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Supervised Learning 

• Supervised learning refers to problems where the value of a target 
attribute should be predicted based on the values of other attributes. 

• Problems with a categorical target attribute are called classification, 
problems with a numerical target attribute are called regression. 

Target VariableAttributes/Features



Time Series Classification - TSC

• Given a dataset X = {T1, … Tn}, TSC is the task of training a model f to 
predict an exogenous categorical output y for each time series T, i.e., 
f(T) = y.
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Time Series Extrinsic Regression - TSER

• Given a dataset X = {T1, … Tn}, TSER is the task of training a model f to 
predict an exogenous continuous output y for each time series T, i.e., 
f(T) = y.
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Instance-based Models
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Nearest-Neighbor Classifier (K-NN)

• Basic idea: If it walks like a duck, quacks like a 
duck, then it is probably a duck.

• Given a set of training records, and a test record:

1. Compute the distances from the test to the 
training records.

2. Identify the k “nearest” records.

3. Use class labels of nearest neighbors to 
determine the class label of test record 
(e.g., by taking majority vote).
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Nearest-Neighbor Classifier (K-NN)

• Basic idea: If it walks like a duck, quacks like a 
duck, then it is probably a duck.

• Given a set of training records, and a test record:

1. Compute the distances from the test to the 
training records.

2. Identify the k “nearest” records.

3. Use target values of nearest neighbors to 
determine the target value of test record 
(e.g., by making the average).
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Linear Models
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Linear Regression

• Linear regression is a linear approach to 
modeling the relationship between a 
dependent variable Y and one or more 
independent (explanatory) variables X. 

• The case of one explanatory variable is 
called simple linear regression. 

• For more than one explanatory variable, 
the process is called multiple linear 
regression.

• For multiple correlated dependent 
variables, the process is called  
multivariate linear regression.

Y

X



Simple Linear Regression

• Such linear relationship may not hold exactly for all the  population.

• We call the deviations from Y errors or residuals, i.e., 𝑦𝑖 − 𝑓(𝑥𝑖)

• The objective of linear regression is to find values for the parameters 
m and b which would provide the “best fit” for the observed points.

Linear Model:

Dependent
Variable

Independent
Variable

Slope Intercept (bias)

𝑌 =  𝛽1𝑋 + 𝛽0



Tree-based Models
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Example of a Decision Tree

ID 
Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
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< 80K > 80K

Splitting Attributes

Training Data Model:  Decision Tree

Consider the problem of predicting whether a loan borrower will repay the 

loan or default on the loan payments.



Trees Ensemble Models
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Ensemble Methods

• Improves the accuracy by 
aggregating the predictions of 
multiple classifiers.

• Construct a set of base models
from the training data.

• Make the prediction of test records 
by combining the predictions made 
by multiple base models.
• Majority for classification

• Average for regression
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Types of Ensemble Methods

• Manipulate data distribution

• Bagging

• Boosting

• Manipulate input features

• Random Forests



Bagging (a.k.a. Bootstrap AGGregatING)

k decision models

…
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Random Forest

k decision trees
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Boosting
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Gradient Boosting Machines
• First builds a naïve model F0 considering the entire training set as mode for 

classification, mean for regression

• Iteration i:

• Applies Fi on the training set and calculate the prediction (pseudo)-residual as 
the difference between the real value and the predicted one.

• Then train a decision tree regressor DTRi to predict the (pseudo)-residual 

• Creates a model as Fi+1 = Fi + LearningRate * DTRi

• Repeats iterations a predefined number of times or until the sum of the 
(pseudo)-residual is smaller than a certain threshold.
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Gradient Boosting Machines Improved 

• XGBoost (Extreme Gradient Boost)

• LightGBM (Light Gradient Boosting Machine)

• CatBoost (Categorical Boosting)

• All designed for large complex datasets



XGBoost vs LightGBM vs CatBoost

• XGBoost: level-wise (horizontal) growth

• XGBoost: novel splitting function

• LightGBM: out leaf-wise (vertical) growth

• LightGBM significantly faster than XGBoost
with almost equivalent performance

• CatBoost: symmetric decision trees

• CatBoost: designed for categorical attributes
Age <= 30Age <= 30



Problems with Tree-based Models in TS

• Decision trees make a split on the value of an attribute.

• Treating the values of a raw TS at each time stamp as belonging to a 
single attribute independent from the others does not work well on 
TS as the values in the time stamps are not independent as analyzed 
by the trees.

