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HOFL
Operational vs Denotational



Differences

operational  —¢ denotational [z p
closed, typeable terms typeable terms
no environment environment
not a congruence congruence
canonical terms mathematical entities

(7

Vi,e. t—c & Vp.[tlp=lc|p

t—c=Vp. [t)p =|c|p

(Vp. [t]lp=]c]p) At —c  thereis only one
type for which the
implication holds



Inconsistency: example

X :int co=Ax.x+0 c1 =Ax. x

already in canonical forms
[colp = lei] p co 77 €1

lcol p = [Ax. x+0]p = [Ad. d+, [0]] = [Ad.d] = [Ax.x]p = [er] p



Correctness
TH. t—c=Vp. [tlp=]clp

proof.  we proceed by rule induction

P(t—¢) = vp. [1]p =[c]p

det

P(c—c)=Vp.[c]p=][c]p  obvious

C —C



TH. t—=c=Vp. [t]p=c]p (continue)

I —ny 0H—n assSume

[10plr — ny Op ny
P(tz %nz) —

def

P(l‘l — nl) :f

vp. [t]p =[m]p = [n_
Vp. []p =[n2]p = [n2

we prove P(r1opfa —niopny) =Vp. [tophllp = |[n1 op nzﬂ p

[nopn]p = [t]pop, []p
ni)op, [no]

1y 0Op ny |

|[n1 op nzﬂ P

(by definition of |-]|)
(by inductive hypotheses)
(by definition of op L)

(by definition of |[-]|)



TH. t—=c=Vp. [t]p=c]p (continue)

t—0 19— co assume def ]
P(t—0) = Vp. [t]p=[0]p = [O]

P(to — co) = Vp. [to] p = [co] p

if ¢ then 1y else 1 — ¢y

we prove P(if ¢ then 7 else 1| — c¢) o Vp. [if ¢ then 1y else #1] p = [co] p

lif ¢ then 7 else 11| p = Cond([t] p, [to]l p,[t1]p) (by def. of ||-])
= Cond(|0], [to] p,[n]p)  (byind. hyp.)
= [t] p (by def. of Cond)
= ol p (by ind. hyp.)

ifn) analogous (omitted)



TH. t—c=Vp. [t]p=c]p

I — (t(),tl) Io — Co

fSt(t) — €0

assume
P(t — (to,11)) = Vp. [t] p = [(00,11)] P

P(ty — co) = Vp. [ro] p = [col p

(continue)

we prove P(fst(t) — co) = Vp. [fst(t)] p = [co] p

[fst(z)] p t]p)

=% %

N AN N /N

'3 2 9 N

[(t0,11)] p)
([to] p, 1] p)])

Ip,ln.

=
-

SIS
IO=||:|
bb

snd) analogous (omitted)

|p)

DY C

by def. of |-])
by ind. hyp.)
by d

ef. of |-])
ef. of lifting)

by d

(
(
(
(
(
(

ef. of 7'51)

by ind. hyp.)



TH. t—=c=Vp. [t]p=c]p (continue)

th— Ax.t) 1[0/ ] — ¢ @SSUme ot |
P(ry — Ax.11) = Vp. [tn]p = |Ax. 11| p
(tl to) — C . def .
P/ —=c) =Vp. |0/ p=1c]p

we prove P((t t0) — ) = Vp. [t )] p =[] p

[(t1 200)] p = let @ <= [11] p. @([20] p) (by definition of [-])
=let ¢ < [Ax. 1] p. o([t0.
=let ¢ < |Ad. [t]]p[?/s]]- @([to] p) (by definition of [-])

| I—

p) (by 1nd. hypothesis)

= (Ad. [1]p[*/]) ([to] p) (by de-lifting)
=[] p[lolP /] (by application)

= [t11°/x]] p (by Subst. Lemma)
= [c] p (by ind. hypothesis)




