZNYM8r40SAT55cil5gIMEKGRHITIxDSrairQUgRmaPrjrCRvtpK/pH1c8+q1k6t6tXE+qavE9tg+O2QeO2UNdsmarMUEG7Mn9sxenEfn1Xlz3n9G55zJzg6bgvP5DW2holg=</latexit>

HOFL
Unlifted Semantics

21

2222

Unlifted Domains
D⌧ , (V⌧)?

<latexit sha1_base64="IrX9q694yr+/OHr0AD1OTI8+PvI=">AAACKHicbVC7TsNAEDzzJrwClBSciJCgiWwUBGUEFJRBIg8pjqz1ZRNOnM/mbo0URSn5GWjhP+gQLZ/AF+CYFASYajSzq9mdMFHSkuu+OzOzc/MLi0vLhZXVtfWN4uZWw8apEVgXsYpNKwSLSmqskySFrcQgRKHCZnh7Pvab92isjPU1DRLsRNDXsicFUCYFxd2LwCdIuU9Ggu4rvOMHjVw6DPwwpqBYcstuDv6XeBNSYhPUguKn341FGqEmocDatucm1BmCISkUjgp+ajEBcQt9bGdUQ4S2M8wfGfH91ALFPEHDpeK5iD83hhBZO4jCbDICurG/vbH4n9dOqXfaGUqdpIRajINIKsyDrDAyawh5VxokgvHlyKXmAgwQoZEchMjENKtsKtBSBGZguqOsJO93JX9J46jsVcrHV5VS9WxS1xLbYXvsgHnshFXZJauxOhPsgT2xZ/biPDqvzpvz/j0640x2ttkUnI8vVMmnJw==</latexit>

Vint , Z

<latexit sha1_base64="3C2LrONk3n2kLFUwb9DhGOev2aA=">AAACL3icbVC7TsNAEDzzDOEVoKQ5EYGoIhuBoETQUAaJPEQSRevLJpxyPpu7NVJk5Q/4GWjhPxANoqXlC7BNCiBMNZrZ1eyOHylpyXVfnZnZufmFxcJScXlldW29tLFZt2FsBNZEqELT9MGikhprJElhMzIIga+w4Q/PM79xh8bKUF/RKMJOAAMt+1IApVK3tFfvJu0A6EZSIjWNx8U2GQl6oPCW54bvJ9fjbqnsVtwcfJp4E1JmE1S7pc92LxRxgJqEAmtbnhtRJwFDUihMU2KLEYghDLCVUg0B2k6S/zPmu7EFCnmEhkvFcxF/biQQWDsK/HQyu9D+9TLxP68VU/+kk/4ZxYRaZEEkFeZBVhiZFoW8Jw0SQXY5cqm5AANEaCQHIVIxTpv7FWgpADMyvawk728l06R+UPEOK0eXh+XTs0ldBbbNdtg+89gxO2UXrMpqTLB79sie2LPz4Lw4b8779+iMM9nZYr/gfHwBLsqrUQ==</latexit>

V⌧1⇤⌧2 , D⌧1 ⇥D⌧2 = (V⌧1)? ⇥ (V⌧2)?

<latexit sha1_base64="F5c48mmIU8gRIgEgOI14sT9fpzc=">AAACb3icbVBNT9tAEN2Y0oJbStoeOCChVaNKwCGyI6pyqYQKB44gkYAUR9Z4MwmrrNdmd4wUWf6H/IH+jHJtD2yMQXx0LvP03hu90UtyJS0Fwe+Wt/Rm+e27lVX//Ye1j+vtT58HNiuMwL7IVGYuErCopMY+SVJ4kRuENFF4nswOF/r5NRorM31G8xxHKUy1nEgB5Ki4PRnEZURQxOFuvXqVH5GRoKcKr7h/9KBWEckULX8gnO+nv/14XO3EUZJRY3rkew3vx+1O0A3q4a9B2IAOa+Ykbt9G40wUKWoSCqwdhkFOoxIMSaHQPVlYzEHMYIpDBzW43FFZ91Hxb4UFyniOhkvFaxKfXpSQWjtPE+dMgS7tS21B/k8bFjTZH5VS5wWhFosgkgrrICuMdEUjH0uDRLD4HLnUXIABIjSSgxCOLFzzzwItpWDmZly5ksKXlbwGg1433Ot+P93rHPxq6lphm+wr22Yh+8EO2DE7YX0m2A27ZX/Zv9Yfb8Pb8vi91Ws1N1/Ys/F27gDD+L7X</latexit>

V⌧1!⌧2 , [D⌧1 ! D⌧2] = [(V⌧1)? ! (V⌧2)?]

<latexit sha1_base64="VlUJPFt6sqbLws+hngQcM1e0g0M=">AAACb3icbVBLa9tAEF4rfaTqI05y6KFQlppCcjGSSWgvgdD20GMKsROQhBitx+6S1UrZHRWM0D/MH8jPaK7NoStVCXl0Tt98D2b4slJJS0FwOfDWnjx99nz9hf/y1es3G8PNrZktKiNwKgpVmNMMLCqpcUqSFJ6WBiHPFJ5kZ19b/eQXGisLfUyrEpMclloupAByVDpczNI6JqjSMKaiA5PGj8lI0EuF59yPvt0YGufgN9ukSf wDP9q5jTe7aZwV1HpuyUlPJn46HAXjoBv+GIQ9GLF+jtLhVTwvRJWjJqHA2igMSkpqMCSFQvdiZbEEcQZLjBzUkKNN6q6Phn+sLLg/SjRcKt6ReDdRQ27tKs+cMwf6aR9qLfk/Lapo8TmppS4rQi3aQyQVdoesMNIVjXwuDRJB+zlyqbkAA0RoJAchHFm55u8dtJSDWZl540oKH1byGMwm43BvvP9jb3T4pa9rnb1jH9gOC9kndsi+syM2ZYJdsCv2h10Pfntvvfce/2f1Bn1mm90bb/cv4s++3g==</latexit>

Uint , Z?

<latexit sha1_base64="xU14TbhazDG/IIbtHVgyzX/2LeE=">AAACNXicbVC7TsNAEDzzJrwClDQnIiQKFNkIBCWChhIkAogkstaXJZw4n83dGimy/BP8DLTwFxR0iBaJL+BsUvCaajSzq9mdKFXSku8/eyOjY+MTk1PTtZnZufmF+uLSqU0yI7AlEpWY8wgsKqmxRZIUnqcGIY4UnkXXB6V/dovGykSf0CDFbgx9LS+lAHJSWN9ohXknBrqSlEtNRVHrkJGg+wpveK1yoii/KMJOlFBYb/hNvwL/S4IhabAhjsL6R6eXiCxGTUKBte3AT6mbgyEpFLqszGIK4hr62HZUQ4y2m1dfFXwts0AJT9FwqXgl4veNHGJrB3HkJssz7W+vFP/z2hld7nbdt2lGqEUZRFJhFWSFka4u5D1pkAjKy5FLzQUYIEIjOQjhxMz19yPQUgxmYHqFKyn4XclfcrrZDLaa28dbjb39YV1TbIWtsnUWsB22xw7ZEWsxwe7YA3tkT9699+K9em9foyPecGeZ/YD3/gnB8K2W</latexit>

U⌧1⇤⌧2 , U⌧1 ⇥ U⌧2

<latexit sha1_base64="COUomRfs4xK6Xmvs0/xC+U5FJDg=">AAACQ3icbVDLSgNBEJz1bXxFPXoZDIJ4CLsSUTyJXjxGMCokYemdtHFwdnad6RXCkn/xZ/SqV7/BW/AqOFmj+KrLFFXdVE9FqZKWfP/ZGxufmJyanpktzc0vLC6Vl1fObJIZgQ2RqMRcRGBRSY0NkqTwIjUIcaTwPLo+Gvrnt2isTPQp9VJsx9DV8lIKICeF5f1GmLcIsjDYKp7tfqlFRoLuKrzhpS+33yIZo+WfgpsLyxW/6hfgf0kwIhU2Qj0sD1qdRGQxahIKrG0GfkrtHAxJodAFZxZTENfQxaajGlxgOy/+2OcbmQVKeIqGS8ULEb9v5BBb24sjNxkDXdnf3lD8z2tmdLnXzqVOM0IthkEkFRZBVhjpykPekQaJYHg5cqm5AANEaCQHIZyYuTZ/BFqKwfRMp+9KCn5X8pecbVeDWnXnpFY5OBzVNcPW2DrbZAHbZQfsmNVZgwl2xx7YI3vy7r0Xb+C9foyOeaOdVfYD3ts73g2x5A==</latexit>

U⌧1!⌧2 , [U⌧1 ! U⌧2]

<latexit sha1_base64="UtgQ4NO8fX+FO+vYlPujlxd+YjA=">AAACRHicbVBNb9NAFFwXaEOgJYUjlxUREqfIjlKB1EtULhyD1HxIiWU9b17SVdZrs/tcKbL8Y/pn4ApH/gMnEFfUjesikvBOszPzNG8nzpS05PvfvYMHDx8dHjUeN588PT551jp9PrJpbgQORapSM4nBopIahyRJ4SQzCEmscByv3m/08TUaK1N9SesMwwSWWi6kAHJU1DofRsWMII+CGaUV6JbNGRkJeqnwE29O/xpK5+D3r2 4ZNqNW2+/41fB9ENSgzeoZRK2fs3kq8gQ1CQXWTgM/o7AAQ1IodLm5xQzECpY4dVBDgjYsqk+W/HVuwR2QoeFS8YrEfzcKSKxdJ7FzJkBXdlfbkP/Tpjkt3oWF1FlOqMUmiKTCKsgKI117yOfSIBFsLkcuNRdggAiN5CCEI3NX51agpQTM2sxLV1KwW8k+GHU7Qa9z9rHX7l/UdTXYS/aKvWEBe8v67AMbsCET7IZ9YV/ZN++z98P75f2+sx549c4LtjXen1sQKrJ8</latexit>

lifted domains

unlifted domains

2323

Unlifted Semantics
LnM⇢ , bnc

<latexit sha1_base64="Yze07D41KAK5vC3DayhAW5efBh0=">AAACSXicbVBNTxsxEPUGChQKhPbIxWqExCnaRSA4RnDhSKWGRMpG0awzSSy89jKeRYqi/B3+DFyp1J/RnqqecLY58NF3en5vRm/8ssJoz3H8M6qtrH5YW9/4uLn1aXtnt773+dq7khS2lTOOuhl4NNpimzUb7BaEkGcGO9nNxcLv3CF57ex3nhbYz2Fs9Ugr4CAN6q3UmAIILU/Qay9tSvTyndLEyZRJgx0bvJWpGRnnSNrgVGxQb8TNuIJ8T5IlaYglrgb13+nQqTIPEcqA970kLrg/A2KtDM4309JjAeoGxtgL1EKOvj+rfjqXB6UHdrJAktrISsSXGzPIvZ/mWZjMgSf+rbcQ/+f1Sh6d9WfaFiWjVYsg1garIK9IhwpRDjUhMywuR6mtVEDAjKQlKBXEMnT6KtBzDjSl4TyUlLyt5D25Pmomx82Tb8eN1vmyrg2xL76KQ5GIU9ESl+JKtIUS9+JRPIkf0UP0K/oT/f03WouWO1/EK9RWngEFdLUY</latexit>

LxM⇢ , ⇢(x)

<latexit sha1_base64="jRKVf+v3THX7aqITlexwzWxzbsM=">AAACP3icbVC5TsNAEF1z3wQoaVZESNBENgpHiaChBIkAUhxF482QrFivzewYEUX5E34GWvgBvoAOITo6HJOC61Vv3hxv90Wp0Y59/9kbGR0bn5icmp6ZnZtfWCwtLZ+5JCOFNZWYhC4icGi0xRprNniREkIcGTyPrg4H/fMbJKcTe8rdFBsxtK2+1Ao4l5qlndCYFAgtd9BpJ29Dou91SJ1EhkwabNvgdVFv3G42S2W/4heQf0kwJGUxxHGz9B62EpXF+WFlwLl64Kfc6AGxVgb7M2HmMAV1BW2s59RCjK7RK/7Xl+uZA05kiiS1kYWI3zd6EDvXjaN8MgbuuN+9gfhfr57x5V6jp22aMVo1MGJtsDByinQeHMqWJmSGwctRaisVEDAjaQlK5WKWJ/nD0HEM1KVWPw8p+B3JX3K2VQmqle2Tann/YBjXlFgVa2JDBGJX7IsjcSxqQok78SAexZN37714r97b1+iIN9xZET/gfXwCATqxow==</latexit>

Lt1 op t2M⇢ , Lt1M⇢ op? Lt2M⇢

<latexit sha1_base64="mccfZaSVqM4qOjso9g1iiezt9oI=">AAACu3icbVFNbxMxEPUuXyV8BbggcbGIkDhFu1UregFVcKDHIpG2UhytZp1JYur1uvYYKVrtn+Lf8Df4BXiXHNImc3p6M/Pe+Lm0WnnKsj9Jeu/+g4ePDh4Pnjx99vzF8OWrC18HJ3Eia127qxI8amVwQoo0XlmHUJUaL8vrr13/8hc6r2rzg9YWZxUsjVooCRSpYvhbaG3BoaEVeuU5FbngogJa+UVT25aLSB0K57aHhFvVfCDIKTBLjTcR76rsrgyicjBzdN2xzZZJW4iyJrFHZp9zMRxl46wvvgvyDRixTZ0Xw79iXstQRRWpwftpnlmaNeBISY3tQASPFuQ1LHEaoYEK/azps235++CBam7RcaV5T+L2RgOV9+uqjJP9g+72OnJfbxpocTJrlLGB0MjOiJTG3shLp+KnIZ8rh0TQXY5cGS7BARE6xUHKSIb4i7cMPVXg1m7expDyu5HsgovDcX40Pv5+NDr9sonrgL1l79gHlrOP7JSdsXM2YTJ5k3xOviVn6adUpj9T/X80TTY7r9mtSsM/x2zcuA==</latexit>

Lif t then t1 else t2M⇢ , Cond⌧ (LtM⇢ , Lt1M⇢ , Lt2M⇢)

<latexit sha1_base64="jGVifwkUmryPGSvf/DKPROsTU3Y=">AAADB3icjVLNbtNAEF6bv2L+DBy5rIiQioSiOCqCY0UvHItE2krZyBpvJsmq67W7O0aKLD8AXOE9uCGuPAavwQMg1sZIaZoDc/r0zTffjGYmK7VyNBr9DMJr12/cvLV3O7pz9979B/HDRyeuqKzEiSx0Yc8ycKiVwQkp0nhWWoQ803ianR+1+dMPaJ0qzHtalzjLYWnUQkkgT6Xxb6F1CRYNrdApxyORA62yRa0WjYgoEvwf4QWmpdJkg0TtsBHcs+NIWLvpJOyq8HZkFZilxove2i3qo8LMm1QQVPu+dGsA2mEj+IsdwjT5f+l4pzR6nsaD0XDUBb8Kkh4MWB/HafxLzAtZ5d5JanBumoxKmtVgSUmNTSQqhyXIc1ji1EMDObpZ3d2p4c8qB1TwEi1XmnckblbUkDu3zjOv7Fa1nWvJXblpRYvXs1qZsiI0sm1ESmPXyEmr/AMgnyuLRNBOjlwZLsECEVrFQUpPVv4jLjV0lINdW3+qeJBsr+QqOBkPk4Phy3cHg8M3/br22BP2lO2zhL1ih+wtO2YTJoN58Cn4HHwJP4Zfw2/h97/SMOhrHrNLEf74A9g++Jc=</latexit>

Lrec x. tM⇢ , fix �d. LtM⇢[d/x]

<latexit sha1_base64="ykJkQDA0OidnIUOEFpZRHLcyIB8=">AAACkHicbVFNb9NAEF2br2K+QnsEpBUREqdgV0X01gIXxKlIpK2UNdF4PUlWXa/N7rhKZLnX/kZ+BBd+AWuTA0k7p6c38+btvskqrRzF8a8gvHP33v0HOw+jR4+fPH02eL576sraShzLUpf2PAOHWhkckyKN55VFKDKNZ9nF565/donWqdJ8p1WFaQFzo2ZKAnlqOrgWWldg0dACnXJcFECLbNZYlK3gy5HgJKzdmLCLkguyCsxc48+oVyhqZmrZXkVCe+8ceO6V0dZu4resmvzI302X6XQwjEdxX/wmSNZgyNZ1Mh38EXkp68IvkxqcmyRxRWkDlpTU2EaidliBvIA5Tjw0UKBLmz6wlr+pHVDJK7Rcad6T+L+igcK5VZH5ye53brvXkbf1JjXNDtNGmaomNLIzIqWxN3LSKn8J5LmySATdy5ErwyVYIEKrOEjpydqfZsPQUQF2ZfPWh5RsR3ITnO6PkoPR+28Hw+NP67h22Av2mr1lCfvAjtkXdsLGTLLfwV7wMngV7oaH4VH48d9oGKw1e2yjwq9/ATSBy0M=</latexit>

L(t1 , t2)M⇢ , (Lt1M⇢ , Lt2M⇢)

<latexit sha1_base64="Ei/pAtMg7PJ6xZPEB+mVry/AC3c=">AAACoXicbVHLbhNBEJzdBAjLIyYcuYxikBIJrF0riBwjuMDNIJxE8lir3nHHHmV2dunpRbIs/0d+jd/IB0SMHR8S230qVVdVj2qK2hrPafovind2nzx9tvc8efHy1ev91puDc181pLGvK1vRZQEerXHYZ8MWL2tCKAuLF8X1t8X+4i+SN5X7zdMahyWMnbkyGjhQeetGWVsDoeMJeuNlcsR5lij5UcmE8+5xooge7hVNKpkoJgNubPFPMCi5lhEStrjuMzek3a3S5DhvtdNOuhy5CbIVaIvV9PLWrRpVuilDkrbg/SBLax7OgNhoi/NENR5r0NcwxkGADkr0w9mywbn80HjgStZI0li5JPGhYwal99OyCMoSeOLXdwty227Q8NXpcGZc3TA6vTjExuLykNdkwtegHBlCZli8HKVxUgMBM5KRoHUgm/BXjw56LoGmNJqHkrL1SjbBebeTnXQ+/zxpn31d1bUn3olDcSQy8UWcie+iJ/pCi7voffQp6sTt+Efci3/dS+No5XkrHk08+A9by84n</latexit>

Lfst(t)M⇢ , ⇡1 (LtM⇢)

<latexit sha1_base64="EaXpa5pAm3S89XS5TxAUPzohu7Q=">AAAChHicdVFNTxsxFPRu+VwKXdojF4sIKZVQtEtB5YRQe+mRSg0gxVH01nlJLLxe136LFK3yQzn2L/QX1JvmAKF9p9HMvDfWuLBaecqypyh+s7G5tb2zm+y93T94lx6+v/VV7ST2ZaUrd1+AR60M9kmRxnvrEMpC413x8LXV7x7ReVWZHzS3OCxhatRESaBAjdJGaG3BoaEZeuV5IkqgWTFpJp4WXcFJ8I+JcO65R7hZFYzkFJipxp8BWzXKBU+6Ilm/R//ZDmdHaSfrZcvhr0G+Ah22mptR+luMK1mX4ZbU4P0gzywNG3CkpMZFImqPFuQDTHEQoIES/bBZlrTgJ7UHqrhFx5XmSxKfbzRQej8vi+BsK/DrWkv+SxvUNLkcNsrYmtDINoiUxmWQl06F9pGPlUMiaF+OXBkuwQEROsVBykDW4TteBHoqwc3deBFKytcreQ1uz3r5ee/i+3nn+suqrh12xI5Zl+XsM7tm39gN6zPJfkXbURodxlvxafwpvvhrjaPVzgf2YuKrP3vNwk4=</latexit>

Lsnd(t)M⇢ , ⇡2 (LtM⇢)

<latexit sha1_base64="81XmRO/qYbx1+kVfis3dE7ZZilc=">AAAChHicdVFNTxsxFPRuKdClH0s59mIRIaVSFe1SUDkhBJceQWoAKY6it85LYuH1uvZbpGiVH8qxf6G/AG+aAwT6TqOZeW+scWG18pRlD1H8ZuPt5tb2u2Tn/YePn9Ldz9e+qp3Evqx05W4L8KiVwT4p0nhrHUJZaLwp7i5a/eYenVeV+UVzi8MSpkZNlAQK1ChthNYWHBqaoVeeJ6IEmhWTxpvxois4Cf41Ec499Qg3q4KRnAIz1fg7YKtGh4InXZGs36P/bIezo7ST9bLl8JcgX4EOW83lKP0rxpWsy3BLavB+kGeWhg04UlLjIhG1RwvyDqY4CNBAiX7YLEta8IPaA1XcouNK8yWJTzcaKL2fl0VwthX4da0lX9MGNU1Oho0ytiY0sg0ipXEZ5KVToX3kY+WQCNqXI1eGS3BAhE5xkDKQdfiOZ4GeSnBzN16EkvL1Sl6C68NeftQ7vjrqnJ2v6tpmX9g+67Kc/WBn7Ce7ZH0m2Z9oK0qj3Xgz/hZ/j4//WeNotbPHnk18+ghtl8JH</latexit>

L�x. tM⇢ , �d. LtM⇢[d/x]

