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Supervised Learning

e Supervised learning refers to problems where the value of a target
attribute should be predicted based on the values of other attributes.

* Problems with a categorical target attribute are called classification,
problems with a numerical target attribute are called regression.

Attributes/Features Target Variable

\ |



Time Series Classification - TSC

* Given a dataset X = {T,, ... T}, TSC is the task of training a model f to
predict an exogenous categorical output y for each time series T, i.e.,

f(T) =y.

Labelled training series
! k/

Classify /\ > .

unlabelled series

>




Time Series Extrinsic Regression - TSER

* Given a dataset X = {T,, ... T}, TSER is the task of training a model f to
predict an exogenous continuous output y for each time series T, i.e.,

f(T) =y.

Labelled training series
! k/

Classify /\

unlabelled series ?
[

5.6
6.1
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Instance-based Models



Nearest-Neighbor Classifier (K-NN)

Labelled training series

e Basicidea: If it walks like a duck, quacks like a { J
duck, then it is probably a duck. A
* Given a set of training records, and a test record: B
1. Compute the distances from the test to the D,

training records.

2. ldentify the k “nearest” records. ! dossity "\ , .

. unlabelled series
3. Use class labels of nearest neighbors to
determine the class label of test record

(e.g., by taking majority vote). a

>

k=3 0

Neighbors(Q) = {A, B, D}

Predict(Q) =



Nearest-Neighbor Classifier (K-NN)

Labelled training series

e Basicidea: If it walks like a duck, quacks like a
duck, then it is probably a duck.

>

* Given a set of training records, and a test record:

1. Compute the distances from the test to the 610D
training records.
2. ldentify the k “nearest” records. ! dossiiy 7\ .
unlabelled series ?

3. Use target values of nearest neighbors to
determine the target value of test record

(e.g., by making the average). a

>

k=3 6.1
Neighbors(Q) = {A, B, D}

Predict(Q) = 3.8



Linear Models



Linear Regression

Y
 Linear regression is a linear approach to 151
modeling the relationship between a |
dependent variable Y and one or more Lol

independent (explanatory) variables X.

* The case of one explanatory variable is

called simple linear regression. / T

* For more than one explanatory variable, T S S
the process is called multiple linear
regression.

* For multiple correlated dependent
variables, the process is called
multivariate linear regression.



Simple Linear Regression

Dependent Independent

Variable Variable
Linear Model: Y = mX + b Y = B, X+ B,
Slope Intercept (bias)

* Such linear relationship may not hold exactly for all the population.
* We call the deviations from Y errors or residuals, i.e., y; — f(x;)

* The objective of linear regression is to find values for the parameters
m and b which would provide the “best fit” for the observed points.



Tree-based Models



Example of a Decision Tree

Consider the problem of predicting whether a loan borrower will repay the
loan or default on the loan payments.

N N S
{\C’(b {\C’(b 000
@QO @QO & 2 "y .
SIS O Splitting Attributes
71\
Home Marital Annual Defaulted S
ID 4 1
Owner Status Income Borrower »’ I
Home |
1 |Yes Single 125K No owner |
1
2 |No Married |100K No Y‘e% WAO v
3 |[No Single 70K No NO MarSt
4 Yes Married |120K No ) ) .
> Single, Di¥orced w‘arrled
5 No Divorced |95K Yes
6 |No Married |60K No Income NO
7 |Yes |Divorced |220K  [No < 80If/ \> 80K
8 No Single 85K Yes
- NO YES
9 No Married |75K No
10 |No Single 90K Yes

Training Data Model: Decision Tree



Trees Ensemble Models



Ensemble Methods

* Improves the accuracy by

aggregating the predictions of
multiple classifiers.

* Construct a set of base models
from the training data.

* Make the prediction of test records
by combining the predictions made
by multiple base models.

* Majority for classification
* Average for regression

Original

D Training data
Step 1: * * * *
Create Multiple D, D, @ """ @D, D,
Data Sets
Step 2:
Build Multiple C C C C
Classifiers J f r ¢t
Step 3:

Combine
Classifiers




Types of Ensemble Methods

* Manipulate data distribution

* Bagging
* Boosting

* Manipulate input features
* Random Forests



Bagging (a.k.a. Bootstrap AGGregatING)

] ——

k decision models




Random Forest

k decision trees
AT — >




Boosting

k decision models




Gradient Boosting Machines

* First builds a naive model F, considering the entire training set as mode for
classification, mean for regression
* |teration /:

* Applies F; on the training set and calculate the prediction (pseudo)-residual as
the difference between the real value and the predicted one.

* Then train a decision tree regressor DTR; to predict the (pseudo)-residual
* Creates a model as F,,; = F; + LearningRate * DTR,

e Repeats iterations a predefined number of times or until the sum of the
(pseudo)-residual is smaller than a certain threshold.

Dataset Errors Errors

Model Model
0 Train
ﬁ
. 00

J
=

Prediction

Model

HreQye

| L K J
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Gradient Boosting Machines Improved

* XGBoost (Extreme Gradient Boost)

* LightGBM (Light Gradient Boosting Machine)
» CatBoost (Categorical Boosting)

* All designed for large complex datasets



XGBoost vs LightGBM vs CatBoost

* XGBoost: level-wise (horizontal) growth
* XGBoost: novel splitting function

* LightGBM: out leaf-wise (vertical) growth

* LightGBM significantly faster than XGBoost
with almost equivalent performance

e CatBoost: symmetric decision trees
* CatBoost: designed for categorical attributes




Problems with Tree-based Models in TS

* Decision trees make a split on the value of an attribute.

