
DATA MINING 2
Time Series – Approximation & Clustering

Riccardo Guidotti

a.a. 2024/2025

Slides edited from Keogh Eamonn’s tutorial

Time Series Approximations

2

Dimensionality Reduction

• Dimensionality reduction is the
process of reducing the number of
variables under consideration by
obtaining a subset of principal
variables.

• Dimensionality Reduction approaches
can be divided into:

• Feature Selection: variables are
selected among the existing ones

• Feature Projection: new variables
are created to compactly represent
the existing ones.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1.1 1.0 0.3 0.5 0.4 1.8 1.6 1.5 1.3 2.4

1.2 1.2 0.3 0.7 2.1 0.7 3.2 1.9 1.8 3.6

… … … … … … … … … …

XA XB

1.8 5.4

1.9 6.3

… …

X2 X8

1.0 1.5

1.2 1.9

… …

Selection Projection 3

Time Series Approximation

• Time Series Approximation is a special form of Dimensionality Reduction specifically
designed for TSs.

• Time Series Approximation consists in representing a TS into a smaller and simpler
space that is later used for further calculus (e.g. DTW).

• Approximation vs Compression: the approximated space is always understandable,
while the compressed space is not necessarily understandable.

• Approximated representations can be

• Time-Dependent: the approximated values maintain a temporal ordering

• Time-Independent: the approximated values loose the temporal ordering

• Instance-wise: the approximation operation involves only the values of a single TS

• Dataset-wise: the approximation operation involves the values of a dataset of TS

4

Piecewise Aggregate Approximation (PAA)

• PAA approximates a TS by dividing it into equal-length
segments and using the mean value of the data points that
fall within the segment as representation.

• PPA represent the TS as a sequence of box basis functions
with each box of the same size.

• Given T = {x1, …, xn}, PAA reduces T from a vector with n
dimensions to a vector ത𝑇 = { ҧ𝑥1, … , ҧ𝑥𝑁} with N dimensions
(with N < n) by dividing T into N equi-sized ``frames’’ with
length n/N where the i-th element is calculated as


+−=

=

i

ij

jn
N

i

N
n

N
n

xx
1)1(

Pros

• Extremely fast to calculate

• Supports non-Euclidean measures

• Supports weighted Euclidean distance
Time-Dependent Approximation 5

PAA - Example

6

PAA - Example

7

Symbolic Aggregate Approximation (SAX)

• SAX converts a TS into a discrete
format using a small alphabet
size such that every part of the
representation contributes about
the same amount of information
about the shape of the TS.

• First converts the time series to
PAA representation, then convert
the PAA to symbols.

8

baabccbc

Time-Dependent Approximation

How do we obtain SAX?

• A time series T of length n is divided into w
equal-sized segments; the values in each
segment are approximated and replaced by
their average.

• Next, we determine the breakpoints that
divide the distribution space into ɑ
equiprobable regions, where ɑ is the
alphabet size specified by the user.

• The breakpoints are determined such that
the probability of a segment falling into any
of the regions is approximately the same.

9

0

--

0 20 40 60 80 100 120

b
b

b

a

c

c

c

a

0 20 40 60 80 100 120

C

C

baabccbc

How do we obtain SAX?

• Once the breakpoints are determined,
each region is assigned to a symbol and the
PAA coefficients are mapped with the
symbol corresponding to the region in
which they reside.

• The symbols are assigned in a bottom-up
fashion, i.e., the PAA coefficient that falls in
the lowest region is converted to “a”, in the
one above to “b”, and so forth.

10

0

--

0 20 40 60 80 100 120

b
b

b

a

c

c

c

a

0 20 40 60 80 100 120

C

C

baabccbc

SAX - Example

11

Distances and Approximations

12

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

C

Q

() () −
=

n

i
ii cqCQD

1

2
,

Euclidean Distance

PAA distance

lower-bounds the

Euclidean Distance

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

C

Q

() =
−

w

i iiw

n cqCQDR
1

2
),(

= baabccbcĈ

= babcaccaQ̂

() =


w

i iiw
n cqdistCQMINDIST

1

2
)ˆ,ˆ()ˆ,ˆ(

dist() can be implemented

using a table lookup or by

using for each symbol the

mean value of its region.

Discrete Fourier Transform (DFT)

• Represent a TS of length n as a linear combination of w
smooth periodic sinusoidal series (i.e., sines and cosines).

• Each wave is represented by a Fourier coefficient

• This representation is called Frequency Domain

• The DFT concentrates most of its energy in the first few
Fourier coefficients

• Low-pass filter: approximate a TS by its first w Fourier
coefficients.