<latexit sha1_base64="sewtUjMO5ulYLB+E1t5mWtZBvN8=">AAACg3icbVFNT9tAEF27QKn7gWmPXFaNkJCQUhulKhckRC8cQWoAKXaj8XpIVqzX7uwYEaL80N76G/oL2KSRCoE5Pb33Zt7qbdEY7ThJfgfhq7X1jdebb6K3795/2Iq3P164uiWFfVWbmq4KcGi0xT5rNnjVEEJVGLwsbr7P9ctbJKdr+4MnDeYVjKy+1grYU8P4PjOmAULLY3TaySgzfrkEedfNJEcZ0WM1o3HtLUwa7MjgL/nfX3p/tHrsxQODn+WX4V0eDeNO0k0WI5+DdAk6Yjlnw/hvVtaqrfw1ZcC5QZo0nE+BWCuDsyhrHTagbmCEAw8tVOjy6aKjmdxtHXAtGySpjVyQ+HhjCpVzk6rwzgp47Fa1OfmSNmj5+jCfatu0jFbNg1gbXAQ5RdqXj7LUhMwwfzlKbaUCAmYkLUEpT7b+N54EOq6AJlTOfEnpaiXPwcVBN+11v573Oscny7o2xY74LPZEKr6JY3EqzkRfKPEn2Ai2gjhcD/fDg7D3zxoGy51P4smERw8FRcLU</latexit>

L t t0 M⇢ , (LtM⇢) (Lt0M⇢)

<latexit sha1_base64="BgqaSjt5wFBvhGwFKM7L2ZgAoDs=">AAACmnicdVHBTttAEF27pVCXllCObaVVowK9RDYCtccovVD1QiUCSNnIGm+GZMV6bWbHSFEU/oHP4ze49IqT5tBAOqenN+/tW73JSms8x/F9EL54ufZqfeN19Gbz7butxvb7M19UpLGrC1vQRQYerXHYZcMWL0pCyDOL59nVj9n+/AbJm8Kd8rjEfg5DZy6NBq6ptHGnrC2B0PEIvfFSRXzLaawiRbTE06iQkWIy4IYWr2W0r+SyN+JVJiW/3q6QpvF/xFHaaMateD7yOUgWoCkWc5I2HtSg0FVev6QteN9L4pL7EyA22uI0UpXHEvQVDLFXQwc5+v5kXt1Ufqk8cCFLJGmsnJP4r2MCuffjPKuVOfDIP93NyFW7XsWX3/sT48qK0elZEBuL8yCvydQ3QTkwhMww+zlK46QGAmYkI0HrmqzqIy0Fes6BxjSY1iUlTyt5Ds4OWslh6+j3YbPdWdS1IT6Iz2JfJOKbaItjcSK6Qos/wadgN9gLP4ad8Gf46680DBaeHbE04ekjMxXM6w==</latexit>

as before

without lifting

2424

Inconsistency on converg.
t1 , rec x. x : int ! int

<latexit sha1_base64="ZKZSWjbrQrvhDJ8qC+aQxdQVIrc=">AAACSXicbVBNS8NAEN20fn9WPXpZLIKnkkhF8VT04lHBqtCUMtlO69LNJu5OxBL6d/wzelXwZ+hJPJnEHmr1wcLbNzO8mRfESlpy3TenVJ6ZnZtfWFxaXlldW69sbF7ZKDECmyJSkbkJwKKSGpskSeFNbBDCQOF1MDjN69f3aKyM9CUNY2yH0NeyJwVQJnUqDep43CcjQfcV3nE/BLoNeqlBMfL5Qy17Pj8uVEmp1DTyKZr8dipVt+YW4H+JNyZVNsZ5p/LhdyORhKhJKLC25bkxtVMwJIXC0ZKfWIxBDKCPrYxqCNG20+LSEd9NLFDEYzRcKl6IODmRQmjtMAyyznxHO13Lxf9qrYR6R+3soDgh1CI3IqmwMLLCyCxC5F1pkAjyzZFLzQUYIEIjOQiRiUmW6S9DSyGYoenmIXnTkfwlV/s1r147uKhXGyfjuBbYNtthe8xjh6zBztg5azLBHtkze2GvzpPz7nw6Xz+tJWc8s8V+oVT+BmtXtNg=</latexit>

t2 , �y. rec z. z : int ! int

<latexit sha1_base64="oizMWQIqrTjlMazXXzWLH8xGYH8=">AAACVXicbVBNT9tAEN0YSiG0JYUjlxURUk+WjUBUPaFy4dADlUiClI2i8WaSrlivze64UrD8p/gzLcfyE7gjdW1yCB/v9ObNPM3MS3KtHEXRXStYWX239n59o7354eOnrc7n7b7LCiuxJzOd2csEHGplsEeKNF7mFiFNNA6Sq9O6P/iN1qnMXNA8x1EKM6OmSgJ5adz5QeMDLsgqMDON11xo750An4eCixToVzItLcpK8Buv3Aj+rVEVlcpQJShbLsedbhRGDfhrEi9Ily1wPu48iEkmixQNSQ3ODeMop1EJlpTUWLVF4TAHeQUzHHpqIEU3KpuvK75fOKCM52i50rwRcdlRQurcPE38ZH2je9mrxbd6w4KmX0f+obwgNLJeREpjs8hJq3ycyCfKIhHUlyNXhkuwQIRWcZDSi4XP99lCRynYuZ3UIcUvI3lN+gdhfBge/TzsnnxfxLXOdtke+8JidsxO2Bk7Zz0m2S37y/6x+9af1mOwGqw9jQathWeHPUOw9R+ikLdX</latexit>

Jt1K⇢ = ?[Z?!Z?]?

<latexit sha1_base64="KnHMCNEchoIInkM1PxjD/b1fx3g=">AAACWnicbVDLSgNBEJysr5j4iI+bl8EgeAq7EtGLEPTiUcGomF2Wnkmrg7MPZnqFsOS7/BZBr3r3C9xdI2i0D0N1dTdVUyLVypLrPtecmdm5+YX6YqO5tLyy2lpbv7RJZiT2ZaITcy3AolYx9kmRxuvUIERC45V4OCnnV49orEriCxqlGERwF6tbJYEKKmyd+1oLA/IBiVPo+cZ8d765T/gR90VCYT7wI6B7IfKbcVgy3KeET3 FB9Y7DVtvtuFXxv8CbgDab1FnY+vCHicwijElqsHbguSkFORhSUuO44WcW08IT3OGggDFEaIO8+vqY72QWCispGq40r0j8eZFDZO0oEsVm6dZOz0ryv9kgo9vDIFdxmhHGshQipbESstKoIlPkQ2WQCErnyFXMJRggQqM4SFmQWRHyL0FLEZiRGZYhedOR/AWXex2v29k/77Z7x5O46myLbbNd5rED1mOn7Iz1mWRP7JW9sffai+M4i07za9WpTW422K9yNj8BkqC4wA==</latexit>

Jt2K⇢ = b?[Z?!Z?]c

<latexit sha1_base64="vdlWp4gW5cwiBcR9qG+XgCMiiPc=">AAACZXicbVBNaxRBEO0dv2I0ZqPixYONi+BpmQkRcxGCXjxGcJPg9jBU99YmTXqmh+oaYRnmz/kv/AV6Nb/AnnEFs7FOr17V4z2erp0NnKbfR8mt23fu3tu6v/3g4c6j3fHe45PgGzI4M955OtMQ0NkKZ2zZ4VlNCKV2eKovP/T3069IwfrqM69qzEs4r+zSGuBIFWOlnNME5hJZcrGviP5uii68fCeVWzrvSSrtuWjnqgS+0Lr90hU9IxV7ucHlXdQOomI8SafpMPImyNZgItZzXIyv1MKbpsSKjYMQ5llac94CsTUOu23VBKxjPDjHeYQVlBjydmihk6+aADFNjSStkwOJ/ypaKENYlTp+9oHD5q0n/3ebN7w8zFtb1Q1jZXojtg4Ho2DIxnpRLiwhM/TJUdpKGiBgRrISjIlkE/u+Zhi4BFrRooslZZuV3AQn+9PsYPrm08Hk6P26ri3xXLwUr0Um3ooj8VEci5kw4pv4KX6Jq9GPZCd5mjz785qM1pon4tokL34DUpK9SQ==</latexit>

t1 *

<latexit sha1_base64="UO/BARVMxZ4HTH0ppXY3kRS5uGU=">AAACE3icbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xkU8ChLxpHtihZ6bT/UZDCMfQrd7DnXHrAbyGJ3AYZyFgrSpV76Uq5WslLbnul5NbWV1b38hvFra2d3b3ivsHDRvFRmBdRCoyLR8sKhlinSQpbGmDEPgKm/7oeuY3H9BYGYV3NNbYDWAYyoEUQInUoZ7HO3UNxkSPvWLJLbsp+DLxMlJiGWq94nenH4k4wJCEAmvbnqupOwFDUiicFjqxRQ1iBENsJzSEAG13knae8pPYAkVco+FS8VTEvx8TCKwdB35yGQDd20VvJv7ntWMaXHYnMtQxYShmQSQVpkFWGJmMgbwvDRLBrDlyGXIBBojQSA5CJGKcrDMXaCkAMzb9aTKStzjJMmmclb1K+fy2UqpeZXPl2RE7ZqfMYxesym5YjdWZYJo9sxf26jw5b8678/F7mnOyn0M2B+fzByxZn1A=</latexit>

t2 +

<latexit sha1_base64="rmfboJk4yZ1SdgaKHtiFdj/m0yo=">AAACFXicbVDLTgJBEJzFF+IL9ehlIjHxRHYJRo9EPXjERB4JIOkdGpwwO7uZ6ZUQwnfoVf/Dm/Hq2d/wC1yQg4B1qlR1pyrlR0pact0vJ7Wyura+kd7MbG3v7O5l9w+qNoyNwIoIVWjqPlhUUmOFJCmsRwYh8BXW/P7VxK89orEy1Hc0jLAVQE/LrhRAiXRP7QJvXocDDcaEg3Y25+bdKfgy8WYkx2Yot7PfzU4o4gA1CQXWNjw3otYIDEmhcJxpxhYjEH3oYSOhGgK0rdG09ZifxBYo5BEaLhWfivj3YwSBtcPATy4DoAe76E3E/7xGTN2L1kjqKCbUYhJEUuE0yAojkzmQd6RBIpg0Ry41F2CACI3kIEQixsk+c4GWAjBD0xknI3mLkyyTaiHvFfNnt8Vc6XI2V5odsWN2yjx2zkrshpVZhQlm2DN7Ya/Ok/PmvDsfv6cpZ/ZzyObgfP4A22SgOA==</latexit>

t1 "

<latexit sha1_base64="h5JLJ/ez3LpsnA9fZVZzm7sLDdI=">AAACE3icbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xkU8CE/KmeWCHnplO9xsNmXAM3eo93Bm3HsBreAIHZCFgrSpV76UqFWglLbnul5NbWV1b38hvFra2d3b3ivsHDRsnRmBdxCo2rQAsKhlhnSQpbGmDEAYKm8HweuI3H9BYGUd3NNLohzCIZF8KoEzqUNfjnUSDMfFjt1hyy+4UfJl4M1JiM9S6xe9OLxZJiBEJBda2PVeTn4IhKRSOC53EogYxhAG2MxpBiNZPp53H/CSxQDHXaLhUfCri348UQmtHYZBdhkD3dtGbiP957YT6l34qI50QRmISRFLhNMgKI7MxkPekQSKYNEcuIy7AABEayUGITEyydeYCLYVgRqY3zkbyFidZJo2zslcpn99WStWr2Vx5dsSO2Snz2AWrshtWY3UmmGbP7IW9Ok/Om/PufPye5pzZzyGbg/P5A2GZn3A=</latexit>

t2 #

<latexit sha1_base64="dzIf5SosI2jM6flAWxKtLAQwGFE=">AAACFXicbVDLTgJBEJz1ifhCPXqZSEw8kV2C0SPRi0dM5JEAkt6hwQmzs5uZXgkhfIde9T+8Ga+e/Q2/wF3kIGCdKlVdqU75kZKWXPfLWVldW9/YzGxlt3d29/ZzB4c1G8ZGYFWEKjQNHywqqbFKkhQ2IoMQ+Arr/uA69euPaKwM9R2NImwH0NeyJwVQIt1Tp8hb3XCowZhw2Mnl3YI7BV8m3ozk2QyVTu47CYs4QE1CgbVNz42oPQZDUiicZFuxxQjEAPrYTKiGAG17PP16wk9jCxTyCA2Xik9F/JsYQ2DtKPCTywDowS56qfif14ypd9keSx3FhFqkRSQVTousMDKZA3lXGiSC9HPkUnMBBojQSA5CJGKc7DNXaCkAMzLdSTKStzjJMqkVC16pcH5bypevZnNl2DE7YWfMYxeszG5YhVWZYIY9sxf26jw5b8678/F7uuLMMkdsDs7nDxDzoFg=</latexit>

t2 ! t2

<latexit sha1_base64="a9WsVl8dmAtz/wUpnEO1bkhlXog=">AAACEnicbVDLTgJBEJzFF+IL9ehlIjHxRHYJRo9ELx4xkUcCG9I7NDhh9pGZXhNC+Au96n94M179AX/DL3DAPQhYl65Udac6FSRKGnLdLye3tr6xuZXfLuzs7u0fFA+PmiZOtcCGiFWs2wEYVDLCBklS2E40QhgobAWjm5nfekRtZBzd0zhBP4RhJAdSAFmpQ70K71LM7ewVS27ZnYOvEi8jJZah3it+d/uxSEOMSCgwpuO5CfkT0CSFwmmhmxpMQIxgiB1LIwjR+JP5y1N+lhqwuQlqLhWfi/j3YgKhMeMwsJsh0INZ9mbif14npcGVP5FRkhJGYhZEUuE8yAgtbRfI+1IjEcw+Ry4jLkADEWrJQQgrprachUBDIeix7k9tSd5yJaukWSl71fLFXbVUu87qyrMTdsrOmccuWY3dsjprMMFi9sxe2Kvz5Lw5787H72rOyW6O2QKczx+H+55f</latexit>

Lt1M⇢ = ?[Z?!Z?]

<latexit sha1_base64="DeFnQvoqlaOCw83eSolvjuZbcpc=">AAACXXicbZA9SwNBEIY3p9GoUaMWFjaLQbAKdxLRRgjaWEbIh5g7jrnNxCzufbA7J4Qjf8x/YqWtlv4C72IKTZzq5ZkZ3pk3SJQ0ZNuvJWtltby2XtnY3Kpu7+zW9vZ7Jk61wK6IVazvAzCoZIRdkqTwPtEIYaCwHzzdFP3+M2oj46hDkwS9EB4jOZICKEd+reMqlYDGiMZopOHkO67Wv4mrxzG/4m4Qk58N3BBoHATZw9QvCH cp5gvMm/q1ut2wZ8WXhTMXdTavtl/7coexSMPcVCgwZuDYCXkZaJJC4XTTTQ0mIJ7gEQe5jCBE42Wz76f8JDWQX5Gg5lLxGcTfGxmExkzCIJ8sDjWLvQL+1xukNLr0MhklKWEkCiOSCmdGRmiZx4p8KDUSQXE5chlxARqIUEsOQuQwzXP+Y2goBD3RwyIkZzGSZdE7azjNxvlds966nsdVYUfsmJ0yh12wFrtlbdZlgr2wd/bBPktvVtmqWjs/o1ZpvnPA/pR1+A0c+Lpy</latexit>

Lt2M⇢ = ?[Z?!Z?]

<latexit sha1_base64="el2FS/DMg5FFqqY5DDPxiXBzTDk=">AAACXXicbZA9SwNBEIY3p/HbGLWwsFkMglW4CxFtBNHGMkI+xNxxzG3GZMneB7tzQjjyx/wnVtpq6S/wLqbQxKlenpnhnXmDRElDtv1aslZWy2vrG5tb2zu7lb3q/kHXxKkW2BGxivVDAAaVjLBDkhQ+JBohDBT2gvFt0e89ozYyjto0SdALYRjJJymAcuRX265SCWiMaIRGGk5+w9X6N3H1KOZX3A1i8rO+GwKNgiB7nPoF4S7FfIF5U79as+v2rPiycOaixubV8qtf7iAWaZibCgXG9B07IS8DTVIonG65qcEExBiG2M9lBCEaL5t9P+WnqYH8igQ1l4rPIP7eyCA0ZhIG+WRxqFnsFfC/Xj+lp0svk1GSEkaiMCKpcGZkhJZ5rMgHUiMRFJcjlxEXoIEIteQgRA7TPOc/hoZC0BM9KEJyFiNZFt1G3WnWz++bteubeVwb7JidsDPmsAt2ze5Yi3WYYC/snX2wz9KbVbZ2rMrPqFWa7xyyP2UdfQMe3rpz</latexit>

t2 *unlifted

<latexit sha1_base64="0D4B7ATTJbv+WmvVADkncHs/t8I=">AAACKXicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkkkiAlkbW+bODE3dm6W4MiKy0/Ay38Bx3Q8gd8AXZIAYSpRjO7mt2JEiUd+f6bNzM7N7+wWFoqL6+srq1XNjZbLk6twKaIVWwvI3CopMEmSVJ4mVgEHSlsRzenhd++RetkbC5omGBPw5WRAymAcimscAr3ebeZgLXxXZh1NdC11VlqlBwQ9kejsFL1a/4YfJoEE1JlEzTCyme3H4tUoyGhwLlO4CfUy8CSFApH5W7qMAFxA1fYyakBja6XjT8Z8d3UAcU8Qcul4mMRf25koJ0b6iifLC51f71C/M/rpDQ47mXSJCmhEUUQSYXjICeszCtC3pcWiaC4HLk0XIAFIrSSgxC5mOad/Qp0pMEObb8oKfhbyTRp7deCg9rh+UG1fjKpq8S22Q7bYwE7YnV2xhqsyQS7Z4/siT17D96L9+q9f4/OeJOdLfYL3scXR6io2Q==</latexit>

t1 *unlifted

<latexit sha1_base64="mi8LTaZNLjJA7Bi0D8aEt7+CqXc=">AAACKXicbVC7TsNAEDyH9ztASXMiQqKKbASCMoKGEiScICWRtb5s4JS7s3W3BkVWWn4GWvgPOqDlD/gC7JCC11SjmV3N7sSpko58/9WrTE3PzM7NLywuLa+srlXXN5ouyazAUCQqsZcxOFTSYEiSFF6mFkHHClvx4KT0WzdonUzMBQ1T7Gq4MrIvBVAhRVVOUcA7YQrWJrdR3tFA11bnmVGyT9gbjaJqza/7Y/C/JJiQGpvgLKp+dHqJyDQaEgqcawd+St0cLEmhcLTYyRymIAZwhe2CGtDouvn4kxHfyRxQwlO0XCo+FvH7Rg7auaGOi8nyUvfbK8X/vHZG/aNuLk2aERpRBpFUOA5ywsqiIuQ9aZEIysuRS8MFWCBCKzkIUYhZ0dmPQEca7ND2ypKC35X8Jc29erBfPzjfrzWOJ3XNsy22zXZZwA5Zg52yMxYywe7YA3tkT9699+y9eG9foxVvsrPJfsB7/wRF56jY</latexit>

t2 # 6) t2 +unlifted

<latexit sha1_base64="mkCZoCThhZV0fHFiHickm7Hwnlo=">AAACTHicbVBNS8NAEN3U7++qRy+LRfBUElH0KOrBo4pVoSlhsp3Wxd1N2J0oJfQH+Wf0qn9DvIlgEiv4NafHe294My9OlXTk+89ebWx8YnJqemZ2bn5hcam+vHLhkswKbIlEJfYqBodKGmyRJIVXqUXQscLL+Oaw1C9v0TqZmHMapNjR0DeyJwVQQUX1Q4q2eNhN7gxYm9zxkIcmofBM9q/pk6kMR1+GKA810LXVeWaU7BF2h8Oo3vCbfjX8LwhGoMFGcxLVX4pEkWk0JBQ41w78lDo5WJJC4XA2zBymIG6gj+0CGtDoOnn17JBvZA4o4SlaLhWvSPy+kYN2bqDjwlle6n5rJfmf1s6ot9fJpUkzQiPKIJIKqyAnrCxaRN6VFomgvBy5NFyABSK0koMQBZkVtf4IdKTBDmy3LCn4XclfcLHVDLabO6fbjf2DUV3TbI2ts00WsF22z47ZCWsxwe7ZI3tiz96D9+q9ee+f1po32lllP6Y2+QF3w7Zd</latexit>

Dint!int = [Z? ! Z?]?

<latexit sha1_base64="6LG7pl71rtNDMIYMCDB3LiqHDMc=">AAACVXicbVBNS8NAEN3G7/rRqkcvi0XwVBJR9CKIevDgQcGq2IQw2Y66uPlgdyKUkD/ln1GP+hO8C25iD1qdw/L2vRnmzYsyJQ257mvDmZicmp6ZnWvOLywutdrLK5cmzbXAnkhVqq8jMKhkgj2SpPA60whxpPAqejiq9KtH1EamyQUNMwxiuEvkrRRAlgrbp8dh4cdA95IKmVDpU/rzWzb3m/2aiKLipgz9KCVue/gYF9Rv2O64Xbcu/hd4I9BhozoL2x/+IBV5jAkJBcb0PTejoABNUigsm35uMAPxAHfYtzCBGE1Q1FeXfCM3YJ1kqLlUvCbx50QBsTHDOLKdlVkzrlXkf1o/p9u9wJ6f5YSJqBaRVFgvMkJLGyfygdRIBJVz5DLhAjQQoZYchLBkbvP9tdBQDHqoB6UNyRuP5C+43Op6292d8+3OweEorlm2xtbZJvPYLjtgJ+yM9ZhgT+yFvbH3xnPj05l0pr9bncZoZpX9Kqf1Bd76uHo=</latexit>

Uint!int = [Z? ! Z?]