* Treating the values of a raw TS at each time stamp as belonging to a
single attribute independent from the others does not work well on
TS as the values in the time stamps are not independent as analyzed
by the trees.

* Furthermore, the resulting tree is only limitedly interpretable
vanishing the structure of the model.

* Thus, it is advisable to use tree-based models on TS only after having
represented them in forms of independent features such as using
global structural features or time-independent approximations.

22



Proximity Forest

* A Proximity Forest is an ensemble of
k Proximity Trees.

e Each branch of an internal node has
an associated exemplar TS.

A test TS follows the branch
corresponding to the exemplar to
which it is closest according to a
parameterized similarity measure.

* R sets of candidate exemplars are
randomly selected for each split.

 Among the R candidate exemplars
are selected those with the highest
Information Gain (if R=1 the choice is
completely random).

mplar
(-]

i

L L
Distance to the
[= B

(=]

& w 158 260 250
/ \ Right exemplar
® X

o 1 z 3 M 5 6
Distance to the left exemplar
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Proximity Forest Distances

. Euclidean Distance (ED);

Dynamic Time Warping using the full window (DTW);

Dynamic Time Warping with a restricted warping window (DTW-R);

Weighted Dynamic Time Warping (WDTW);

Derivative Dynamic Time Warping using the full window (DDTW);

Derivative Dynamic Time Warping with a restricted warping window (DDTW-R);
Weighted Derivative Dynamic Time Warping (WDDTW);

Longest Common Subsequence (LCSS);

Edit Distance with Real Penalty (ERP);

10.Time Warp Edit Distance (TWE)

O 0 N O U B WD

24



Interval-based Models



Ensemble of Interval-based Models

Transformer 1 ‘ Transformer 2

W Training Data
/\/ Unseen Case

/;\

!

Feature Vector 1

¢

Feature Vector 2

f1

f2

f3 s s

fn

fi

2

f3 LI )

n

b |

N~ Vo

70

Predicted Class

Transformer i ‘

!

Feature Vector i

fi

2

f3 s s 0

fn
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Interval-based Approaches

* Interval-based approaches look at phase
dependent intervals of the entire TS,
calculating summary statistics from
selected subsequences to be used in
prediction.

* Existing interval-based approaches
* Time Series Forest (TSF)

Random Interval Spectral Ensemble (RISE)

Supervised Time Series Forest (STSF)

Interval #1

mean, std, ..., cov

Interval #2

mean, std, ..., cov

Interval #3

mean, std, ..., cov

Canonical Interval Forest (CIF)
Diverse Representation CIF (DrCIF)

27



Time Series Forest (TSF)

e ATSFis an ensemble TS trees.

* TS trees select the best split by
employing Entrance (Entropy and
margin distance) gain to identify
high-quality splits, i.e.,

* Entrance = AEntropy + a-Margin

* Interval features f,: mean, standard
deviation, slope.

* Randomly selected intervals for
each TS tree.

o

mean(25, 50) _4""/

Tree-1

Class-A

/slope(lo, 37) V
std(10, 37)

Tree-2

Class-B

[ Majority-Voting |

‘Final-Class

_\

fk(t1't2)

- std(15, 45)

P2 std(20, 48
o) %gx mwm
> ¢ o/\bdo\‘ dodbd & obooé

Tree-n

Class-B

|
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Canonical Interval Forest (CIF)

e CIF is an ensemble of TS trees.

* CIF extends TSF by augmenting the
set of interval features mean,

. L. . Instance
standard deviation, slope with the set g | oy
e Y T~ catch224(15, 45
of features catch22. catch22,(25,50) < slope(10,37) ¥ T °
AN std(20 48) catch223(10 37)
* To speedup the calculus the two o< X By /)<ea 100)
features DN_OutlierInclude looking to ¢bds dbds dbdb ¢ % do .0
. Tree-2 Tree-
outliers above and below the mean el o n
are calculated on normalized i Class-B Class-B

|

[ Majority-Voting |

intervals, while all the others on
unnormalized intervals.

‘Final-Class
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Diverse Representation CIF (DrCIF)

* DrCIF extends CIF using alternative data representations.
* DrCIF extends RISE and STSF using catch22 features.