13Time-Independent Approximation

How do we obtain DFT?

• The DFT decomposes a TS T of length n into a sum of n orthogonal basis functions
using sinusoid waves represented with two numbers: amplitude and phase.

• A Fourier coefficient (sinusoid wave) is represented by the complex number: Xu =
(realu, imagu) u = 0, 1, …, n-1

• where the amplitude 𝐴𝑢 = √𝑅𝑒(𝑋𝑢)2+ 𝐼𝑚(𝑋𝑢)2 and the phase 𝜑𝑢 =
 𝑎𝑡𝑎𝑛2(𝑅𝑒 𝑋𝑢

2, 𝐼𝑚(𝑋𝑢)2)

• The n-th point DFT of a TS T = {x1, …, xn} is given by

• DFT(T) = X0, …, Xn-1 = {(real0, imag0), …, (realn-1, imagn-1)}

• with Xu =
1

𝑛
 σ𝑖=1

𝑛 𝑥𝑖 𝑒−
𝑗2𝜋𝑖

𝑛 u ∈ [0, n), j = −1

• The first Fourier coefficient (X0 =
1

𝑛
 σ𝑖=1

𝑛 𝑥𝑖 𝑒0) is equal to the mean of a TS and

can be discarded to obtain offset invariance, i.e., level removal.
14

0.4995

0.5264

0.5523

0.5761

0.5973

0.6153

0.6301

0.6420

0.6515

0.6596

0.6672

0.6751

0.6843

0.6954

0.7086

0.7240

0.7412

0.7595

0.7780

0.7956

0.8115

0.8247

0.8345

0.8407

0.8431

0.8423

0.8387

…

Raw

Data

0 20 40 60 80 100 120 140

C

n = 128

An Example of DFT

• We can decompose the data into 64
pure sine waves using the Discrete
Fourier Transform (just the first few
sine waves are shown).

• The Fourier Coefficients are
reproduced as a column of numbers
(just the first 30 or so coefficients
are shown).

• Note that at this stage we have not
done dimensionality reduction, we
have merely changed the
representation...

1.5698

1.0485

0.7160

0.8406

0.3709

0.4670

0.2667

0.1928

0.1635

0.1602

0.0992

0.1282

0.1438

0.1416

0.1400

0.1412

0.1530

0.0795

0.1013

0.1150

0.1801

0.1082

0.0812

0.0347

0.0052

0.0017

0.0002

...

Fourier

Coefficients

0.4995

0.5264

0.5523

0.5761

0.5973

0.6153

0.6301

0.6420

0.6515

0.6596

0.6672

0.6751

0.6843

0.6954

0.7086

0.7240

0.7412

0.7595

0.7780

0.7956

0.8115

0.8247

0.8345

0.8407

0.8431

0.8423

0.8387

…

Raw

Data

0 20 40 60 80 100 120 140

C

n = 128

An Example DFT

• … however, note that the first few
sine waves tend to be the largest
(equivalently, the magnitude of the
Fourier coefficients tend to decrease
as you move down the column).

• We can therefore truncate most of
the small coefficients with little
effect.

1.5698

1.0485

0.7160

0.8406

0.3709

0.4670

0.2667

0.1928

0.1635

0.1602

0.0992

0.1282

0.1438

0.1416

0.1400

0.1412

0.1530

0.0795

0.1013

0.1150

0.1801

0.1082

0.0812

0.0347

0.0052

0.0017

0.0002

...

Fourier

Coefficients

1.5698

1.0485

0.7160

0.8406

0.3709

0.4670

0.2667

0.1928

Truncated

Fourier

Coefficients

n = 128

N = 8

Cratio = 1/16

We have

discarded

of the data.
16

15

C’

0.4995

0.5264

0.5523

0.5761

0.5973

0.6153

0.6301

0.6420

0.6515

0.6596

0.6672

0.6751

0.6843

0.6954

0.7086

0.7240

0.7412

0.7595

0.7780

0.7956

0.8115

0.8247

0.8345

0.8407

0.8431

0.8423

0.8387

…

Raw

Data

0 20 40 60 80 100 120 140

C

n = 128

An Example of DFT

• Instead of taking the first few
coefficients, we could take the
best coefficients

• This can help greatly in terms
of approximation quality but
makes indexing hard.

• Note this applies also to
Wavelets

1.5698

1.0485

0.7160

0.8406

0.3709

0.4670

0.2667

0.1928

0.1635

0.1602

0.0992

0.1282

0.1438

0.1416

0.1400

0.1412

0.1530

0.0795

0.1013

0.1150

0.1801

0.1082

0.0812

0.0347

0.0052

0.0017

0.0002

...