<latexit sha1_base64="nsxINDjkygCA0kAVjRS0/DM5o6g=">AAACUHicbVBNT9tAEB2nfJpCQ3vksiJC6imyEai9VEL0UI6p1AREbFnjzQAr1h/aHSNFln9S/0x7qtT+CU69tWs3lSDwLvv2zYzezEtLrSwHwQ+v92JldW19Y9Pferm986q/+3pii8pIGstCF+YiRUta5TRmxZouSkOYpZrO09uPbf38joxVRf6F5yXFGV7n6kpJZCcl/U/jpI4y5BvFtcq5ibh4+G38D/60E9K0vmySKC1YuB6xpMVJfxAMgw7iKQkXZAALjJL+fTQrZJVRzlKjtdMwKDmu0bCSmho/qiyVKG/xmqaO5piRjevu4EYcVBbdEiUZobToRHo4UWNm7TxLXWe7p12uteJztWnFV+9jd3lZMeWyNWKlqTOy0iiXJImZMsSM7eYkVC4kGmQmowRK6cTKRfvI0HKGZm5mjQspXI7kKZkcDsOj4fHno8HJ6SKuDdiDfXgLIbyDEziDEYxBwlf4Dj/hl/fN++396Xn/Wv+/8AYeoef/BY5kt1g=</latexit>

= �d. ?Z?

<latexit sha1_base64="blNY8LuLWhL+NBioC2LxsSvFa6s=">AAACLXicbVDLSgNBEJyN7/iKevQyGAVPYVciehFELx4VjAlmw9I724lDZh/M9AphyQ/4M3rV//AgiFfvfoG7MQcTrVNRXU11l58oaci236zSzOzc/MLiUnl5ZXVtvbKxeWPiVAtsiFjFuuWDQSUjbJAkha1EI4S+wqbfPy/mzXvURsbRNQ0S7ITQi2RXCqBc8iq7J2VX5fYAeFBzuevH5GVuCHTn+9nt0CuEoVep2jV7BP6XOGNSZWNcepUvN4hFGmJEQoExbcdOqJOBJikUDstuajAB0YcetnMaQYimk42+GfK91ADFPEHNpeIjEX9vZBAaMwj93FncaaZnhfjfrJ1S97iTyShJCSNRBJFUOAoyQsu8JuSB1EgExeXIZcQFaCBCLTkIkYtp3ttEoKEQ9EAHRUnOdCV/yc1BzanXDq/q1dOzcV2LbJvtsH3msCN2yi7YJWswwR7YE3tmL9aj9Wq9Wx8/1pI13tliE7A+vwFnMalH</latexit>

x : int ! int

<latexit sha1_base64="2OBeeGNF2fukAUmlk4Wse/+0nOc=">AAACJ3icbVDJSgNBEO2JW4xb1KMgjUHwFGYkongKevEYwSyQhFDTqcQmPQvdNWIIufkzetX/8CZ69Bf8AmfGHLJYp1fvVfGqnhsqaci2v6zM0vLK6lp2PbexubW9k9/dq5kg0gKrIlCBbrhgUEkfqyRJYSPUCJ6rsO4OrhO9/oDayMC/o2GIbQ/6vuxJARRTnfzhI79seUD3kkbSp3GLgum2ky/YRTstvgicCSiwSVU6+Z9WNxCRhz4JBcY0HTuk9gg0SaFwnGtFBkMQA+hjM4Y+eGjao/SPMT+ODFDAQ9RcKp6SOL0xAs+YoefGk8mNZl5LyP+0ZkS9i3b8UBgR+iIxIqkwNTJCyzgg5F2pkQiSy5FLnwvQQIRachAiJqM4sRlDQx7ooe4mITnzkSyC2mnRKRXPbkuF8tUkriw7YEfshDnsnJXZDauwKhPsib2wV/ZmPVvv1of1+TeasSY7+2ymrO9f3V+oIg==</latexit>

y, z : int

<latexit sha1_base64="hmA3Qtv1SKs8QEffueKkBo10SkA=">AAACGnicbVDLTgJBEJzFF+IL9OhlIjHxYMiuwWg8Eb14xEQeCRDSOzQ4YfaRmV4NEv5Er/of3oxXL/6GX+DuykHAOlWqutPV5YZKGrLtLyuztLyyupZdz21sbm3v5Au7dRNEWmBNBCrQTRcMKuljjSQpbIYawXMVNtzhVeI37lEbGfi3NAqx48HAl30pgGKpmy+Mjh/5RdsDupM0lj5NuvmiXbJT8EXiTEmRTVHt5r/bvUBEHvokFBjTcuyQOmPQJIXCSa4dGQxBDGGArZj64KHpjNPoE34YGaCAh6i5VDwV8e/GGDxjRp4bTyYZzbyXiP95rYj65534oTAi9EVyiKTC9JARWsadIO9JjUSQJEcufS5AAxFqyUGIWIzikmYOGvJAj3QvKcmZr2SR1E9KTrl0elMuVi6ndWXZPjtgR8xhZ6zCrlmV1ZhgD+yZvbBX68l6s96tj9/RjDXd2WMzsD5/ABFPoeI=</latexit>

Exercises
HOFL denotational semantics

25

26

Principles for software composition 2019/20
05 - HOFL

[Ex. 1] Determine the type of the HOFL term

t
def
= rec x. ((�y. if y then 0 else 0) x).

Then compute its (lazy) canonical form.

[Ex. 2] Determine the type of the HOFL term

map
def
= �f. �x. ((f fst(x)), (f snd(x)))

Then, compute the (lazy) canonical forms of the terms

t1
def
= map (�z. 2⇥ z) (1, 2) t2

def
= fst (map (�z. 2⇥ z) (1, 2))

[Ex. 3] Let (D,v) be a CPO and f : D ! D be a continuous function.
Prove that the set of fixpoints of f is itself a CPO (ordered by v).

[Ex. 4] (Test for convergence) We would like to modify the denotational
semantics of HOFL assigning to the construct

if t then t0 else t1

• the semantics of t1 if the semantics of t is ?Z? , and

• the semantics of t0 otherwise.

Is it possible? If not, why?

[Ex. 5] (Strict conditional) Modify the operational semantics of HOFL by
taking the following rules for conditionals:

t ! 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c0

t ! n n 6= 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c1

.

Without changing the denotational semantics, prove that:

1. for any term t and canonical form c, we have t ! c) 8⇢. JtK ⇢ = JcK ⇢;

2. in general t+ 6) t# (exhibit a counterexample).

[Ex. 6] Determine the type of the HOFL term

t
def
= rec f. (�x.1 , (fst f) 0)

Then, compute the (lazy) denotational semantics of t.

Ex. Test for convergence

Ex. Test for convergence

2727

Any problem? is not monotone on v !

Counterexample ?Z? vZ? b1c

<latexit sha1_base64="ohVcVThp4CKhwLyHCXuK0RDa3nw=">AAACTnicbVBNT9tAEF2ntAT6QShHLiuiSj1FdgWCIwJV4ggSAUQcWbObCV2x9pqdMVJk5Rf1z7RH4F9w4FYV2+QAhHd6em9Gb+ap3BriMLwJWu8W3n9YbC8tf/z0+ctKZ/XrCbnCa+xrZ50/U0BoTYZ9NmzxLPcIqbJ4qi73a//0Gj0Zlx3zJMdhCheZGRsNXElJ52esHCdlnAL/Uqo8nya1MJUxXVGhCBmv5t3l2I6tc15GsW9I0umGvbCBnCfRjHTFDIdJ5z4eOV2kmLG2QDSIwpyHJXg22mIVUBDmoC/hAgcVzSBFGpbNu1P5rSBgJ3P00ljZiPh8o4SUaJKqarI+nF57tfiWNyh4vDMsTZYXjJmug9hYbIJIe1P1iHJkPDJDfTlKk0kNHpjRGwlaV2JRFfsikDgFP/GjaVVS9LqSeXLyoxdt9raONru7e7O62mJdbIjvIhLbYlcciEPRF1r8Fn/FrbgL/gQPwb/g/9NoK5jtrIkXaLUfAYE7t9Q=</latexit>

Jif t then t0 else t1K⇢ , Cond?⌧ (JtK⇢ , Jt0K⇢ , Jt1K⇢)

<latexit sha1_base64="Qp+Aowlyv1kCix5hnZxd93Bkouk=">AAAC63ichVFNb9NAEF27QIv5SsuRy4oIqUgosqsiOFb00mORSFspG6zxZpysul6b3XFpZPlXcENc+VFc+Qn8AmzXSElTiTm9ffN23uhNUmjlKAx/ef7WvfsPtnceBo8eP3n6bLC7d+by0kocy1zn9iIBh1oZHJMijReFRcgSjefJ5XHbP79C61RuPtGywGkGc6NSJYEaKh78FlonFuQlUiAyoEWSViqtRdA8+T+CFmhaKg5XSNQOOzIKhLX9DC7sIg8EWQVmrvHLzUyXVse5mdWfRZJTLAjKfRGsGNPmBP5mXdFa/1dzxyb8dRAPhuEo7IpvgqgHQ9bXaTz4I2a5LDM0JDU4N4nCgqYVWFJSYx2I0mHRmMAcJw00kKGbVt0tav6qdEA5L9BypXlH4uqPCjLnllnSKLtobvda8q7epKT0/bRSpigJjWyNSGnsjJy0qjky8pmySATt5siV4RIsEKFVHKRsyLK5+pqhowzs0s7qJqTodiSb4OxgFB2O3n48HB596OPaYS/YS7bPIvaOHbETdsrGTHonnvG+etd+5n/zv/s/bqS+1/95ztbK//kX0J3qRA==</latexit>

Cond?⌧ (v, d0, d1) ,
⇢

d0 if v = bnc for some n
d1 otherwise

<latexit sha1_base64="6BZTthUtyUdpwBv5ncqaovHqDVU=">AAACr3icbVFdb9MwFHXC1wiDFXjkxaIFDQlVyTQEEiBN7IXHIdF1Ut0Vx7lJrTl2sG8KVZS/w3/ib/ALcEKE2MaVLB2fe8891nFaKekwjn8G4Y2bt27f2bkb3du9/2Bv9PDRqTO1FTATRhl7lnIHSmqYoUQFZ5UFXqYK5unFcdefb8A6afRn3FawLHmhZS4FR0+tRj9YyXHt8ubY6Kw9Z6nBFUNe729eZqvYn+QFZWgl14WCrxFTkCNrIpZCIXXDreXbtlGqjfw0fU5ZmZrvjczpZPOeqVwZY6lmtgcTmvubMyXQiZ60jHlN8ldjcA32m3TQRgx0NqyOmJXFGqer0Tiexn3R6yAZwJgMdbIa/WKZEXUJGoXizi2SuMKl34pSqM6jdlBxccELWHioeQlu2fR5tvRZ7TgaWoGlUtGehH8VDS+d25apn+zTu9rryP/1FjXmb5aN1FWNoEVnhFJBb+SElf6jgGbSAiLvXg5Uaiq45YhgJeVCeLL2P3fJ0GHJ7dZmrQ8puRrJdXB6ME0Op68+HY6PPgxx7ZAn5CnZJwl5TY7IR3JCZkQEu8FB8DZ4FybhPDwPv/wZDYNB85hcqlD+Bt921DY=</latexit>

d1 6vD⌧ d0

<latexit sha1_base64="bzXyDVqKX4amOwswXoW7EWLZ2Bg=">AAACKXicbVCxThtBEN1zIBhCggllmhVWJCrrLgJBaUGKlCBhQPJZp7n12Ky8t3fszCJZJ7f8DGmT/0iX0PIHfEHOxgXYvOrpvRm9mZcWRhOH4b+g9m5l9f1afX3jw+bHT1uN7c8XlHunsKNyk7urFAiNtthhzQavCoeQpQYv09HJ1L+8RUc6t+c8LrCXwdDqgVbAlZQ0ZD+JZGxzjumGfErIeJOU35OYwU8qM0wazbAVziCXSTQnTTHHadJ4ivu58hlaVgaIulFYcK8Ex1oZnGzEnrAANYIhditqIUPqlbNPJvKrJ+BcFuikNnIm4suNEjKicZZWkxnwNS16U/Etr+t5cNQrtS08o1XTINYGZ0GknK4qQtnXDplhejlKbaUCB8zotASlKtFXnb0KJM7AjV1/UpUULVayTC6+taL91sHZfrN9PK+rLr6IXbEnInEo2uKHOBUdocSd+Cl+id/BffAn+Bs8PI/WgvnOjniF4PE/1Zen+Q==</latexit>

Cond?⌧ (?Z? , d0, d1) = d1

<latexit sha1_base64="XxrhOc9KkiWRP6BU+lwRUjOSdI8=">AAACR3icbVBNSxxBEO3ZmLgZY7JJjrk0LoKBsMyIQS8RyV48GsiquLMONT212mxPz9BdIyzD/Bv/jF6Ti79C8BByTM9kD34VNP14r4pX9ZJCSUtBcON1Xiy9fLXcfe2vvFl9+673/sOhzUsjcCRylZvjBCwqqXFEkhQeFwYhSxQeJbNhox9doLEy1z9pXuAkgzMtp1IAOSru7UYZ0LmdVsNcp/VplOQURwTlht/CqpWTpDqp44aov6Rx4F742f/muy/u9YNB0BZ/CsIF6LNFHcS9uyjNRZmhJqHA2nEYFDSpwJAUCms/Ki0WIGZwhmMHNWRoJ1V7Z83XSwuU8wINl4q3JN6fqCCzdp4lrrO96rHWkM9p45KmO5NK6qIk1KIxIqmwNbLCSBcg8lQaJIJmc+RScwEGiNBIDkI4snSJPjC0lIGZm7R2IYWPI3kKDjcH4dbg64+t/t73RVxd9omtsQ0Wsm22x/bZARsxwS7ZNfvFfntX3q33x/v7v7XjLWY+sgfV8f4BFOOyWA==</latexit>

6vD⌧ d0

<latexit sha1_base64="XNKojy0cq5Z9r/tHa6yKlSUY860=">AAACJXicbVC7TiNBEJw1x/tlIIRghIVEZO0i0F2I4AJCkDAgea1V77iBEbOzy3QPkrVyws9AevcflyEkIv6BL2BtHByYikpV3aruSgujicPwJahN/Jicmp6ZnZtfWFxarq+snlHuncKWyk3uLlIgNNpiizUbvCgcQpYaPE9vDgf++R060rk95V6BnQyurL7UCriSkvpGbHOO6ZZ8Ssh4m5S/k5jB92U3CZN6I2yGQ8hxEo1IQ4xwnNTf4m6ufIaWlQGidhQW3CnBsVYG+3OxJyxA3cAVtitqIUPqlMMv+nLLE3AuC3RSGzkU8f+NEjKiXpZWkxnwNX31BuJ3Xtvz5a9OqW3hGa0aBLE2OAwi5XRVD8qudsgMg8tRaisVOGBGpyUoVYm+6utTIHEGrue6/aqk6Gsl4+RspxntNvdOdhv7B6O6ZsS62BTbIhI/xb44EseiJZS4F4/ij/gbPAT/gqfg+WO0Fox21sQnBK/vWu6mvQ==</latexit>

= Cond?⌧ (b1c, d0, d1)

<latexit sha1_base64="BFEaqGMPQL0FFZXmimUBaasIL4w=">AAACPnicbVDLattAFB2lL0d9Oekym6GmkEIxUohpNgETb7p0IHYMliuuRtfpkNGMmLkqGOEvyc+02+YL8gPdlUJXWUZStaiTHhg4nHMvZ+5JciUdBcGNt/Xo8ZOnzzrb/vMXL1+97u7sTp0prMCJMMrYWQIOldQ4IUkKZ7lFyBKF58nlqPbPv6J10ugzWuW4yOBCy6UUQJUUdwfHfpQBfXHLcmR0uv4cJYbiiKDY9yO1VMZYHka2IR/SOKhe+N6Pu72gHzTgD0nYkh5rMY67f6LUiCJDTUKBc/MwyGlRgiUpFK79qHCYg7iEC5xXVEOGblE25635u8IBGZ6j5VLxRsR/N0rInFtlSTXZnHLfq8X/efOClkeLUuq8INSiDiKpsAlywsqqN+SptEgE9c+RS80FWCBCKzkIUYlFVeRGoKMM7Mqm66qk8H4lD8n0oB8e9genh73hSVtXh+2xt2yfhewjG7JPbMwmTLAr9p39YNfeN++n98v7/Xd0y2t33rANeLd3iE6vIA==</latexit>

Cond?⌧ (v, d0, d1) ,
⇢

d0 if v = bnc for some n
d1 otherwise

<latexit sha1_base64="6BZTthUtyUdpwBv5ncqaovHqDVU=">AAACr3icbVFdb9MwFHXC1wiDFXjkxaIFDQlVyTQEEiBN7IXHIdF1Ut0Vx7lJrTl2sG8KVZS/w3/ib/ALcEKE2MaVLB2fe8891nFaKekwjn8G4Y2bt27f2bkb3du9/2Bv9PDRqTO1FTATRhl7lnIHSmqYoUQFZ5UFXqYK5unFcdefb8A6afRn3FawLHmhZS4FR0+tRj9YyXHt8ubY6Kw9Z6nBFUNe729eZqvYn+QFZWgl14WCrxFTkCNrIpZCIXXDreXbtlGqjfw0fU5ZmZrvjczpZPOeqVwZY6lmtgcTmvubMyXQiZ60jHlN8ldjcA32m3TQRgx0NqyOmJXFGqer0Tiexn3R6yAZwJgMdbIa/WKZEXUJGoXizi2SuMKl34pSqM6jdlBxccELWHioeQlu2fR5tvRZ7TgaWoGlUtGehH8VDS+d25apn+zTu9rryP/1FjXmb5aN1FWNoEVnhFJBb+SElf6jgGbSAiLvXg5Uaiq45YhgJeVCeLL2P3fJ0GHJ7dZmrQ8puRrJdXB6ME0Op68+HY6PPgxx7ZAn5CnZJwl5TY7IR3JCZkQEu8FB8DZ4FybhPDwPv/wZDYNB85hcqlD+Bt921DY=</latexit>

Take
<latexit sha1_base64="YnfG7bYwi1YjFvRvmQFaYbNbKMQ=">AAACfXicbVFdaxQxFM2MX+34tdVHX4JLYYWyzIhYH4v64GMFty1uluEme7eGZibT5KawDPND9Wf4BzQzLuh2vRA4Oed+5UQ2RnvK8+9JeufuvfsP9vazh48eP3k6Onh25m1wCmfKGusuJHg0usYZaTJ40TiESho8l1cfev38Bp3Xtv5C6wYXFVzWeqUVUKTKEU2EtFS2ogL6JmX7tSt7ojtalnk8xatM+GsfpEfC6500QbpCzz+WgiBsXbpsIszKWOt4IdwA/rYsR+N8mg/Bd0GxAWO2idNy9FMsrQoV1qQMeD8v8oYWLTjSymCXieCxAXUFlziPsIa4yKId3On4YfBAljfouDZ8IPHfihYq79eVjJn96/xtrSf/p80Drd4tWl03gbBW/SDSBodBXjkdbUe+1A6JoN8cua65AgdE6DQHpSIZ4j9sDfRUgVu7ZRdNKm5bsgvOXk+Lt9Pi85vxyfuNXXvsBXvJJqxgx+yEfWKnbMYU+5GwZD/Jkl/pYXqUTv+kpsmm5jnbivT4NxX9wpA=</latexit>

(?Z? , d0, d1) vZ?⇥D⌧⇥D⌧ (b1c, d0, d1)

2828

as a consequence

t , �x. if x then 0 else 1 : int ! int

<latexit sha1_base64="DVgqGhOJX3qvdX9gZ1AGyMu9pjQ=">AAACd3icbZFNb9NAEIbXboFiCgQ4cuiqEVVPkY2KQJwqeuFYpKatlI2i8WaSjrpem90xamTlX3Lhb/TWnlibSKQfc3r3mRnNzLt5Zchzmv6J4o3NJ0+fbT1PXmy/fPW69+btqS9rp3GoS1O68xw8GrI4ZGKD55VDKHKDZ/nlUZs/+4XOU2lPeFHhuIC5pRlp4IAmPcuKHYGdG/wpE2VC5xTk1UBJVQBf5LOGZkuVXCX/AV+gDShdQ2g8BpQF9FUlHSVuyPJScbn+nPT66SDtQj4U2Ur0xSqOJ71rNS11XaBlbcD7UZZWPG7AMWmDy0TVHivQlzDHUZAWCvTjpvNlKT/UHriUFTpJRnYQ1zsaKLxfFHmobHf093MtfCw3qnn2ZRwOqmpGq9tBTAa7QV47CoajnJJDZmg3R0lWanDAjI4kaB1gHX7gzkDPBbiFm7YmZfcteShOPw6yg8GnHwf9w28ru7bEe7Er9kUmPotD8V0ci6HQ4re4jTaizegm3on34v1/pXG06nkn7kSc/QXve8Ds</latexit>

has no possible semantics in Dint!int = [Z? ! Z?]?

