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Operational equivalence

termination and determinacy does not matter:
operational equivalence is always well-defined

<latexit sha1_base64="//ZNANigHEqeFgQ4zAhG7GdVL4Y="></latexit>

a1 ⇠op a2 i↵ 8�, n. ( ha1,�i ! n , ha2,�i ! n )

<latexit sha1_base64="o+lK31IVOuOknCmVb9b6UTRYj4U="></latexit>

b1 ⇠op b2 i↵ 8�, v. ( hb1,�i ! v , hb2,�i ! v )

<latexit sha1_base64="9/vAE+3MvxFJCAiWnIBEEVp/Cnw=">AAACrnicjVFNi9RAEO3Ej13jx4569NI4iCvIkAyyelwUxIPgCM7swnQIlZ7KTLPd6dhdUZcQf5j/xIP/xWQm4Lrrwbr0q1f1qK5XeaWVpzj+GYTXrt+4ubd/K7p95+69g9H9BwtvaydxLq227jQHj1qVOCdFGk8rh2ByjSf52Zu+fvIFnVe2/ETnFaYG1qUqlATqqGz0Q2aJ8MpkjTBAG2caW7Utl9mUR+JzDSthcvutUUXRbtNIFNaB1p1mbeD57nk6+X4oIqGhXGvstMnAC7djhFPrDYFz9isfFJF4jwX94S+op/+j5s+ibDSOJ/E2+FWQDGDMhphlo19iZWVtsCSpwftlEleUNuBISY1tJGqPFcgzWOOygyUY9Gmz9bjlT2oPZHmFjivNtyReVDRgvD83edfZG+kv13ryX7VlTcWrtFFlVROWsh9Eqtu6H+SlU93xkK+UQyLof45clVyCAyJ0ioOUHVl31+z9SC5vfxUsppPkaJJ8fDE+fj04s88escfskCXsJTtm79iMzZkMePA2+BDMwjhchGmY7VrDYNA8ZH9FuPkNiErTlg==</latexit>

c1 ⇠op c2 i↵ 8�,�0. ( hc1,�i ! �0 , hc2,�i ! �0 )
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Examples
   


   


   


   


   


   

(x + 1) × (x − 1) ∼𝗈𝗉 (x × x) − 1

(x > 0) ∧ (y > 0) ∼𝗈𝗉 ((x × y) > 0) ∧ (x > 0)

((x × (x + 1)) % 2) = 0 ∼𝗈𝗉 𝗍𝗋𝗎𝖾

x := − x ; x := − x ∼𝗈𝗉 𝗌𝗄𝗂𝗉

i := 0; 𝗐𝗁𝗂𝗅𝖾 (i < x) 𝖽𝗈 i := i + 1 ∼𝗈𝗉 𝗂𝖿 (x ≤ 0) 𝗍𝗁𝖾𝗇 i := 0 𝖾𝗅𝗌𝖾 i := x

(𝗂𝖿 b 𝗍𝗁𝖾𝗇 c1 𝖾𝗅𝗌𝖾 c2); c ∼𝗈𝗉 𝗂𝖿 b 𝗍𝗁𝖾𝗇 (c1; c) 𝖾𝗅𝗌𝖾 (c2; c)
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Congruence

take any context

is it the case that ?

that is: can we replace a subexpressions with
any equivalent one without changing the outcome?

<latexit sha1_base64="//ZNANigHEqeFgQ4zAhG7GdVL4Y=">AAACnHicfVFda9RAFJ3Erxq1XfVRkMFFqFCWzVLUF6WoD4IKFdxtYWcJN7M36dD5iDM3agnx9/iXfPC/mOwuWFvxPp055x7u3HPzSqtA4/HPKL5y9dr1G1s3k1u372zvDO7emwVXe4lT6bTzxzkE1MrilBRpPK48gsk1HuWnr3v96Av6oJz9RGcVLgyUVhVKAnVUNvgBWSqCMlkjDNCJN42r2pZDNuGJ+FzDUpjcfWtUUbSrZyIK50HrzlMa2LOj77siERpsqbFzpXtrQfg1I7wqTwi8d1+5TcR7LOgPc843+b+PP0mywXA8Gq+KXwbpBgzZpg6zwS+xdLI2aElqCGGejitaNOBJSY1tIuqAFchTKHHeQQsGw6JZJdryx3UAcrxCz5XmKxLPOxowIZyZvOvsYwsXtZ78lzavqXi+aJStakIr+0Gkun37QUF61Z0K+VJ5JIL+58iV5RI8EKFXHKTsyLq7XZ9HenH7y2A2GaVPR+nH/eHBq00yW+wBe8R2WcqesQP2lh2yKZPRdrQfvYhexg/jN/G7+MO6NY42nvvsr4pnvwEiCsxo</latexit>

a1 ⇠op a2 i↵ 8�, n. ( ha1,�i ! n , ha2,�i ! n )

<latexit sha1_base64="qUm6nkN0JOhfRWz35Rqq7GEba+U=">AAACBXicbVC7TsNAEDyHVwgvB0qaExESVWQjBJQBGsogkYdkW9H5sgmnnB+6W4MiKzVfQQsVHaLlOyj4F2zjAhKmGs3samfHj6XQaFmfRmVpeWV1rbpe29jc2t4x67tdHSWKQ4dHMlJ9n2mQIoQOCpTQjxWwwJfQ8ydXud+7B6VFFN7iNAYvYONQjARnmEkDs+4GDO98P72YOS4fRugNzIbVtArQRWKXpEFKtAfmlzuMeBJAiFwyrR3bitFLmULBJcxqbqIhZnzCxuBkNGQBaC8tos/oYaIZRjQGRYWkhQi/N1IWaD0N/GwyD6rnvVz8z3MSHJ17qQjjBCHk+SEUEopDmiuRdQJ0KBQgsjw5UBFSzhRDBCUo4zwTk6ykWtaHPf/9IukeN+3Tpn1z0mhdls1UyT45IEfEJmekRa5Jm3QIJw/kiTyTF+PReDXejPef0YpR7uyRPzA+vgFUMJih</latexit>

A[·]
<latexit sha1_base64="MWP2YHHMCgcel/5OGULLAhTpunM="></latexit>

a1 ⇠op a2 ) A[a1] ⇠op A[a2]