• Furthermore, the resulting tree is only limitedly interpretable 
vanishing the structure of the model.

• Thus, it is advisable to use tree-based models on TS only after having 
represented them in forms of independent features such as using 
global structural features or time-independent approximations. 
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Proximity Forest

• A Proximity Forest is an ensemble of
k Proximity Trees.

• Each branch of an internal node has 
an associated exemplar TS.

• A test TS follows the branch 
corresponding to the exemplar to 
which it is closest according to a 
parameterized similarity measure.

• R sets of candidate exemplars are 
randomly selected for each split.

• Among the R candidate exemplars 
are selected those with the highest 
Information Gain (if R=1 the choice is 
completely random).
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Proximity Forest Distances

1. Euclidean Distance (ED); 

2. Dynamic Time Warping using the full window (DTW); 

3. Dynamic Time Warping with a restricted warping window (DTW-R); 

4. Weighted Dynamic Time Warping (WDTW); 

5. Derivative Dynamic Time Warping using the full window (DDTW); 

6. Derivative Dynamic Time Warping with a restricted warping window (DDTW-R); 

7. Weighted Derivative Dynamic Time Warping (WDDTW); 

8. Longest Common Subsequence (LCSS); 

9. Edit Distance with Real Penalty (ERP); 

10.Time Warp Edit Distance (TWE)
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Interval-based Models
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Ensemble of Interval-based Models
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Interval-based Approaches

• Interval-based approaches look at phase 
dependent intervals of the entire TS, 
calculating summary statistics from 
selected subsequences to be used in 
prediction.

• Existing interval-based approaches 
• Time Series Forest (TSF)

• Random Interval Spectral Ensemble (RISE)

• Supervised Time Series Forest (STSF)

• Canonical Interval Forest (CIF)

• Diverse Representation CIF (DrCIF)
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Time Series Forest (TSF)

• A TSF is an ensemble TS trees. 

• TS trees select the best split by 
employing Entrance (Entropy and 
margin distance) gain to identify 
high-quality splits, i.e., 

• Entrance = △Entropy + α·Margin

• Interval features fk: mean, standard 
deviation, slope.

• Randomly selected intervals for 
each TS tree.
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Canonical Interval Forest (CIF)

• CIF is an ensemble of TS trees.

• CIF extends TSF by augmenting the 
set of interval features mean, 
standard deviation, slope with the set 
of features catch22.

• To speedup the calculus the two 
features DN_OutlierInclude looking to 
outliers above and below the mean  
are calculated on normalized 
intervals, while all the others on 
unnormalized intervals.
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Diverse Representation CIF (DrCIF)

• DrCIF extends CIF using alternative data representations.

• DrCIF extends RISE and STSF using catch22 features.

• DrCIF selects multiple intervals taken from 

• the raw TS

• the differencing of the TS

• the periodograms of the TS, i.e., its DFT
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Overview of Interval-based Models and Relationships
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Shapelet-based Models
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Shapelets

• Shapelets are TS subsequences which are maximally representative of a 
class or maximally discriminative between a class and another



Distance with a Subsequence
• The distance between a TS and a subsequence subsequenceDist(T, S) is a function 

that takes T and S as inputs and returns a nonnegative value d, which is the 
distance from T to S as

subsequenceDist(T, S) = min(Dist(S, S')), for S' ∈ ST
|S|

where ST
|S| is the set of all possible subsequences of T

• Intuitively, subsequenceDist(T, S) it is the distance between S and its best 
matching location in T.



Shapelet-based Model
1. Given a TS dataset for classification, extract a set of K  highly discriminative shapelets.

2. Transform each TS as a vector of distances with the K shapelets.

3. Train any ML model.

Time Series
Dataset

Shapelet
Finder

Shapelet
Transformer

Shapelet
Dataset

ML 
Model

N x M

K

N x K

A

B

C

calculate distance between 
time series and shapelets

identify shapelets



Shapelets
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Shapelet-based Classifier

• The Shapelet-transformed TS dataset can be paired with any ML 
model like Decision Tree or kNN.



How to Extract Shapelets?

• Brute Force

• Random

• Gradient-based

• Genetic-based
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Brute Force Shapelet Extraction

• Given a set of time windows w1, w2, …, wl

with different lengths and slices s1, s2, …, sl

• For each time window wi and slice sj

• For each time series T in the dataset X

• Move the time window wi along T and 
store all the subsequencs S with length wi

as candidate shapelets.