<latexit sha1_base64="Fl7xvkENoEoW+5LXxlPoqHKf1TQ=">AAACVnicbVDLSsRAEJyN7/UV9ehlcBE8LYkoehFEPXgRFFwVNyF0ZlsdnDyY6QhLyFf5M3rVP/ADxEncg672Yaip6qarK86VNOR5ry1nYnJqemZ2rj2/sLi07K6sXpms0AJ7IlOZvonBoJIp9kiSwptcIySxwuv48bjWr59QG5mllzTMMUzgPpV3UgBZKnLPTqKyHSRAD5JKmVIVUPbzW/GDdr8h4ri8raIgzojbHj7Ghc0buR2v6zXF/wJ/BDpsVOeR+xEMMlEkmJJQYEzf93IKS9AkhcKqHRQGcxCPcI99C1NI0IRlc3bFNwsD1kmOmkvFGxJ/TpSQGDNMYttZmzXjWk3+p/ULutsP7fl5QZiKehFJhc0iI7S0eSIfSI1EUDtHLlMuQAMRaslBCEsWNuBfCw0loId6UNmQ/PFI/oKr7a6/09292OkcHo3immXrbINtMZ/tsUN2ys5Zjwn2zF7ZG3tvvbQ+nSln5rvVaY1m1tivctwvQQK4pA==</latexit>

because is not continuous (not monotone)JtK⇢

<latexit sha1_base64="ANR93ZmuXRMNWV1Q2XppfQ0Wo/g=">AAACI3icbVDLTgJBEJzFF+IL9aaXicTEE9k1GD0SvXjERB4JS0jv0MCE2Udmek0IIfFn9Kr/4c148eBP+AUu6x4ErFOlqnuqp7xISUO2/WnlVlbX1jfym4Wt7Z3dveL+QcOEsRZYF6EKdcsDg0oGWCdJCluRRvA9hU1vdDPzmw+ojQyDexpH2PFhEMi+FECJ1C0euUp5GsQIiZOrdcZdPQy7xZJdtlPwZeJkpMQy1LrFb7cXitjHgIQCY9qOHVFnApqkUDgtuLHBKHkeBthOaAA+ms4k/cOUn8YGKOQRai4VT0X8uzEB35ix7yWTPtDQLHoz8T+vHVP/qjORQRQTBmIWRFJhGmSElkk5yHtSIxHMLkcuAy5AAxFqyUGIRIyTtuYCDfmgx7o3TUpyFitZJo3zslMpX9xVStXrrK48O2Yn7Iw57JJV2S2rsToT7JE9sxf2aj1Zb9a79fE7mrOynUM2B+vrB+IhpgI=</latexit>

For example take d0 = b0c

<latexit sha1_base64="PnikXwDwLHtEaTViBXMHQdcBANk=">AAACH3icbVDLSgNBEJyNrxhfq4IXL4NB8BR2JaIXIejFYwTzgCSE3kknDpl9MNMrhDUfo1f9D2/iNb/hF7hZczCJdSqquqmivEhJQ44zsXIrq2vrG/nNwtb2zu6evX9QN2GsBdZEqELd9MCgkgHWSJLCZqQRfE9hwxveTv3GE2ojw+CBRhF2fBgEsi8FUCp17aNe1+HXvK36Kgw1d9o6I1276JScDHyZuDNSZDNUu/Z3uxeK2MeAhAJjWq4TUScBTVIoHBfascEIxBAG2EppAD6aTpL1H/PT2ACFPELNpeKZiH8/EvCNGfleeukDPZpFbyr+57Vi6l91EhlEMWEgpkEkFWZBRmiZDoO8JzUSwbQ5chlwARqIUEsOQqRinC41F2jIBz3SvXE6krs4yTKpn5fccunivlys3MzmyrNjdsLOmMsuWYXdsSqrMcGe2St7Y+/Wi/VhfVpfv6c5a/ZzyOZgTX4AgCujDw==</latexit>

d1 = b1c

<latexit sha1_base64="B9kh2QOYJ4eYe6DiYrx4VssQ9Vc=">AAACH3icbVDLSgNBEJyNrxhfq4IXL4NB8BR2JaIXIejFYwTzgCSE3kknDpl9MNMrhDUfo1f9D2/iNb/hF7hZczCJdSqquqmivEhJQ44zsXIrq2vrG/nNwtb2zu6evX9QN2GsBdZEqELd9MCgkgHWSJLCZqQRfE9hwxveTv3GE2ojw+CBRhF2fBgEsi8FUCp17aNe1+XXvK36Kgw1d9s6I1276JScDHyZuDNSZDNUu/Z3uxeK2MeAhAJjWq4TUScBTVIoHBfascEIxBAG2EppAD6aTpL1H/PT2ACFPELNpeKZiH8/EvCNGfleeukDPZpFbyr+57Vi6l91EhlEMWEgpkEkFWZBRmiZDoO8JzUSwbQ5chlwARqIUEsOQqRinC41F2jIBz3SvXE6krs4yTKpn5fccunivlys3MzmyrNjdsLOmMsuWYXdsSqrMcGe2St7Y+/Wi/VhfVpfv6c5a/ZzyOZgTX4Ag42jEQ==</latexit>

Jif rec x. x then 0 else 1K⇢ = b1c

<latexit sha1_base64="Df8UYbK1QdfmNwOEq9Wjrk0M+A4=">AAACfHicbVHZatwwFJWdLhN3m6aPfRGdFgqlgx3S5aUQmpc+ptBJAqNhkDXXGRFZMlfXIYPxh+Y3+gFtZcctWXpB6Ojc5UhHeWW0pzS9jOKte/cfPBxtJ48eP3n6bPx858i7GhXMlDMOT3LpwWgLM9Jk4KRCkGVu4Dg/O+jyx+eAXjv7gzYVLEp5anWhlaRALcdeGJOjVGdAiSglrfOi0UUr/h0QVCv4xTSsRPC/LK3BhqL0GgXGQ6CyRCAOE7nAtUu+JMIUxjnMBPb7cjxJp2kf/C7IBjBhQxwuxz/Fyqm6BEvKSO/nWVrRopFIWhloE1F7qIKiPIV5gFaW4BdNb07L39RekuMVINeG9yRc72hk6f2mzENl9xJ/O9eR/8vNayo+Lxptq5rAqk6ItIFeyCvUwXXgK41AJLubA9eWK4mSCFBzqVQg6/ANNwQ9lRI3uGqDSdltS+6Co91ptjf98H1vsv91sGvEXrJX7C3L2Ce2z76xQzZjil2y39Eo2o5+xa/jd/H7q9I4GnpesBsRf/wDPAnCrA==</latexit>

Jif 1 then 0 else 1K⇢ = b0c

<latexit sha1_base64="dn91T3tU62XHMYQy4CxULNnJCFU=">AAACa3icbZBLaxRBFIVr2ldsX6PZqYvCIeBq6A4R3QhBNy4jOElgahhu19zOFKmuam7dFoZm/p9/wR+hCze6tLrTQh6e1eG793KqTlFbEzjLvo+SW7fv3L23cz998PDR4yfjp8+Og29I40x76+m0gIDWOJyxYYunNSFUhcWT4vxjNz/5ihSMd194U+OigjNnSqOBI1qOC2VtQaDPkVNVAa+LsjXlVqV5quQ/wGt0EWWXENqAF1tEw71UtPbp+1TZ0npPMlPUm+V4kk2zXvKmyQczEYOOluNfauV1U6FjbSGEeZ7VvGiB2GiL21Q1AesYCWc4j9ZBhWHR9l1s5V4TgL2skaSxsod4+aKFKoRNVcTN7ivh+qyD/5vNGy7fLVrj6obR6S6IjcU+KGgysWSUK0PIDN3LURonNRAwIxkJWkfYxNavBAaugDa02saS8uuV3DTH+9P8YPrm88Hk8MNQ1454IV6J1yIXb8Wh+CSOxExo8U38FL/Fn9GPZDd5nry8WE1Gw82uuKJk7y81bL06</latexit>

6vZ?

<latexit sha1_base64="rvh04inauTvpAkwoxEFH5CwPEGg=">AAACKnicbVC7TuRAEBzzhuO4BUKSgdVJRCv7xAlCBAkhSCwg1iurZ7aBEeOxmW4jrayN+RlI4T/IEClfwBdgLxvwqqhU1a3qLpVbQxyGT8HY+MTk1PTM7Nyv+d8LfxqLS0eUFV5jW2c28ycKCK1x2GbDFk9yj5Aqi8fqcrf2j6/Rk8ncIfdz7KZw7syZ0cCVlDRWY5dxTFdUKELGq6SMU+ALpcrTQRKrjAdJoxm2wiHkdxKNSFOMsJ80XuNeposUHWsLRJ0ozLlbgmejLQ7m4oIwB30J59ipqIMUqVsOXxnIvwUBZzJHL42VQxE/bpSQEvVTVU3Wd9JXrxZ/8joFn211S+PygtHpOoiNxWEQaW+qjlD2jEdmqC9HaZzU4IEZvZGgdSUWVWmfAolT8H3fq0uKvlbynRz9a0Ubrf8HG83tnVFdM2JFrIl1EYlNsS32xL5oCy1uxJ24Fw/BbfAYPAXP76NjwWhnWXxC8PIG2Wiprw==</latexit>

Ex. Test for convergence

29

Principles for software composition 2019/20
05 - HOFL

[Ex. 1] Determine the type of the HOFL term

t
def
= rec x. ((�y. if y then 0 else 0) x).

Then compute its (lazy) canonical form.

[Ex. 2] Determine the type of the HOFL term

map
def
= �f. �x. ((f fst(x)), (f snd(x)))

Then, compute the (lazy) canonical forms of the terms

t1
def
= map (�z. 2⇥ z) (1, 2) t2

def
= fst (map (�z. 2⇥ z) (1, 2))

[Ex. 3] Let (D,v) be a CPO and f : D ! D be a continuous function.
Prove that the set of fixpoints of f is itself a CPO (ordered by v).

[Ex. 4] (Test for convergence) We would like to modify the denotational
semantics of HOFL assigning to the construct

if t then t0 else t1

• the semantics of t1 if the semantics of t is ?Z? , and

• the semantics of t0 otherwise.

Is it possible? If not, why?

[Ex. 5] (Strict conditional) Modify the operational semantics of HOFL by
taking the following rules for conditionals:

t ! 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c0

t ! n n 6= 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c1

.

Without changing the denotational semantics, prove that:

1. for any term t and canonical form c, we have t ! c) 8⇢. JtK ⇢ = JcK ⇢;

2. in general t+ 6) t# (exhibit a counterexample).

[Ex. 6] Determine the type of the HOFL term

t
def
= rec f. (�x.1 , (fst f) 0)

Then, compute the (lazy) denotational semantics of t.

Ex. Strict conditional

3030

Ex. Strict conditional 1

P (t ! c) , 8⇢. JtK⇢ = JcK⇢

<latexit sha1_base64="Ftn+sjTOkI4GqyVkEsketBtnSOY=">AAACZHicbVBdSxtBFJ1sa2tTbVOlT4UyNAj6EnbF0r4IYl98TMGokAnh7uQmDs7Obu/cLYSQH+fP8A/UV+0vcHa74Ffv0+Gce+bcOWlhjec4vmpFL16uvHq9+qb9dm393fvOh40Tn5ekcaBzm9NZCh6tcThgwxbPCkLIUoun6cWPSj/9jeRN7o55XuAog5kzU6OBAzXuDPvbrDiXekcxGXAzi7/aapoTWCsVnec9JZW1KYG+QJasiBpciXL/oajvxdo67nTjXlyPfA6SBnRFM/1x56+a5LrM0LG24P0wiQseLYDYaIvLtio9FuF9mOEwQAcZ+tGiLmEpt0oP4SMFkjRW1iQ+dCwg836epWEzAz73T7WK/J82LHn6fbQwrigZna6C2Fisg7wmE9pFOTGEzFBdjtI4qYGAGclI0DqQZaj7UaDnDGhOk2UoKXlayXNwsttL9npff+51Dw6bulbFJ/FFbItEfBMH4kj0xUBocSmuxY24bf2J1qLN6OO/1ajVeDbFo4k+3wF+DLvQ</latexit>

we extend the proof of correctness (by rule induction)
to consider the new rules

Principles for software composition 2019/20
05 - HOFL

[Ex. 1] Determine the type of the HOFL term

t
def
= rec x. ((�y. if y then 0 else 0) x).

Then compute its (lazy) canonical form.

[Ex. 2] Determine the type of the HOFL term

map
def
= �f. �x. ((f fst(x)), (f snd(x)))

Then, compute the (lazy) canonical forms of the terms

t1
def
= map (�z. 2⇥ z) (1, 2) t2

def
= fst (map (�z. 2⇥ z) (1, 2))

[Ex. 3] Let (D,v) be a CPO and f : D ! D be a continuous function.
Prove that the set of fixpoints of f is itself a CPO (ordered by v).

[Ex. 4] (Test for convergence) We would like to modify the denotational
semantics of HOFL assigning to the construct

if t then t0 else t1

• the semantics of t1 if the semantics of t is ?Z? , and

• the semantics of t0 otherwise.

Is it possible? If not, why?

[Ex. 5] (Strict conditional) Modify the operational semantics of HOFL by
taking the following rules for conditionals:

t ! 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c0

t ! n n 6= 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c1

.

Without changing the denotational semantics, prove that:

1. for any term t and canonical form c, we have t ! c) 8⇢. JtK ⇢ = JcK ⇢;

2. in general t+ 6) t# (exhibit a counterexample).

[Ex. 6] Determine the type of the HOFL term

t
def
= rec f. (�x.1 , (fst f) 0)

Then, compute the (lazy) denotational semantics of t.

Principles for software composition 2019/20
05 - HOFL

[Ex. 1] Determine the type of the HOFL term

t
def
= rec x. ((�y. if y then 0 else 0) x).

Then compute its (lazy) canonical form.

[Ex. 2] Determine the type of the HOFL term

map
def
= �f. �x. ((f fst(x)), (f snd(x)))

Then, compute the (lazy) canonical forms of the terms

t1
def
= map (�z. 2⇥ z) (1, 2) t2

def
= fst (map (�z. 2⇥ z) (1, 2))

[Ex. 3] Let (D,v) be a CPO and f : D ! D be a continuous function.
Prove that the set of fixpoints of f is itself a CPO (ordered by v).

[Ex. 4] (Test for convergence) We would like to modify the denotational
semantics of HOFL assigning to the construct

if t then t0 else t1

• the semantics of t1 if the semantics of t is ?Z? , and

• the semantics of t0 otherwise.

Is it possible? If not, why?

[Ex. 5] (Strict conditional) Modify the operational semantics of HOFL by
taking the following rules for conditionals:

t ! 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c0

t ! n n 6= 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c1

.

Without changing the denotational semantics, prove that:

1. for any term t and canonical form c, we have t ! c) 8⇢. JtK ⇢ = JcK ⇢;

2. in general t+ 6) t# (exhibit a counterexample).

[Ex. 6] Determine the type of the HOFL term

t
def
= rec f. (�x.1 , (fst f) 0)

Then, compute the (lazy) denotational semantics of t.

3131

P (t ! c) , 8⇢. JtK⇢ = JcK⇢

<latexit sha1_base64="Ftn+sjTOkI4GqyVkEsketBtnSOY=">AAACZHicbVBdSxtBFJ1sa2tTbVOlT4UyNAj6EnbF0r4IYl98TMGokAnh7uQmDs7Obu/cLYSQH+fP8A/UV+0vcHa74Ffv0+Gce+bcOWlhjec4vmpFL16uvHq9+qb9dm393fvOh40Tn5ekcaBzm9NZCh6tcThgwxbPCkLIUoun6cWPSj/9jeRN7o55XuAog5kzU6OBAzXuDPvbrDiXekcxGXAzi7/aapoTWCsVnec9JZW1KYG+QJasiBpciXL/oajvxdo67nTjXlyPfA6SBnRFM/1x56+a5LrM0LG24P0wiQseLYDYaIvLtio9FuF9mOEwQAcZ+tGiLmEpt0oP4SMFkjRW1iQ+dCwg836epWEzAz73T7WK/J82LHn6fbQwrigZna6C2Fisg7wmE9pFOTGEzFBdjtI4qYGAGclI0DqQZaj7UaDnDGhOk2UoKXlayXNwsttL9npff+51Dw6bulbFJ/FFbItEfBMH4kj0xUBocSmuxY24bf2J1qLN6OO/1ajVeDbFo4k+3wF+DLvQ</latexit>

Principles for software composition 2019/20
05 - HOFL

[Ex. 1] Determine the type of the HOFL term

t
def
= rec x. ((�y. if y then 0 else 0) x).

Then compute its (lazy) canonical form.

[Ex. 2] Determine the type of the HOFL term

map
def
= �f. �x. ((f fst(x)), (f snd(x)))

Then, compute the (lazy) canonical forms of the terms

t1
def
= map (�z. 2⇥ z) (1, 2) t2

def
= fst (map (�z. 2⇥ z) (1, 2))

[Ex. 3] Let (D,vD) be a CPO and f : D ! D be a continuous function.
Prove that the set of fixpoints of f is itself a CPO (ordered by vD).

[Ex. 4] (Test for convergence) We would like to modify the denotational
semantics of HOFL assigning to the construct

if t then t0 else t1

• the semantics of t1 if the semantics of t is ?Z? , and

• the semantics of t0 otherwise.

Is it possible? If not, why?

[Ex. 5] (Strict conditional) Modify the operational semantics of HOFL by
taking the following rules for conditionals:

t ! 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c0

t ! n n 6= 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c1

.

Without changing the denotational semantics, prove that:

1. for any term t and canonical form c, we have t ! c) 8⇢. JtK ⇢ = JcK ⇢;

2. in general t+ 6) t# (exhibit a counterexample).

[Ex. 6] Determine the type of the HOFL term

t
def
= rec f. (�x.1 , (fst f) 0)

Then, compute the (lazy) denotational semantics of t.

assume

P (t0 ! c0) , 8⇢. Jt0K⇢ = Jc0K⇢

<latexit sha1_base64="pd7X2QHbjXqofJymfBfqg7k0ohk=">AAACbHicbVDBTttAFNyYlkJoIS3cUKUVUSt6iWxEVS6VEFx6TKUGkOLIet68hFXWa/ftc6UoygfyCfxEK3GCW9euDwH6TrMz83Z2Jy2MdhyGt61g7cXL9Vcbm+2t12+2dzpv3124vCSFA5WbnK5ScGi0xQFrNnhVEEKWGrxMZ+eVfvkLyenc/uB5gaMMplZPtAL2VNJR/UNOwphzqZLwU8ykwU4N/mzHk5zAGBnTdd6LZWxMSqBmyLLyEzWnSpZfV2W1KtfrSacb9sJ65HMQNaArmuknnbt4nKsyQ8vKgHPDKCx4tABirQwu23HpsPD3wxSHHlrI0I0WdRlL+aF04L9TIEltZE3i6sYCMufmWeqdGfC1e6pV5P+0YcmTk9FC26JktKoKYm2wDnKKtG8Z5VgTMkP1cpTaSgUEzEhaglKeLH3tjwIdZ0BzGi99SdHTSp6Di6NedNz7/P24e3rW1LUh9sWBOBSR+CJOxTfRFwOhxI34I+7FQ+t3sBfsB+//WYNWs7MrHk3w8S9BEr5c</latexit>

P (t ! 0) , 8⇢. JtK⇢ = J0K⇢ = b0c

<latexit sha1_base64="Jstv6TCbtLGgGwxPo8dJjEanTis=">AAACeHicbZHNbxMxEMW9SwslfDTAkYtFhGgv0W5VBBekqlw4Bom0leIomnUmqVWvvYxnkaIof2YP/Td6hAveZQX9YE5P7zfWs5+LyprAWXaVpA+2th8+2nnce/L02fPd/ouXJ8HXpHGsvfV0VkBAaxyO2bDFs4oQysLiaXHxueGnP5CC8e4bryqclrB0ZmE0cLRmfT/aY8VeZvuKyYBbWvzeUwtPYK1UdO6HSiprCwJ9gSxZEXW6gfLTTZjJf1T+xQvrPclMUStm/UE2zNqR90XeiYHoZjTrX6u513WJjrWFECZ5VvF0DcRGW9z0VB2wipGwxEmUDkoM03VbzEa+rQPEx1VI0ljZmnjzxBrKEFZlETdL4PNwlzXm/9ik5sXH6dq4qmZ0ugliY7ENCppMbBzl3BAyQ3NzlMZJDQTMSEaC1tGs4xfcCgxcAq1ovokl5XcruS9ODob54fD918PB0XFX1454Ld6IPZGLD+JIfBEjMRZaXIpfyVaynfxMZfou3f+zmibdmVfi1qQHvwFSUsD7</latexit>