<latexit sha1_base64="m7lRvSWaVB5VLIeQomcwsXvLfP4=">AAACB3icbVDLSsNAFJ3UV62vaJduBotQEUpSfC2LblxWsA9IQplMb+vQyYOZG6GUfoBf4VZX7sStn+HCfzGJWWj1rA7n3Mu59/ixFBot68MoLS2vrK6V1ysbm1vbO+buXldHieLQ4ZGMVN9nGqQIoYMCJfRjBSzwJfT8yVXm9+5BaRGFtziNwQvYOBQjwRmm0sCsNl0UAWhad1w+jNA7Pj0amDWrYeWgf4ldkBop0B6Yn+4w4kkAIXLJtHZsK0ZvxhQKLmFecRMNMeMTNgYnpSFLA71ZfvycHiaaYURjUFRImovwc2PGAq2ngZ9OBgzv9KKXif95ToKjC28mwjhBCHkWhEJCHqS5EmkrQIdCASLLLgcqQsqZYoigBGWcp2KS1lRJ+7AXv/9Lus2Gfdawb05qrcuimTLZJwekTmxyTlrkmrRJh3AyJY/kiTwbD8aL8Wq8fY+WjGKnSn7BeP8C2ROYMw==</latexit>

2⇥ ([·] + 5)e.g.
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Contexts
what are the possible contexts for arithmetic expressions?

[·] + 5

<latexit sha1_base64="yrJSUFOyrRqxG/xFXMIW9QA296Q=">AAAB/XicbVDLSsNAFJ3UV62vqks3g0UQhJJIiy6LblxWsA9IQ5lMb+vQSSbM3AglFL/Cra7ciVu/xYX/YhKz0NazOpxzL/fc40dSGLTtT6u0srq2vlHerGxt7+zuVfcPukbFmkOHK6l032cGpAihgwIl9CMNLPAl9Pzpdeb3HkAbocI7nEXgBWwSirHgDFPJdQd8pNCjZ7Q5rNbsup2DLhOnIDVSoD2sfg1GiscBhMglM8Z17Ai9hGkUXMK8MogNRIxP2QTclIYsAOMleeQ5PYkNQ0Uj0FRImovweyNhgTGzwE8nA4b3ZtHLxP88N8bxpZeIMIoRQp4dQiEhP2S4FmkXQEdCAyLLkgMVIeVMM0TQgjLOUzFOy6mkfTiL3y+T7nndadSbt41a66popkyOyDE5JQ65IC1yQ9qkQzhR5Ik8kxfr0Xq13qz3n9GSVewckj+wPr4Bk2uU0w==</latexit>

2⇥ ([·] + 5)

<latexit sha1_base64="UvltKiIgJhr77/f06Z6bAoWfKts=">AAACCXicbVDLSsNAFJ3UV62vqrhyM1iEilCS0qLLohuXFewDklAm09s6dPJg5kYooV/gV7jVlTtx61e48F9MYxbaelaHc+7l3Hu8SAqNpvlpFFZW19Y3ipulre2d3b3y/kFXh7Hi0OGhDFXfYxqkCKCDAiX0IwXM9yT0vMn13O89gNIiDO5wGoHrs3EgRoIzTKVB+ajuoPBB06rt8GGILj2nzbNBuWLWzAx0mVg5qZAc7UH5yxmGPPYhQC6Z1rZlRugmTKHgEmYlJ9YQMT5hY7BTGrA00k2y82f0NNYMQxqBokLSTITfGwnztZ76XjrpM7zXi95c/M+zYxxduokIohgh4PMgFBKyIM2VSHsBOhQKENn8cqAioJwphghKUMZ5KsZpUaW0D2vx+2XSrdesRq1526i0rvJmiuSYnJAqscgFaZEb0iYdwklCnsgzeTEejVfjzXj/GS0Y+c4h+QPj4xuUP5iJ</latexit>

2⇥ ([·] + 5)  50

<latexit sha1_base64="tocYqLMyEW/rss62sixPI9PhYQw=">AAACEXicbVDLSgNBEJyNrxhfqx5FGAxCRAi7IUGPQS8eI5gHZJcwO+nEIbMPZ3qFEHLyE/wKr3ryJl79Ag/+i7trDppYp6Kqm+ouL5JCo2V9Grml5ZXVtfx6YWNza3vH3N1r6TBWHJo8lKHqeEyDFAE0UaCETqSA+Z6Etje6TP32PSgtwuAGxxG4PhsGYiA4w0TqmYcVB4UPmpa6Du+H6NJTWjuhjoQ7WrN6ZtEqWxnoIrFnpEhmaPTML6cf8tiHALlkWndtK0J3whQKLmFacGINEeMjNoRuQgOWRLuT7I0pPY41w5BGoKiQNBPh98aE+VqPfS+Z9Bne6nkvFf/zujEOzt2JCKIYIeBpEAoJWZDmSiT9AO0LBYgsvRyoCChniiGCEpRxnohxUlgh6cOe/36RtCplu1quXVeL9YtZM3lyQI5IidjkjNTJFWmQJuHkgTyRZ/JiPBqvxpvx/jOaM2Y7++QPjI9vgVebHA==</latexit>

(2⇥ ([·] + 5)  50) ^ x = y

<latexit sha1_base64="TfFFZPfn81G1irWRzcjfW0HbL9g=">AAACHnicbVDLTgJBEJzFF+IL9ehlIjFBTcgugejFhOjFIybySNgNmR0anDj7cKZXJYR/8BP8Cq968ma86sF/cUAOCtapUtWdri4/lkKjbX9aqbn5hcWl9HJmZXVtfSO7uVXXUaI41HgkI9X0mQYpQqihQAnNWAELfAkN//ps5DduQWkRhZfYj8ELWC8UXcEZGqmdPcgXXRQBaJpvubwToUcPaXmfuhJuaNk25A46PaD3J/12NmcX7DHoLHEmJEcmqLazX24n4kkAIXLJtG45dozegCkUXMIw4yYaYsavWQ9ahobMxPAG45+GdC/RDCMag6JC0rEIvzcGLNC6H/hmMmB4pae9kfif10qwe+wNRBgnCCEfHUIhYXxIcyVMWUA7QgEiGyUHKkLKmWKIoARlnBsxMe1lTB/O9PezpF4sOKVC+aKUq5xOmkmTHbJL8sQhR6RCzkmV1AgnD+SJPJMX69F6td6s95/RlDXZ2SZ/YH18A2OHn8U=</latexit>

x := 2⇥ ([·] + 5)