* DrCIF selects multiple intervals taken from
e theraw TS
 the differencing of the TS
* the periodograms of the TS, i.e., its DFT

1.6696 DrCIF

0.05 TSF 4.2902
X< 0 k003
P 002 RISE 3.7098 2.5223 CIF
0.01

0 50 100 150 0 20 40 60 2.808 STSF




Overview of Interval-based Models and Relationships

EI -l
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Shapelet-based Models



Shapelets

* Shapelets are TS subsequences which are maximally representative of a
class or maximally discriminative between a class and another

class A : dist=0
: 5
10
shapelet
5
0
class B dist =5.5

-10

dist=0.192982

20 40 60 80 100 120

dist=0.865633

20 40 60 80 100 120

-10

dist=0.194213

20 40 60 80 100 120

dist=0.85906

20 40 60 80 100 120



Distance with a Subsequence

* The distance between a TS and a subsequence subsequenceDist(T, S) is a function
that takes T and S as inputs and returns a nonnegative value d, which is the
distance from Tto S as

subsequenceDist(T, S) = min(Dist(S, S')), for S' € S;/°/

where S;/3/is the set of all possible subsequences of T

* Intuitively, subsequenceDist(T, S) it is the distance between S and its best
matching location in T.

best —» :
matching
location

0 10 20 30 40 50 60 70 30




Shapelet-based Model

1. Given a TS dataset for classification, extract a set of K highly discriminative shapelets.

2. Transform each TS as a vector of distances with the K shapelets.

3. Train any ML model. \C/V\/\/
NxM identify shapelets A
Time Series | Shapelet / °

Dataset Finder | ¢
v N x K
| Shapelet : Shapelet | ML
Transformer Dataset Model

calculate distance between
time series and shapelets



Shapelets

Shapelet

Verbena urticifolia Urtica dioica

| : o Shapelet Dictionary
PR 5.1 | f\ }
-y, Verbena urticifolia
; 3.2 8.7

(=T NI

.&Q
Does @ have a subsequence within

a distance 5.1 of shape m ? / | Leaf Decision Tree
yes N 1.4 7.9
0 1
| 1 ! ! ] I I ! | o . 6.7 4.2
Verbena urticifolia Urtica dioica

9.2 34



Shapelet-based Classifier

* The Shapelet-transformed TS dataset can be paired with any ML
model like Decision Tree or kNN.

Shapelet-based Factual Rule

ps = bell
X
51 == not-contained __l 2,__
= contained 1’ S -
—

120




How to Extract Shapelets?

* Brute Force

* Random

* Gradient-based
* Genetic-based

Verbena urticifolia

Urtica dioica

38



Brute Force Shapelet Extraction

* Given a set of time windows w,, w,, ..., w,
with different lengths and slices s,, s, ..., S,

* For each time window w;and slice s;
 For each time series T in the dataset X

* Move the time window w; along T and
store all the subsequencs S with length w;,
as candidate shapelets. w

e Calculate the distance between each
candidate and the time series in X.

* Evaluate the Information Gain of each
candidate shapelet and select the K
shapelets with the highest score.

r

candidate shapelets

39



Brute Force Shapelet Extraction

* Given a set of time windows w,, w,, ..., w,
with different lengths and slices s,, s, ..., S,

* For each time window w;and slice s;

 For each time series T in the dataset X

[o= -

* Move the time window w; along T and
store all the subsequencs S with length w;,
as candidate shapelets. w o

e Calculate the distance between each
candidate and the time series in X.

* Evaluate the Information Gain of each
candidate shapelet and select the K
shapelets with the highest score.

candidate shapelets

40



Brute Force Shapelet Extraction

Given a set of time windows w,, w,, ..., w,
with different lengths and slices s,, s, ..., S,

For each time window w;and slice s;

For each time series T in the dataset X

[——————

Move the time window w; along T and

store all the subsequencs S with length w;,

as candidate shapelets. o
Calculate the distance between each V/jN A
candidate and the time series in X.

Evaluate the Information Gain of each
candidate shapelet and select the K
shapelets with the highest score.

candidate shapelets

41



Brute Force Shapelet Extraction

* Given a set of time windows w,, w,, ..., w,
with different lengths and slices s,, s, ..., S,

* For each time window w;and slice s;
 For each time series T in the dataset X

* Move the time window w; along T and
store all the subsequencs S with length w;,
as candidate shapelets.

==

e Calculate the distance between each
candidate and the time series in X.

* Evaluate the Information Gain of each
candidate shapelet and select the K
shapelets with the highest score.

r----- LN |
1
1
1
1

z

A

W

candidate shapelets
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Brute Force Shapelet Extraction

* Given a set of time windows w,, w,, ..., w,
with different lengths and slices s,, s, ..., S,

* For each time window w;and slice s;

 For each time series T in the dataset X

[ ——

* Move the time window w; along T and
store all the subsequencs S with length w;,
as candidate shapelets.

"y
* Calculate the distance between each MJN A M w

candidate and the time series in X.

* Evaluate the Information Gain of each
candidate shapelet and select the K
shapelets with the highest score.

candidate shapelets 43



Brute Force Shapelet Extraction

* Given a set of time windows w,, w,, ..., w,
with different lengths and slices s,, s, ..., S,

* For each time window w;and slice s;
 For each time series T in the dataset X

* Move the time window w; along T and

store all the subsequencs S with length w;,
as candidate shapelets.

e Calculate the distance between each
candidate and the time series in X.

* Evaluate the Information Gain of each
candidate shapelet and select the K
shapelets with the highest score.

W 019
0.79 0.28
0.39
041
0.36
0.76
041

Mow

wo.32 0.65
0.12

0.72

0.82 012

candidate shapelets

WOSI

0.31
0.28

0.98

44



Brute Force Shapelet Extraction

* Given a set of time windows w,, w,, ..., w,
with different lengths and slices s,, s, ..., S,

* For each time window w;and slice s;
 For each time series T in the dataset X

* Move the time window w; along T and

store all the subsequencs S with length w;,
as candidate shapelets.