P (t1 ! c1) , 8⇢. Jt1K⇢ = Jc1K⇢

<latexit sha1_base64="RtzSYpmdhTGUOCkpxHmZ4wj+z8o=">AAACbHicbVDBTttAFNyYlkJoIS3cUKUVUSt6iWxEVS6VEFx6TKUGkOLIet68hFXWa/ftc6UoygfyCfxEK3GCW9euDwH6TrMz83Z2Jy2MdhyGt61g7cXL9Vcbm+2t12+2dzpv3124vCSFA5WbnK5ScGi0xQFrNnhVEEKWGrxMZ+eVfvkLyenc/uB5gaMMplZPtAL2VNJR/UNOophzqZLoU8ykwU4N/mzHk5zAGBnTdd6LZWxMSqBmyLLyEzWnSpZfV2W1KtfrSacb9sJ65HMQNaArmuknnbt4nKsyQ8vKgHPDKCx4tABirQwu23HpsPD3wxSHHlrI0I0WdRlL+aF04L9TIEltZE3i6sYCMufmWeqdGfC1e6pV5P+0YcmTk9FC26JktKoKYm2wDnKKtG8Z5VgTMkP1cpTaSgUEzEhaglKeLH3tjwIdZ0BzGi99SdHTSp6Di6NedNz7/P24e3rW1LUh9sWBOBSR+CJOxTfRFwOhxI34I+7FQ+t3sBfsB+//WYNWs7MrHk3w8S9IlL5g</latexit>

we want to prove
P (if t then t0 else t1 ! c0) , 8⇢. Jif t then t0 else t1K⇢ = Jc0K⇢

<latexit sha1_base64="Ua0SzKcDZ97EMKgIW4sf0pb5icM=">AAAC0nicnVFNb9NAEF27fLThK5RjLysipHIJdlUEF6QKLhyD1LSV4mCNN+Nk1fXazI6RgpUD4sof4yfwN/gFrI1Rvzgxp9n3dt7bfZNVRjuOop9BuHXr9p272zuDe/cfPHw0fLx74sqaFE5VaUo6y8Ch0RanrNngWUUIRWbwNDt/1/Knn5GcLu0xryucF7C0OtcK2EPp8MdkPymAV1ne6HyTSE7k3zOv0LZIGl1gaBx2WJxwKVUaPU+YNNilwU+DJC8JjJEJrcqxnzEmI1DnyPI/LYh6gVZRvrms6K0v6M4xHY6icdSVvNnEfTMSfU3S4a9kUaq6QMvKgHOzOKp43gCxVgY3g6R2WHl9WOLMtxYKdPOmi3wjn9UOfAIVktRGdiBenmigcG5dZP5m+y93nWvBf3GzmvPX80bbqma0qjVibbAzcoq03yXKhSZkhvblKLWVCgiYkbQEpTxY++VeMXRcAK1psfEhxdcjudmcHIzjw/HLD4ejo7d9XNtiTzwV+yIWr8SReC8mYipU8CKYBh+DNDwOv4Rfw29/roZBP/NEXKnw+2+PpuQX</latexit>

Jif t then t0 else t1K⇢ = Cond⌧ (JtK⇢, Jt0K⇢, Jt1K⇢)

<latexit sha1_base64="+L5Dsi6VeNa5Lr+1RAqi6uev278=">AAACyHicfVHBbtNAEF2bFkooYODIZdWoUpFQZKMiuCBV9ILgUqSmrZSNrPFm3Ky6Xlu7Y1Bk5cKP8R38Rr+ga2NBklad09v3Zuat3mSVVo7i+E8QPtjafvho5/Hgye7TZ8+jFy/PXFlbiWNZ6tJeZOBQK4NjUqTxorIIRabxPLs6bvXzH2idKs0pLSqcFnBpVK4kkKfS6LfQOrMgr5C4KIDmWd6ofCk4iX9vmqNpmTT+z6F22H GJsLZfIOy85J/4oOtxeXNcmtkyFQQ1P1ixofWJt3xV8x73qRtub3gaDeNR3BW/DZIeDFlfJ2l0LWalrAs0JDU4N0niiqYNWFJS43IgaoeVN4BLnHhooEA3bbqgl3y/dkAlr9BypXlH4upEA4VziyLznV0Gm1pL3qVNaso/ThtlqprQyNaIlMbOyEmr/AWRz5RFImh/jlwZLsECEVrFQUpP1v6ka4aOCrAL628QDZPNSG6Ds3ej5HD0/vvh8OhzH9cOe8322AFL2Ad2xL6wEzZmMtgPvgWnwTj8Glbhz3DxtzUM+plXbK3CXzfwHeDH</latexit>

= Cond⌧ (b0c, Jc0K⇢, Jc1K⇢)

<latexit sha1_base64="gWtZn1nqJmMfHt1MzQpx2SToFUw=">AAACbnicbVBNa9tAEF0r/Ujdj6gp9FJKl5qCC8VIJaW5FEJy6TGFOglYRozW42TJalfMjgpG+BfmF/RftD0ml6xVHWqn7/T2vRne7Csqoz0nyc9etHXv/oOH24/6j588fbYTP9898a4mhWPljKOzAjwabXHMmg2eVYRQFgZPi8ujlX/6A8lrZ7/zosJpCedWz7UCDlIe4xfZz0rgCz9vjpydLfOMoZbDzMyNcySTjFryQWbGFATqElmqPMjUvTK6cBtuuu6+l3k8SEZJC3mXpB0ZiA7HefwnmzlVl2hZGfB+kiYVTxsg1srgsp/VHqsQAOc4CdRCiX7atHUs5bvaAztZIUltZCvivxsNlN4vyiJMtj/f9Fbi/7xJzfP9aaNtVTNatQpibbAN8op06BnlTBMyw+pylNpKBQTMSFqCUkGsQ/FrgZ5LoAWF5uNBulnJXXLycZTujT592xscHHZ1bYtX4q0YilR8FgfiqzgWY6HElfgtrsVN71f0Mnodvfk7GvW6nRdiDdHwFpnSv3A=</latexit>

= Jc0K⇢

<latexit sha1_base64="fl/Ld3/QCO9fd9RXz3d0ztnTw3Q=">AAACKHicbVC7TgJBFJ31ifhCLS2cSEysyK7BaGNCtLHERB4JS8jd4QITZh+ZuWtCCKU/o63+h52h9RP8Apd1CwFPdeace+fMHC9S0pBtT62V1bX1jc3cVn57Z3dvv3BwWDdhrAXWRKhC3fTAoJIB1kiSwmakEXxPYcMb3s38xhNqI8PgkUYRtn3oB7InBVAidQonNzzvKuVpEEMkLjq2q3V2cvUg7BSKdslOwZeJk5Eiy1DtFL7dbihiHwMSCoxpOXZE7TFokkLhJO/GBqPkeuhjK6EB+Gja4/QjE34WG6CQR6i5VDwV8e/GGHxjRr6XTPpAA7PozcT/vFZMvev2WAZRTBiIWRBJhWmQEVomDSHvSo1EMHs5chlwARqIUEsOQiRinFQ2F2jIBz3S3UlSkrNYyTKpX5SccunyoVys3GZ15dgxO2XnzGFXrMLuWZXVmGDP7JW9sXfrxfqwPq3p7+iKle0csTlYXz8xBqcZ</latexit>

by def
by ind. hyp.
by Cond

Ex. Strict conditional 1

3232

P (t ! c) , 8⇢. JtK⇢ = JcK⇢

<latexit sha1_base64="Ftn+sjTOkI4GqyVkEsketBtnSOY=">AAACZHicbVBdSxtBFJ1sa2tTbVOlT4UyNAj6EnbF0r4IYl98TMGokAnh7uQmDs7Obu/cLYSQH+fP8A/UV+0vcHa74Ffv0+Gce+bcOWlhjec4vmpFL16uvHq9+qb9dm393fvOh40Tn5ekcaBzm9NZCh6tcThgwxbPCkLIUoun6cWPSj/9jeRN7o55XuAog5kzU6OBAzXuDPvbrDiXekcxGXAzi7/aapoTWCsVnec9JZW1KYG+QJasiBpciXL/oajvxdo67nTjXlyPfA6SBnRFM/1x56+a5LrM0LG24P0wiQseLYDYaIvLtio9FuF9mOEwQAcZ+tGiLmEpt0oP4SMFkjRW1iQ+dCwg836epWEzAz73T7WK/J82LHn6fbQwrigZna6C2Fisg7wmE9pFOTGEzFBdjtI4qYGAGclI0DqQZaj7UaDnDGhOk2UoKXlayXNwsttL9npff+51Dw6bulbFJ/FFbItEfBMH4kj0xUBocSmuxY24bf2J1qLN6OO/1ajVeDbFo4k+3wF+DLvQ</latexit>

assume
P (t0 ! c0) , 8⇢. Jt0K⇢ = Jc0K⇢

<latexit sha1_base64="pd7X2QHbjXqofJymfBfqg7k0ohk=">AAACbHicbVDBTttAFNyYlkJoIS3cUKUVUSt6iWxEVS6VEFx6TKUGkOLIet68hFXWa/ftc6UoygfyCfxEK3GCW9euDwH6TrMz83Z2Jy2MdhyGt61g7cXL9Vcbm+2t12+2dzpv3124vCSFA5WbnK5ScGi0xQFrNnhVEEKWGrxMZ+eVfvkLyenc/uB5gaMMplZPtAL2VNJR/UNOwphzqZLwU8ykwU4N/mzHk5zAGBnTdd6LZWxMSqBmyLLyEzWnSpZfV2W1KtfrSacb9sJ65HMQNaArmuknnbt4nKsyQ8vKgHPDKCx4tABirQwu23HpsPD3wxSHHlrI0I0WdRlL+aF04L9TIEltZE3i6sYCMufmWeqdGfC1e6pV5P+0YcmTk9FC26JktKoKYm2wDnKKtG8Z5VgTMkP1cpTaSgUEzEhaglKeLH3tjwIdZ0BzGi99SdHTSp6Di6NedNz7/P24e3rW1LUh9sWBOBSR+CJOxTfRFwOhxI34I+7FQ+t3sBfsB+//WYNWs7MrHk3w8S9BEr5c</latexit>

P (t1 ! c1) , 8⇢. Jt1K⇢ = Jc1K⇢

<latexit sha1_base64="RtzSYpmdhTGUOCkpxHmZ4wj+z8o=">AAACbHicbVDBTttAFNyYlkJoIS3cUKUVUSt6iWxEVS6VEFx6TKUGkOLIet68hFXWa/ftc6UoygfyCfxEK3GCW9euDwH6TrMz83Z2Jy2MdhyGt61g7cXL9Vcbm+2t12+2dzpv3124vCSFA5WbnK5ScGi0xQFrNnhVEEKWGrxMZ+eVfvkLyenc/uB5gaMMplZPtAL2VNJR/UNOophzqZLoU8ykwU4N/mzHk5zAGBnTdd6LZWxMSqBmyLLyEzWnSpZfV2W1KtfrSacb9sJ65HMQNaArmuknnbt4nKsyQ8vKgHPDKCx4tABirQwu23HpsPD3wxSHHlrI0I0WdRlL+aF04L9TIEltZE3i6sYCMufmWeqdGfC1e6pV5P+0YcmTk9FC26JktKoKYm2wDnKKtG8Z5VgTMkP1cpTaSgUEzEhaglKeLH3tjwIdZ0BzGi99SdHTSp6Di6NedNz7/P24e3rW1LUh9sWBOBSR+CJOxTfRFwOhxI34I+7FQ+t3sBfsB+//WYNWs7MrHk3w8S9IlL5g</latexit>

we want to prove

Jif t then t0 else t1K⇢ = Cond⌧ (JtK⇢, Jt0K⇢, Jt1K⇢)

<latexit sha1_base64="+L5Dsi6VeNa5Lr+1RAqi6uev278=">AAACyHicfVHBbtNAEF2bFkooYODIZdWoUpFQZKMiuCBV9ILgUqSmrZSNrPFm3Ky6Xlu7Y1Bk5cKP8R38Rr+ga2NBklad09v3Zuat3mSVVo7i+E8QPtjafvho5/Hgye7TZ8+jFy/PXFlbiWNZ6tJeZOBQK4NjUqTxorIIRabxPLs6bvXzH2idKs0pLSqcFnBpVK4kkKfS6LfQOrMgr5C4KIDmWd6ofCk4iX9vmqNpmTT+z6F22H GJsLZfIOy85J/4oOtxeXNcmtkyFQQ1P1ixofWJt3xV8x73qRtub3gaDeNR3BW/DZIeDFlfJ2l0LWalrAs0JDU4N0niiqYNWFJS43IgaoeVN4BLnHhooEA3bbqgl3y/dkAlr9BypXlH4upEA4VziyLznV0Gm1pL3qVNaso/ThtlqprQyNaIlMbOyEmr/AWRz5RFImh/jlwZLsECEVrFQUpP1v6ka4aOCrAL628QDZPNSG6Ds3ej5HD0/vvh8OhzH9cOe8322AFL2Ad2xL6wEzZmMtgPvgWnwTj8Glbhz3DxtzUM+plXbK3CXzfwHeDH</latexit>

by def
by ind. h.
by Cond

P (t ! n) , 8⇢. JtK⇢ = JnK⇢ = bnc n 6= 0

<latexit sha1_base64="BhmUToIzedWOpYiD9LZOdw2c1wQ=">AAAChXicbVHLbhMxFPUMj4bwSsuSjUWEVBZEExQoG0QFG5ZBIm2lOIruODepVY89ub5TKQr5ULZ8Al+AZxhBH5zV8Tn36tjHeWlN4Cz7kaR37t67v9d50H346PGTp739g5PgK9I40d56OsshoDUOJ2zY4llJCEVu8TS/+Fz7p5dIwXj3jTclzgpYObM0GjhK89738SEr9tK9UkwG3MriuquWnsBaqejcD5RU1uYE+gJZsiJqeW3KD1dNJ/+58q+9tN6TdIoaotYVLOLJ4Vpm814/G2QN5G0ybElftBjPe7/UwuuqQMfaQgjTYVbybAvERlvcdVUVsIz5sMJppA4KDLNt09JOvqwCxJeWSNJY2Yh4dWMLRQibIo+TBfB5uOnV4v+8acXL97OtcWXF6HQdxMZiExQ0mVg/yoUhZIb65iiNkxoImJGMBK2jWMX/uBYYuADa0GIXSxrerOQ2OXkzGI4Gb7+O+sef2ro64rl4IQ7FUByJY/FFjMVEaPEz6ST7yUG6l75OR+m7P6Np0u48E9eQfvwN25TEvg==</latexit>

Principles for software composition 2019/20
05 - HOFL

[Ex. 1] Determine the type of the HOFL term

t
def
= rec x. ((�y. if y then 0 else 0) x).

Then compute its (lazy) canonical form.

[Ex. 2] Determine the type of the HOFL term

map
def
= �f. �x. ((f fst(x)), (f snd(x)))

Then, compute the (lazy) canonical forms of the terms

t1
def
= map (�z. 2⇥ z) (1, 2) t2

def
= fst (map (�z. 2⇥ z) (1, 2))

[Ex. 3] Let (D,vD) be a CPO and f : D ! D be a continuous function.
Prove that the set of fixpoints of f is itself a CPO (ordered by vD).

[Ex. 4] (Test for convergence) We would like to modify the denotational
semantics of HOFL assigning to the construct

if t then t0 else t1

• the semantics of t1 if the semantics of t is ?Z? , and

• the semantics of t0 otherwise.

Is it possible? If not, why?

[Ex. 5] (Strict conditional) Modify the operational semantics of HOFL by
taking the following rules for conditionals:

t ! 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c0

t ! n n 6= 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c1

.

Without changing the denotational semantics, prove that:

1. for any term t and canonical form c, we have t ! c) 8⇢. JtK ⇢ = JcK ⇢;

2. in general t+ 6) t# (exhibit a counterexample).

[Ex. 6] Determine the type of the HOFL term

t
def
= rec f. (�x.1 , (fst f) 0)

Then, compute the (lazy) denotational semantics of t.

P (if t then t0 else t1 ! c1) , 8⇢. Jif t then t0 else t1K⇢ = Jc1K⇢

<latexit sha1_base64="Aez3QP+2zHxR3v1kQmZl+70Iprk=">AAAC0nicnVFNb9NAEF2brxK+QjlyWREhlUuwURFckKpy4Rikpq0UB2u8GSerrtdmdoyUWjlUXPlj/AT+Br+AtTEibTkxp9n3dt7bfZNVRjuOoh9BeOPmrdt3du4O7t1/8PDR8PHusStrUjhVpSnpNAOHRlucsmaDpxUhFJnBk+zsfcuffEFyurRHvK5wXsDS6lwrYA+lw++TvaQAXmV5o/NNIjmRf868QtsiafQXQ+Oww+KES6nS+EXCpMEuDX4eJHlJYIxMaFWO/YwxGYE6Q5b/aUHUC7SK8t22otqmO8d0OIrGUVfyehP3zUj0NUmHP5NFqeoCLSsDzs3iqOJ5A8RaGdwMktph5fVhiTPfWijQzZsu8o18XjvwCVRIUhvZgbg90UDh3LrI/M32X+4q14L/4mY152/njbZVzWhVa8TaYGfkFGm/S5QLTcgM7ctRaisVEDAjaQlKebD2y71k6LgAWtNi40OKr0ZyvTl+NY73x68/7o8ODvu4dsRT8UzsiVi8EQfig5iIqVDBy2AafArS8Cg8Dy/Cr7+vhkE/80RcqvDbL5OH5Bk=</latexit>

= Cond⌧ (bnc, Jc0K⇢, Jc1K⇢)

<latexit sha1_base64="2JgFD6Wf+VP9/KDfFm7+yL/vvvs=">AAACbnicbVBNa9tAEF0r/Ujdj6gp9FJKl5qCC8VIJaW5FEJy6TGFOgl4jRitx8mS1a6YHRWM8C/ML+i/aHtMLpFVHWqn7/T2vRne7MtLawInyc9etHXv/oOH24/6j588fbYTP989Cb4ijWPtraezHAJa43DMhi2elYRQ5BZP88ujlX/6AykY777zosRpAefOzI0GbqQsxi+yrwrgizCvj7ybLTPFUMmhsnPrPUmnqCUfpLI2J9CXyFJniSLqXoou/IabrrvvZRYPklHSQt4laUcGosNxFv9RM6+rAh1rCyFM0qTkaQ3ERltc9lUVsGwC4BwnDXVQYJjWbR1L+a4KwF6WSNJY2Yr470YNRQiLIm8m259veivxf96k4vn+tDaurBidXgWxsdgGBU2m6RnlzBAyw+pylMZJDQTMSEaC1o1YNcWvBQYugBbUNB8P0s1K7pKTj6N0b/Tp297g4LCra1u8Em/FUKTiszgQX8WxGAstrsRvcS1uer+il9Hr6M3f0ajX7bwQa4iGtxBPv64=</latexit>

= Jc1K⇢

<latexit sha1_base64="6ZW28cm7pbXnsAV2efO+Ic9+erU=">AAACKHicbVC7TgJBFJ31ifhCLS2cSEysyK7BaGNCtLHERB4JS8jd4QITZh+ZuWtCCKU/o63+h52h9RP8Apd1CwFPdeace+fMHC9S0pBtT62V1bX1jc3cVn57Z3dvv3BwWDdhrAXWRKhC3fTAoJIB1kiSwmakEXxPYcMb3s38xhNqI8PgkUYRtn3oB7InBVAidQonNzzvKuVpEEMkLjqOq3V2cvUg7BSKdslOwZeJk5Eiy1DtFL7dbihiHwMSCoxpOXZE7TFokkLhJO/GBqPkeuhjK6EB+Gja4/QjE34WG6CQR6i5VDwV8e/GGHxjRr6XTPpAA7PozcT/vFZMvev2WAZRTBiIWRBJhWmQEVomDSHvSo1EMHs5chlwARqIUEsOQiRinFQ2F2jIBz3S3UlSkrNYyTKpX5SccunyoVys3GZ15dgxO2XnzGFXrMLuWZXVmGDP7JW9sXfrxfqwPq3p7+iKle0csTlYXz8yuKca</latexit>

Ex. Strict conditional 1

3333

we want to find a term such thatt

<latexit sha1_base64="bdJRjAooCE79ubMYvq6ohP7N7v8=">AAACCHicbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4hkU8CE/KmeWCHnk+635gQwgV0q/dwZ9x6C6/hCZwZZyFgrSpV76Uq5UVKGrLtL6uwtr6xuVXcLu3s7u0flA+P2iaMtcCWCFWoux4YVDLAFklS2I00gu8p7HiT29TvPKI2MgzuaRqh68M4kCMpgBKpSYNyxa7aGfgqcXJSYTkag/J3fxiK2MeAhAJjeo4dkTsDTVIonJf6scEIxATG2EtoAD4ad5YVnfOz2ACFPELNpeKZiH8/ZuAbM/W95NIHejDLXir+5/ViGl27MxlEMWEg0iCSCrMgI7RMFkA+lBqJIG2OXAZcgAYi1JKDEIkYJ5MsBBryQU/1cJ6M5CxPskraF1WnVr1s1ir1m3yuIjthp+ycOeyK1dkda7AWEwzZM3thr9aT9Wa9Wx+/pwUr/zlmC7A+fwD0fprm</latexit>

t +

<latexit sha1_base64="0TahpBJGmDYlo8imenKt5n7JO7E=">AAACEnicbVBLSgNBFOyJ//iLunTTGARXYUYiugzqwmUEE4VkCG86T23s6R663yhhyC10q/dwJ269gNfwBE7GLIyxVkXVe1RRUaKkI9//9Eozs3PzC4tL5eWV1bX1ysZm25nUCmwJo4y9isChkhpbJEnhVWIR4kjhZXR3MvIv79E6afQFDRIMY7jR8loKoFzqUPfUPGiw1jz0KlW/5hfg0yQYkyobo9mrfHX7RqQxahIKnOsEfkJhBpakUDgsd1OHCYg7uMFOTjXE6MKsqDzku6kDMjxBy6XihYi/PzKInRvEUX4ZA926v95I/M/rpHR9FGZSJymhFqMgkgqLICeszLdA3pcWiWDUHLnUXIAFIrSSgxC5mObjTAQ6isEObH+YjxT8nWSatPdrQb12cF6vNo7Hcy2ybbbD9ljADlmDnbEmazHBDHtiz+zFe/RevTfv/ee05I1/ttgEvI9vQG2faQ==</latexit>

t "

