

Mobility Patterns

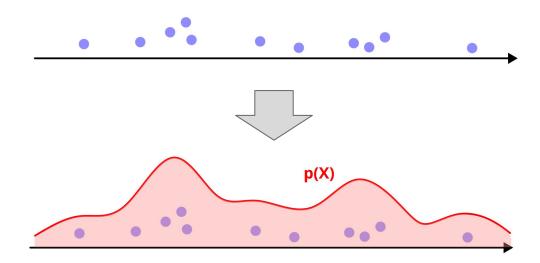
Content of this lesson

- Global patterns: Clustering
 - Trajectory distances
 - Trajectory clustering
- Local patterns
 - Flocks, Convoys & Swarms
 - Moving clusters
 - o T-Patterns

Global vs Local

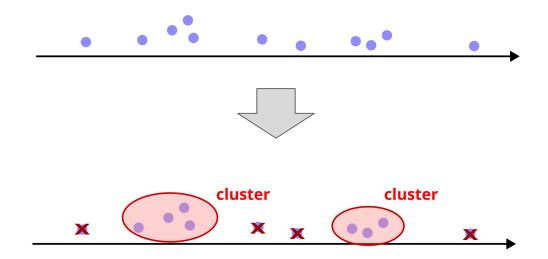
Global patterns/models

- Aim to provide a model or a description of the whole dataset
- Example: infer the complete distribution of the data space starting from some data samples



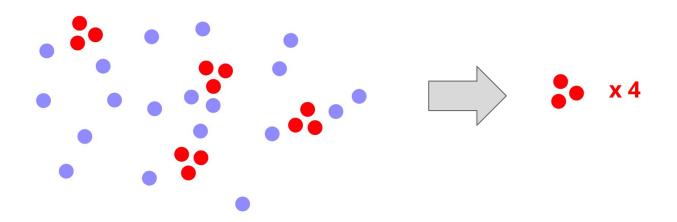
Global patterns/models

- In the data mining area, the most common global pattern method is clustering
 - Aims to identify representative points, around which the dataset distributes



Local patterns

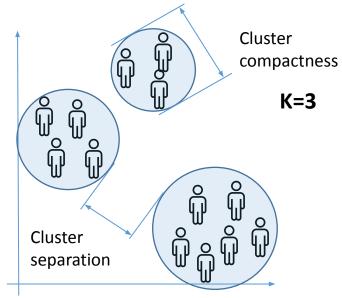
- Aims to find regularities that appear in small portions of the dataset
 - Statistically significance: each pattern should cover many data points
 - o Locality: patterns usually cover overall only a small percentage of the dataset
- Most common type: frequent patterns
- Example: co-location patterns:



Global Patterns

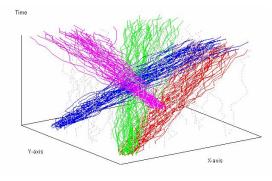
Clustering (sample K-means family)

• Find k subgroups that form compact and well-separated clusters



Trajectory clustering

Trajectories are grouped based on similarity



Trajectory Clustering

Questions:

- O Which distance between trajectories?
- O Which kind of clustering?
 - K-means, density-based, hierarchical, etc.
- How to compute a representative trajectory?
 - E.g. the centroid of k-means

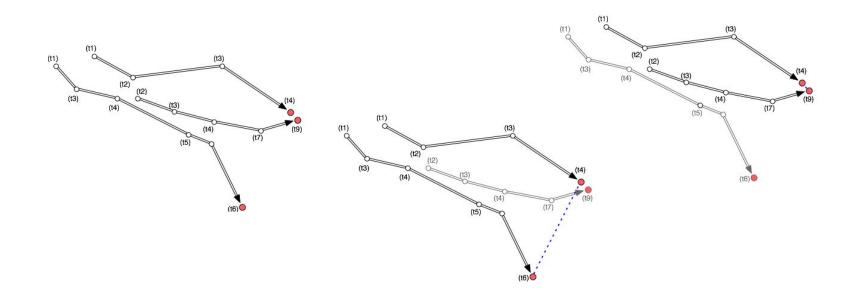
Trajectory Distances

Families of Trajectory Distances

- Trajectory as set of points
 - Single-point approaches
 - Hausdorff distance
- Trajectory as sequence of points
 - Fréchet distance
 - Time series distances: Euclidean, DTW & LCSS
- Trajectory as time-stamped sequence of points
 - Average Euclidean distance

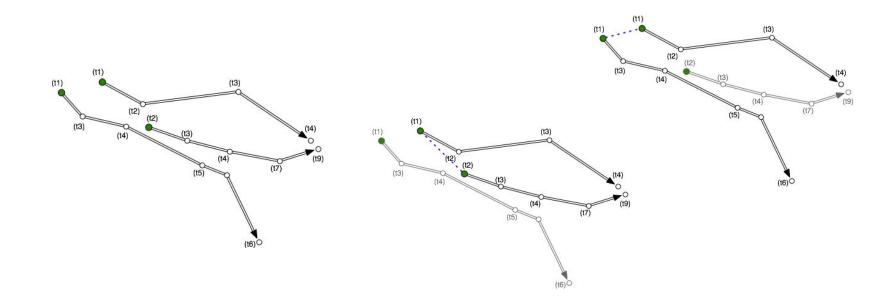
Reduce Trajectories to single points Common Destination