• Calculate the distance between each 
candidate and the time series in X. 

• Evaluate the Information Gain of each 
candidate shapelet and select the K 
shapelets with the highest score. 

39candidate shapelets
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Brute Force Shapelet Extraction

• Given a set of time windows w1, w2, …, wl

with different lengths and slices s1, s2, …, sl

• For each time window wi and slice sj

• For each time series T in the dataset X

• Move the time window wi along T and 
store all the subsequencs S with length wi

as candidate shapelets.

• Calculate the distance between each 
candidate and the time series in X. 

• Evaluate the Information Gain of each 
candidate shapelet and select the K
shapelets with the highest score. 
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Brute Force Shapelet Extraction
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Brute Force Shapelet Extraction

• Given a set of time windows w1, w2, …, wl

with different lengths and slices s1, s2, …, sl

• For each time window wi and slice sj

• For each time series T in the dataset X

• Move the time window wi along T and 
store all the subsequencs S with length wi

as candidate shapelets.

• Calculate the distance between each 
candidate and the time series in X. 
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• Given a set of time windows w1, w2, …, wl

with different lengths and slices s1, s2, …, sl

• For each time window wi and slice sj

• For each time series T in the dataset X

• Move the time window wi along T and 
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Testing The Utility of a Candidate Shapelet

• Arrange the TSs in the dataset D based on the distance from the 
candidate.

• Find the optimal split point that maximizes the information gain 
(same as for Decision Tree classifiers)

• Pick the candidate achieving best utility as the shapelet



Entropy

• A TS dataset D consists of two classes, A and B. 

• Given that the proportion of objects in class A is p(A) and the 
proportion of objects in class B is p(B),

• The Entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

• Given a strategy that divides the D into two subsets D1 and D2, the 
information remaining in the dataset after splitting is defined by the 
weighted average entropy of each subset. 

• If the fraction of objects in D1 is f(D1) and in D2 is f(D2), 

• The total entropy of D after splitting is Î(D) = f(D1)I(D1) + f(D2)I(D2). 



Information Gain

• Given a certain split strategy sp which divides 
D into two subsets D1 and D2, the entropy 
before and after splitting is I(D) and Î(D). 

• The information gain for this splitting rule is:

• Gain(sp) = I(D) - Î(D) =

• = I(D) - f(D1)I(D1) + f(D2)I(D2).

• We use the distance from T to a shapelet S as 
the splitting rule sp.

Split point 
distance from 
shapelet = 5.1



Problem with Brute Force Shapelet

• The total number of candidate is

• For each candidate you have to compute the distance between this 
candidate and each training sample

• For instance
• 200 instances with length 275

• 7,480,200 shapelet candidates



Speedup

• Distance calculations form TSs to shapelet candidates is expensive.

• Reduce the time in two ways

• Distance Early Abandon
• reduce the distance computation time between two TS

• Admissible Entropy Pruning
• reduce the number of distance calculations



Distance Early Abandon

• We only need the minimum distance.

• Method
• Keep the best-so-far distance

• Abandon the calculation if the current 
distance is larger than best-so-far.



Admissible Entropy Pruning

• We only need the best shapelet for 
each class

• For a candidate shapelet
• We do not need to calculate the 

distance for each training sample

• After calculating some training 
samples, the upper bound of 
information gain < best candidate 
shapelet

• Stop calculation

• Try next candidate

Best so far

Most optimistic 
case new candidate

New candidate 
calculus



Random Shapelet Extraction

• Given a set of time windows w1, w2, …, wl

and a dataset X of time series randomly 
select K subsequences from the time series 
in X to be used as shapelets.
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Random Shapelet Extraction

• Given a set of time windows w1, w2, …, wl

and a dataset X of time series randomly 
select K subsequences from the time series 
in X to be used as shapelets.
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Gradient-based Shapelet

• Learn optimal shapelets without 
exploring all possible candidates.

• Step 1: start with rough initial 
guesses for the shapelet

• Step 2: iteratively learn/optimize 
the shapelets by minimizing a loss 
function by using a predictive 
model that is differentiable with 
respect to shapelets.

• Shapelets can be updated in a 
stochastic gradient descent 
optimization fashion by taking steps 
towards the minimum of the 
classification loss function
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Shapelets Remarks

• A shapelet is a pattern/subsequence which is maximally 
representative of a class/maximally discriminative between a class 
and the rest with respect to a given dataset of TS.