<latexit sha1_base64="Xj3C46+QW3DTYtKVss3fjZxEGa8=">AAACDXicbVDLSgNBEJyNrxhfq57Ey2AQIkLYDQmKIAS9eIxgHpAsYXbSiUNmH8z0imEJfoJf4VVP3sSr3+DBf3Gz5qCJdSqquqnuckMpNFrWp5FZWFxaXsmu5tbWNza3zO2dhg4ixaHOAxmolss0SOFDHQVKaIUKmOdKaLrDy4nfvAOlReDf4CgEx2MDX/QFZ5hIXXPv/uycljooPNC00O7wXoAOPaaVo66Zt4pWCjpP7CnJkylqXfOr0wt45IGPXDKt27YVohMzhYJLGOc6kYaQ8SEbQDuhPksinTh9YUwPI80woCEoKiRNRfi9ETNP65HnJpMew1s9603E/7x2hP1TJxZ+GCH4fBKEQkIapLkSSTdAe0IBIptcDlT4lDPFEEEJyjhPxCgpK5f0Yc9+P08apaJdLlauy/nqxbSZLNknB6RAbHJCquSK1EidcPJAnsgzeTEejVfjzXj/Gc0Y051d8gfGxzfn9pnA</latexit>

while x  100 do x := 2⇥ ([·] + 5)

<latexit sha1_base64="aIWVoGwF+90fUoTOWyGOriToyGg=">AAACNXicbVDLSgNBEJyN7/iKevQyGISIEHZFUQQh6sWjgjGB7BJmJ51kyOzDmV41LH6Pn+BXeFU8eBOv/oKzMYIm9qmo6qaqy4+l0Gjbr1ZuYnJqemZ2Lj+/sLi0XFhZvdJRojhUeSQjVfeZBilCqKJACfVYAQt8CTW/d5rptRtQWkThJfZj8ALWCUVbcIaGahaO3YBh12+nt10h4d6ld66Ea+rYtkt/pFaU8YdHdMdFEYCmpY bLWxF6dJvubTULRbtsD4aOA2cIimQ4583Cm9uKeBJAiFwyrRuOHaOXMoWCmwh5N9EQM95jHWgYGDJj6aWDV+/pZqIZRjQGRYWkAxJ+X6Qs0Lof+GYzS69HtYz8T2sk2D7wUhHGCULIMyM0hQyMNFfCdAi0JRQgsiw5UBFSzhRDBCUo49yQiSk1b/pwRr8fB1c7ZWe3vHexW6ycDJuZJetkg5SIQ/ZJhZyRc1IlnDyQJ/JMXqxH6816tz6+V3PW8GaN/Bnr8wtBl6oD</latexit>



77

Contexts
what are the possible contexts for arithmetic expressions?

C[·] ::= x := A[·]
| C[·]; c
| c;C[·]
| if B[·] then c else c
| if b then C[·] else c
| if b then c else C[·]
| while B[·] do c
| while b do C[·]

<latexit sha1_base64="obMn5bEVQ1yrivZ0YMcvdtA8Ndk="></latexit>

B[·] ::= A[·] cmp a
| a cmp A[·]
| ¬B[·]
| B[·] bop b
| b bop B[·]

<latexit sha1_base64="Ts1A2ym3PIsmrjFNe8zdz7rM8aQ="></latexit>

A[·] ::= [·]
| A[·] op a
| a op A[·]

<latexit sha1_base64="cvLiGXTPsZKp2/DB9qEi/Gu3el8="></latexit>
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Proof obligations
many proof obligations to deal with:

<latexit sha1_base64="Rd6IRJM1ph5MthKWEy0PwG9Kf2E="></latexit>

8a, a1, a2. ( a1 ⇠op a2 ) a1 op a ⇠op a2 op a )
<latexit sha1_base64="j+qt/kICx/XWAop0mQS2QC3di/8="></latexit>

8a, a1, a2. ( a1 ⇠op a2 ) a op a1 ⇠op a op a2 )

<latexit sha1_base64="VXlZezPo+bhdzk/hRSVY2zTzwdY="></latexit>

8a, a1, a2. ( a1 ⇠op a2 ) a cmp a1 ⇠op a cmp a2 )

<latexit sha1_base64="IuvVaNqFopSZETU2lE6KzlqvpSI="></latexit>

8a, a1, a2. ( a1 ⇠op a2 ) a1 cmp a ⇠op a2 cmp a )
<latexit sha1_base64="6iWDqS3qSBo1cQuoLC/+Kdh9wHY="></latexit>

8x, a1, a2. ( a1 ⇠op a2 ) x :=a1 ⇠op x :=a2 )

similarly for boolean expressions and commands
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Denotational equivalence

(two functions are the same 
if they coincide on all arguments)

<latexit sha1_base64="sw3iD1p+W1eW6lRoYdNCkNikjCQ="></latexit>

a1 ⇠den a2 i↵ AJa1K = AJa2K
<latexit sha1_base64="gACjNa4fEdmqLvC2C5F0peoIql8=">AAAChXicdVHJTtxAEG07C4OzDXDMpZVRpFwyskeI5IKC4JIjkRhAGo+s6nYNadHddrrLKCPHH5prPoEviG18YK3Tq1evFr0SpVae4vhvED57/uLlxmgzevX6zdt3463tU19UTuJcFrpw5wI8amVxToo0npcOwQiNZ+LyqKufXaHzqrAntC5xaeDCqpWSQC2Vjf+ILEm9MlmdGqCfztQ52qbhIpvxKP1VQZ4aUfyu1WrV9GnU6yTo+rBJtRYO5CUS78Y4N2TR/pOq2S1VlI0n8TTugz8EyQAmbIjjbHyd5oWsDFqSGrxfJHFJyxocKamxidLKY9kOhwtctNCCQb+se5ca/rHyQAUv0XGleU/i7Y4ajPdrI1pld7y/X+vIx2qLilZfl7WyZUVoZbeIlMZ+kZdOtfYjz5VDIuguR64sl+CACJ3iIGVLVu0/7iz0ZMCtXd60JiX3LXkITmfTZG+a/NidHBwOdo3Ye/aBfWIJ+8IO2Hd2zOZMsn/BKNgKtsON8HO4G+7dSMNg6NlhdyL89h8Rf8XP</latexit>

b1 ⇠den b2 i↵ BJb1K = BJb2K
<latexit sha1_base64="z4h7ZuDZhKpeVj0BQFToxo7Qnx8="></latexit>

c1 ⇠den c2 i↵ CJc1K = CJc2K

<latexit sha1_base64="+RNIx/b3uiTb7FZzpU4mlpqlE3E="></latexit>

a1 ⇠den a2 i↵ 8�. AJa1K� = AJa2K�
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Compositionality principle

is it the case that ?