Fourier

Coefficients

1.5698

1.0485

0.7160

0.8406

0.3709

0.4670

0.2667

0.1928

Truncated

Fourier

Coefficients

C’

DFT - Example

18

Symbolic Fourier Approximation (SFA)

• SFA represents a TS with a word

• SFA is composed of

• a) approximation using the
Fourier transform

• b) a data adaptive discretization

• The discretization intervals are
learned from the Fourier
transformed data distribution rather
than using fixed intervals with
Multiple Coefficient Binning (MCB)

19Time-Independent Approximation

SFA Discretization

20

• The objective of MCB is
to minimize the loss of
information introduced
by discretization.

• This is achieved by
applying a discretization
for each coefficient.

• MCB uses different
breakpoints for each
symbol on each
coefficient.

Comparison of SFA and SAX

• Roughly we can say

• SAX = PAA + Discretization

• SFA = DFT + Discretization

• Approximation cause a loss of
information

• Discretization augments the level
of information loss.

• The higher the number of symbols
and the alphabet size, the more
exact is the representation.

21

Properties of Symbolic Representations

• Noise removal: discretization

• String representations: allows for string domain algorithms like
hashing or the bag-of-words to be applied

• Dimensionality reduction: allow for indexing high dimensional data

• Storage reduction: sequences have a much lower memory footprint
than real-valued time series

22

Singular Value Decomposition (SVD)

• SVD is a factorization method that
decomposes a matrix into three other
matrices: U, S, and VT (transpose of V):

• X = U S VT

• Input matrix X (m x n)

• U (m x m) contains orthogonal columns
that represent the left singular vectors.

• S (m x n) is a diagonal matrix containing
the singular values.

• VT (n x n) contains orthogonal rows
representing the right singular vectors.

23

SVD for Time Series Approximations

• SVD is similar to DFT and SFT in that it represents the shape
in terms of a linear combination of basis shapes.

• DFT and SFT are individual approximations as they examine
one TS at a time. They are completely independent of the
rest of the data.

• SVD is a global approximations as the entire dataset is
examined and is then rotated such that the first axis has the
maximum possible variance, the second axis has the
maximum possible variance orthogonal to the first, the third
axis has the maximum possible variance orthogonal to the
first two, etc.

• The global nature of SVD is both a weakness and a strength.

24

0 20 40 60 80 100 120 140

X

X'

SVD

eigenwave 0

eigenwave 1

eigenwave 2

eigenwave 3

eigenwave 4

eigenwave 5

eigenwave 6

eigenwave 7

Principal Component Analysis (PCA)
• PCA is a statistical procedure that aims to transform data into a

new coordinate system where the axes are the principal
components. These components are orthogonal and capture the
maximum variance in the data.

25

1. Standardize the Data: Normalize the data X to have zero mean and unit variance
matrix C.

2. Calculate Covariance Matrix: Calculate the covariance matrix Σ = 𝐶𝑇𝐶 of the
standardized data.

3. Compute Eigenvectors and Eigenvalues: Compute the eigenvectors and eigenvalues
of the covariance matrix Σ.

4. Select Principal Components: Sort eigenvalues in descending order and choose the
top-k eigenvalues to form principal components.

5. Transform Data: Project the original data X into the principal components to create a
lower-dimensional representation.

Relationships between SVD and PCA

Dealing with data

• PCA primarily deals with the covariance structure of the data.

• SVD does not rely on a covariance matrix. It is a factorization that decomposes
the original data without computing covariance.

Computations

• Both PCA and SVD involve eigen-decomposition.

• PCA performs eigen-decomposition on the covariance matrix of the data which is
a square symmetric matrix of size m x m where m is the number of time stamp.

• SVD performs eigen-decomposition on the data matrix itself of size n x m where n
is the number of TS and m is the number of number of time stamps.

26

Relationships between SVD and PCA

• PCA is a specific application of SVD, primarily used for dimensionality reduction,
while SVD is a more general matrix decomposition technique with broader
applications in linear algebra and data analysis.

• PCA can be solved using SVD

• PCA focuses on the covariance structure and tries to maximize variance along
orthogonal axes

• SVD focuses on matrix factorization and can handle cases where data is missing.

• From an application perspective they are used interchangeably.

27

PCA - Example

28

Remarks on Approximations

• None of the representations can be superior for all tasks.

• No research has proved how one should choose the best
representation for the problem at hand and data of interest.

• The literature is not even consistent on nomenclature.
• Example: Piecewise Aggregate Approximation

• Piecewise Flat Approximation (Faloutsos et al., 1997)

• Piecewise Constant Approximation

• Segmented Means

29

Approximations, Distances and Normalizations

• It does not make any sense to use a distance function accounting for time like
DTW if a Time-Independent approximation is used.