W 0.19 M
e Calculate the distance between each . - w 051

0.28
. . . . 0.32 0.65
candidate and the time series in X. 0.39 e 031

: : 0.41 0.12 0.28
* Evaluate the Information Gain of each 036 0.72

candidate shapelet and select the K 0.76 o1 0.82 o.12‘
shapelets with the highest score.

0.98‘

candidate shapelets 45



Testing The Utility of a Candidate Shapelet

e Arrange the TSs in the dataset D based on the distance from the
candidate.

* Find the optimal split point that maximizes the information gain
(same as for Decision Tree classifiers)

* Pick the candidate achieving best utility as the shapelet

Split Point

PPN\

d

candidate S




Split Point

candidate .S \

K \\: \

Entropy ] ‘S i
¢ 4 L.V \

.o

A TS dataset D consists of two classes, A and B.

e Given that the proportion of objects in class A is p(A) and the
proportion of objects in class B is p(B),

* The Entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

* Given a strategy that divides the D into two subsets D; and D,, the
information remaining in the dataset after splitting is defined by the
weighted average entropy of each subset.

* If the fraction of objects in D, is f(D,) and in D, is f(D,),
* The total entropy of D after splitting is I(D) = f(D,)I(D,) + f(D,)I(D,).



candidate .S/

Split Point

Information Gain "i

* Given a certain split strategy sp which divides

D into two subsets D; and D,, the entropy
before and after splitting is /(D) and /(D).

* The information gain for this splitting rule is:
e Gain(sp) = I(D) - i(D) =
* =1(D) - f(D,)I(D,) + f(D,)I(D,).

* We use the distance from T to a shapelet S as
the splitting rule sp.

Split point
distance from
shapelet =5.1

Shapelet Dictionary

5.1

Does O have a subsequence within

a distance 5.1 of shape m ?

0

yes

B :

L1 1 |
0 10 20 30

Leaf Decision Tree

T

Verbena urticifolia

no

~

1

Urtica dioica




Problem with Brute Force Shapelet

, , MAXLEN
The total number of candidate is Z Z( ff‘ —/+1)

I=MINLEN T €D

* For each candidate you have to compute the distance between this
candidate and each training sample

* For instance
e 200 instances with length 275
e 7,480,200 shapelet candidates



Speedup

 Distance calculations form TSs to shapelet candidates is expensive.
* Reduce the time in two ways

e Distance Early Abandon
* reduce the distance computation time between two TS

* Admissible Entropy Pruning

e reduce the number of distance calculations
SplitPomt

TN

candidate -/
O

»

8
V ’




Distance Early Abandon

* We only need the minimum distance.

* Method

best matching g
* Keep the best-so-far distance

« Abandon the calculation if the current 0O 10 20 30 40 50 60 70 8 90 100
distance is larger than best-so-far.

Dist> 0.4

calculation -7
abandoned at this point

O 10 20 30 40 50 60 70 80 90 100



Admissible Entropy Pruning

 We only need the best shapelet for
each class >

* For a candidate shapelet New candidatey

stinging nettles

v d
é

 We do not need to calculate the calculus
distance for each training sample

e After calculating some training

false nettles

"\

Y

samples, the upper bound of Best so far e
information gain < best candidate
shapelet

* Stop calculation Most optimistic

o ngm_l_l_,

i case new candidate
* Try next candidate




Random Shapelet Extraction

* Given a set of time windows w,, w,, ..., w,
and a dataset X of time series randomly
select K subsequences from the time series
in X to be used as shapelets.

e

53



Random Shapelet Extraction

* Given a set of time windows w,, w,, ..., w,
and a dataset X of time series randomly
select K subsequences from the time series

in X to be used as shapelets.

iy,

e

54



Fi = LY, r}+‘}‘i2w;_
Gradient-based Shapelet om Wt MW, Ve (L
LY,Y) = —Yo(Y)-(1-Y)In(1-0o(Y))

* Learn Optlmal Sha.pE|etS WIthOUt Algorithm 1 Learning Time-Series Shapelets
exploring all possible candidates.

Require: T € R'*%, Number of Shapelets K, Length of a

° Step 1: start Wlth rough |n|t|a| shapelet L, Regularization Ay, Learning Rate r, Number of
) iterations: maxlIter
guesses for the Shapelet Ensure: Shapelets S € R* *%, Classification weights W & R¥,
s . . Bias Wo € R
* Step 2: iteratively learn/optimize It far iteration=NESET go
the shapelets Ipy minimizing a losS 2. mwi=1,....I do
function by using a predictive 3 fork=1,...Kdo
. R . . s P i
model that is differentiable with - Wi Wy —n
t to shapelets > for L=1,....Ldo _
respec p : 6: ';.'l,l._; — ‘-"k 1= ?}ﬁ
* Shapelets can be updated in a '; ;ﬂfﬂf“f
. . : L4 )] or
stochastic gradient descent 90 Wo Wo—niZ
optimization fashion by taking steps 10:  end for ’
towards the minimum of the L1: end for

.. . . 12: return S, W, W,
classification loss function -
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Shapelets Remarks

* A shapelet is a pattern/subsequence which is maximally
representative of a class/maximally discriminative between a class
and the rest with respect to a given dataset of TS.