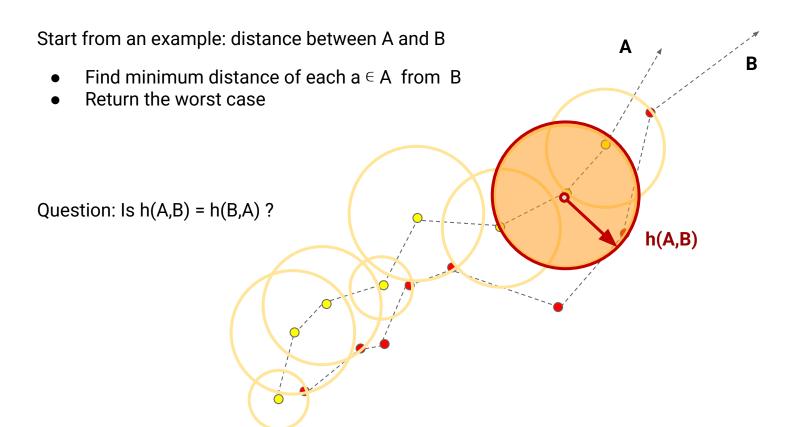
- Select last point *Plast* for each trajectory
- □ D(T,T') = Euclidean(Plast, P'last)



Reduce Trajectories to single points Common Origin

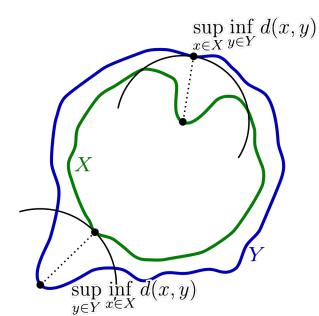
- Select first point *Pfirst* for each trajectory
- □ D(T,T') = Euclidean(Pfirst, P'first)

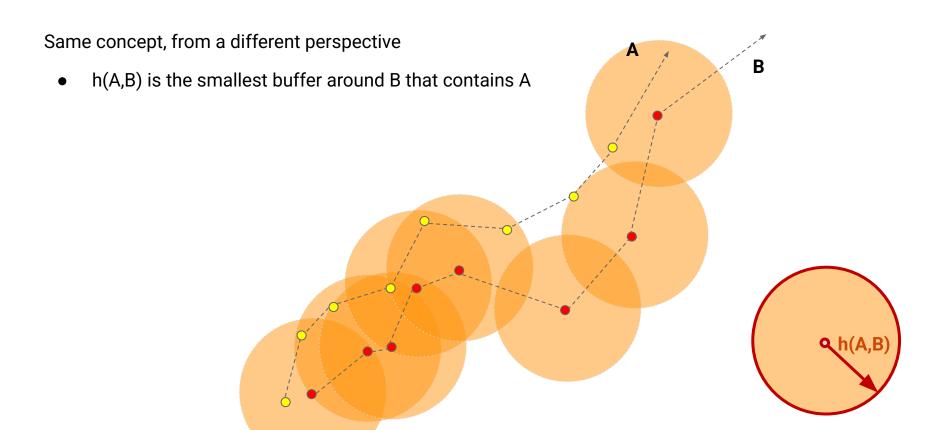




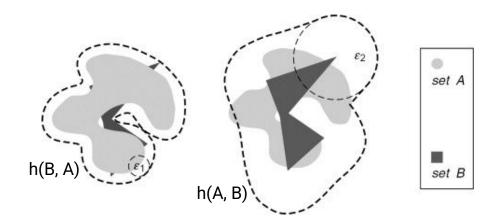
- Intuition: two sets are close if every point of either set is close to some point of the other set
- Formally, given sets A and B:

- $\circ \quad r(x,B) = \inf \{d(x,b) : b \in B\}$
- \circ h(A, B) = sup{r (a, B) : a ∈ A}
- $o d_{H}(A, B) = max \{ h(A, B), h(B, A) \}$



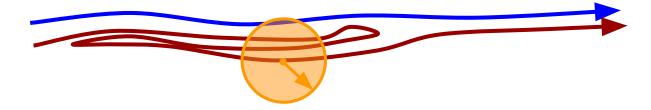


- Equivalently:
 - h(A, B) = minimum buffer radius around B that fully contains A
 - \circ d_H(A, B) = symmetric version of h()



Trajectory as sequence of points From Hausdorff to Fréchet distance

- Applied to trajectories, sometimes Hausdorff distance yields counter-intuitive results
- How far are these?