<latexit sha1_base64="vXysZYBW2MoT0XNUJIDvsfhobKI=">AAACEHicbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xkY+BCXnTPLBD98yk+42GEC6hW72HO+PWG3gNT+AMshC0VpWq91KVCmIlLbnup5NbWl5ZXcuvFzY2t7Z3irt7DRslRmBdRCoyrQAsKhlinSQpbMUGQQcKm8HwMvOb92isjMIbGsXoaxiEsi8FUCrdUieJwZjooVssuWV3Cv6XeDNSYjPUusWvTi8SicaQhAJr254bkz8GQ1IonBQ6icUYxBAG2E5pCBqtP54WnvCjxAJFPEbDpeJTEX9/jEFbO9JBeqmB7uyil4n/ee2E+uf+WIZxQhiKLIikwmmQFUamSyDvSYNEkDVHLkMuwAARGslBiFRM0mnmAi1pMCPTm6QjeYuT/CWNk7JXKZ9eV0rVi9lceXbADtkx89gZq7IrVmN1JphmT+yZvTiPzqvz5rz/nOac2c8+m4Pz8Q3Jrp6i</latexit>

take t , if 0 then 1 else rec x. x : int

<latexit sha1_base64="CYppAVuGPBAwhXQX2zoXZLLVSr0=">AAACbnicbZBNa9tAEIbX6leqfrkN9BJKl5pCTkYKKSk9heaSYwKxY7CMGa3HzpDVSt0dhRqhX9hf0H/R9thesnIUiJ0OLLz7zDvM7psWmhxH0c9O8ODho8dPtp6Gz56/ePmq+/rN0OWlVThQuc7tKAWHmgwOmFjjqLAIWarxPL08avrnV2gd5eaMlwVOMlgYmpMC9mjaRQ4TtgRmofFbmGTAF+m8onmdhFGYyFvAF2g8iu8g1A49ur1aVHUiv/f98aYvrY+4IsP1tNuL+tGq5H0Rt6In2jqZdv8ks1yVGRpWGpwbx1HBkwosk9JYh0npsAB1CQsce2kgQzepVnHU8mPpgHNZoJWk5Qri3YkKMueWWeqdzRvdZq+B/+uNS55/nvgPFSWjUc0iJo2rRU5Z8jmjnJFFZmhejpKMVGCBGS1JUMrD0ge/ttBxBnZpZ01I8WYk98Vwrx/v9z+d7vcOv7ZxbYkd8UHsilgciENxLE7EQCjxQ/wWf8W/zq/gbfAueH9jDTrtzLZYq2D3GnCuvso=</latexit>

JtK⇢ = Condint(J0K⇢, J1K⇢, Jrec x. xK⇢)

<latexit sha1_base64="TIyljFWXjuVwF3Q95gH1+Oo1Pps=">AAACqnicfVHBTttAEF27pUAKrdseuawaVaISRHZFSy+VULn0CKgBqjiKxpsJrFivrdlx1cjyx/Sz+A2+oBvjQwKoI6309r15O6s3WWm04zi+DcJnz9derG9s9l5ubb96Hb15e+6KihQOVWEKuszAodEWh6zZ4GVJCHlm8CK7OV7oF7+RnC7sT56XOM7hyuqZVsCemkR/U2MyAnWDLDkl6nBK10XvWy/Nga/drD4u7LSZ1O1Vc60tN43cXbLGq9Y9uaQl/9HaF7NZTaiaVP4Z+LPa/VFOon48iNuSj0HSgb7o6mQS3aXTQlU5WlYGnBslccnjGoi1Mtj00sph6QfAFY48tJCjG9dtlI38UDngQpZIUhvZkrjsqCF3bp5nvrPN5qG2IJ/SRhXPvo59cmXFaNViEGuD7SCnSPsdoZxqQmZY/ByltlIBATOSlqCUJyu/tJWBjnOgOfndRP3kYSSPwfmnQXIw+Hx60D/63sW1IXbEe7ErEnEojsQPcSKGQgXrwX7wJTgM98Kz8Fc4um8Ng87zTqxUOP0HadrU7Q==</latexit>

= Condint(b0c, b1c,?Z?)

<latexit sha1_base64="u+/LIupDUNB3ebLrFI0FyXBYl8E=">AAACZXicbZDNSuRAEMd7oq7uqGv2Ay8etnEQFGRIxGX3Ish68ajgqDgZQqWnRhs73aG7sjCEvJxv4RPodX2CTWJk/arTv3/VRXX/kkxJR0Fw2/FmZuc+zC987C4uLX9a8T9/OXUmtwIHwihjzxNwqKTGAUlSeJ5ZhDRReJZcH9T9sz9onTT6hKYZjlK41HIiBVCFYj/a60Yp0JWbFAdGj8u4aI6SCqmpLPlmpCbKGMuDyDZhmz+R8D9JDLWDSVJclHENyi0e+72gHzTF34awDT3W1lHsP0RjI/IUNQkFzg3DIKNRAZakUFh2o9xhBuIaLnFYRQ0pulHRWCj5Ru6ADM/Qcql4A/H5RAGpc9M0qW42P37dq+F7vWFOk1+jykeWE2pRLyKpsFnkhJWVXuRjaZEI6pcjl5oLsECEVnIQooJ55fvFQkcp2KmtjPu98LWSt+F0px/u9n8c7/b2f7e6FtgaW2ebLGQ/2T47ZEdswAS7YffsL3vo3HnL3jdv9fGq12lnvrIX5X3/B7wRvOY=</latexit>

= b1c

<latexit sha1_base64="p6qmHWDVvTA8pYjd5mj9mRoD2e8=">AAACG3icbVDLTgJBEJzFF+IL8ehlIjHxRHYNRi8mRC8eMZFHwm5I79DghNlHZnqNhPApetX/8Ga8evA3/AKXlYOAdapUdacq5cdKGrLtLyu3srq2vpHfLGxt7+zuFfdLTRMlWmBDRCrSbR8MKhligyQpbMcaIfAVtvzh9dRvPaA2MgrvaBSjF8AglH0pgFKpWyxdFlzVV1GkuePqjHSLZbtiZ+DLxJmRMpuh3i1+u71IJAGGJBQY03HsmLwxaJJC4aTgJgZjEEMYYCelIQRovHHWfcKPEwMU8Rg1l4pnIv79GENgzCjw08sA6N4selPxP6+TUP/CG8swTghDMQ0iqTALMkLLdBTkPamRCKbNkcuQC9BAhFpyECIVk3SluUBDAeiR7k3SkZzFSZZJ87TiVCtnt9Vy7Wo2V54dsiN2whx2zmrshtVZgwn2yJ7ZC3u1nqw36936+D3NWbOfAzYH6/MH7nWhvw==</latexit>

t +

<latexit sha1_base64="0TahpBJGmDYlo8imenKt5n7JO7E=">AAACEnicbVBLSgNBFOyJ//iLunTTGARXYUYiugzqwmUEE4VkCG86T23s6R663yhhyC10q/dwJ269gNfwBE7GLIyxVkXVe1RRUaKkI9//9Eozs3PzC4tL5eWV1bX1ysZm25nUCmwJo4y9isChkhpbJEnhVWIR4kjhZXR3MvIv79E6afQFDRIMY7jR8loKoFzqUPfUPGiw1jz0KlW/5hfg0yQYkyobo9mrfHX7RqQxahIKnOsEfkJhBpakUDgsd1OHCYg7uMFOTjXE6MKsqDzku6kDMjxBy6XihYi/PzKInRvEUX4ZA926v95I/M/rpHR9FGZSJymhFqMgkgqLICeszLdA3pcWiWDUHLnUXIAFIrSSgxC5mObjTAQ6isEObH+YjxT8nWSatPdrQb12cF6vNo7Hcy2ybbbD9ljADlmDnbEmazHBDHtiz+zFe/RevTfv/ee05I1/ttgEvI9vQG2faQ==</latexit>

t ! c - 0 ! 0 , 1 ! c , rec x. x ! c1

<latexit sha1_base64="iusfGKStitDjWabXfpn5s9EBxdI=">AAACTXicbVBdaxNBFJ1Nq2ljtbE+9mVoEHwoYVdS6mPQPvgYofmATAh3Jzdx6OzsMnPXGJb8If+Mfa0/Q/BNpLNrHkzigYHDOfdy7pw408pRGD4EtYPDJ0/rR8eNZyfPX5w2X54NXJpbiX2Z6tSOYnColcE+KdI4yixCEmscxncfSn/4Ba1TqbmlVYaTBBZGzZUE8tK0eUOCUi4bgguzBGvTpeBhKYWCXwoe8cquuEiAPsfzwqJcC/617V9lTqNpsxW2wwp8n0Qb0mIb9KbNn2KWyjxBQ1KDc+MozGhSgCUlNa4bIneYgbyDBY49NZCgmxTVb9f8de7A52ZoudK8EvHfjQIS51ZJ7CfLi92uV4r/88Y5zd9NCmWynNDIMoiUxirISat8jchnyiIRlJcjV4ZLsECEVnGQ0ou573Ur0FECdmVna19StFvJPhm8bUed9tWnTqv7flPXETtnF+wNi9g167KPrMf6TLJv7J49sB/B9+BX8Dv483e0Fmx2XrEt1OqPszayaA==</latexit>

-⇤
c=1 rec x. x ! c1

<latexit sha1_base64="mN7n6kYACx7bL+t6hIVVAjgQWy4=">AAACNXicbVDLSsRAEJz4frvq0cvgIojIkoiiF0H04lHBVWGzhs5srw5OJmGmoy5hf8Kf0av+hQdv4lXwC5yse/BVMFBd3U31VJwpacn3n72BwaHhkdGx8YnJqemZ2crc/IlNcyOwLlKVmrMYLCqpsU6SFJ5lBiGJFZ7GV/tl//QajZWpPqZOhs0ELrRsSwHkpKiyFuobMCa9OV+NCrETdEMeJkCXcbswKFx1W3MvpJSLKIgqVb/m98D/kqBPqqyPw6jyEbZSkSeoSSiwthH4GTULMCSFwu5EmFvMQFzBBTYc1ZCgbRa9X3X5cm7B+WZouFS8J+L3jQISaztJ7CbLi+3vXin+12vk1N5uFlJnOaEWpRFJhT0jK4x0cSFvSYNEUF6OXGouwAARGslBCCfmLr8fhpYSMB3T6rqQgt+R/CUn67Vgo7Z5tFHd3evHNcYW2RJbYQHbYrvsgB2yOhPsjj2wR/bk3Xsv3qv39jU64PV3FtgPeO+fm0SsUQ==</latexit>

- x[rec x. x/x] ! c1

<latexit sha1_base64="+M5ABbxHay2R/iPDzBgWXV3XuQM=">AAACNnicbVDBbtNAFFyHAiUt1JRjL6tGSL002FUrOFb0wrFITRMpNtbz5iWsul5bu88kkeWv4GfgCl/BhRviiviCrtMcmqQjrTSaeU/zdtJCSUtB8MtrPdp6/OTp9rP2zu7zF3v+y/1rm5dGYE/kKjeDFCwqqbFHkhQOCoOQpQr76c1F4/e/oLEy11c0LzDOYKLlWAogJyX+caSnYEw+jfhs+KmKMqDP6bgyKGqndN2r3ySzOKKciyRM/E7QDRbgmyRckg5b4jLx/0ejXJQZahIKrB2GQUFxBYakUFi3o9JiAeIGJjh0VEOGNq4W36r569KCyy3QcKn4QsT7GxVk1s6z1E02Z9t1rxEf8oYljd/FldRFSahFE0RS4SLICiNdX8hH0iARNJcjl5oLMECERnIQwomlK3Al0FIGZm5GtSspXK9kk1yfdMPT7tnH0875+2Vd2+yAHbIjFrK37Jx9YJesxwT7yr6zH+yn98377f3x/t6Ntrzlziu2Au/fLUe/rTc=</latexit>

= rec x. x ! c1

<latexit sha1_base64="4p43eE6aZdOXu0p4XP66k/GnfrM=">AAACJXicbVDLSgNBEJz1/TbqUQ+DQfAUdiWiF0H04jGCiUJ2Cb2TThycfTDTK4ZlL/6MXvU/vIngyX/wC5yNOWi0YKCo6qZ6KkyVNOS6787E5NT0zOzc/MLi0vLKamVtvWWSTAtsikQl+ioEg0rG2CRJCq9SjRCFCi/Dm9PSv7xFbWQSX9AgxSCCfix7UgBZqVPZOuJ+BHQd9nKNovD5Xc0+nxIuOl6nUnVr7hD8L/FGpMpGaHQqn343EVmEMQkFxrQ9N6UgB01SKCwW/MxgCuIG+ti2NIYITZAPf1HwncyAzU1Rc6n4UMSfGzlExgyi0E6WF5txrxT/89oZ9Q6DXMZpRhiLMoikwmGQEVraepB3pUYiKC9HLmMuQAMRaslBCCtmtq9fgYYi0APdLWxJ3nglf0lrr+bVa/vn9erxyaiuObbJttku89gBO2ZnrMGaTLB79sie2LPz4Lw4r87b9+iEM9rZYL/gfHwBLL+ldg==</latexit>

t "

<latexit sha1_base64="vXysZYBW2MoT0XNUJIDvsfhobKI=">AAACEHicbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xkY+BCXnTPLBD98yk+42GEC6hW72HO+PWG3gNT+AMshC0VpWq91KVCmIlLbnup5NbWl5ZXcuvFzY2t7Z3irt7DRslRmBdRCoyrQAsKhlinSQpbMUGQQcKm8HwMvOb92isjMIbGsXoaxiEsi8FUCrdUieJwZjooVssuWV3Cv6XeDNSYjPUusWvTi8SicaQhAJr254bkz8GQ1IonBQ6icUYxBAG2E5pCBqtP54WnvCjxAJFPEbDpeJTEX9/jEFbO9JBeqmB7uyil4n/ee2E+uf+WIZxQhiKLIikwmmQFUamSyDvSYNEkDVHLkMuwAARGslBiFRM0mnmAi1pMCPTm6QjeYuT/CWNk7JXKZ9eV0rVi9lceXbADtkx89gZq7IrVmN1JphmT+yZvTiPzqvz5rz/nOac2c8+m4Pz8Q3Jrp6i</latexit>

Ex. Strict conditional 2

34

Principles for software composition 2019/20
05 - HOFL

[Ex. 1] Determine the type of the HOFL term

t
def
= rec x. ((�y. if y then 0 else 0) x).

Then compute its (lazy) canonical form.

[Ex. 2] Determine the type of the HOFL term

map
def
= �f. �x. ((f fst(x)), (f snd(x)))

Then, compute the (lazy) canonical forms of the terms

t1
def
= map (�z. 2⇥ z) (1, 2) t2

def
= fst (map (�z. 2⇥ z) (1, 2))

[Ex. 3] Let (D,vD) be a CPO and f : D ! D be a continuous function.
Prove that the set of fixpoints of f is itself a CPO (ordered by vD).

[Ex. 4] (Test for convergence) We would like to modify the denotational
semantics of HOFL assigning to the construct

if t then t0 else t1

• the semantics of t1 if the semantics of t is ?Z? , and

• the semantics of t0 otherwise.

Is it possible? If not, why?

[Ex. 5] (Strict conditional) Modify the operational semantics of HOFL by
taking the following rules for conditionals:

t ! 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c0

t ! n n 6= 0 t0 ! c0 t1 ! c1
if t then t0 else t1 ! c1

.

Without changing the denotational semantics, prove that:

1. for any term t and canonical form c, we have t ! c) 8⇢. JtK ⇢ = JcK ⇢;

2. in general t+ 6) t# (exhibit a counterexample).

[Ex. 6] Determine the type of the HOFL term

t
def
= rec f. (�x.1 , fst(f) 0)

Then, compute the (lazy) denotational semantics of t.

Ex. typing & semantics

3535

Ex. typing & semantics

int

<latexit sha1_base64="fI4IjzwjxYmsextgj63D1wqohKQ=">AAAB/nicbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJRBIg8ptqLzZRNOOZ+tuzVSFEXiK2ihokO0/AoF/8LZuICEqUYzu9rZCRMpDLrup1NaWV1b3yhvVra2d3b3qvsHHROnmkObxzLWvZAZkEJBGwVK6CUaWBRK6IaT68zvPoA2IlZ3OE0giNhYiZHgDK3k+xHDe4EzoXA+qNbcupuDLhOvIDVSoDWofvnDmKcRKOSSGdP33ASDGdMouIR5xU8NJIxP2Bj6lioWgQlmeeY5PUkNw5gmoKmQNBfh98aMRcZMo9BOZhnNopeJ/3n9FEeXgX0oSREUzw6hkJAfMlwLWwbQodCAyLLkQIWinGmGCFpQxrkVU9tOxfbhLX6/TDpnda9RP79t1JpXRTNlckSOySnxyAVpkhvSIm3CSUKeyDN5cR6dV+fNef8ZLTnFziH5A+fjG4bVlqU=</latexit>

⌧

<latexit sha1_base64="9F8RSI75DNHnimkiEiIC2ZzQDtI=">AAAB9nicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH6sklOOT90t0ZEVn6BFio6RMvvUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpADKpD5BPKjW7Lqdgy8TpyA1VqA5qH71h6GIfQxIKDCm59gRuQlokkLhvNKPDUYgpjDGXkoD8NG4SZ51zk9iAxTyCDWXiuci/t5IwDdm5nvppA80MYteJv7n9WIaXbmJDKKYMBDZIZIK80NGaJmWgHwoNRJBlhy5DLgADUSoJQchUjFOW6mkfTiL3y+T9lndOa9f3J3XGtdFM2V2xI7ZKXPYJWuwW9ZkLSbYhD2xZ/ZiPVqv1pv1/jNasoqdQ/YH1sc30SGS1Q==</latexit>

⌧ ! int

<latexit sha1_base64="KfmHIB2S2hkbt7SmIUuxTWiyF70=">AAACB3icbVC7TsNAEDyHVwivQEqaExESVWSjICgjaCiDREKk2IrWl0045fzQ3RopsvIBfAUtVHSIls+g4F+wTQpImGo0s6udHT9W0pBtf1qlldW19Y3yZmVre2d3r7p/0DVRogV2RKQi3fPBoJIhdkiSwl6sEQJf4Z0/ucr9uwfURkbhLU1j9AIYh3IkBVAmDao1lyBxKXIDoHtJqQxpNqjW7YZdgC8TZ07qbI72oPrlDiORBBiSUGBM37Fj8lLQJIXCWcVNDMYgJjDGfkZDCNB4aRF+xo8TAxTxGDWXihci/t5IITBmGvjZZJ7RLHq5+J/XT2h04WUPxQlhKPJDJBUWh4zQMmsF+VBqJII8OXIZcgEaiFBLDkJkYpLVVMn6cBa/Xybd04bTbJzdNOuty3kzZXbIjtgJc9g5a7Fr1mYdJtiUPbFn9mI9Wq/Wm/X+M1qy5js19gfWxzeyJJoB</latexit>

int

<latexit sha1_base64="fI4IjzwjxYmsextgj63D1wqohKQ=">AAAB/nicbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJRBIg8ptqLzZRNOOZ+tuzVSFEXiK2ihokO0/AoF/8LZuICEqUYzu9rZCRMpDLrup1NaWV1b3yhvVra2d3b3qvsHHROnmkObxzLWvZAZkEJBGwVK6CUaWBRK6IaT68zvPoA2IlZ3OE0giNhYiZHgDK3k+xHDe4EzoXA+qNbcupuDLhOvIDVSoDWofvnDmKcRKOSSGdP33ASDGdMouIR5xU8NJIxP2Bj6lioWgQlmeeY5PUkNw5gmoKmQNBfh98aMRcZMo9BOZhnNopeJ/3n9FEeXgX0oSREUzw6hkJAfMlwLWwbQodCAyLLkQIWinGmGCFpQxrkVU9tOxfbhLX6/TDpnda9RP79t1JpXRTNlckSOySnxyAVpkhvSIm3CSUKeyDN5cR6dV+fNef8ZLTnFziH5A+fjG4bVlqU=</latexit>

int ! ⌧1

<latexit sha1_base64="gXZKKoYyZ4MUdMfLx+dMPo8x714=">AAACCXicbVC7TsNAEDzzDOEVQFQ0JyIkqshGQVBG0FAGiTykOIrWl0045fzQ3RopsvIFfAUtVHSIlq+g4F+wjQtImGo0s6udHS9S0pBtf1pLyyura+uljfLm1vbObmVvv23CWAtsiVCFuuuBQSUDbJEkhd1II/iewo43uc78zgNqI8PgjqYR9n0YB3IkBVAqDSqHrg90LymRAc1cCl2CeOAMKlW7Zufgi8QpSJUVaA4qX+4wFLGPAQkFxvQcO6J+ApqkUDgru7HBCMQExthLaQA+mn6Sx5/xk9gAhTxCzaXiuYi/NxLwjZn6XjqZhTXzXib+5/ViGl3208+imDAQ2SGSCvNDRmiZ9oJ8KDUSQZYcuQy4AA1EqCUHIVIxTosqp304898vkvZZzanXzm/r1cZV0UyJHbFjdsocdsEa7IY1WYsJlrAn9sxerEfr1Xqz3n9Gl6xi54D9gfXxDe7WmqU=</latexit>