YES! it is guaranteed by the compositionally
principle of denotational semantics:

the meaning of a compound expression is solely
determined by the meaning of its constituents

<latexit sha1_base64="sw3iD1p+W1eW6lRoYdNCkNikjCQ="></latexit>

a1 ⇠den a2 i↵ AJa1K = AJa2K

take any context
<latexit sha1_base64="qUm6nkN0JOhfRWz35Rqq7GEba+U=">AAACBXicbVC7TsNAEDyHVwgvB0qaExESVWQjBJQBGsogkYdkW9H5sgmnnB+6W4MiKzVfQQsVHaLlOyj4F2zjAhKmGs3samfHj6XQaFmfRmVpeWV1rbpe29jc2t4x67tdHSWKQ4dHMlJ9n2mQIoQOCpTQjxWwwJfQ8ydXud+7B6VFFN7iNAYvYONQjARnmEkDs+4GDO98P72YOS4fRugNzIbVtArQRWKXpEFKtAfmlzuMeBJAiFwyrR3bitFLmULBJcxqbqIhZnzCxuBkNGQBaC8tos/oYaIZRjQGRYWkhQi/N1IWaD0N/GwyD6rnvVz8z3MSHJ17qQjjBCHk+SEUEopDmiuRdQJ0KBQgsjw5UBFSzhRDBCUo4zwTk6ykWtaHPf/9IukeN+3Tpn1z0mhdls1UyT45IEfEJmekRa5Jm3QIJw/kiTyTF+PReDXejPef0YpR7uyRPzA+vgFUMJih</latexit>

A[·]
<latexit sha1_base64="Ve5tIFQ1AVzX4TDTYLi2Nuux3Ps="></latexit>

a1 ⇠den a2 ) A[a1] ⇠den A[a2]
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Consistency
if we guarantee the consistency between
the operational semantics and
the denotational semantics
then the congruence property is guaranteed
for the operational semantics too

<latexit sha1_base64="tOY4AkkZSDMODn9w1FJwm38j4E0="></latexit>

8a1, a2. ( a1 ⇠op a2
?, a1 ⇠den a2 )

<latexit sha1_base64="8juBRkFZsGlQkLKAHRcIJY3UWAA="></latexit>

8b1, b2. ( b1 ⇠op b2
?, b1 ⇠den b2 )

<latexit sha1_base64="qnT6PxXL+YbGjHl7GWwJoe6NsPw=">AAACXnicbVBNSxxBEO2dxI+sGjfJRcilcREUwjKziMktopccPBjIqrCzDDW9tWtrfwzdNQkyjL/RqwchvyJX7dlsIHFTp8d79ahXLy+U9BTH963oxcul5ZXVV+219Y3Xm503b8+8LZ3AgbDKuoscPCppcECSFF4UDkHnCs/z6+NGP/+OzktrvtFNgSMNUyMnUgAFKutcpRPrQCkusuSDyPq92920wamXOqtSDXTpdGWLug5sn6eeQFw7VNXnukpPcEJOTi8JnLM/6vaCb4zmj5HvZZ1u3ItnwxdBMgddNp/TrPOQjq0oNRoSCrwfJnFBowocSaGwbqelxyLEgSkOAzSg0Y+qWSc13yk9kOUFOi7Ddw2Jfzsq0N7f6DxsNmH9c60h/6cNS5p8GlXSFCWhEc0hkgpnh7xwMpSNfCwdEkGTHLk0XIADInSSgxCBLEP77dBH8vz7RXDW7yUHveTrfvfwaN7MKnvPttkuS9hHdsi+sFM2YILdsV/sscVaP6PlaCPa/L0ateaed+yfibaeADKPt5c=</latexit>

8c1, c2. ( c1 ⇠op c2
?, c1 ⇠den c2 )



1313

Consistency: expressions

6.3 Equivalence Between Operational and Denotational Semantics 141

sx < 0) Then sx 6= 0 and sx < 1 are true, thus jn+1s =
?.

sx = 0) Then sx 6= 0 is false and thus jn+1s = s =
s [0/x].

1  sx < n+1) Then sx 6= 0 and 1  sx < n+1 are true, thus
jn+1s = s [0/x].

sx � n+1) Then sx 6= 0 is true, but 1  sx < n+1 is false,
thus jn+1s = ?.

Summarising,

sx < 0

jn+1s = ?

sx = 0

jn+1s = s [0/x]

1  sx < n+1

jn+1s = s [0/x]

sx � n+1

jn+1s = ?

Then
jn+1 = ls . 0  sx < n+1 ! s [0/x] , ?

which proves P(n+1).

Finally we have

C JcK = fix G =
G

n2N
G n? =

G

n2N
jn = ls . 0  sx ! s [0/x] , ?

6.3 Equivalence Between Operational and Denotational
Semantics

This section deals with the issue of equivalence between the two semantics of IMP
introduced up to now. As we will show, the denotational and operational semantics
agree. As usual we will handle first arithmetic and boolean expressions, then as-
suming the proved equivalences we will show that the operational and denotational
semantics agree also on commands.

6.3.1 Equivalence Proofs for Expressions

We start by considering arithmetic expressions. We want to prove that the operational
and denotational semantics coincide, that is, the results of evaluating an arithmetic
expression both by operational and denotational semantics are the same. If we
regard the operational semantics as an interpreter and the denotational semantics
as a compiler we are proving that interpreting an IMP program and executing its
compiled version starting from the same memory leads to the same result.

Theorem 6.1. For all arithmetic expressions a 2 Aexp, the predicate P(a) holds,
where
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P(a)
def
= 8s 2 S . ha,si ! A JaKs

Proof. The proof is by structural induction on arithmetic expressions.

Const: P(n)
def
= 8s . hn,si ! A JnKs holds because, given a generic s , we have

hn,si ! n and A JnKs = n.
Vars: P(x) def

= 8s . hx,si ! A JxKs holds because, given a generic s , we have
hx,si ! sx and A JxKs = sx.

Ops: Let us generalise the proof for the binary operations of arithmetic expres-
sions. Consider two arithmetic expressions a0 and a1 and a binary operator
� 2 {+,�,⇥} of IMP, whose corresponding semantic operator is ·. We
assume

P(a0)
def
= ha0,si ! A Ja0Ks

P(a1)
def
= ha1,si ! A Ja1Ks

and we want to prove

P(a0 �a1)
def
= ha0 �a1,si ! A Ja0 �a1Ks

By using the inductive hypothesis we derive

ha0 �a1,si ! A Ja0Ks ·A Ja1Ks

Finally, by definition of A

A Ja0Ks ·A Ja1Ks = A Ja0 �a1Ks

ut

The case of boolean expressions is completely similar to that of arithmetic expres-
sions, so we leave the proof as an exercise (see Problem 6.2).