• Thus, do not use DTW after DTF, SFA, SVD, PCA.

• It does make sense to use DTW after Time-Dependent approximations.

• Thus, you can use DTW after PAA or SAX.

• Normalizations can be applied before and/or after approximations depending on
the objective of your TSA task.

• Time series normalizations does not make any sense after a Time-Independent
approximation.

• In that case traditional “column-wise” normalizations like Min-Max scaling or Z-
Score normalization should be used.

30

Clustering

Clustering Time Series

• It is based on the similarity between time series.

• The most similar data are grouped into clusters, but the clusters
themselves should be dissimilar.

• These groups to find are not predefined, i.e., it is an unsupervised
learning task.

• The two general methods of time series clustering are
• Partitional Clustering and

• Hierarchical Clustering

Hierarchical Clustering

• It computes pairwise distance, and then merges
similar clusters in a bottom-up fashion, without
the need of providing the number of clusters

• It is one of the best tools to data evaluation, by
creating a dendrogram of several time series from
the domain of interest.

• Its application is limited to small datasets due to
its quadratic computational complexity.

Partitional Clustering

• Typically uses K-Means (or some variant) to optimize the objective
function by minimizing the sum of squared intra-cluster errors.

• K-Means is perhaps the most commonly used clustering algorithm in
the literature, one of its shortcomings is the fact that the number of
clusters, K, must be pre-specified.

• Also, the distance function plays a fundamental role both for the
quality of the results and for the efficiency.

Types of Time Series Clustering

• Whole clustering: similar to that of conventional clustering of discrete
objects. Given a set of individual time series data, the objective is to
group similar time series into the same cluster.

• Features-based clustering: extract features, or time series motifs (see
next lectures) as the features and use them to cluster time series.

• Approximated-based clustering: approximate time series and run
clustering on the compressed versions.

• Subsequence clustering: given a single time series, subsequence
clustering is performed on each individual time series extracted from
the long time series with a sliding window.

References

• Selective review of offline change point detection
methods. Truong, C., Oudre, L., & Vayatis, N. (2020).
Signal Processing, 167, 107299.

• Time Series Analysis and Its Applications. Robert H.
Shumway and David S. Stoffer. 4th

edition.(https://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf)

• Mining Time Series Data. Chotirat Ann Ratanamahatana
et al. 2010.
(https://www.researchgate.net/publication/227001229_
Mining_Time_Series_Data)

• Dynamic Programming Algorithm Optimization for
Spoken Word Recognition. Hiroaki Sakode et al. 1978.

• Experiencing SAX: a Novel Symbolic Representation of
Time Series. Jessica Line et al. 2009

• Compression-based data mining of sequential data.
Eamonn Keogh et al. 2007.

https://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf
https://www.researchgate.net/publication/227001229_Mining_Time_Series_Data
https://www.researchgate.net/publication/227001229_Mining_Time_Series_Data

	Slide 1: DATA MINING 2 Time Series – Approximation & Clustering
	Slide 2: Time Series Approximations
	Slide 3: Dimensionality Reduction
	Slide 4: Time Series Approximation
	Slide 5: Piecewise Aggregate Approximation (PAA)
	Slide 6: PAA - Example
	Slide 7: PAA - Example
	Slide 8: Symbolic Aggregate Approximation (SAX)
	Slide 9: How do we obtain SAX?
	Slide 10: How do we obtain SAX?
	Slide 11: SAX - Example
	Slide 12: Distances and Approximations
	Slide 13: Discrete Fourier Transform (DFT)
	Slide 14: How do we obtain DFT?
	Slide 15: An Example of DFT
	Slide 16: An Example DFT
	Slide 17: An Example of DFT
	Slide 18: DFT - Example
	Slide 19: Symbolic Fourier Approximation (SFA)
	Slide 20: SFA Discretization
	Slide 21: Comparison of SFA and SAX
	Slide 22: Properties of Symbolic Representations
	Slide 23: Singular Value Decomposition (SVD)
	Slide 24: SVD for Time Series Approximations
	Slide 25: Principal Component Analysis (PCA)
	Slide 26: Relationships between SVD and PCA
	Slide 27: Relationships between SVD and PCA
	Slide 28: PCA - Example
	Slide 29: Remarks on Approximations
	Slide 30: Approximations, Distances and Normalizations
	Slide 31: Clustering
	Slide 32: Clustering Time Series
	Slide 33: Hierarchical Clustering
	Slide 34: Partitional Clustering
	Slide 35: Types of Time Series Clustering
	Slide 36: References