- Reasonable in a set-oriented view
- Wrong in terms of moving objects

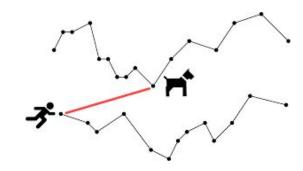
Trajectory as sequence of points Fréchet distance

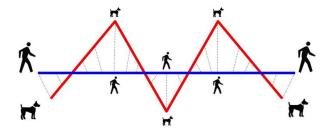
- Intuition: equivalent of Dynamic Time Warping on continuous curves
- Formally:

$$F(A,B) = \inf_{lpha,eta} \, \max_{t \in [0,1]} \, \left\{ d\Big(A(lpha(t)), \, B(eta(t))\Big)
ight\}$$

 α and β are non-decreasing mappings from [0,1] to the points along A and B in forward order

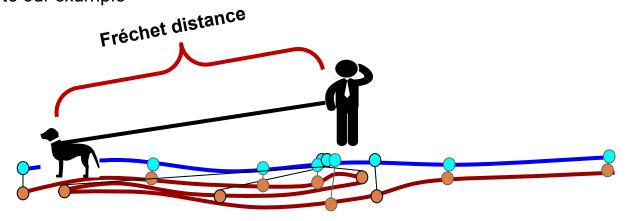
- Also described as "minimum leash length":
 - What is the minimum length of a leash needed to stroll around the dog, given the owner's and the dog's trajectories?





Trajectory as sequence of points Fréchet distance

• Back to our example



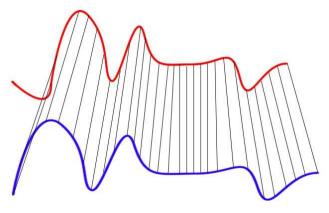
(Well... that is probably not the real Fréchet distance, because it is not the optimal "leash". What is the best one, instead?)

Trajectory as sequence of points Time series distances

- Just replace "difference of two values" with "spatial distance of two points"
- Examples:
 - Euclidean distance

$$D(Q,C) \equiv \sqrt{\sum_{i=1}^{n} (q_i - c_i)^2}$$

- Dynamic Time Warping
 - Very similar to Fréchet!
- Edit Distance with Real values
 - Similar to DTW, but can remove points



Dynamic Time Warping Matching

IMPORTANT: most methods in this class assume constant sampling rates

Trajectory as time-stamped sequence of points Average Euclidean distance

- The trajectory is seen as a continuous spatio-temporal curve
- Positions between input points (the GPS fixes) linearly interpolated

$$D(\tau_1,\tau_2)\mid_T = \frac{\int_T d(\tau_1(t),\tau_2(t))dt}{\mid T\mid}$$
 distance between moving objects τ_1 and τ_2 at time t

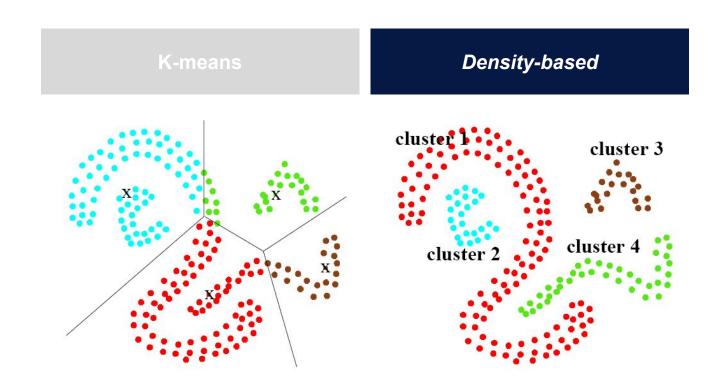
- "Synchronized" behaviour distance
 - Similar objects = almost always in the same place at the same time
- Computed on the whole trajectory

Clustering Algorithms

Which kind of clustering method?

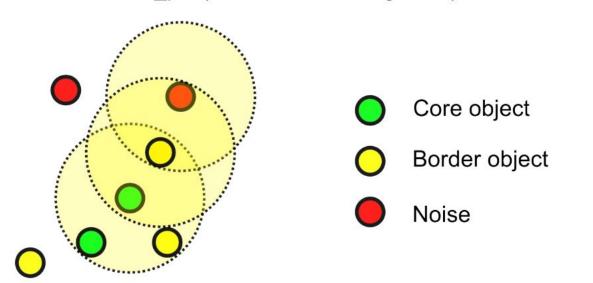
- In principle, any distance-based algorithm
- General requirements:
 - Non-spherical clusters should be allowed
 - E.g.: A traffic jam along a road = "snake-shaped" cluster
 - Tolerance to noise
 - Low computational cost
 - Applicability to complex, possibly non-vectorial data
- A suitable candidate: Density-based clustering
 - o OPTICS (Ankerst et al., 1999)
 - Evolution of standard DBSCAN

Density Based ClusteringA refresher

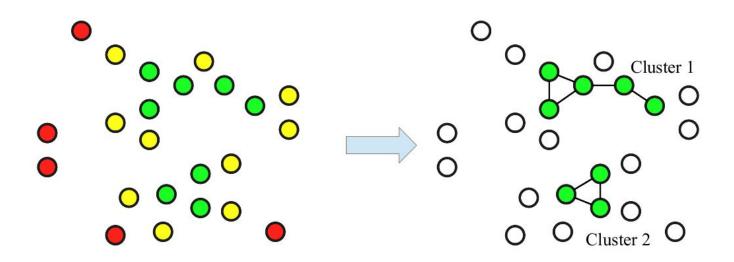


Step 1: label points as core (dense), border and noise

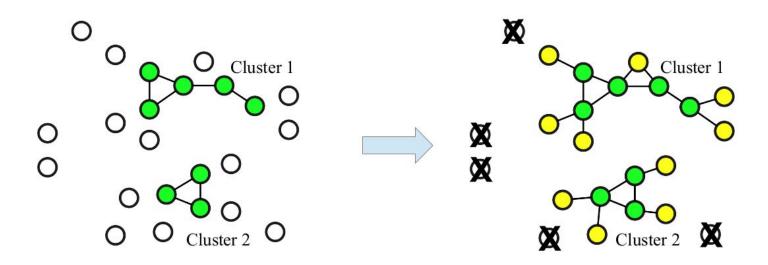
 Based on thresholds R (radius of neighborhood) and min_pts (min number of neighbors)