Theorem 6.2. For all boolean expressions b 2 Bexp, the predicate P(b) holds, where

P(b)
def
= 8s 2 S . hb,si ! B JbKs

From now on we will assume the equivalence between denotational and opera-
tional semantics for boolean and arithmetic expressions.

6.3.2 Equivalence Proof for Commands

Central to the proof of equivalence between denotational and operational semantics
is the case of commands. Operational and denotational semantics are defined in

142 6 Denotational Semantics of IMP

P(a)
def
= 8s 2 S . ha,si ! A JaKs

Proof. The proof is by structural induction on arithmetic expressions.

Const: P(n)
def
= 8s . hn,si ! A JnKs holds because, given a generic s , we have

hn,si ! n and A JnKs = n.
Vars: P(x) def

= 8s . hx,si ! A JxKs holds because, given a generic s , we have
hx,si ! sx and A JxKs = sx.

Ops: Let us generalise the proof for the binary operations of arithmetic expres-
sions. Consider two arithmetic expressions a0 and a1 and a binary operator
� 2 {+,�,⇥} of IMP, whose corresponding semantic operator is ·. We
assume

P(a0)
def
= ha0,si ! A Ja0Ks

P(a1)
def
= ha1,si ! A Ja1Ks

and we want to prove

P(a0 �a1)
def
= ha0 �a1,si ! A Ja0 �a1Ks

By using the inductive hypothesis we derive

ha0 �a1,si ! A Ja0Ks ·A Ja1Ks

Finally, by definition of A

A Ja0Ks ·A Ja1Ks = A Ja0 �a1Ks

ut

The case of boolean expressions is completely similar to that of arithmetic expres-
sions, so we leave the proof as an exercise (see Problem 6.2).

Theorem 6.2. For all boolean expressions b 2 Bexp, the predicate P(b) holds, where

P(b)
def
= 8s 2 S . hb,si ! B JbKs

From now on we will assume the equivalence between denotational and opera-
tional semantics for boolean and arithmetic expressions.

6.3.2 Equivalence Proof for Commands

Central to the proof of equivalence between denotational and operational semantics
is the case of commands. Operational and denotational semantics are defined in

142 6 Denotational Semantics of IMP

P(a)
def
= 8s 2 S . ha,si ! A JaKs

Proof. The proof is by structural induction on arithmetic expressions.

Const: P(n)
def
= 8s . hn,si ! A JnKs holds because, given a generic s , we have

hn,si ! n and A JnKs = n.
Vars: P(x) def

= 8s . hx,si ! A JxKs holds because, given a generic s , we have
hx,si ! sx and A JxKs = sx.

Ops: Let us generalise the proof for the binary operations of arithmetic expres-
sions. Consider two arithmetic expressions a0 and a1 and a binary operator
� 2 {+,�,⇥} of IMP, whose corresponding semantic operator is ·. We
assume

P(a0)
def
= ha0,si ! A Ja0Ks

P(a1)
def
= ha1,si ! A Ja1Ks

and we want to prove

P(a0 �a1)
def
= ha0 �a1,si ! A Ja0 �a1Ks

By using the inductive hypothesis we derive

ha0 �a1,si ! A Ja0Ks ·A Ja1Ks

Finally, by definition of A

A Ja0Ks ·A Ja1Ks = A Ja0 �a1Ks

ut

The case of boolean expressions is completely similar to that of arithmetic expres-
sions, so we leave the proof as an exercise (see Problem 6.2).

Theorem 6.2. For all boolean expressions b 2 Bexp, the predicate P(b) holds, where

P(b)
def
= 8s 2 S . hb,si ! B JbKs

From now on we will assume the equivalence between denotational and opera-
tional semantics for boolean and arithmetic expressions.

6.3.2 Equivalence Proof for Commands

Central to the proof of equivalence between denotational and operational semantics
is the case of commands. Operational and denotational semantics are defined in

8

<latexit sha1_base64="YSnHVNCIEk3qC86VDtCrA25oYBg=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJRBIg8piaL1ZRNOOZ+tuzVSZOUjaKGiQ7R8DQX/gm1cQGCq0cyudnb8SElLrvvhlFZW19Y3ypuVre2d3b3q/kHHhrER2BahCk3PB4tKamyTJIW9yCAEvsKuP7vO/O4DGitDfUfzCIcBTLWcSAGUSt3BJDSg1Khac+tuDv6XeAWpsQKtUfVzMA5FHKAmocDavudGNEzAkBQKF5VBbDECMYMp9lOqIUA7TPK4C34SW6CQR2i4VDwX8edGAoG188BPJwOge7vsZeJ/Xj+myeUwkTqKCbXIDpFUmB+ywsi0B+RjaZAIsuTIpeYCDBChkRyESMU4LaaS9uEtf/+XdM7qXqN+ftuoNa+KZsrsiB2zU+axC9ZkN6zF2kywGXtkT+zZSZwX59V5+x4tOcXOIfsF5/0LKWaUKQ==</latexit>

142 6 Denotational Semantics of IMP

P(a)
def
= 8s 2 S . ha,si ! A JaKs

Proof. The proof is by structural induction on arithmetic expressions.

Const: P(n)
def
= 8s . hn,si ! A JnKs holds because, given a generic s , we have

hn,si ! n and A JnKs = n.
Vars: P(x) def

= 8s . hx,si ! A JxKs holds because, given a generic s , we have
hx,si ! sx and A JxKs = sx.

Ops: Let us generalise the proof for the binary operations of arithmetic expres-
sions. Consider two arithmetic expressions a0 and a1 and a binary operator
� 2 {+,�,⇥} of IMP, whose corresponding semantic operator is ·. We
assume

P(a0)
def
= ha0,si ! A Ja0Ks

P(a1)
def
= ha1,si ! A Ja1Ks

and we want to prove

P(a0 �a1)
def
= ha0 �a1,si ! A Ja0 �a1Ks

By using the inductive hypothesis we derive

ha0 �a1,si ! A Ja0Ks ·A Ja1Ks

Finally, by definition of A

A Ja0Ks ·A Ja1Ks = A Ja0 �a1Ks

ut

The case of boolean expressions is completely similar to that of arithmetic expres-
sions, so we leave the proof as an exercise (see Problem 6.2).

Theorem 6.2. For all boolean expressions b 2 Bexp, the predicate P(b) holds, where

P(b)
def
= 8s 2 S . hb,si ! B JbKs

From now on we will assume the equivalence between denotational and opera-
tional semantics for boolean and arithmetic expressions.