TH. t—=c=Vp. [t]p=c]p (continue)

t[rec X. I/X] S assume

rec x.f e P */] =) Evp. [i* /] p =c]p

we prove P(rec x.t— c) = Vp. [rec x. t]p =|c|p

[rec x. t] p = [t] p[lrec > 1P /]  (by definition)
= [t["c X1/ ]l p (by the Substitution Lemma)

= [c] p (by inductive hypothesis)



HOFL convergence
Operational vs Denotational



Operational convergence

t : T closed

tl & dcelC;.t —c

T & -t
Examples
recx. x T
Ay.rec . x |
(Ay. rec x. ) 0 7

if O then 1 elserec x. x |
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Denotational converg.

t: T closed
tll < VpeEnm,veV.. t|p=|v]

th < =t

Examples
Irec x. z[lp 1

I\y. rec z. x[p |
[(Ay. rec z. x) Op 1

lif 0 then 1 else rec x. z|p |

13




Consistency on converg.

TH. 7: 7 closed tl = tl

proof. t| = t—c by def (for some c)
= Vp. [t]p=|c]|p by correctness
= Vp. [t]p # L canonical |c|p # L
= t by def

TH. 7: 7T closed tll = t|

the proof is not part of the program of the course
(structural induction would not work)



HOFL equivalence
Operational vs Denotational



HOFL equivalences

to,t1 : 7 closed
to=opt1 U Ve tg—c &1 —c

to —den tl 1t \V/,O ﬂtoﬂp — ﬂtlﬂp



Op 1S more concrete

TH. —op g —den
proof. take to,t; : 7 closed, such that %o =p 1
either ElC.t()%C/\tl%C or tQT/\tlT

if dc.tqg—c N t1 —c
by correctness Vp. [to]p = [clp = [ti]p thus to =den t1
if toTAt1 7

by agreement on convergence to ft A t1

.e. \V/IO Ilt()]]p = J—DT — |[?f1]],0 thus %o =den t1



Den is strictly more
abstract

TH. =den Z —op

proof.
see previous counterexample

X :int co=Ax.x+0 ci =Ax. x



Consistency on int

TH. t: int closed t—n <& Vp.t]lp=|n

proof. =) if t = n then [t]p = [n]p = [n]

<) if [t]p = |n] it means t |
by agreement on convergence t |
thus ¢t — m for some m

but then by correctness [t]p = [m]p = |m]

and it mustbe m=n



Equivalence on int

TH. thtl :ant tO —op 1 < tO —den t1

pl’OOf. we know =op t1 = 1o =den t1

we prove to =den 11 = 1o —op t1

assume o =den 1 either Vp.

or Vp.

[tollp = Lz, = [ti]p
[tolp = |n] = [t1]p for some n

it Vp. [tollp =Lz, = [ti]p then to fH,t1 N

by agreement on convergence tp T,t1 T thus to =op 1

If \V/p Htoﬂp — LRJ — ﬂtlﬂp then t() — n ., t1 > n

20

thus to —op t



HOFL
Unlifted Semantics

21



Unlifted Domains

D, = (V;), ifted domains

met é 2
VTl*TQéDTl XDTQ_( 1) ( )
v71—>7'2 = [Dﬁ — DTQ] — [( ) (V’TQ)J—]

unlifted domains

U’7'1>I<’7'2 é U’7'1 X UTQ
U7'1—>7'2 é [UTl — UTQ]

22



Unlifted Seman’rlcs

as before (n)p = |
(Iat')p = p(w)
(11 0p ta)p 2 (1)p 0p, (2D
(if ¢t then t; else ta)p = Cond-( (t)p, (ti)p, (t2)p )
(rec z. t)p £ fir Ad. (t)p[?/.]
without lifting ((t1, t2))p=( (ti)p, (t2)p)
(fst( ¢ ))p % m ( (tDp )
(snd( ¢ ))p =m2 ((thp )
. thp 2 M. (t)p[*/.]
(tto)p=((the) ((todp)




Inconsistency on converg.