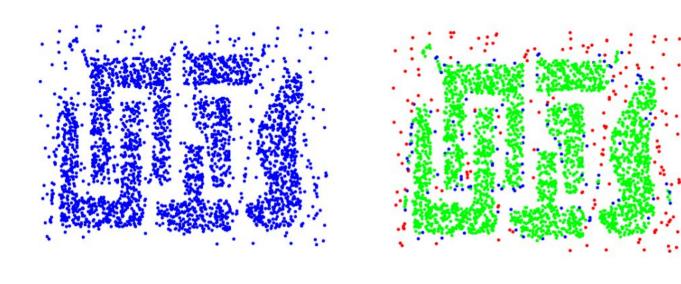


Step 2: connect core objects that are neighbors, and put them in the same cluster



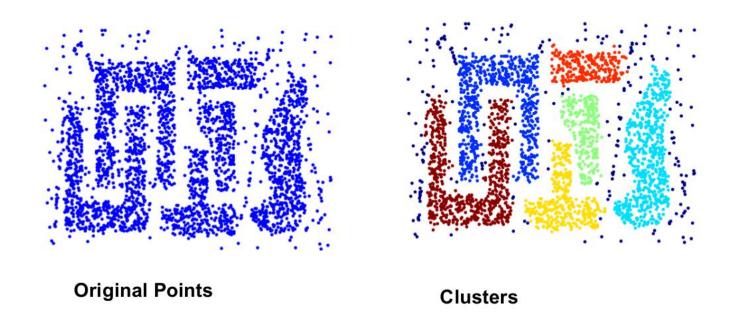
Step 3: associate border objects to (one of) their core(s), and remove noise





Original Points

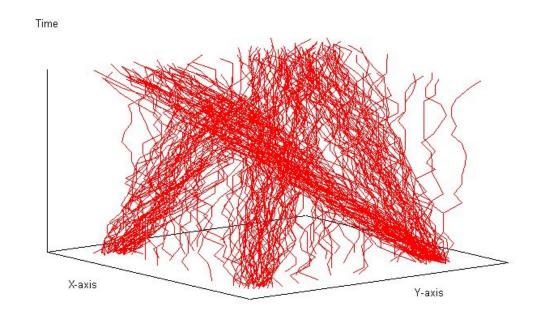
Point types: core, border and noise



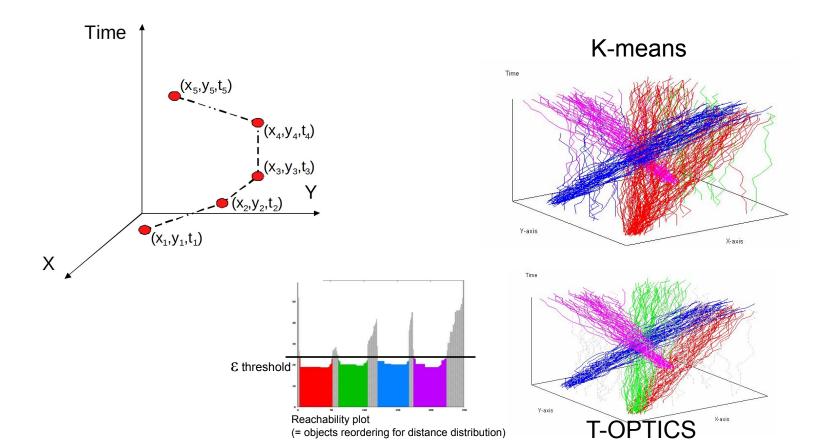
- Resistant to Noise
- Can handle clusters of different shapes and sizes

A sample dataset

 A set of trajectories forming 4 clusters + noise (synthetic)



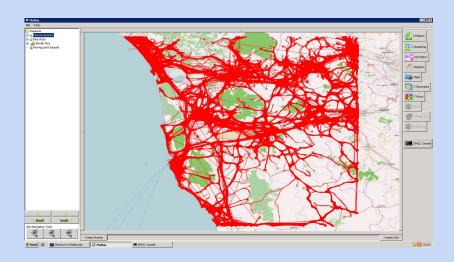
T-OPTICS vs. K-means



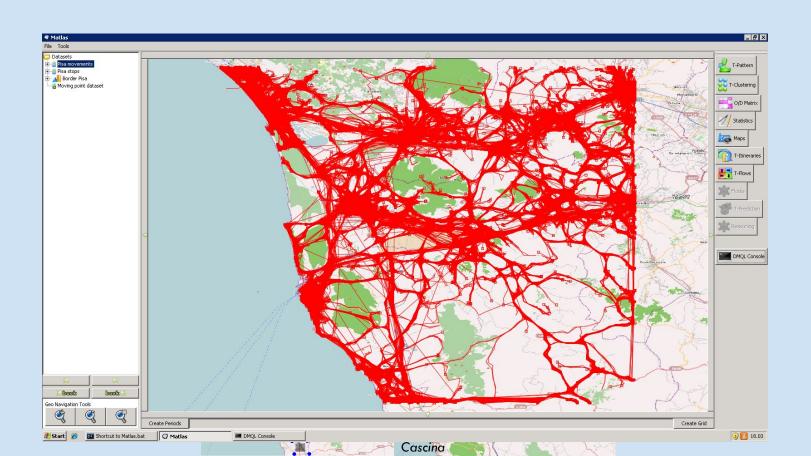
INTERVALLO

What's the source of traffic in Pisa?