6.3.2 Equivalence Proof for Commands

Central to the proof of equivalence between denotational and operational semantics
is the case of commands. Operational and denotational semantics are defined in

by structural induction

8

<latexit sha1_base64="YSnHVNCIEk3qC86VDtCrA25oYBg=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJRBIg8piaL1ZRNOOZ+tuzVSZOUjaKGiQ7R8DQX/gm1cQGCq0cyudnb8SElLrvvhlFZW19Y3ypuVre2d3b3q/kHHhrER2BahCk3PB4tKamyTJIW9yCAEvsKuP7vO/O4DGitDfUfzCIcBTLWcSAGUSt3BJDSg1Khac+tuDv6XeAWpsQKtUfVzMA5FHKAmocDavudGNEzAkBQKF5VBbDECMYMp9lOqIUA7TPK4C34SW6CQR2i4VDwX8edGAoG188BPJwOge7vsZeJ/Xj+myeUwkTqKCbXIDpFUmB+ywsi0B+RjaZAIsuTIpeYCDBChkRyESMU4LaaS9uEtf/+XdM7qXqN+ftuoNa+KZsrsiB2zU+axC9ZkN6zF2kywGXtkT+zZSZwX59V5+x4tOcXOIfsF5/0LKWaUKQ==</latexit>

142 6 Denotational Semantics of IMP

P(a)
def
= 8s 2 S . ha,si ! A JaKs

Proof. The proof is by structural induction on arithmetic expressions.

Const: P(n)
def
= 8s . hn,si ! A JnKs holds because, given a generic s , we have

hn,si ! n and A JnKs = n.
Vars: P(x) def

= 8s . hx,si ! A JxKs holds because, given a generic s , we have
hx,si ! sx and A JxKs = sx.

Ops: Let us generalise the proof for the binary operations of arithmetic expres-
sions. Consider two arithmetic expressions a0 and a1 and a binary operator
� 2 {+,�,⇥} of IMP, whose corresponding semantic operator is ·. We
assume

P(a0)
def
= ha0,si ! A Ja0Ks

P(a1)
def
= ha1,si ! A Ja1Ks

and we want to prove

P(a0 �a1)
def
= ha0 �a1,si ! A Ja0 �a1Ks

By using the inductive hypothesis we derive

ha0 �a1,si ! A Ja0Ks ·A Ja1Ks

Finally, by definition of A

A Ja0Ks ·A Ja1Ks = A Ja0 �a1Ks

ut

The case of boolean expressions is completely similar to that of arithmetic expres-
sions, so we leave the proof as an exercise (see Problem 6.2).

Theorem 6.2. For all boolean expressions b 2 Bexp, the predicate P(b) holds, where

P(b)
def
= 8s 2 S . hb,si ! B JbKs

From now on we will assume the equivalence between denotational and opera-
tional semantics for boolean and arithmetic expressions.

6.3.2 Equivalence Proof for Commands

Central to the proof of equivalence between denotational and operational semantics
is the case of commands. Operational and denotational semantics are defined in

by structural induction



1414

Consistency: commands

6.3 Equivalence Between Operational and Denotational Semantics 143

very different formalisms: on the one hand we have an inference rule system which
allows us to calculate the execution of each command; on the other hand we have a
function which associates with each command its functional meaning. So to show
the equivalence between the two semantics we will prove the following property.

Theorem 6.3. 8c 2 Com. 8s ,s 0 2 S . hc,si ! s 0 , C JcKs = s 0.

As usual we divide the proof into two parts:

Correctness: 8c 2 Com, 8s ,s 0 2 S we prove

P(hc,si ! s 0)
def
= C JcKs = s 0

Completeness: 8c 2 Com we prove

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Notice that in this way the undefined cases are also handled for the equivalence: for
instance we have as a corollary that

hc,si 6! ) C JcKs = ?S?

since otherwise, assuming C JcKs = s 0 for some s 0 2 S , it would follow that
hc,si ! s 0. Similarly in the opposite direction:

C JcKs = ?S? ) hc,si 6!

6.3.2.1 Correctness

Let us prove the first part of Theorem 6.3. We let

P
�
hc,si ! s 0� def

= C JcKs = s 0

and prove that P(hc,si ! s 0) holds for any c 2 Com and s ,s 0 2 S .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for the skip:

hskip,si ! s

We want to prove

P(hskip,si ! s)
def
= C JskipKs = s

Obviously the proposition is true by the definition of the denotational
semantics.

can we write it as
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def
= C JcKs = s 0

Completeness: 8c 2 Com we prove

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Notice that in this way the undefined cases are also handled for the equivalence: for
instance we have as a corollary that

hc,si 6! ) C JcKs = ?S?

since otherwise, assuming C JcKs = s 0 for some s 0 2 S , it would follow that
hc,si ! s 0. Similarly in the opposite direction:

C JcKs = ?S? ) hc,si 6!

6.3.2.1 Correctness

Let us prove the first part of Theorem 6.3. We let

P
�
hc,si ! s 0� def

= C JcKs = s 0

and prove that P(hc,si ! s 0) holds for any c 2 Com and s ,s 0 2 S .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for the skip:

hskip,si ! s

We want to prove

P(hskip,si ! s)
def
= C JskipKs = s

Obviously the proposition is true by the definition of the denotational
semantics.
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assign: Let us consider the rule for the assignment command:

ha,si ! m

hx := a,si ! s [m/x]

We assume ha,si ! m and hence A JaKs = m by the equivalence of the
operational and denotational semantics of arithmetic expressions.
We want to prove

P(hx := a,si ! s [m/x])
def
= C Jx := aKs = s [m/x]

By the definition of the denotational semantics

C Jx := aKs = s [A JaKs /x] = s [m/x]

seq: Let us consider the concatenation rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

We assume

P(hc0,si ! s 00)
def
= C Jc0Ks = s 00

P(
⌦
c1,s 00↵ ! s 0)

def
= C Jc1Ks 00 = s 0

We want to prove

P(hc0;c1,si ! s 0)
def
= C Jc0;c1Ks = s 0

By the denotational semantics definition and the inductive hypotheses

C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = C Jc1K⇤ s 00 = C Jc1Ks 00 = s 0

Note that the lifting operator can be removed because s 00 6= ? by the
inductive hypothesis.

iftt: Let us consider the rule

hb,si ! true hc0,si ! s 0

hif b then c0 else c1,si ! s 0

We assume

• hb,si ! true and therefore B JbKs = true by the correspondence
between the operational and denotational semantics for boolean ex-
pressions;

• P(hc0,si ! s 0)
def
= C Jc0Ks = s 0
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Note that the lifting operator can be removed because s 00 6= ? by the
inductive hypothesis.

iftt: Let us consider the rule

hb,si ! true hc0,si ! s 0
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We assume
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= C Jc0Ks = s 06.3 Equivalence Between Operational and Denotational Semantics 145