(int ! ⌧1) ⇤ ⌧2

<latexit sha1_base64="anIS/5JxeXIhRWhznOVX12519bk=">AAACEnicbVC7SgNREL3rM8ZX1FKQi0GIFmE3RLQM2lgqGCNkl2X2ZhIv3n1w76wQQjo/wa+w1cpObP0BC//F3TWFRk8zhzMzzJwTJEoasu0Pa2Z2bn5hsbRUXl5ZXVuvbGxemTjVAtsiVrG+DsCgkhG2SZLC60QjhIHCTnB7mvc7d6iNjKNLGibohTCIZF8KoEzyKzs1NwS6kTSSEY1dil2C1Hf2D4ra8CtVu24X4H+JMyFVNsG5X/l0e7FIQ4xIKDCm69gJeSPQJIXCcdlNDSYgbmGA3YxGEKLxRoWPMd9LDVDME9RcKl6I+HNjBKExwzDIJvOnzXQvF//rdVPqH3uZwyQljER+iKTC4pARWmYBIe9JjUSQf45cRlyABiLUkoMQmZhmiZWzPJxp93/JVaPuNOuHF81q62SSTIlts11WYw47Yi12xs5Zmwl2zx7ZE3u2HqwX69V6+x6dsSY7W+wXrPcvw0+dsQ==</latexit>

t , rec f. (�x. 1 , (fst(f) 0))

<latexit sha1_base64="3ECy0nRVKxJ1vEBjcrVbOuNI0y8=">AAACRHicbVDLShxBFK02xpj2NSZLN4WDMEIYukWJSzGbLEdwVJgahts1t8fC6uq26naINPNbfoL/ICTLZJWduJVUdybg6y6KU+ee+zpJoZWjKLoN5t7Mv114t/g+XFpeWV1rrX84cXlpJfZlrnN7loBDrQz2SZHGs8IiZInG0+TiS50//YbWqdwc01WBwwwmRqVKAnlq1OqRIKvATDRecpEBnSdpZVFOBU+7gndEKLTvNgb+3X9jwT+JsPNflzqadrxQ8G3Bo+bdHrXaUTdqgr8E8Qy02Sx6o9ZPMc5lmaEhqcG5QRwVNKzAkpIap6EoHRYgL2CCAw8NZOiGVXP5lG+VDijnBVquNG9IfFxRQebcVZZ4Zb2ze56ryddyg5LS/WGlTFESGlkPIqWxGeSkVd5S5GNlkQjqzZErwyVYIEKrOEjpydJ7HHo/4ufXvwQnO914t7t3tNs+OJw5s8g22CbrsJh9ZgfsK+uxPpPsmv1gv9jv4Cb4E9wF9/+kc8Gs5iN7EsHDX5BKrkc=</latexit>

⌧1

<latexit sha1_base64="DsPhWcoXrS8ZDSN82r/ifFuk414=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH6sglHzg/drZGClX+ghYoO0fI3FPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseGFQywBZJUtiNNILvKex4k6vM7zygNjIMbmkaoevDOJAjKYBSqd0niAfOoFqz63YOvkicgtRYgeag+tUfhiL2MSChwJieY0fkJqBJCoWzSj82GIGYwBh7KQ3AR+MmedoZP4oNUMgj1Fwqnov4eyMB35ip76WTPtCdmfcy8T+vF9Powk1kEMWEgcgOkVSYHzJCy7QG5EOpkQiy5MhlwAVoIEItOQiRinHaSyXtw5n/fpG0T+rOaf3s5rTWuCyaKbMDdsiOmcPOWYNdsyZrMcHu2RN7Zi/Wo/VqvVnvP6Mlq9jZZ39gfXwD/zeTeQ==</latexit>

(⌧ ! int) ⇤ ⌧1

<latexit sha1_base64="p2QP6i8rOJZDvSJzmv+fEMcjXgQ=">AAACEHicbVC7TsNAEDyHVwgvAyUUJyKkQBHZKAjKCBrKIJGHFEfR+rIJJ84P3a2RoigNn8BX0EJFh2j5Awr+BTukgISpRjO72p3xYyUNOc6nlVtYXFpeya8W1tY3Nrfs7Z2GiRItsC4iFemWDwaVDLFOkhS2Yo0Q+Aqb/t1l5jfvURsZhTc0jLETwCCUfSmAUqlr75c8gsSjyAuAbiWNZEjjo+NM7Lpdu+iUnQn4PHGnpMimqHXtL68XiSTAkIQCY9quE1NnBJqkUDgueInBGMQdDLCd0hACNJ3RJMWYHyYGKOIxai4Vn4j4e2MEgTHDwE8ns1/NrJeJ/3nthPrnnTRYnBCGIjtEUuHkkBFapvUg70mNRJB9jlyGXIAGItSSgxCpmKR9FdI+3Nn086RxUnYr5dPrSrF6MW0mz/bYASsxl52xKrtiNVZngj2wJ/bMXqxH69V6s95/RnPWdGeX/YH18Q2AGp0M</latexit>

(int ! ⌧1) ⇤ ⌧2

<latexit sha1_base64="anIS/5JxeXIhRWhznOVX12519bk=">AAACEnicbVC7SgNREL3rM8ZX1FKQi0GIFmE3RLQM2lgqGCNkl2X2ZhIv3n1w76wQQjo/wa+w1cpObP0BC//F3TWFRk8zhzMzzJwTJEoasu0Pa2Z2bn5hsbRUXl5ZXVuvbGxemTjVAtsiVrG+DsCgkhG2SZLC60QjhIHCTnB7mvc7d6iNjKNLGibohTCIZF8KoEzyKzs1NwS6kTSSEY1dil2C1Hf2D4ra8CtVu24X4H+JMyFVNsG5X/l0e7FIQ4xIKDCm69gJeSPQJIXCcdlNDSYgbmGA3YxGEKLxRoWPMd9LDVDME9RcKl6I+HNjBKExwzDIJvOnzXQvF//rdVPqH3uZwyQljER+iKTC4pARWmYBIe9JjUSQf45cRlyABiLUkoMQmZhmiZWzPJxp93/JVaPuNOuHF81q62SSTIlts11WYw47Yi12xs5Zmwl2zx7ZE3u2HqwX69V6+x6dsSY7W+wXrPcvw0+dsQ==</latexit>

(int ! ⌧1) ⇤ ⌧2 = (⌧ ! int) ⇤ ⌧1

<latexit sha1_base64="JuBs7lIt2xTmmaInsiInhkFj6CE=">AAACMnicbVDJSgNBEO1xjXGLevTSGIToIcyEiF6UoBePEcwCmRBqOhVt7FnorhFCyN/4CX6FV70oeBCvfoQz4xzc3qUe71VRVc+LlDRk28/WzOzc/MJiYam4vLK6tl7a2GybMNYCWyJUoe56YFDJAFskSWE30gi+p7Dj3ZylfucWtZFhcEnjCPs+XAVyJAVQIg1KJxXXB7qWNJEBTV0KXYJ44OztZ7XGj3mxktLU+daY+86gVLardgb+lzg5KbMczUHp1R2GIvYxIKHAmJ5jR9SfgCYpFE6LbmwwAnEDV9hLaAA+mv4k+3PKd2MDFPIINZeKZyJ+n5iAb8zY95LO9Fbz20vF/7xeTKOjfvJYFBMGIl1EUmG2yAgtkwCRD6VGIkgvRy4DLkADEWrJQYhEjJNEi0kezu/v/5J2rerUqwcX9XLjNE+mwLbZDqswhx2yBjtnTdZigt2xB/bInqx768V6s96/WmesfGaL/YD18QkLo6o0</latexit>

8
<

:

int = ⌧
⌧1 = int
⌧2 = ⌧1

<latexit sha1_base64="XtQlLd0chJNN2sL/URrGScFUtRA=">AAACYHicbVBNT9tAEF2btgT3g0Bv9LJqVKmnyEagcqmE6KVHkAggZSNrvJmEEeu1tTuuFFn5k7310Au/oseuU1ei0Lnsm/fmY+cVtSHPafojireePX+xPdhJXr56/WZ3uLd/5avGaZzoylTupgCPhixOmNjgTe0QysLgdXH3pdOvv6HzVNlLXtU4K2FpaUEaOFD50CiDC1Ztogpckm3BOVitW7NOVAl8S9yS5bX8LBVDo1TSPXnW5Q/kv/xhX5dniUI774clytHylsdJkg9H6TjdhHwKsh6MRB/n+fCnmle6KdGyNuD9NEtrnoW5TNpgmNx4rEHfwRKnAVoo0c/ajStr+aHxwJWs0UkyckPiw44WSu9XZREqu1v8Y60j/6dNG16czMLhdcNodbeIyeBmkdeOgt0o5+SQGbqfoyQrNThgRkcStA5kE/zv/MgeX/8UXB2Os6Px8cXR6PSsd2Yg3on34qPIxCdxKr6KczERWnwXv6IoiqP7eBDvxnt/SuOo73kr/on44DcsnbZO</latexit>

⌧ = ⌧1 = ⌧2 = int

<latexit sha1_base64="sQzX4rBb1xeB4HxWYx/UI0mfovc=">AAACGnicbVC7SgNREL3rM8ZX1NLmYlCswm6IaCMEbSwjmAckyzJ7M4mX3H1w76wQQv7AT/ArbLWyE1sbC//F3RhBE08zhzMzzJzjx0oasu0Pa2FxaXllNbeWX9/Y3Nou7Ow2TJRogXURqUi3fDCoZIh1kqSwFWuEwFfY9AeXWb95h9rIKLyhYYxuAP1Q9qQASiWvcNQhSPg5z4rn/JByRgKgW0kjGdI47xWKdsmegM8TZ0qKbIqaV/jsdCORBBiSUGBM27FjckegSQqF43wnMRiDGEAf2ykNIUDjjiZ+xvwwMUARj1FzqfhExN8bIwiMGQZ+Opk9aWZ7mfhfr51Q78xNHcUJYSiyQyQVTg4ZoWUaFPKu1EgE2efIZcgFaCBCLTkIkYpJmlyWhzPrfp40yiWnUjq5rhSrF9NkcmyfHbBj5rBTVmVXrMbqTLB79sie2LP1YL1Yr9bb9+iCNd3ZY39gvX8BYGWfbg==</latexit>

: (int ! int) ⇤ int

<latexit sha1_base64="zkBSIq28lFPg1ENym76cTqWb4P4=">AAACIHicbVDLSgNBEJyNrxhfqx69DAYhioRdiSiegl48RjAPyC5hdtKJg7MPZnqFEPITfoJf4VVP3sSjgv/i7rqHmNin6qpuuqu8SAqNlvVpFBYWl5ZXiqultfWNzS1ze6elw1hxaPJQhqrjMQ1SBNBEgRI6kQLmexLa3v1VqrcfQGkRBrc4isD12TAQA8EZJlTPPL6gFcdneCdwLAKcOBhOt4dH013PLFtVKys6D+wclElejZ757fRDHvsQIJdM665tReiOmULBJUxKTqwhYvyeDaGbwID5oN1x5mpCD2LNMKQRKCokzUiY3hgzX+uR7yWT6Y96VkvJ/7RujINzNzEUxQgBTw+hkJAd0lyJJC6gfaEAkaWfAxUB5UwxRFCCMs4TMk7yKyV52LPu50HrpGrXqqc3tXL9Mk+mSPbIPqkQm5yROrkmDdIknDySZ/JCXo0n4814Nz5+RwtGvrNL/pTx9QNB/6R2</latexit>

3636

t , rec f. (�x. 1 , (fst(f) 0))

<latexit sha1_base64="3ECy0nRVKxJ1vEBjcrVbOuNI0y8=">AAACRHicbVDLShxBFK02xpj2NSZLN4WDMEIYukWJSzGbLEdwVJgahts1t8fC6uq26naINPNbfoL/ICTLZJWduJVUdybg6y6KU+ee+zpJoZWjKLoN5t7Mv114t/g+XFpeWV1rrX84cXlpJfZlrnN7loBDrQz2SZHGs8IiZInG0+TiS50//YbWqdwc01WBwwwmRqVKAnlq1OqRIKvATDRecpEBnSdpZVFOBU+7gndEKLTvNgb+3X9jwT+JsPNflzqadrxQ8G3Bo+bdHrXaUTdqgr8E8Qy02Sx6o9ZPMc5lmaEhqcG5QRwVNKzAkpIap6EoHRYgL2CCAw8NZOiGVXP5lG+VDijnBVquNG9IfFxRQebcVZZ4Zb2ze56ryddyg5LS/WGlTFESGlkPIqWxGeSkVd5S5GNlkQjqzZErwyVYIEKrOEjpydJ7HHo/4ufXvwQnO914t7t3tNs+OJw5s8g22CbrsJh9ZgfsK+uxPpPsmv1gv9jv4Cb4E9wF9/+kc8Gs5iN7EsHDX5BKrkc=</latexit>

: (int ! int) ⇤ int

<latexit sha1_base64="zkBSIq28lFPg1ENym76cTqWb4P4=">AAACIHicbVDLSgNBEJyNrxhfqx69DAYhioRdiSiegl48RjAPyC5hdtKJg7MPZnqFEPITfoJf4VVP3sSjgv/i7rqHmNin6qpuuqu8SAqNlvVpFBYWl5ZXiqultfWNzS1ze6elw1hxaPJQhqrjMQ1SBNBEgRI6kQLmexLa3v1VqrcfQGkRBrc4isD12TAQA8EZJlTPPL6gFcdneCdwLAKcOBhOt4dH013PLFtVKys6D+wclElejZ757fRDHvsQIJdM665tReiOmULBJUxKTqwhYvyeDaGbwID5oN1x5mpCD2LNMKQRKCokzUiY3hgzX+uR7yWT6Y96VkvJ/7RujINzNzEUxQgBTw+hkJAd0lyJJC6gfaEAkaWfAxUB5UwxRFCCMs4TMk7yKyV52LPu50HrpGrXqqc3tXL9Mk+mSPbIPqkQm5yROrkmDdIknDySZ/JCXo0n4814Nz5+RwtGvrNL/pTx9QNB/6R2</latexit>

JtK⇢ = fix �df . J(�x. 1, fst(f) 0)K⇢[df /f]

<latexit sha1_base64="3XpUW1/y/OF50nJ3I1v3zde/Saw=">AAACiHicbVHLbtRAEBybV3B4LK8TlxErpI2EHBsFBQ5IUbhwDBKbRNoxVnvcTkYZPzTTRllZFt/JB/ADfAFjY6RsQp9K1V1dM9VZo5WlKPrp+bdu37l7b+t+sP3g4aPHsydPj23dGolLWevanGZgUasKl6RI42ljEMpM40l28Wnon3xHY1VdfaV1g0kJZ5UqlARyVDr7IbTODMgLJE7CmAkLc14HHwNRAp0r6gp12QsutNubA8 /TIhTBFeHiX+cyFDx+M6qyoiss9YtiR/BoZ3Pz6lvndvS7aZGks3kURmPxmyCewJxNdZTOfou8lm2JFUkN1q7iqKGkA0NKauwD0VpsnBOc4crBCkq0STcG1fPXrQWqeYOGK81HEq8qOiitXZeZmxz+YK/3BvJ/vVVLxfukU1XTElZyMCKlcTSy0ih3AeS5MkgEw8uRq4pLMECERnGQ0pGtO8mGoaUSzNrkvQspvh7JTXD8Noz3wndf9uYHh1NcW+wle8UWLGb77IB9ZkdsyST75W17z70XfuBH/r7/4e+o702aZ2yj/MM/YCnFxA==</latexit>

= fix �df .
⌅
(J�x. 1K⇢[df /f] , Jfst(f) 0K⇢[df /f])

⇧

<latexit sha1_base64="tcl4CyKeWcBkyL4wDl8W3oZDe+c=">AAACuXicdVFda9RAFJ3Erxq/1gq++DK4CFuQmEhLhbZQFMXHCm5b2IlhMrmzO3bywcyNdAn5T/4d/4a/wEkM4rZ6nw7n3MO5cyartbIYRT88/8bNW7fvbN0N7t1/8PDR5PH2qa0aI2AuKl2Z84xb0KqEOSrUcF4b4EWm4Sy7eNfrZ9/AWFWVn3FdQ1LwZamkEhwdlU6+HwWs4LhS2Ep12THKtDPnnOapDFnANEhkWuqqMiyY9YTODBcXgH82L0NGY2bMyDOzqhZfWufvXqUyCRh9uWnr4zLZSovdTO4wGv3Xy+iOszOjlisnDUcE6WQahdEw9DqIRzAl45ykk58sr0RTQIlCc2sXcVRj0nKDSmjoAtZYqF06X8LCwZIXYJN2aLajLxrLsaI1GKo0HUj429Hywtp1kbnN/ln2qtaT/9IWDco3SavKukEoRR+ESsMQZIVR7suA5soAIu8vB6pKKrjhiGAU5UI4snF/uBFoseBmbfLOlRRfreQ6OH0dxrvh3qfd6fHbsa4t8ow8JzMSk31yTD6SEzInwnvqHXrvvQ/+gc/9lf/196rvjZ4nZGN8+wsh/Nd7</latexit>

⇢0 = ⇢[df /f]

<latexit sha1_base64="zbE6STO6gW93IEKMOJv8CfPyAc4=">AAACHnicbVDLSgNBEJz1GeNrVTx5GQyip7grEb0IQS8eIxgVNuvSO+nokNkHM71CWPIvetX/8CZe9Tf8AndjDr7q0BRV3VRTYaqkIcd5tyYmp6ZnZitz1fmFxaVle2X1wiSZFtgWiUr0VQgGlYyxTZIUXqUaIQoVXob9k9K/vENtZBKf0yBFP4KbWPakACqkwF7v6Ntk+6ic3nXeDXrD3aDnB3bNqTsj8L/EHZMaG6MV2B+dbiKyCGMSCozxXCclPwdNUigcVjuZwRREH27QK2gMERo/H70/5FuZAUp4ippLxUcifr/IITJmEIXFZgR0a357pfif52XUO/RzGacZYSzKIJIKR0FGaFn0grwrNRJB+TlyGXMBGohQSw5CFGJWFPUj0FAEeqC7w6Ik93clf8nFXt1t1PfPGrXm8biuCttgm2yHueyANdkpa7E2EyxnD+yRPVn31rP1Yr1+rU5Y45s19gPW2yfHWaNE</latexit>

= fix �df . b (b �dx. b1c c , (let ' (⇡⇤
1(JfK⇢0). ' b0c)) c

<latexit sha1_base64="885aTfezjtLRandnSx2npQU4+tQ=">AAAC6HicbVHLihNBFK1uX2P7irp0UxjEjEjTLTOMG2FQBBcuRjAzA6kYqiu3kzLVD27dHic0+Qd34ta/cuU/+AVWdzo6Dy8UnDrnnjrFvUlptKUo+un5V65eu35j62Zw6/adu/d69x8c2qJCBUNVmAKPE2nB6ByGpMnAcYkgs8TAUbJ40+hHJ4BWF/lHWpYwzuQs16lWkhw16f16FYhM0lxTnerTleDCOPNU8ukkDUUgDKQkTGqKAkUwaIg1PtN3Gja3luaxwI2+Ac+db52RpLUBajJOJJZzzcV797pELL5wUepJ/OkZHwhjEpRqAcRTgdhhgfPi6Xb41/ovMeqCgu1A8OYI1LM5bdhJrx+FUVv8Mog70GddHUx6v8W0UFUGOSkjrR3FUUnjWiJpZWAViMpC6f4kZzByMJcZ2HHdLmLFn1RWUsFLQK4Nb0k466hlZu0yS1xnMxB7UWvI/2mjitKX41rnZUWQqyaItIE2yCrUbsPApxqBSDY/B65zriRKIkDNpVKOrNzKzwVayiQucbpyQ4ovjuQyOHwRxjvh7oed/v7rblxb7BF7zAYsZntsn71jB2zIlPfWW3jkVf5n/6v/zf++bvW9zvOQnSv/xx9tcujI</latexit>

= fix �df .
⌅
(b �dx. J1K⇢0[dx/x] c , (let ' (Jfst(f)K⇢0. '(J0K⇢0)))