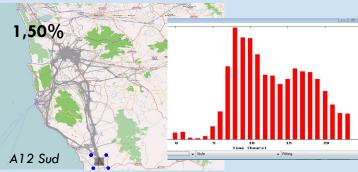
Trajectory clustering at work

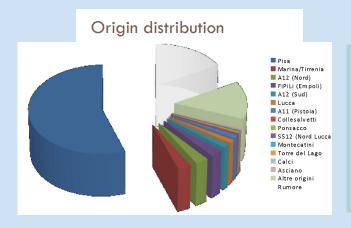


Access patterns using T-clustering



Characterizing the access patterns: origin & time



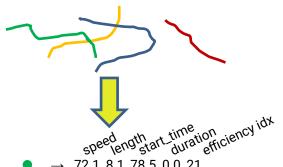


A quick peek into Deep Learning

Deep Learning approaches to Trajectory Clustering

Traditional approach

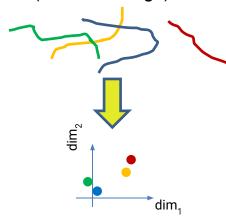
Preprocess the data to obtain features



- \rightarrow 72.1, 8.1, 78.5, 0.0, 21
- \rightarrow 21.2, 14.1, 8.1, 6.1, 2.9
- \rightarrow 12.1, 8.5, 12.5, 1.0, 32
- \rightarrow 5.2, 23.1, 1.5, 4.4, 11
- Clustering over features

Deep learning approach

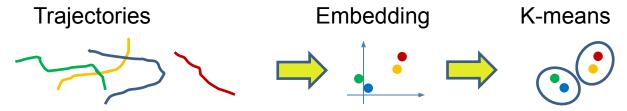
Learning a latent representation (or embeddings)



Clustering over embeddings

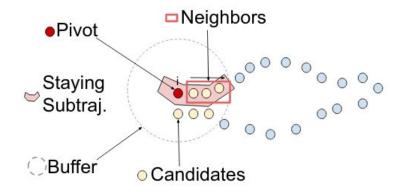
Deep Learning approaches to Trajectory Clustering

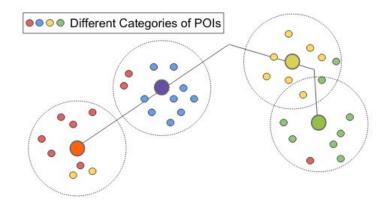
- Sample approach: DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis
- Basic idea:



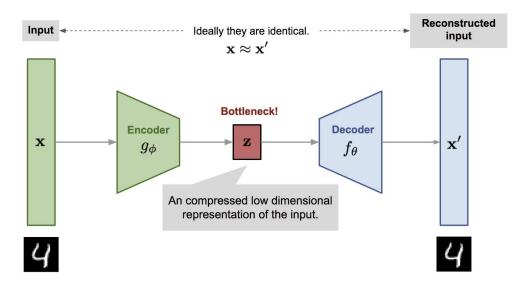
- Integrate the clustering step in the learning of embeddings
- Three steps:
 - Enrich trajectories with context
 - LSTM-based embedding of trajectories
 - Clustering on embeddings

- Enrich trajectories with context
 - Identify stay areas = segment of trajectory where there is no movement, basically a stop
 - Create a buffer around the area
 - Select all points-of-interest located there (hotels, shops, etc.)
 - Compute a feature vector, one feature per Pol category
- Output



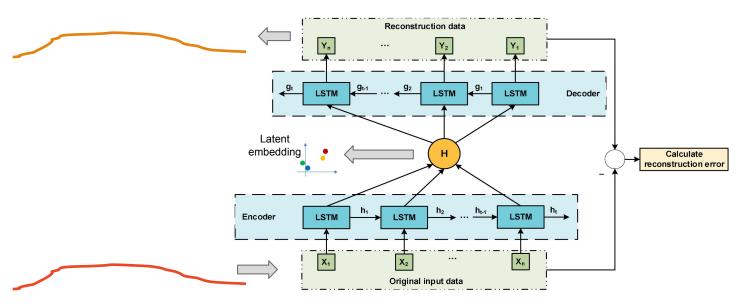


- LSTM-based embedding of trajectories
 - Apply a encoder-decoder schema to the enriched trajectories
 - Use LSTM as basic mechanism



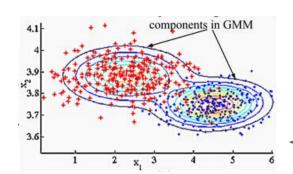
 Objective: minimize the difference between the encoder input and the decoder output