We want to prove

P(hif b then c0 else c1,si ! s 0)
def
= C Jif b then c0 else c1Ks = s 0

In fact, we have

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks
= true ! s 0,C Jc1Ks
= s 0

ifff: The proof for the second rule of the conditional command is completely
analogous to the previous one and thus omitted.

whff: Let us consider the rule

hb,si ! false

hwhile b do c,si ! s

We assume hb,si ! false and therefore B JbKs = false.
We want to prove

P(hwhile b do c,si ! s)
def
= C Jwhile b do cKs = s

By the fixpoint property of the denotational semantics

C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs),s
= false ! C Jwhile b do cK⇤ (C JcKs),s
= s

whtt: At last we consider the second rule of the while command:

hb,si ! true hc,si ! s 00 ⌦
while b do c,s 00↵ ! s 0

hwhile b do c,si ! s 0

We assume

• hb,si ! true and therefore B JbKs = true
• P(hc,si ! s 00)

def
= C JcKs = s 00

• P(hwhile b do c,s 00i ! s 0)
def
= C Jwhile b do cKs 00 = s 0

We want to prove

P(hwhile b do c,si ! s 0)
def
= C Jwhile b do cKs = s 0

By the definition of the denotational semantics and the inductive hypotheses
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We want to prove
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We assume hb,si ! false and therefore B JbKs = false.
We want to prove
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We want to prove
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We assume hb,si ! false and therefore B JbKs = false.
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P(hwhile b do c,si ! s)
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hwhile b do c,si ! s 0

We assume

• hb,si ! true and therefore B JbKs = true
• P(hc,si ! s 00)

def
= C JcKs = s 00

• P(hwhile b do c,s 00i ! s 0)
def
= C Jwhile b do cKs 00 = s 0

We want to prove

P(hwhile b do c,si ! s 0)
def
= C Jwhile b do cKs = s 0

By the definition of the denotational semantics and the inductive hypotheses146 6 Denotational Semantics of IMP

C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have
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very different formalisms: on the one hand we have an inference rule system which
allows us to calculate the execution of each command; on the other hand we have a
function which associates with each command its functional meaning. So to show
the equivalence between the two semantics we will prove the following property.

Theorem 6.3. 8c 2 Com. 8s ,s 0 2 S . hc,si ! s 0 , C JcKs = s 0.

As usual we divide the proof into two parts:

Correctness: 8c 2 Com, 8s ,s 0 2 S we prove

P(hc,si ! s 0)
def
= C JcKs = s 0

Completeness: 8c 2 Com we prove

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Notice that in this way the undefined cases are also handled for the equivalence: for
instance we have as a corollary that

hc,si 6! ) C JcKs = ?S?

since otherwise, assuming C JcKs = s 0 for some s 0 2 S , it would follow that
hc,si ! s 0. Similarly in the opposite direction:

C JcKs = ?S? ) hc,si 6!

6.3.2.1 Correctness

Let us prove the first part of Theorem 6.3. We let

P
�
hc,si ! s 0� def

= C JcKs = s 0

and prove that P(hc,si ! s 0) holds for any c 2 Com and s ,s 0 2 S .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for the skip:

hskip,si ! s

We want to prove

P(hskip,si ! s)
def
= C JskipKs = s

Obviously the proposition is true by the definition of the denotational
semantics.
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We want to prove

P(hskip,si ! s)
def
= C JskipKs = s

Obviously the proposition is true by the definition of the denotational
semantics.

by structural induction
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com
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= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0
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def
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By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0
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to conclude
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Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have

Then

148 6 Denotational Semantics of IMP

We need to prove

P(while b do c) def
= 8s ,s 0. C Jwhile b do cKs = s 0

) hwhile b do c,si ! s 0

By definition C Jwhile b do cKs = fix Gb,c s =
⇣F

n2N G n
b,c?

⌘
s so

C Jwhile b do cKs = s 0 ) hwhile b do c,si ! s 0

,⇣F
n2N G n

b,c?
⌘
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,⇣
9n 2 N. (G n
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⌘
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,
8n 2 N.
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G n

b,c?s = s 0 ) hwhile b do c,si ! s 0
⌘
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= 8s ,s 0. G n

b,c?s = s 0 ) hwhile b do c,si ! s 0.
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8s ,s 0. G 0
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Since G 0
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⇣
G n

b,c?
⌘
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�
G n

b,c?
�⇤

(C JcKs) ,s = s 0

Now either B JbKs = false or B JbKs = true.
• If B JbKs = false, we have hb,si ! false and s 0 = s .

Now by using the rule (whff)
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hwhile b do c,si ! s

we conclude hwhile b do c,si ! s .

By rule (skip)
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= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

We prove
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P(skip)
def
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By definition we have C JskipKs = s and hskip,si ! s is an axiom of
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assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
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= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have

Then
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6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0
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P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have

By consistency for expressions
By rule (asgn)
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Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
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Since the denotational semantics is given by structural recursion we will proceed
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skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
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assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

We prove
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C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0

Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c 2 Com

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By the denotational semantics definition we have s 0 = s [A JaKs /x] and
by the equivalence between operational and denotational semantics for
expressions we have ha,si ! A JaKs , thus we can apply the rule (assign)
to conclude

hx := a,si ! s [A JaKs /x]

seq: We assume

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
the conclusion hc0;c1,si ! s 0. We have
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to conclude
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Let us assume C Jc0;c1Ks = s 0, the premise of the implication, and prove
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

we have
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

thus
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

for some
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

and

6.3 Equivalence Between Operational and Denotational Semantics 147

C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

by inductive hypotheses
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

By rule (seq)
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00
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Assume
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

We prove

6.3 Equivalence Between Operational and Denotational Semantics 147

C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

Assume

6.3 Equivalence Between Operational and Denotational Semantics 147

C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

we have
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
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�
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G

n2N
dn 2 P
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
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= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
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We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0
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Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00
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• if B JbKs = true we have hb,si ! true and
�
G n

b,c?
�⇤

(C JcKs) = s 0

Since s 0 6= ? there must exist some s 00 6= ? with
C JcKs = s 00 and by structural induction hc,si ! s 00.
Since

⇣
G n

b,c?
⌘⇤

(C JcKs) =
⇣

G n
b,c?

⌘
s 00 = s 0 we have

by the mathematical induction hypothesis A(n) that
⌦
while b do c,s 00↵ ! s 0

Finally, by using the rule (whtt)

hb,si ! true hc,si ! s 00 ⌦
while b do c,s 00↵ ! s 0

hwhile b do c,si ! s 0

we conclude hwhile b do c,si ! s 0.