t1 2rec x. ¢ :int — int to = Ay.rec z. z :int — int

T .t — int Y,z :int

Dint—sint =21 — 711

ﬂtlﬂp — J—[ZL%ZL]L ﬂtgﬂp — LJ_[ZJ__)ZJ_]J
A) to I
t1 T tad  la =t

Uz'nt—)int — [ZJ_ — ZJ_]

(]tll)p — J—[ZL%ZJ_] (]tQI)IO — J—[ZL%ZJ_] — >\d J—ZJ_

tl ﬂunlifted t2 ﬂunlifted

t2 i/ # t2 Uunlifted
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Exercises
HOFL denotational semantics
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Ex. Test for convergence

(Test for convergence) We would like to modify the denotational
semantics of HOFL assigning to the construct

if ¢ then ¢, else t;

e the semantics of ¢; if the semantics of ¢ 1s 17 , and
e the semantics of ¢y otherwise.

Is it possible? If not, why?

26



Ex. Test for convergence

[if ¢ then t, else t1]p £ Cond=( [t]p, [tolp . [ti]p )

dy if v = |n| for some n
di otherwise

Cond> (v, doy, d1) = {

Any problem?  Cond: is not monotone on v !

Counterexample lz, Cz, [1] Take dy Zp. dy

(Lz,,do,d1) Tz, xp.xp, ([1],do,d1)

Condf(J_ZL,dQ,dl) — dl ZDT d() — COndi_(Llj,do,dl)

27



Ex. Test for convergence

For example take do = [0 dy = [1]

lif rec x. x then 0 else 1|p = |1
-

/—ZJ_

lif 1 then 0 else 1]p = |0]

asS a consequence

t 2 \x.if x then O else 1 : int — int

has no possible semantics in D, yine = |21 — 7, |1

because |[t]p is not continuous (not monotone)

28



Ex. Strict conditional

(Strict conditional) Modify the operational semantics of HOFL by
taking the following rules for conditionals:

t—0 tog—>cg t1 — t—n n#() to > ¢y 1 =
if ¢t then ty else t; — ¢ if t then tgelset; — ¢

Without changing the denotational semantics, prove that:
1. for any term t and canonical form ¢, we havet — ¢ = Vp. [[t] p = [c] p;

2. in general t|} % t] (exhibit a counterexample).

29



Ex. Strict conditional 1

t—0 tg—cg t1 —c t—n n#() to = co t1 — 1
if ¢t then t; else t; — ¢ if tthen tgelset; — ¢

t—c = Vp. [t]p=|c]p

P(t —c) =Vp. [t]p = []p

we extend the proof of correctness (by rule induction)
to consider the new rules

30



Ex. Strict conditional 1

P(t — ¢) 2 p. [t]p = [clp

t—>0 tog—>cy t1 — assume
if t thentyelset; — ¢y P(t— 0)=Vp. [t]p = [0]p = |0]
P(to — co) = Vp. [tolp = [colp

P(ty — c1) = Vp. [ta]p = [c1]p

we want to prove
P(if t then tj else t; — cg) = Vp. [if t then t( else t1]p = [co]p

[if ¢ then ¢, else t1]p = Cond.([t]p, [to]p, [t1]p) by def

= Cond,(|0], [co]p, [c1]p) by ind. hyp.
= [co]p by Cond

31



Ex. Strict conditional 1

P(t —c) = Vp. [t]p = [c]p

t—n n#0 tog—cy t1 =1
if t then tjelset; — ¢

assume P(t —n)=Vp. [tlp=[n]p=|n| n#0

P(to — co) = Vp. [tolp = [colp

P(ty — c1) = Vp. [t:]p = [er]p

we want to prove
P(if t then t; else t; — ¢;) = Vp. [if ¢ then ty else t1]p = [c1]p

[if ¢ then ¢, else t1]p = Cond,([t]p, [to]p, [t1]p) by def
= Cond, (|1, [collp, [c1]lp) by ind. h.
= [ea]p by Cond