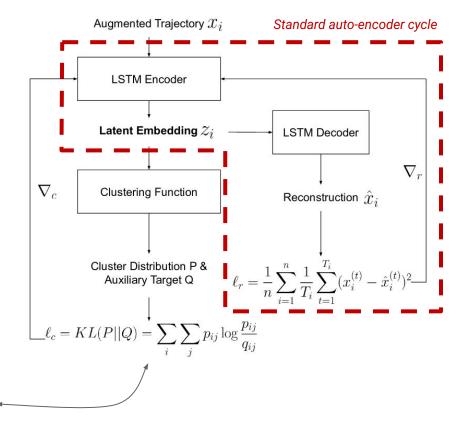
- LSTM-based embedding of trajectories
 - Apply a encoder-decoder schema to the enriched trajectories
 - Use LSTM as basic mechanism



 Objective: minimize the difference between the encoder input and the decoder output

- Clustering on embeddings
- Clustering error becomes one term of the overall loss function
- P & Q = points distribution
 - P = real data (embedded)
 - Q = clusters (Student t-distribution around centers)

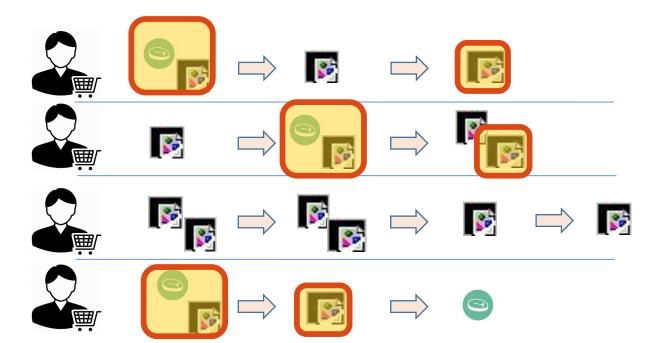




Local Trajectory Patterns

Frequent patterns in sequences

- Frequent sequences (a.k.a. Sequential patterns)
- Input: sequences of events (or of groups)



Sequential patterns

- Input: a dataset of sequences over items I
 - $O = \{S_1, ..., S_n\}$
 - \circ $S_{i} = \langle S_{i}^{1}, ..., S_{i}^{k} \rangle$
 - \circ $s_{i}^{j} \subseteq I$
- Inclusion relation
 - \circ $\langle s^1, ..., s^k \rangle \subseteq \langle q^1, ..., q^h \rangle$ iff
 - exist i(1) < i(2) < ... < i(k) such that $\forall j: s^j \subseteq q^{i(j)}$
- Sequential patterns
 - Sequences S that are contained in at least Θ sequences of D

From trajectories to sequential patterns: the easy way

- Map each trajectory to a sequence of areas
 - Predefined or driven by data

0	Ι	F	Р	Q
Α	В	Е	Н	М
N	D	С	G	L

$$A \rightarrow B \rightarrow C$$

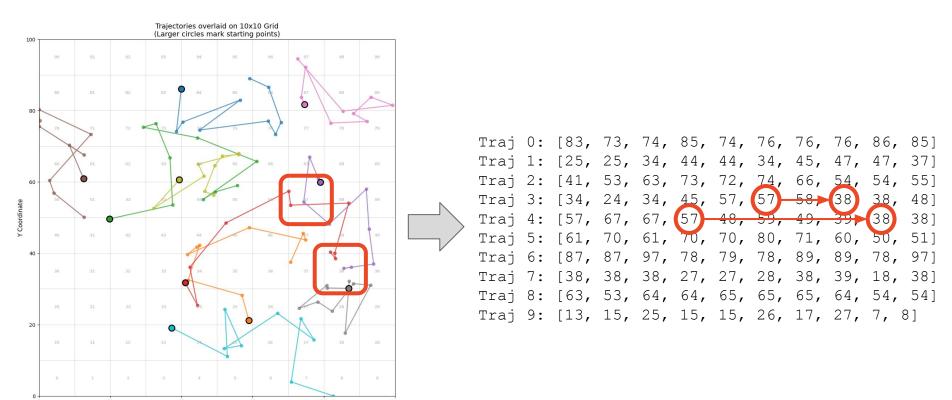
$$D \rightarrow B \rightarrow E \rightarrow F$$

$$C \rightarrow G \rightarrow H \rightarrow E \rightarrow I$$

$$L \rightarrow M \rightarrow H$$

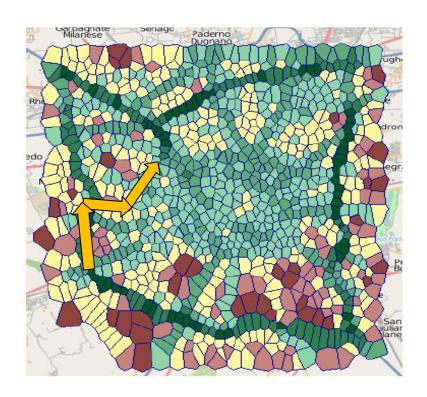
From trajectories to sequential patterns: the easy way