6.4 Computational Induction

How are we able to prove properties about fixpoints? To fill this gap we introduce
Scott’s computational induction, which applies to a class of properties corresponding
to inclusive sets.

Definition 6.10 (Inclusive property). Let (D,v) be a CPO, let P ✓ D be a set. We
say that P is an inclusive set if and only if

(8n 2 N. dn 2 P) )
G

n2N
dn 2 P

A property is inclusive if the set of values on which it holds is inclusive.

Intuitively, a set P is inclusive if whenever we form a chain out of elements in P,
then the limit of the chain is also in P, i.e., P is inclusive if and only if it forms a
CPO.

Example 6.9 (Non-inclusive property). Let ({a,b}⇤ [ {a,b}•,v) be a CPO where
a v b , 9g. b = ag . So the elements of the CPO are sequences of a and b and
a v b iff a = b or a is a finite prefix of b . Let us now define the following property:

• a 2 {a,b}⇤ [{a,b}• is fair iff 6 9b 2 {a,b}⇤. a = ba• _ a = bb•

Fairness is the property of an arbiter which does not favour one of two competitors
all the time from some point on. Fairness is not inclusive, indeed,

• the sequence an is finite and thus fair for any n 2 N;
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How are we able to prove properties about fixpoints? To fill this gap we introduce
Scott’s computational induction, which applies to a class of properties corresponding
to inclusive sets.

Definition 6.10 (Inclusive property). Let (D,v) be a CPO, let P ✓ D be a set. We
say that P is an inclusive set if and only if

(8n 2 N. dn 2 P) )
G

n2N
dn 2 P

A property is inclusive if the set of values on which it holds is inclusive.

Intuitively, a set P is inclusive if whenever we form a chain out of elements in P,
then the limit of the chain is also in P, i.e., P is inclusive if and only if it forms a
CPO.

Example 6.9 (Non-inclusive property). Let ({a,b}⇤ [ {a,b}•,v) be a CPO where
a v b , 9g. b = ag . So the elements of the CPO are sequences of a and b and
a v b iff a = b or a is a finite prefix of b . Let us now define the following property:

• a 2 {a,b}⇤ [{a,b}• is fair iff 6 9b 2 {a,b}⇤. a = ba• _ a = bb•

Fairness is the property of an arbiter which does not favour one of two competitors
all the time from some point on. Fairness is not inclusive, indeed,

• the sequence an is finite and thus fair for any n 2 N;
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C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0

Since s 0 6= ?, it must be that C Jc0Ks 6= ?, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0

Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵ ! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove the
conclusion hif b then c0 else c1,si ! s 0. By definition

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

thus for some
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• if B JbKs = true we have hb,si ! true and
�
G n

b,c?
�⇤

(C JcKs) = s 0

Since s 0 6= ? there must exist some s 00 6= ? with
C JcKs = s 00 and by structural induction hc,si ! s 00.
Since

⇣
G n

b,c?
⌘⇤

(C JcKs) =
⇣

G n
b,c?

⌘
s 00 = s 0 we have

by the mathematical induction hypothesis A(n) that
⌦
while b do c,s 00↵ ! s 0

Finally, by using the rule (whtt)

hb,si ! true hc,si ! s 00 ⌦
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6.4 Computational Induction

How are we able to prove properties about fixpoints? To fill this gap we introduce
Scott’s computational induction, which applies to a class of properties corresponding
to inclusive sets.

Definition 6.10 (Inclusive property). Let (D,v) be a CPO, let P ✓ D be a set. We
say that P is an inclusive set if and only if

(8n 2 N. dn 2 P) )
G

n2N
dn 2 P

A property is inclusive if the set of values on which it holds is inclusive.

Intuitively, a set P is inclusive if whenever we form a chain out of elements in P,
then the limit of the chain is also in P, i.e., P is inclusive if and only if it forms a
CPO.

Example 6.9 (Non-inclusive property). Let ({a,b}⇤ [ {a,b}•,v) be a CPO where
a v b , 9g. b = ag . So the elements of the CPO are sequences of a and b and
a v b iff a = b or a is a finite prefix of b . Let us now define the following property:

• a 2 {a,b}⇤ [{a,b}• is fair iff 6 9b 2 {a,b}⇤. a = ba• _ a = bb•

Fairness is the property of an arbiter which does not favour one of two competitors
all the time from some point on. Fairness is not inclusive, indeed,

• the sequence an is finite and thus fair for any n 2 N;
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By rule (whtt)
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We need to prove

P(while b do c) def
= 8s ,s 0. C Jwhile b do cKs = s 0

) hwhile b do c,si ! s 0

By definition C Jwhile b do cKs = fix Gb,c s =
⇣F

n2N G n
b,c?

⌘
s so

C Jwhile b do cKs = s 0 ) hwhile b do c,si ! s 0

,⇣F
n2N G n

b,c?
⌘

s = s 0 ) hwhile b do c,si ! s 0

,⇣
9n 2 N. (G n

b,c?)s = s 0
⌘

) hwhile b do c,si ! s 0

,
8n 2 N.

⇣
G n

b,c?s = s 0 ) hwhile b do c,si ! s 0
⌘

Let A(n)
def
= 8s ,s 0. G n

b,c?s = s 0 ) hwhile b do c,si ! s 0.
We prove that 8n 2 N. A(n) by mathematical induction.

Base case: We have to prove A(0), namely

8s ,s 0. G 0
b,c?s = s 0 ) hwhile b do c,si ! s 0

Since G 0
b,c?s = ?s = ? and s 0 6= ? the premise is false

and hence the implication is true.
Ind. case: Let us assume

A(n)
def
= 8s ,s 0. G n

b,c?s = s 0 ) hwhile b do c,si ! s 0

We want to show that

A(n+1)
def
= 8s ,s 0. G n+1

b,c ?s = s 0 ) hwhile b do c,si ! s 0

We assume G n+1
b,c ?s = Gb,c

⇣
G n

b,c?
⌘

s = s 0, that is

B JbKs !
�
G n

b,c?
�⇤

(C JcKs) ,s = s 0

Now either B JbKs = false or B JbKs = true.
• If B JbKs = false, we have hb,si ! false and s 0 = s .

Now by using the rule (whff)

hb,si ! false

hwhile b do c,si ! s

we conclude hwhile b do c,si ! s .
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Final remarks
Commands

Big-step operational semantics Denotational semantics

Termination

Determinacy

Operational equivalence Denotational equivalence
is a congruence

Consistency
(correctness + completeness)

Operational equivalence = Denotational equivalence
they are congruences

(partial functions)

Well-founded induction Kleene’s fixpoint theorem