⇧

<latexit sha1_base64="GjcfauXcAQrpddtjrlb0zv6rTQQ=">AAADDXicbVLLjtMwFHUyPIbw6sCSjUWFaCVUEjQINkgj2LBgMUh0ZqS6VI5705pxHrq+GVpF+QbYwn+wQ2z5Bn6DL8BpA+p0uFKkk3PP8bGvHRdGWwrDX56/c+nylau714LrN27eut3Zu3Nk8xIVDFVucjyJpQWjMxiSJgMnBYJMYwPH8emrpn98Bmh1nr2jZQHjVM4ynWglyVGTPW/nRSBSSXNNVaIXteDCOPdU8ukkGYhAGEhImMTkOYqg1xBrvKFbDJo/E6NUp0CRQGyhwHn+cPS+cpL68WQxdjJs3Y/cYuvgOKkMUBN8JrGYay7euEiJmH/cWJX/1SaW6l7S3woZ/LP3Njzhlqof9APBm0+gns2p3U0w6XTDQbgqfhFELeiytg4nnd9imqsyhYyUkdaOorCgcSWRtDJQB6K0ULhcOYORg5lMwY6r1W3V/EFpJeW8AOTa8BUJm45KptYu09gpmzPb7V5D/q83Kil5Pq50VpQEmWqCSBtYBVmF2j0D4FONQCSbnQPXGVcSJRGg5lIpR5buXZwLtJRKXOK0dkOKtkdyERw9GUT7g6dv97sHL9tx7bJ77D7rsYg9YwfsNTtkQ6a8D95n74v31f/kf/O/+z/WUt9rPXfZufJ//gHpp/gh</latexit>

= fix �df . b (b �dx. b1c c , (let ' (⇡⇤
1 df . ' b0c)) c

<latexit sha1_base64="2SCkZP+MwV3AqpPs+74O7mKTAyM=">AAACz3icbVHbbtQwEHXCrYTbAo+8WKyQCqqiBBXBC1IFLzzw0CK2rbReookz2bXqXGRP2q6iRbzyY/wDv8EX4GSzohdGsnR8Zs4ceyattbIURb89/8bNW7fvbN0N7t1/8PDR6PGTQ1s1RuJEVroyxylY1KrECSnSeFwbhCLVeJSefOzyR6dorKrKr7SscVbAvFS5kkCOSka/3geiAFooanN1vhJcaCfOgGdJHopAaMxJ6FxXlRHBdkes8YW687C79TSPhdnkN2DH6dYead5qpM7jFEy9UFx8dt3BmOqMi1ol8bdXYu27qfjXOBr6BS8DwbsjjJovaMMmo3EURn3w6yAewJgNsZ+M/oiskk2BJUkN1k7jqKZZC4aU1LgKRGOxBnkCc5w6WEKBdtb2817xF40FqniNhivNexIvKloorF0Wqavs/m2v5jryf7lpQ/m7WavKuiEsZWdESmNvZKVRbpHIM2WQCLqXI1cll2CACI3iIKUjG7fZS4aWCjBLk63ckOKrI7kODl+H8W745mB3vPdhGNcWe8aes20Ws7dsj31i+2zCpLfjffGmnvAP/DP/u/9jXep7g+YpuxT+z78FOt6E</latexit>

Ex. typing & semantics

3737

JtK⇢ = fix �df . b (b �dx. b1c c , (let ' (⇡⇤
1 df . ' b0c)) c

<latexit sha1_base64="YTIQxN4hPoMcpFa+gG6h7taCVxk=">AAAC6nicbVFLb9QwEHbCq4TXFo5cLFZIBaEoqYroBamCAxw4FIltK62XyHEmu1adh8aTbVfR/gluiCt/iiN/gV+As7sRfTCSpc/fzHyfPZPWRluKol+ef+Pmrdt3tu4G9+4/ePhosP34yFYNKhipylR4kkoLRpcwIk0GTmoEWaQGjtPT913+eA5odVV+oUUNk0JOS51rJclRyeC3MCZFqU6BOAnEHgucVW8DUUiaaWpzfb4UXBinm0meJXkoAmEgJ2FyU1Uogp2OWOMLdedhd1vRPBbY53vwyvWtPdK8NUCdx1xiPdNcfHLqErE646LWSfz1pVj79hX/hKONXvAiELw7AvV0Rj2bDIZRGK2CXwfxBgzZJg6TwR+RVaopoCRlpLXjOKpp0kokrQwsA9FYqN2U5BTGDpayADtpV6tY8ueNlVTxGpBrw1ckXOxoZWHtokhdZfdvezXXkf/LjRvK9yetLuuGoFSdEWkDKyOrULsdA880ApHsXg5cl1xJlESAmkulHNm4pV8ytFRIXGC2dEOKr47kOjjaDeO98PXnveHBu824tthT9oztsJi9YQfsIztkI6a8D17hzb0z3/jf/O/+j3Wp7216nrBL4f/8Cwyp6hc=</latexit>

f0 = ?D(int!int)⇤int

<latexit sha1_base64="q7Kqbotzu0b+7nXPgYg/jZ2QWLQ=">AAACRXicbVDLSgNBEJz1bXxFPXoZDIJ6CLui6EEhqAePEUwiZMPSO+nokNkHM71CWPZn/Bm96s2P8CLiVXdjDvHRp+qqbqq7/FhJQ7b9Yk1MTk3PzM7NlxYWl5ZXyqtrTRMlWmBDRCrS1z4YVDLEBklSeB1rhMBX2PL7Z4XeukNtZBRe0SDGTgA3oexJAZRTXvm459n8hLt+RF567qXbbgB0KymVIWUuRePtzu54l2Ulr1yxq/aw+F/gjECFjaruld/cbiSSAEMSCoxpO3ZMnRQ0SaEwK7mJwRhEH26wncMQAjSddPhlxrcSAxTxGDWXig9JHN9IITBmEPj5ZHGm+a0V5H9aO6HeUSf/KU4IQ1EYkVQ4NDJCyzw+5F2pkQiKy5HLkAvQQIRachAiJ5M8zx+GhgLQA93N8pCc35H8Bc29qrNfPbjcr9ROR3HNsQ22ybaZww5ZjV2wOmswwe7ZI3tiz9aD9Wq9Wx/foxPWaGed/Sjr8wv/H7Qs</latexit>

f1 = b (b �dx. b1c c , (let ' (⇡⇤
1 f0. ' b0c)) c

<latexit sha1_base64="d/BSZ+JoDFo/JDi43H+T8Es6vek=">AAACtnicbVHbbtQwEHXCrYTbQh95sVghFYRWSVVEeUCq2hceeCgS21Zab6OJM9m16iSWPSmsov0kPojf4AtwQhZoy0iWjs+ZOWPPZEYrR3H8Iwhv3b5z997W/ejBw0ePn4yePjtxdWMlTmWta3uWgUOtKpySIo1nxiKUmcbT7OKo008v0TpVV19oZXBewqJShZJAnkpH34s0+RAJjQUJXei6tiLaEdEGc6G9Vw48T79NultP80TYjb4Bb3xdJEqgZVa0GmnttUuwZqm4+OTdwdr6KxdGpcn5a8GLNJ78yfhrHA9+0atI8O4IqxZL2rDpaBxP4j74TZAMYMyGOE5HP0Vey6bEiqQG52ZJbGjegiUlNa4j0Tg0IC9ggTMPKyjRzdt+rGv+snFANTdoudK8J/HfihZK51Zl5jO7f7vrWkf+T5s1VOzPW1WZhrCSXSNSGvtGTlrl94U8VxaJoHs5clVxCRaI0CoOUnqy8Qu80tBRCXZl87UfUnJ9JDfBye4k2Zu8/bw3PjgcxrXFnrMXbIcl7B07YB/ZMZsyGWwH74PD4CjcD89DDBe/U8NgqNlmVyI0vwABc9QU</latexit>

= b (b �dx. b1c c , ?Dint) c

<latexit sha1_base64="STvhh6PzifsrdbRGiufQbG6MJf8=">AAACfHicbVFNb9QwEHVSPrbhawtHLhYLUhGwSlCBXipVwIFjkdi20noVTZzZrVUnjuxJxSrKD+3f6A8AnJCVaMucnt974xk/Z5VWjuL4Mgi37ty9d3+0HT14+Ojxk/HO02NnaitxJo029jQDh1qVOCNFGk8ri1BkGk+y8y+dfnKB1ilT/qB1hYsCVqVaKgnkqXTsDiKhcUlCL7UxVkS7ItpgLrS/KAeepz+n3amneSLsRt+At74pM5Q2X9NGFEBnihpVUtu2gr+OOqNandFgj9LxJJ7GffHbIBnAhA11lI6vRG5kXWBJUoNz8ySuaNGAJSU1tpGoHVYgz2GFcw9LKNAtmj6clr+qHZDhFVquNO9J/LejgcK5dZF5Z7e5u6l15P+0eU3L/YV/ZlUTlrIbREpjP8hJq3zqyHNlkQi6zZGrkkuwQIRWcZDSk7X/hmsDHRVg1zZvfUjJzUhug+P302Rv+uH73uTw8xDXiD1nL9guS9gndsi+sSM2Y5Jdst/BKNgOfoUvwzfhu7/WMBh6nrFrFX78A4rNwm4=</latexit>

f2 = b (b �dx. b1c c , (let ' (⇡⇤
1 f1. ' b0c)) c

<latexit sha1_base64="sSCF3SFVIK4M7jGWxoll0XCo27o=">AAACtnicbVHbbtQwEHXCrYTbQh95sVghFYRWSVVEeUCq2hceeCgS21Zab6OJM9m16iSWPSmsov0kPojf4AtwQhZoy0iWjs+ZOWPPZEYrR3H8Iwhv3b5z997W/ejBw0ePn4yePjtxdWMlTmWta3uWgUOtKpySIo1nxiKUmcbT7OKo008v0TpVV19oZXBewqJShZJAnkpH34t090MkNBYkdKHr2opoR0QbzIX2XjnwPP026W49zRNhN/oGvPF1kSiBllnRaqS11y7BmqXi4pN3B2vrr1wYlSbnrwUv0mTyJ+OvcTz4Ra8iwbsjrFosacOmo3E8ifvgN0EygDEb4jgd/RR5LZsSK5IanJslsaF5C5aU1LiOROPQgLyABc48rKBEN2/7sa75y8YB1dyg5UrznsR/K1oonVuVmc/s/u2uax35P23WULE/b1VlGsJKdo1IaewbOWmV3xfyXFkkgu7lyFXFJVggQqs4SOnJxi/wSkNHJdiVzdd+SMn1kdwEJ7uTZG/y9vPe+OBwGNcWe85esB2WsHfsgH1kx2zKZLAdvA8Og6NwPzwPMVz8Tg2DoWabXYnQ/AIFmNQW</latexit>

= b (b �dx. b1c c , (let ' (b �dx. b1c c. ' b0c)) c

<latexit sha1_base64="2kPdhM59Du8SbV6fxKLaaYuLgLk=">AAAC13iclVFNi9RAEO3ErzV+jXr00jgIK0hIZEQvwqIXDx5WcHZXp4eh0qnMNNtJh+7K6hAGb+LVP+bdv+EvsBMz6u56saDh9XtVr5rXWa2VoyT5HoQXLl66fGXnanTt+o2bt0a37xw401iJU2m0sUcZONSqwikp0nhUW4Qy03iYHb/s9MMTtE6Z6i2ta5yXsKxUoSSQpxajb88jobEgoQttjBXRroi2mAvtjXLg+eJj3N16mqfCbvUteOTnIlECrbKi1Ugbr52ArVeKi9feHaw1H/j/+sa/Xf40JYMWPYwE746warmiLbsYjZM46YufB+kAxmyo/cXoh8iNbEqsSGpwbpYmNc1bsKSkxk0kGoc1yGNY4szDCkp087bPfcMfNA7I8BotV5r3JP490ULp3LrMfGeXjTurdeS/tFlDxbN5q6q6Iaxkt4iUxn6Rk1b5D0WeK4tE0L0cuaq4BAtEaBUHKT3Z+B8+tdBRCXZt840PKT0byXlw8DhOJ/GTN5Px3oshrh12j91nuyxlT9kee8X22ZTJYBK8D2SQh+/CT+Hn8Muv1jAYZu6yUxV+/Qlk6OJp</latexit>

= b (b �dx. b1c c , (�dx. b1c) b0c) c

<latexit sha1_base64="dQmWw6ZyMbeyp22qhMCTgvH9hhA=">AAACmHicfZFdSxtBFIZnV9vqtmqsd+ZmaCooSNgtlnpTCHphvYvSqJAJ4ezsSRyc/WDmrBhCfoO/z78heO/udoOf9Fy985yv4T1hppUl379z3IXFDx8/LS17n7+srK411r+e2TQ3Ensy1am5CMGiVgn2SJHGi8wgxKHG8/DqsMyfX6OxKk3+0iTDQQzjRI2UBCrQsHH72xMaRyT0SKepEd628OaaC10MioBHw5t2+aowD4SZ5+dit+z7b/HOE/Jr5Am+45VD1PiS5mzYaPltvwr+VgS1aLE6usPGvYhSmceYkNRgbT/wMxpMwZCSGmeeyC1mIK9gjP1CJhCjHUwr42Z8K7dAKc/QcKV5BfF5xxRiaydxWFTGQJf2da6E7+X6OY32B1OVZDlhIstFpDRWi6w0qrgI8kgZJILy58hVwiUYIEKjOEhZwLw40YuFlmIwExPNCpOC15a8FWc/2sFe++fJXqtzUNu1xJrsG9tmAfvFOuwP67Iek+zBaTrfnS130+24R+7xv1LXqXs22ItwTx8BkMjJvQ==</latexit>

= b (b �dx. b1c c , b1c) c

<latexit sha1_base64="fYipJOxeQq1vEgP9QrIAKyc/240=">AAACdnicbVHPSxtBFJ5da2tXbWN7FGQwiAoSdovFXgpSLx4VjAlkQng7+xIHZ3aXmbdiCPkre/Lf8KQ3d7eJaNJ3+ub7MW/4Js61chSGD56/8mH146e1z8H6xuaXr42tb9cuK6zEtsx0ZrsxONQqxTYp0tjNLYKJNXbi27NK79yhdSpLr2icY9/AKFVDJYFKatAwvwOhcUhCD3WWWREciGCOudDlRQnwZHDfqk41zSNh5/ocHL2GXtVA8MOgsqjRDc25QaMZtsJ6+DKIZqDJZnMxaDyKJJOFwZSkBud6UZhTfwKWlNQ4DUThMAd5CyPslTAFg64/qWuZ8r3CAWU8R8uV5jWJbxMTMM6NTVw6DdCNW9Qq8n9ar6Dhr/5EpXlBmMpqESmN9SInrSr7Rp4oi0RQvRy5SrkEC0RoFQcpS7IoP+DdQkcG7Ngm07KkaLGSZXD9oxUdt35eHjdP/8zqWmPbbJcdsIidsFN2zi5Ym0n2lz17vrfiPfk7/p6//8/qe7PMd/Zu/PAF0qS+rg==</latexit>

maximal element!

Ex. typing & semantics

3838

t , rec f. (�x. 1 , (fst(f) 0))

<latexit sha1_base64="3ECy0nRVKxJ1vEBjcrVbOuNI0y8=">AAACRHicbVDLShxBFK02xpj2NSZLN4WDMEIYukWJSzGbLEdwVJgahts1t8fC6uq26naINPNbfoL/ICTLZJWduJVUdybg6y6KU+ee+zpJoZWjKLoN5t7Mv114t/g+XFpeWV1rrX84cXlpJfZlrnN7loBDrQz2SZHGs8IiZInG0+TiS50//YbWqdwc01WBwwwmRqVKAnlq1OqRIKvATDRecpEBnSdpZVFOBU+7gndEKLTvNgb+3X9jwT+JsPNflzqadrxQ8G3Bo+bdHrXaUTdqgr8E8Qy02Sx6o9ZPMc5lmaEhqcG5QRwVNKzAkpIap6EoHRYgL2CCAw8NZOiGVXP5lG+VDijnBVquNG9IfFxRQebcVZZ4Zb2ze56ryddyg5LS/WGlTFESGlkPIqWxGeSkVd5S5GNlkQjqzZErwyVYIEKrOEjpydJ7HHo/4ufXvwQnO914t7t3tNs+OJw5s8g22CbrsJh9ZgfsK+uxPpPsmv1gv9jv4Cb4E9wF9/+kc8Gs5iN7EsHDX5BKrkc=</latexit>

: (int ! int) ⇤ int

<latexit sha1_base64="zkBSIq28lFPg1ENym76cTqWb4P4=">AAACIHicbVDLSgNBEJyNrxhfqx69DAYhioRdiSiegl48RjAPyC5hdtKJg7MPZnqFEPITfoJf4VVP3sSjgv/i7rqHmNin6qpuuqu8SAqNlvVpFBYWl5ZXiqultfWNzS1ze6elw1hxaPJQhqrjMQ1SBNBEgRI6kQLmexLa3v1VqrcfQGkRBrc4isD12TAQA8EZJlTPPL6gFcdneCdwLAKcOBhOt4dH013PLFtVKys6D+wclElejZ757fRDHvsQIJdM665tReiOmULBJUxKTqwhYvyeDaGbwID5oN1x5mpCD2LNMKQRKCokzUiY3hgzX+uR7yWT6Y96VkvJ/7RujINzNzEUxQgBTw+hkJAd0lyJJC6gfaEAkaWfAxUB5UwxRFCCMs4TMk7yKyV52LPu50HrpGrXqqc3tXL9Mk+mSPbIPqkQm5yROrkmDdIknDySZ/JCXo0n4814Nz5+RwtGvrNL/pTx9QNB/6R2</latexit>

JtK⇢ = fix �df . b (b �dx. b1c c , (let ' (⇡⇤
1 df . ' b0c)) c

<latexit sha1_base64="YTIQxN4hPoMcpFa+gG6h7taCVxk=">AAAC6nicbVFLb9QwEHbCq4TXFo5cLFZIBaEoqYroBamCAxw4FIltK62XyHEmu1adh8aTbVfR/gluiCt/iiN/gV+As7sRfTCSpc/fzHyfPZPWRluKol+ef+Pmrdt3tu4G9+4/ePhosP34yFYNKhipylR4kkoLRpcwIk0GTmoEWaQGjtPT913+eA5odVV+oUUNk0JOS51rJclRyeC3MCZFqU6BOAnEHgucVW8DUUiaaWpzfb4UXBinm0meJXkoAmEgJ2FyU1Uogp2OWOMLdedhd1vRPBbY53vwyvWtPdK8NUCdx1xiPdNcfHLqErE646LWSfz1pVj79hX/hKONXvAiELw7AvV0Rj2bDIZRGK2CXwfxBgzZJg6TwR+RVaopoCRlpLXjOKpp0kokrQwsA9FYqN2U5BTGDpayADtpV6tY8ueNlVTxGpBrw1ckXOxoZWHtokhdZfdvezXXkf/LjRvK9yetLuuGoFSdEWkDKyOrULsdA880ApHsXg5cl1xJlESAmkulHNm4pV8ytFRIXGC2dEOKr47kOjjaDeO98PXnveHBu824tthT9oztsJi9YQfsIztkI6a8D17hzb0z3/jf/O/+j3Wp7216nrBL4f/8Cwyp6hc=</latexit>

JtK⇢ = b (b �dx. b1c c , b1c) c

<latexit sha1_base64="jHDf1EXWsLOlAVwLexym5Mzwe5Q=">AAACkXicbVFNaxRBEO2ZqInj12q8idK4CBFkmZEEzUFY9CJ4ieAmge1lqemp3W3SMz1U14jLsnf/on/Cg7/AmWEmmMQ6vX6vilf9Ki2t8RzHv4Jw59btO7t7d6N79x88fDR4/OTUu4o0TrSzjs5T8GhNgRM2bPG8JIQ8tXiWXnxq9LPvSN644huvS5zlsCzMwmjgmpoPfiprUwJ9gSxZEfVY0cp9iJTFBSu7sM6Rig5U1GOpbO2RgczmP0bNq6VloqjXe/DmcuhSjZR8HTUtZrninpsPhvEobkveBEkHhqKrk/ngj8qcrnIsWFvwfprEJc82QGy0xW2kKo9l/RlY4rSGBeToZ5s2sa18VXlgJ0skaaxsSfx3YgO59+s8rTtz4JW/rjXk/7RpxYv3s40pyoqx0I0RG4utkddk6lOgzAwhMzSbozSF1EDAjGQkaF2TVX2bK4aec6A1Zds6pOR6JDfB6dtRcjg6+no4HH/s4toTz8RLcSAS8U6MxWdxIiZCi9/B0+B58CLcD4/Dcdj1hkE3sy+uVPjlL8sqyEM=</latexit>

Ex. typing & semantics

3939

Mid-term badge
There are five adjacent houses on the same road.
Each house is painted on a different color.
In each house lives a person with a different nationality.
Every owner has his favorite drink, his favorite brand of cigarettes, and keeps pets of a particular kind.
No owners have the same pet, smoke the same kind of cigarette, or drink the same beverage.
Given the 15 clues below, the question is: Who owns the… fish?

1. The Brit lives in the red house.
2. The Swede keeps dogs.
3. The Dane drinks tea.
4. The green house is just to the left of the white one.
5. The owner of the green house drinks coffee.
6. The Mall Pall smoker keeps birds.
7. The owner of the yellow house smokes Dunkill
8. The man in the center house drinks milk.
9. The Norwegian lives in the first house.
10.The Blenk smoker has a neighbor who keeps cats.
11.The owner who smokes Blue Monsters drinks bier.
12.The man who keeps horses lives next to the Dunkill smoker.
13.The German smokes Pringe.
14.The Norwegian lives next to the blue house.
15.The Blenk smoker has a neighbor who drinks water.

Write a program
to solve the riddle

(using Prolog or Haskell)