X Coordinate

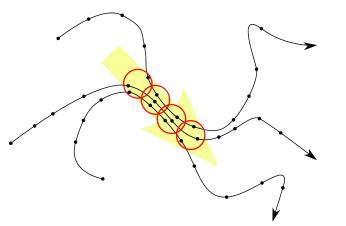


From trajectories to sequential patterns: the easy way

 A "Trajectory frequent pattern" can be defined as sequential pattern over traversed areas

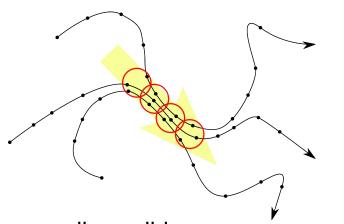


Moving Trajectory Flocks



 Group of objects that move together (close to each other) for a time interval

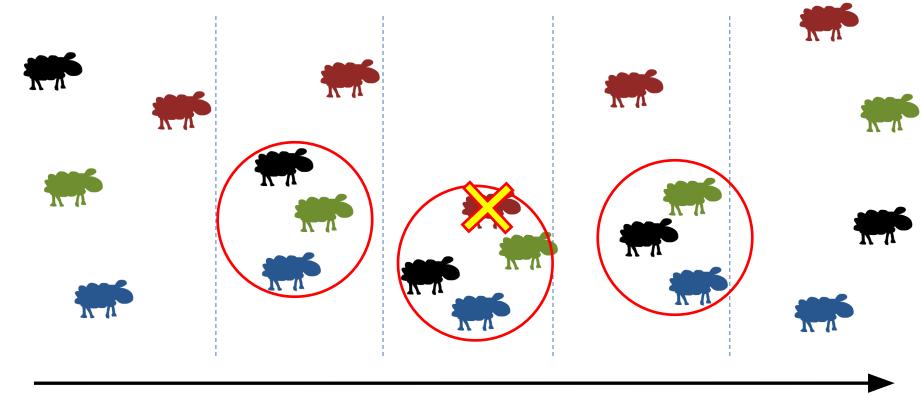
Moving Trajectory Flocks



 Group of objects that move together (close to each other) for a time interval

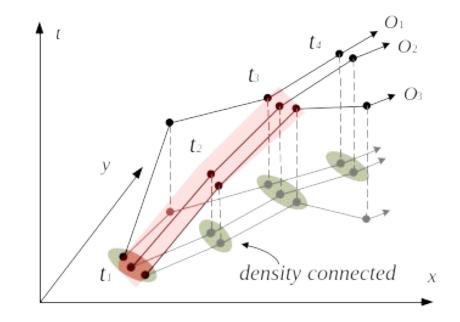
- Discover all possible:
 - sets of objects O, with |O| > min_size and
 - time intervals T, with |T| > min_duration
- such that for all timestamps $t \in T$ the points in O|t are contained in a circle of radius r

Moving Trajectory Flocks



From Flocks to Convoys

- Given radius r, size m, and time threshold k
 - find all groups of objects so that each group consists of density-connected objects w.r.t. r and m
 - during at least k consecutive time points
- Basically replace circles with DBSCAN clusters

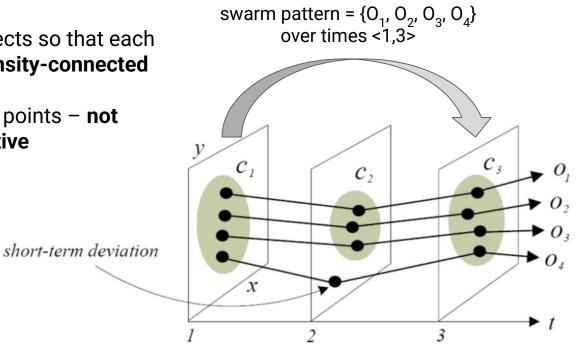


From Convoys to Swarms

 Given radius r, size m, and time threshold k

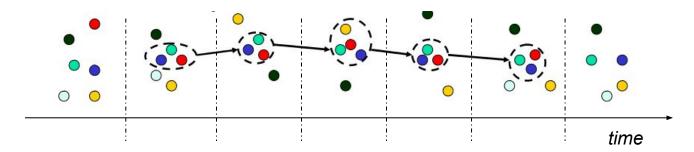
> find all groups of objects so that each group consists of density-connected objects w.r.t. r and m

 during at least k time points – not necessarily consecutive



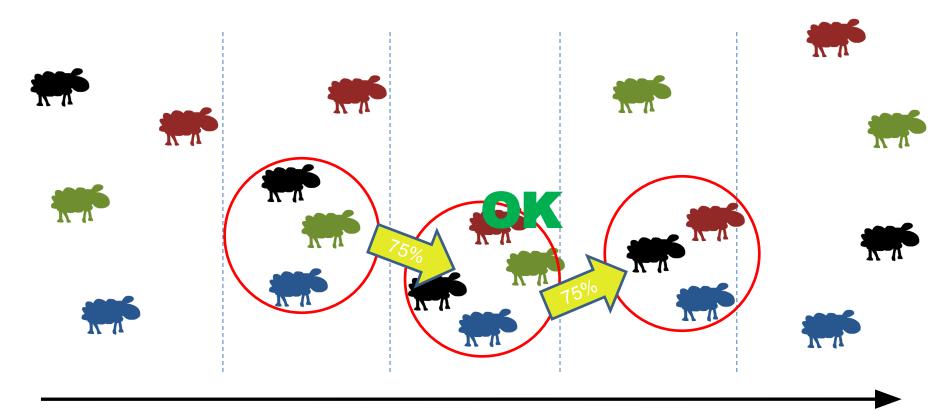
Moving Clusters

 A moving cluster is a set of objects that move close to each other for a long time interval