* Shapelets can be significantly more accurate/robust then global
structural features because as they are local features based on
distances

56



MrSEQL — Multi Resolution SQL

 MrSEQL is an ensemble of SEQL algorithms. o
 SEQL (SEQuence Learner) selects a set of discriminative subsequences.
 MrSEQL produce k SEQL models from different SAX or SFA representations.

o

A=
o

=

1
a41C1Cq

aibibqcy SEQL
a1c1c1d1

0.10.3 ab,bsb siFel 4’@7_’ 0100 M
0.204 apCycods 1001
8 BB SEQL _>®—

anCpdndy

lassification Model



MrSQM - Multiple Representations Sequence Miner

e Extends MrSEQL with a sampling strategy for reducing the number of
features generated in the BOP.

| 0323 0742 0912 1021 -0.044] o0.124] -0532 0.001] -0343] -1.211

!

v v
babc abcc abcd
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Overview of Shapelet-based Models and Relationships

hapelet
MrSEQL Riapele

STC

RDST



Dictionary-based Models



Bag of Words

 Typically used in Natural Language Processing (NLP) and Information
Retrieval (IR) but common also in TSA.

* A bag-of-words transformation turns a text into an unordered
collection (or “bag”) of words typically accounting for multiplicity.

* Example: John likes to watch movies. Mary likes movies too.
* BoW: "John":1,"likes":2,"to":1,"watch":1,"movies":2,"Mary":1,"too":1

61



Bag of Words in TSA

* Given a TS T, Bag of Words extracts 00
subseries using a sliding window w, 0
then normalize each subseries and y -
transforms it into a word using an e e w e

approximation approach such as:

Bag-of-patterns transformation

wu
o

I First time series in class 1

* SAX - Symbolic Aggregate Frat time serics in class 2
approXimation

=
=]

Lt
L=

* SFA - Symbolic Fourier
Approximation

Frequencies
]
[a]

Ja
o
1

=]
I

aaa aab aba abb baa bab bba bbb
Words



Bag of Words in TSA Hyperparameters

 window_size: length of the sliding window w

 window step: step of the sliding window w (default 1)

* word_size: length of the words, i.e., number of characters

* n_bins: size of the alphabet, i.e., number of distinct characters

Bag-of-words representation for time series

2.0 C C C C d

/"rﬁ—l—ﬁvd—om

1.5 /

b

/
1.0 P
0.5 1 /

0.0 1

—0.5 b b b b b

-1.0

T T T T T T T T
0 20 40 60 80 100 120 140
Time



Bag of Words Algorithms

* Bag of Patterns (BOP) transforms
each subsequence into a word
using SAX*

e Bag-of-SFA Symbols (BOSS)
transforms each subsequence
into a word using SFA

e * Sometimes also BOSS
transformations are named BOP.

Frequencies

40

Frequencies
Pd
o

=
=]
L

=
I

o
|

(W]
I

[
1

Bag-of-patterns transformation

I First time series in class 1
I First time series in class 2

aaa aab aba abb baa bab bba bbb
Words

BOSS transformation

I First time series in class 1
I First time series in class 2

aa ab ac ad ba bb bc bd ca cb cc c¢d da db dc dd
Words
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. : low pass  numerosity reduction
windowing and quantisation and histogram

BOSS

windows model

The BOSS Mode| [] [

sliding ] [ SFA words ]

* First, sliding windows of length are extracted from a TS.

* Next, each sliding window is normalized to have a standard deviation of 1 to
obtain amplitude invariance.

* SFA transformation is applied to each real valued sliding window transforming a
time series into an unordered set of SFA words.

e Using an unordered set provides invariance to the horizontal alignment of each
substructure within the TS (phase shift invariance).

* The first occurrence of an SFA word is registered and all duplicates are ignored.

* From these SFA words a histogram is constructed, which counts the occurrences
of the SFA words
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bcc
a 200
becc
0 200
20
15
w
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5 10
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The BOSS model

1. Windowing

et

400 600
2. SFA Words
400 600

3. BOSS histogram

0.4

0.6

800

aoo

0.8

1000

1000

1.0
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o
o
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WEASEL - Word ExtrAction for time Series cLassification

 WEASEL extracts normalized windows of different lengths from a time series.

e Each window is approximated using the SFA, and those Fourier coefficients are kept
that best separate TS from different classes using the ANOVA F-test.

* The remaining coefficients are discretized into a word using information gain binning.

* A bag-of-patterns is built from the words (unigrams) and neighboring words
(bigrams), also including windows of variable lengths.

* The ChiSquared test is applied to filter out irrelevant words.

* A logistic regression classifier is applied.

Fourier transform supervised
use multiple feature selection quantization bigrams, multiple  feature selection
window lengths (ANOVA f-test) (information gain) window lengths CHI-Squared

v

discriminative ||discriminative ||| co-occurring | | discriminative
Fourier values words words features

[a time series] [ windowing ]

Superv. Symbolic Rep.|| Bag-of-Patterns
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How to Deal with Multivariate TS

* We can assume that the various signals are independent

A trivial way to adopt all the models analyzed is to concatenate the
different signals to obtain a (long) univariate time series.