• Shapelets can be significantly more accurate/robust  then global 
structural features because as they are local features based on 
distances
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MrSEQL – Multi Resolution SQL

• MrSEQL is an ensemble of SEQL algorithms.

• SEQL (SEQuence Learner) selects a set of discriminative subsequences.

• MrSEQL produce k SEQL models from different SAX or SFA representations. 
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MrSQM - Multiple Representations Sequence Miner

• Extends MrSEQL with a sampling strategy for reducing the number of 
features generated in the BOP.
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Overview of Shapelet-based Models and Relationships
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Dictionary-based Models
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Bag of Words

• Typically used in Natural Language Processing (NLP) and Information 
Retrieval (IR) but common also in TSA.

• A bag-of-words transformation turns a text into an unordered 
collection (or “bag”) of words typically accounting for multiplicity. 

• Example: John likes to watch movies. Mary likes movies too.

• BoW: "John":1,"likes":2,"to":1,"watch":1,"movies":2,"Mary":1,"too":1
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Bag of Words in TSA

• Given a TS T, Bag of Words extracts 
subseries using a sliding window w, 
then normalize each subseries and 
transforms it into a word using an 
approximation approach such as:

• SAX - Symbolic Aggregate 
approXimation

• SFA - Symbolic Fourier 
Approximation 

62



Bag of Words in TSA Hyperparameters

• window_size: length of the sliding window w

• window_step: step of the sliding window w (default 1)

• word_size: length of the words, i.e., number of characters

• n_bins: size of the alphabet, i.e., number of distinct characters
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Bag of Words Algorithms

• Bag of Patterns (BOP) transforms 
each subsequence into a word 
using SAX*

• Bag-of-SFA Symbols (BOSS) 
transforms each subsequence 
into a word using SFA

• * Sometimes also BOSS 
transformations are named BOP.
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The BOSS Model

• First, sliding windows of length are extracted from a TS.

• Next, each sliding window is normalized to have a standard deviation of 1 to 
obtain amplitude invariance.

• SFA transformation is applied to each real valued sliding window transforming a 
time series into an unordered set of SFA words.

• Using an unordered set provides invariance to the horizontal alignment of each 
substructure within the TS (phase shift invariance).

• The first occurrence of an SFA word is registered and all duplicates are ignored.

• From these SFA words a histogram is constructed, which counts the occurrences 
of the SFA words
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WEASEL - Word ExtrAction for time Series cLassification

• WEASEL extracts normalized windows of different lengths from a time series. 

• Each window is approximated using the SFA, and those Fourier coefficients are kept 
that best separate TS from different classes using the ANOVA F-test. 

• The remaining coefficients are discretized into a word using information gain binning.

• A bag-of-patterns is built from the words (unigrams) and neighboring words 
(bigrams), also including windows of variable lengths. 

• The ChiSquared test is applied to filter out irrelevant words. 

• A logistic regression classifier is applied.
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How to Deal with Multivariate TS

• We can assume that the various signals are independent

• A trivial way to adopt all the models analyzed is to concatenate the 
different signals to obtain a (long) univariate time series.
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MUSE - Multivariate Unsupervised Symbols and dErivatives

• Also named WEASEL+MUSE, extends WEASEL by considering multivariate words.

• Multivariate words are obtained from the univariate words by concatenating each 
word with an identifier representing the sensor and the window size.
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Overview of Dictionary-based Models and Relationships
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Deep-learning Models
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DNN for TS

DNN, i.e., Multilayer Neural Networks can be used as they are on any 
data representation discussed so far calculated on on any domain:

• Raw TS

• Shapelets

• Intervals

• Distances

• Bag of Patterns
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Convolutions for TS
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CNN for TS

• Convolution and pooling operations are alternatively used to generate 
deep features of the raw data. 

• Then the features are connected to a multilayer perceptron (MLP) to 
perform classification.
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Problems with DNN

• When deeper networks are able to start converging, a degradation 
problem has been exposed: with the network depth increasing, 
accuracy gets saturated and then degrades rapidly. 

• Such degradation is not caused by overfitting, and adding more layers 
to a suitably DNN leads to higher training error.
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ResNet

• Deep Residual Learning framework.

• Denoting the desired underlying mapping 
as H(x), we let the stacked nonlinear layers 
fit another mapping of F(x) = H(x) − x. 

• The original mapping is recast into F(x) + x.