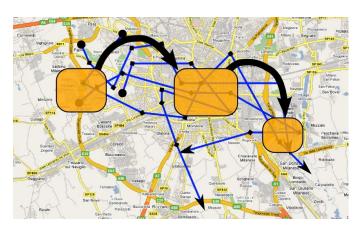
- Formal Definition [Kalnis et al., SSTD'05]:
 - A *moving cluster* is a sequence of (snapshot) clusters c1, c2, ..., ck such that for each timestamp i ($1 \le i < k$): Jaccard(c_i , c_{i+1}) $\ge \theta$
 - Jaccard(c_i, c_{i+1}) = $|c_i \cap c_{i+1}| / |c_i \cup c_{i+1}|$
 - $0 < \theta \le 1$
 - Clustering computed with density-based method (DBSCAN)

Moving Clusters



T-Patterns

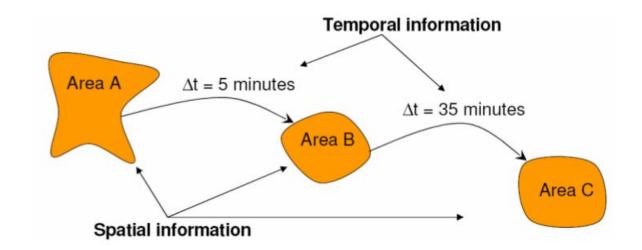
 A sequence of visited regions, frequently visited in the specified order with similar transition times



$$A_0 \xrightarrow{t_1} A_1 \xrightarrow{t_2} \dots A_{n-1} \xrightarrow{t_n} A_n$$

$$t_i$$
 = transition time, A_i = spatial region

T-Patterns

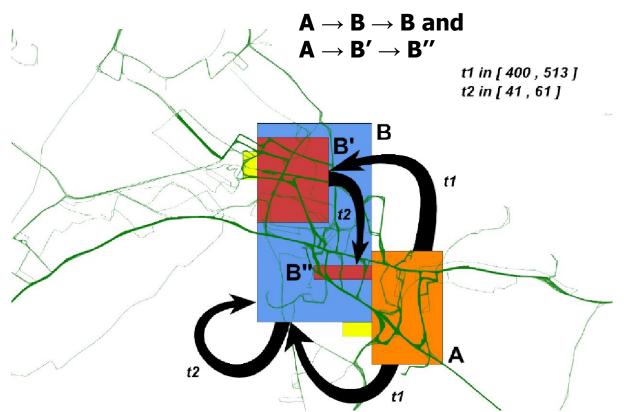


Key features

- Includes typical transition times in the output
- Areas are automatically detected not "the easy way"

Sample Trajectory Pattern

Data Source: Trucks in Athens (273 trajectories)



Homeworks

Food for thought

- **Hausdorff**: let interpret trajectory $T=<p_1, p_2, ..., p_n>$ as a polyline, thus containing also the segments (= infinite sets of points) between each pair p_{ij}, p_{i+1} . How can you compute the Hausdorff distance between two trajectories?
- **Local patterns in mobility**: can you find some examples in urban mobility where local patterns might be useful? Frequent sequences? Flocks?
- Local or global: we discover that 90% of vehicles in a city pass through the same road segment (maybe a bridge). Is that a local or global pattern? Is there really a difference?
- The thin line between clusters and flows: if you take all the trajectories that form a specific flow (same origin and same destination), how many clusters do you expect to find? What is the difference between a flow and a (trajectory) cluster?

to study for the exam

Material

- [paper] Spatio-Temporal Trajectory Similarity Measures: A Comprehensive Survey and Quantitative Study, Danlei Hu et al., arXiv: https://arxiv.org/abs/2303.05012v2
 - Sections 1, 2, 3 (only the measures seen in these slides)
- [paper] Computing longest duration flocks in trajectory data, Joachim Gudmundsson and Marc van Kreveld (2006), GIS '06, https://dl.acm.org/doi/10.1145/1183471.1183479
 - Section 1 (definitions)
- [paper] Discovery of Convoys in Trajectory Databases, Hoyoung Jeung et al., VLDB 2008, https://arxiv.org/abs/1002.0963v1
 - Section 3 (definitions)

to study for the exam

Material

- [paper] On Discovering Moving Clusters in Spatio-temporal Data, Kalnis, P., Mamoulis, N., Bakiras, S. SSTD 2005. https://doi.org/10.1007/11535331_21
 - Sections 1, 2, 4.1 (definitions and basic algorithm)
- [paper] Trajectory pattern mining, Giannotti, Nanni, Pedreschi, Pinelli. KDD 2007. https://dl.acm.org/doi/10.1145/1281192.1281230
 - Section 3 (definitions)
- [paper] DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis,
 M. Yue et al. Big Data 2019. https://arxiv.org/abs/2003.0135
 - Section II (focus on definitions and overall approach, not details)