VAAVIVaNY,

-]

A AVa NN
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MUSE - Multivariate Unsupervised Symbols and dErivatives

* Also named WEASEL+MUSE, extends WEASEL by considering multivariate words.

* Multivariate words are obtained from the univariate words by concatenating each
word with an identifier representing the sensor and the window size.

guantization

truncated Fourier  (equi-depth or bigrams, multiple
transform (low-pass) equi-frequency) window lengths

add
identifier

5

multwarlate for each
time series dimension *
for Each A . first few univariate |
dlmensm lwlnduwmg [Fﬂuriervalues [ words ‘ [ BOP model| |
derivatives SFA

univariate words

—¥—

Feature Selection
Chi-Sguared Test

v
multivariate [discrlminaﬂve
EOP model features

WEASEL+MUSE

(multivariate words)

70



(b) WEASEL+MUSE words per dimension
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(a) Raw Time Series
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Overview of Dictionary-based Models and Relationships
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Deep-learning Models



DNN for TS

DNN, i.e., Multilayer Neural Networks can be used as they are on any
data representation discussed so far calculated on on any domain:

* Raw TS
e Shapelets

SANTS< \\_
N NS TS
.éxm e e bes 2@

AXXN

* Intervals \/V\/v

* Distances

* Bag of Patterns

A
SOTONS.  SCGTANNNE UGN
\TALL RENE< SV WY 7
Bag-of-patterns trlisfFo:Tation — Vo x“\"\‘ ""‘\E‘ l,' v

7/ PR Y o %

7

[ First time series in class 2

aaa aab aba abb baa bab bba bbb

Words 7 6



Convolutions for TS
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CNN for TS

e Convolution and pooling operations are alternatively used to generate
deep features of the raw data.

* Then the features are connected to a multilayer perceptron (MLP) to
perform classification.

c

...................................... L]
i -]
Time| M L L=
& B L U N
I | I | I | I |
Time Series of Convolutional Layer Global Max-Pooling  Fully Connected Layer

length m and c channels
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Problems with DNN

* When deeper networks are able to start converging, a degradation
problem has been exposed: with the network depth increasing,
accuracy gets saturated and then degrades rapidly.

* Such degradation is not caused by overfitting, and adding more layers
to a suitably DNN leads to higher training error.

79



ResNet

* Deep Residual Learning framework.

* Denoting the desired underlying mapping X
as H(x), we let the stacked nonlinear layers
fit another mapping of F(x) = H(x) — x.

weight layer

F(x) l relu

weight layer

X

* The original mapping is recast into F(x) + x.

identity

* F(x) + x can be realized with a shortcut
connection, i.e., skipping one or more Flx) +x
layers by simply performing identity
mapping and adding the outputs of the
stacked layers.
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MLP vs CNN vs ResNet
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InceptionTime

* Ensemble of CNN consisting of five Inception Networks.

* For each Inception Network:
* 3 Inception Modules (6 blocks by default)
* Global Averaging Pooling
* Fully-Connected layer with the softmax activation function.

* Each Inception module consists of convolutions with kernels of several sizes
followed by batch normalization and RELU activation function.

NMN-DTW-WW ‘ \_‘J 1 HIVE-COTE
EE InceptionTime
BOSS PF
ST
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Inception Network

Inception module

convolution

input time

, ) K
series . . | output

"N HT & T L PR . . ‘ classes
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64 64 [l6a | | 1281128 128 128|128 ||128]
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connections

channels
time \ average connected
residual pooling
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Inception Module

"‘.'pur. Convolution
multivariate \
time series Bottleneck

channels

time

Convolution

MaxPooling

“Convolution
(bottleneck)

output
multivariate
time series
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Multivariate LSTM-FCN
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TapNet

* Draws on the strengths of both traditional and deep learning approaches:

* Deep learning Approaches: excel at learning low dimensional features
without the need for embedded domain knowledge, whereas

* Traditional Approaches: work well on small datasets.

e Three distinct modules:

* Random Dimension Permutation: produce groups of randomly selected
dimensions with the intention of increasing the likelihood of learning how
combinations of dimension values effect class value.

* Multivariate Time Series Encoding:
* 3 sets of 1d Convolutional layers followed by Batch Normalisation
* Raw data is also passed through an LSTM and Global Pooling Layer
* Attentional Prototype Learning: used for unlabelled data
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Dimensions
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Kernel-based Models



ROCKET - RandOm Convolutional KErnel Transform

 ROCEKT transforms TS using random convolutional kernels.

* Then uses the transformed features to train a linear classifier.
* |t is accurate, fast and scalable.

* Much faster than other methos of comparable accuracy.