• F(x) + x can be realized with a shortcut 
connection, i.e., skipping one or more 
layers by simply performing identity 
mapping and adding the outputs of the 
stacked layers.
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MLP vs CNN vs ResNet

81



InceptionTime

• Ensemble of CNN consisting of five Inception Networks. 

• For each Inception Network:

• 3 Inception Modules (6 blocks by default)

• Global Averaging Pooling

• Fully-Connected layer with the softmax activation function. 

• Each Inception module consists of convolutions with kernels of several sizes 
followed by batch normalization and RELU activation function.
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Inception Network
Inception module
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Inception Module
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Multivariate LSTM-FCN
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TapNet

• Draws on the strengths of both traditional and deep learning approaches: 

• Deep learning Approaches: excel at learning low dimensional features 
without the need for embedded domain knowledge, whereas 

• Traditional Approaches: work well on small datasets. 

• Three distinct modules: 

• Random Dimension Permutation: produce groups of randomly selected 
dimensions with the intention of increasing the likelihood of learning how 
combinations of dimension values effect class value.

• Multivariate Time Series Encoding: 

• 3 sets of 1d Convolutional layers followed by Batch Normalisation

• Raw data is also passed through an LSTM and Global Pooling Layer

• Attentional Prototype Learning: used for unlabelled data
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TapNet
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Kernel-based Models
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ROCKET - RandOm Convolutional KErnel Transform

• ROCEKT transforms TS using random convolutional kernels.

• Then uses the transformed features to train a linear classifier.

• It is accurate, fast and scalable.

• Much faster than other methos of comparable accuracy.
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ROCKET - Core Aspects

• 10k Random Convolutional Kernels with Dilation

• Two Pooling Strategies:

• Max Value

• PPV - Proportion of Positive Values, how much of the input matches the kernel

• Predictive Model:

• Ridge Regression

• Logistic Regression + SGD
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ROCKET vs. CNN

• CNNs use trainable kernels optimized by SGD to find patterns in the input data. 

• ROCKET uses a single layer containing a very large number of random kernels. 

• ROCKET uses a large variety of kernels: each kernel has random length, dilation, 
and padding, weights and biases. 

• In CNNs kernel dilation increases exponentially with depth. 

• ROCKET sample dilation randomly for each kernel.

• CNN uses Global Max Pooling

• ROCKET uses the Max value and the PPV.

• CNN hyperparameters are learnign rates, and network architecture

• ROCKET only hyperparameter is the number of kernels that handles the trade-off 
between classification accuracy and computation time.
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MINIROCKET - MINImally ROCKET

• Like ROCKET, MINIROCKET transforms 
input TS using convolutional kernels, and 
uses the transformed features to train a 
linear classifier.

• MINIROCKET maintains dilation and PPV.

• Unlike ROCKET, MINIROCKET uses a small, 
fixed set of kernels, dose not use Max 
value pooling, and is almost entirely 
deterministic.

• MINIROCKET is up to 75 times faster than 
ROCKET
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MultiROCKET

• MultiROCKET transforms a TS into its first order difference. 

• Then both the original and the first order difference TS are convolved with the 84 
MINIROCKET kernels. 

• A different set of dilations and biases is used for each representation because 
both representations have different and range of 

• Besides PPV, MultiROCKET adds 3 additional pooling operators 

• By default, MultiROCKET produces approximately 50,000 features per TS. 

• The transformed features are used to train a linear classifier.
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Hydra & MultiROCKET-Hydra

• Hydra: HYbrid Dictionary-ROCKET Architecture combines 
dictionary-based and convolution-based models.

• It starts with g groups of k random convolutional kernels 
each to calculate the activation of time series. 

• In each group, is calculated the activation of a kernel with 
the time series and it is recorded how frequently this kernel 
is the best match (counts the highest activation). 

• This results in a k-dimensional count vector for each of the g 
groups, resulting in a total of g x k features. Default g = 64 
and k = 8.

• Hydra is applied to both the time series and its first-order 
differences

• MultiROCKET-Hydra concatenates features from 
MultiROCKET and Hydra.
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Overview of Kernel-based Models and Relationships
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Hybrid Models
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HIVE-COTE - Hierarchical Vote Collective of 
Transformation-based Ensembles

• Heterogeneous meta ensemble for TSC.

• Five ensembles working on features from four different data transformation:

• Each ensemble is trained on the train data independently of the others. 