32




Ex. Strict conditional 2

we want to find aterm ¢ suchthat ¢ t 1
take ¢t2if 0 then 1 else rec . = : int

[t]p = Cond.,([0] p, [1] p, [rec z. z]p)

— Cond’int(LOJv UJ ) J_ZJ_) — UJ t 4

t—c . 0—>0,1—¢c, recx.xr—c

*
N1 Tec . x — c

)\ x[rec XI. x/x] N C]_

—rec . T — Cq t T

33



Ex. typing & semantics

Determine the type of the HOFL term

t < rec f. (Ax.1, fst(f) 0 )

Then, compute the (lazy) denotational semantics of t.

34



Ex. typing & semantics

t=rec f. (Xx. 1, (fst( f)0)) : (int — int) * int

- L i |

(’int—>71)*72 T int (Z"nt%’ﬁ * To it

T — int it — T
T1

(T — int) x 1

(int — 1) ko = (T — int) x 7y

mt =1
T = mnt
To — T1

T =T =To = 1int

35



Ex. typing & semantics

t=rec f. (Ax. 1, (fst( f)0)) : (int — int) * int

[1]p = fie My. [(Aa. 1,8t(f) 0)]pl* /]

= fix Mdy. | ([Mz. 1p[* /4], [fst(f) O]p[* /f] ) |
o= pl™ /]

= fiz Mdy. | ([ M. [1]0'[* /2] |, (et o < [fst(f)]p". »([0]p")) ) |
= fix Mdy. | (| Ady. 1] |, (let o <= 7w ([f]p")- ¢ [0]) ) ]
= fir Mdy. | ([ Mdg. [1] ], (let p <= 7] dy. ¢ [0]) ) ]

36



Ex. ’rypmg & semantics

[t]p = fix Adg. | ([ Ady. [1] ], (let o <=7y dp. ¢ [0]) ) |
fo = LD sty wint
fi=[ ([ Ade. [1] |, (let p =77 fo. ¢ [0]) ) ]
= [ ([ Adz. [1] |, LDy, ) |
fo=1([Ads. [1] |, (let ¢ =77 f1. ¢ [0]) ) |
= [ ([ Ads. [1] |, (let o <= [ Adg. [1] |. ¢ [0]) ) ]
= | ([ Ads. [1] |5 (Adg. [1]) [0] ) |
= | (L Ade. [1] ], [1] )] maximal element!



Ex. typing & semantics

t=rec f. (Ax. 1, (fst( f)0)) : (int — int) * int
[tlp = fir Adp. | (| Ade. [1] ], (let p <=7y dp. ¢ [0]) ) |
[tlp=[ ([ Ade- [1] ], [1]) ]
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Mid-term badge 3y

There are five adjacent houses on the same road.

Each house is painted on a different color.

In each house lives a person with a different nationality.
Every owner has his favorite drink, his favorite brand of cigarettes, and keeps pets of a particular kind.
No owners have the same pet, smoke the same kind of cigarette, or drink the same beverage.
Given the 15 clues below, the question is: Who owns the... fish?

1. The Brit lives in the red house.

2. The Swede keeps dogs. ﬁ ﬁ ﬁ ﬁ ﬁ
3. The Dane drinks tea.

4. The green house is just to the left of the white one. ]

5. The owner of the green house drinks coffee. Write a program

6. The Mall Pall smoker keeps birds. to solve the riddle

7. The owner of the yellow house smokes Dunkill (using Prolog or Haskell)

3

. The man in the center house drinks milk.

9. The Norwegian lives in the first house.

10.The Blenk smoker has a neighbor who keeps cats.

11.The owner who smokes Blue Monsters drinks bier.

12.The man who keeps horses lives next to the Dunkill smoker.
13.The German smokes Pringe. /
14.The Norwegian lives next to the blue house.

15.The Blenk smoker has a neighbor who drinks water.
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