8 7 6 5 4 3 2 1
BOSS _'_—I'* Rocket
ProximityForest TS-CHIEF
ST HIVE-COTE
ResNet InceptionTime

1h40 m (ROCKET) < 6 days (InceptionTime) < 11 days (TS-CHIEF)
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ROCKET - Core Aspects

. . |
~ = l - Dilation Rate = 1
i 4 } 7‘/% / - \/Q\ ol — . DD...":":I
-/\‘-’\’\4\/ / —® - Dilation Rate =2
| \//;—~ R \— ‘ (I
20k T Dilation Rate = 3
_ N E.

e 10k Random Convolutional Kernels with Dilation

* Two Pooling Strategies:
* Max Value

* PPV - Proportion of Positive Values, how much of the ir

* Predictive Model:
* Ridge Regression

* Logistic Regression + SGD

put matches the kernel

=

Produces 20k Features
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ROCKET vs. CNN

* CNNs use trainable kernels optimized by SGD to find patterns in the input data.

 ROCKET uses a single layer containing a very large number of random kernels.

 ROCKET uses a large variety of kernels: each kernel has random length, dilation,
and padding, weights and biases. °

* In CNNs kernel dilation increases exponentially with depth.
 ROCKET sample dilation randomly for each kernel.

* CNN uses Global Max Pooling

* ROCKET uses the Max value and the PPV.

* CNN hyperparameters are learnign rates, and network architecture

 ROCKET only hyperparameter is the number of kernels that handles the trade-off
between classification accuracy and computation time.
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MINIROCKET - MINImally ROCKET

* Like ROCKET, MINIROCKET transforms ROCKET MINIROCKET
input TS using convolutional kernels, and length {7,9,11} 9
uses the transformed features to train a weights N(0,1) {(-1.2}
. . e bias TU(-1,1) from convolution output
linear classifier. dilation random  fixed (rel. to input length)
« MINIROCKET maintains dilation and PPV. padding random fixed
features PPV + max PPV
e Unlike ROCKET, MINIROCKET uses a small, num. features 20K 10K
fixed set of kernels, dose not use Max
value pooling, and is almost entirely
deterministic. s 8 7 s s a4 3 2 .
 MINIROCKET is up to 75 times faster than 0SS HIVE.COTE/TDE
RO C K ET Prnximit}fFD;éslg. Eﬁg;gkm:

InceptionTime
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MultiROCKET

“Multi” does not refer to Multivariate TS

* MultiROCKET transforms a TS into its first order difference.

* Then both the original and the first order difference TS are convolved with the 84

MINIROCKET kernels.

* A different set of dilations and biases is used for each representation because
both representations have different and range of

* Besides PPV, MultiROCKET adds 3 additional pooling operators
» By default, MultiROCKET produces approximately 50,000 features per TS.

* The transformed features are used to train a linear classifier.

ProximityForest
STC

TDE

DrCIF

Arsenal

[

5 4 3 2 1

|. i | L ] 1 |. 1 |

o HNE-COTE 2.0
MultiRocket
TS-CHIEF
MiniRocket

InceptionTime
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Hydra & MultiROCKET-Hydra

e Hydra: HYbrid Dictionary-ROCKET Architecture combines
dictionary-based and convolution-based models.

* |t starts with g groups of k random convolutional kernels g
each to calculate the activation of time series. (T

* In each group, is calculated the activation of a kernel with

the time series and it is recorded how frequently this kernel H - —
is the best match (counts the highest activation). 1 |
* This results in a k-dimensional count vector for each of the g -
groups, resulting in a total of g x k features. Default g = 64 \ e
and k = 8. T =

* Hydra is applied to both the time series and its first-order
differences

* MultiROCKET-Hydra concatenates features from
MultiROCKET and Hydra.



Overview of Kernel-based Models and Relationships

ROCKET
Hydra MiniROCKET Arsenal

'

MultiROCKET

N '

MultiROCKET
-Hydra
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Hybrid Models



HIVE-COTE - Hierarchical Vote Collective of
Transformation-based Ensembles

* Heterogeneous meta ensemble for TSC.
* Five ensembles working on features from four different data transformation:

e Elastic Ensemble e Raw TS
e Shapelet Transform Classifier e Shapelet-Tranformed TS
* Time Series Forest e Autocorrelation Features

Bag of Symbolic-Fourier-Approximation Symbols ¢ Power Spectrum Features
Random Interval Spectral Ensemble

* Each ensemble is trained on the train data independently of the others.

* For new data, each ensemble passes an estimate of class probabilities to the
control unit, which combines them to form a single prediction.

* It does this by weighting the probabilities of each module by an estimate of its
testing accuracy formed from the training data.
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TS-CHIEF - Time Series Combination of
Heterogeneous and Integrated Embeddings Forest

* Tree-based ensemble for TSC
using heterogeneous splits.

e Extends the Proximity Forest
with trees considering splits
w.r.t. dictionary-based and
interval-based features.

8B 7T 6 5 4 3 2 1
Iﬂllllllllllllll

HIVE-COTE
2841 TS CHIEF
3.818 FLAT-COTE
4.300 ResNet

1-NN DTW G982 |
BOSsSs 400
Proximity Forest 4.818
S]‘lﬂ-pe]et Transform 4. 806

—

Interval-based ™
internal node =

Dictionary-based Y
internal node l:thﬂ:l r&

Leaf Node
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HIVE-COTE 2.0

Prob Class 1 0.82

Adopts the following ensembles:

e Shapelet Transform Classifier.

e A convolution-based ensemble of
ROCKET named Arsenal.