• For new data, each ensemble passes an estimate of class probabilities to the 
control unit, which combines them to form a single prediction. 

• It does this by weighting the probabilities of each module by an estimate of its 
testing accuracy formed from the training data.
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• Elastic Ensemble
• Shapelet Transform Classifier
• Time Series Forest
• Bag of Symbolic-Fourier-Approximation Symbols
• Random Interval Spectral Ensemble

• Raw TS
• Shapelet-Tranformed TS
• Autocorrelation Features
• Power Spectrum Features



TS-CHIEF - Time Series Combination of 
Heterogeneous and Integrated Embeddings Forest

• Tree-based ensemble for TSC 
using heterogeneous splits.

• Extends the Proximity Forest 
with trees considering splits 
w.r.t. dictionary-based and 
interval-based features.
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HIVE-COTE 2.0

Adopts the following ensembles:

• Shapelet Transform Classifier.

• A convolution-based ensemble of 
ROCKET named Arsenal.

• The dictionary-based Temporal 
Dictionary Ensemble, i.e., a fast 
version of BOSS.

• The interval-based DrCIF.
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Overview of Hybrid Models and Relationships
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TSC Methods Comparison
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TSC Methods Comparison
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XAI for TSA
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• A black box is a model, whose 
internals are either unknown to 
the observer or they are known 
but uninterpretable by humans.

Example:
• DNN
• Ensembles
• ROCKET
• HIVE-COTE

What is a Black Box Model?
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XAI Taxonomy of Explanation Methods
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Local Post-hoc Explanations Types

• Logic-based

• Rule-based

• Decision Tree

• Score-based 

• Features Importance

• Saliency Maps

• Attributions

• Instance-based 

• Prototypes

• Counter-exemplars

• Outlook = Sunny
• Temp = Hot
• Humidity = Hight
• Wind = Weak

• Outlook: 0.7
• Temp: 0.0
• Humidity: -0.4
• Wind: 0.0

• IF Outlook = Sunny AND 
Humidity = Normal 
THEN Play Tennis = Yes

• Outlook = Sunny
• Temp = Hot
• Humidity = Normal
• Wind = Weak

• Black Box Prediction:
• Play Tennis = Yes

• Black Box Prediction:
• Play Tennis = No
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XAI-TS Taxonomy

Time Series 
Specific

Yes No

Time Series 
Type

Univariate Multivariate
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Time Points-based
 Explanations

108



Score-based Explanations
• Score-based explanation methods attribute a local importance to each input 

variable w.r.t. their contribution towards the predicted.

• The higher is the value in absolute term, the higher is the importance, the closer is 
to zero the small is the importance for the returned outcome.

• If the score is positive the feature-value has a positive contribution towards the 
outcome, while if the score is negative the feature-value has a negative contribution.

• Issue: these approaches can require a “default” value to be used as baseline or to 
simulate the “removal” of a point/subsequence.

• Explanation depends on the value used to replace real values.

109



Score-based Explanation Strategies

• Consider each timestep as a feature:
• Works fine for time-independent TS 

transformation such as DTF, SFA, BOSS, Kernels
• Assume time independent values if used on 

raw TS, so minimal misalignments can cause 
problem, close time stamps can have opposite 
contribution

• Split the TS in subsequences and consider them 
as features:
• Explanation depends on the time-dependent 

transformation: PAA, SAX, BOP, Shapelets
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Most Common Score-based TS Explainers

Attribution methods can be model-agnostic or model-specific. 

● SHAP is available in an inefficient agnostic version, and in multiple efficient 
model specific version (TreeShap, GradienShap, LinearShap).  

● GradientShap is a modified version of Integrated Gradients, optimized for 
neural networks.
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Subsequences-based 
Explanations
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Subsequences-based Explanations

• After having transformed the TS into time-dependent humanly 
understandable feature describing subsequence that can be referred 
into the input TS, any interpretable ML approach can be used as it is 
or as a surrogate to explain another model.
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Instance-based 
Explanations
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Counterfactuals

● Counterfactual time series show the minimal changes in the input 
data that lead to a different decision outcome.

● KNN can be paired with the 

Euclidean or DTW distance to 

classify time series. 

● To find a counterfactual, it 

searchers for the closest 

instance having a different 

class.
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Counterfactuals

● Native Guides builds upon the KNN 
approach, generating novel counterfactuals, 
following four identified key properties: 
proximity, sparsity, plausibility, and diversity.
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