* The dictionary-based Temporal
Dictionary Ensemble, i.e., a fast

version of BOSS. s 8 7 s

Prediction: Class 2

Prob Class 2 0.82
ProbClass3 .00

% 0.1 %0.59%% 0.8 +0.7*X 0.3 + 0.58% x 0.7 =0.29/(0.29+0.53+0.1) =0.32
% 0.8 +0.597% 0.1 +0.79% 0.6 + 0.58% % 0.1 = 0.53/(0.29+0.53+0.1) = 0.58

"% 0.1+0.59°x0.1+0.7%x 0.1+ 0.58°x 0.2 = 0.1 /(0.29+0.53+0.1} =0.1

e The interval-based DrCIF.
STC 6.8482
TDE 6.2857
DrCIE 5.4777

2.5313 HC?

4.5223 TS-CHIEF
4.6964 HC1

Arsenal 4.942

4.8125 InceptionTime
4.8839 ROCKET



Overview of Hybrid Models and Relationships
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TSC Methods Comparison

CNN
ShapeDTW
INN-DTW
GRAIL
Catch22
RSF
Signatures
TSF

RISE

EE

TSFresh
BOSS
cBOSS
WEASEL 1.0
PF

STSF
ResNet
STC

CIF

TDE
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TSC Methods Comparison
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What is a Black Box Model? '

* A black box is a model, whose
internals are either unknown to
the observer or they are known
but uninterpretable by humans.

Example:

* DNN

* Ensembles
 ROCKET
 HIVE-COTE
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XAl Taxonomy of Explanation Methods

Explanation
Methods

Explainable By

Designh Methods
(Intrinsic Explainability)

are

Global and Model Specific

Black Box

Explanation Methods
(Post-hoc Explainability)

> Global
can be R Local
p—— » Model Specific

> Model Agnostic
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Local Post-hoc Explanations Types

* Logic-based
* Rule-based
* Decision Tree

Outlook = Sunny
Temp = Hot
Humidity = Normal
Wind = Weak

e |F Outlook = Sunny AND
Humidity = Normal
THEN Play Tennis = Yes

* Play Tennis = Yes

* Black Box Prediction:

* Score-based
* Features Importance
 Saliency Maps
* Attributions

Outlook: 0.7
Temp: 0.0
Humidity: -0.4
Wind: 0.0

* |nstance-based
* Prototypes

* Counter-exemplars

Outlook = Sunny
Temp = Hot
Humidity = Hight
Wind = Weak

Black Box Prediction:
Play Tennis = No
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XAI-TS Taxonomy i

explanation
types

Z
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time points
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subsequences
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others
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|
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Score-based Explanations

» Score-based explanation methods attribute a local importance to each input
variable w.r.t. their contribution towards the predicted.

* The higher is the value in absolute term, the higher is the importance, the closer is
to zero the small is the importance for the returned outcome.

* If the score is positive the feature-value has a positive contribution towards the
outcome, while if the score is negative the feature-value has a negative contribution.

* |ssue: these approaches can require a “default” value to be used as baseline or to
simulate the “removal” of a point/subsequence.

* Explanation depends on the value used to replace real values.

b(x) = seizure

/
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Score-based Explanation Strategies

* Consider each timestep as a feature: -
* Works fine for time-independent TS /\}

____blx) = seizure

transformation such as DTF, SFA, BOSS, Kernels
* Assume time independent values if used on
raw TS, so minimal misalignments can cause 0 20 40 60

problem, close time stamps can have opposite
contribution

80 100 120 140 160

b(x) = seizure
* Split the TS in subsequences and consider them
as features: |

* Explanation depends on the time-dependent
transformation: PAA, SAX, BOP, Shapelets

0 20 40 60 80 100 120 140 160
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Most Common Score-based TS Explainers

ace_x

acc_y

acc_z

Attribution methods can be model-agnostic or model-specific.

e SHAP is available in an inefficient agnostic version, and in multiple efficient

model specific version (TreeShap, GradienShap, LinearShap).
e GradientShap is a modified version of Integrated Gradients, optimized for

neural networks.

crash

'crash

speed

' no-crash
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Subsequences-based Explanations

e After having transformed the TS into time-dependent humanly

understandable feature describing subsequence that can be referred

into the input TS, any interpretable ML approach can be used as it is
or as a surrogate to explain another model.

time series

Shapelet-based Factual Rule

subsequences

trans formed dataset

ps— bell
N‘/\-’—\ T R L W 541 == not-contained 752
e ~—— contained T L
—~—_ " extract -~ transform | '8 1 o o | i =
R | . ;- Is2 | 1 1 0‘
N ‘*« =3 | 0 0 0
. . 0 20 40 60 80 100 120
Shapelet-based Counterfactual Rule
gs - funnel
X
5{ == not-contained _ T A2 A
~— contained Ay
e
0]
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Counterfactuals

e Counterfactual time series show the minimal changes in the input
data that lead to a different decision outcome.

K Nearest Neighbors Dynamic Time Warping

[l ClassA

e KNN can be paired with the
Euclidean or DTW distance to

classify time series.

e To find a counterfactual, it
searchers for the closest
instance having a different

class.
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Counterfactuals

Native Guides builds upon the KNN

approach, generating novel counterfactuals,
following four identified key properties:

ECG Signal

proximity, sparsity, plausibility, and diversity.
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