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Time Series Approximations
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Dimensionality Reduction

• Dimensionality reduction is the 
process of reducing the number of 
variables under consideration by 
obtaining a subset of principal 
variables. 

• Dimensionality Reduction approaches 
can be divided into: 

• Feature Selection: variables are 
selected among the existing ones 

• Feature Projection: new variables 
are created to compactly represent 
the existing ones.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1.1 1.0 0.3 0.5 0.4 1.8 1.6 1.5 1.3 2.4

1.2 1.2 0.3 0.7 2.1 0.7 3.2 1.9 1.8 3.6

… … … … … … … … … …

XA XB

1.8 5.4

1.9 6.3

… …

X2 X8

1.0 1.5

1.2 1.9

… …
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Time Series Approximation

• Time Series Approximation is a special form of Dimensionality Reduction specifically 
designed for TSs.

• Time Series Approximation consists in representing a TS into a smaller and simpler 
space that is later used for further calculus (e.g. DTW).

• Approximation vs Compression: the approximated space is always understandable, 
while the compressed space is not necessarily understandable.

• Approximated representations can be 

• Time-Dependent: the approximated values maintain a temporal ordering

• Time-Independent: the approximated values loose the temporal ordering

• Instance-wise: the approximation operation involves only the values of a single TS

• Dataset-wise: the approximation operation involves the values of a dataset of TS
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Piecewise Aggregate Approximation (PAA)

• PAA approximates a TS by dividing it into equal-length 
segments and using the mean value of the data points that 
fall within the segment as representation. 

• PPA represent the TS as a sequence of box basis functions 
with each box of the same size. 

• Given T = {x1, …, xn}, PAA reduces T from a vector with n
dimensions to a vector ത𝑇 = { ҧ𝑥1, … , ҧ𝑥𝑁} with N dimensions 
(with N < n) by dividing T into N equi-sized ``frames’’ with 
length n/N where the i-th element is calculated as
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Pros

• Extremely fast to calculate

• Supports non-Euclidean measures

• Supports weighted Euclidean distance
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PAA - Example
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PAA - Example
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Symbolic Aggregate Approximation (SAX)

• SAX converts a TS into a discrete 
format using a small alphabet 
size such that every part of the 
representation contributes about 
the same amount of information 
about the shape of the TS. 

• First converts the time series to 
PAA representation, then convert 
the PAA to symbols. 
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How do we obtain SAX?

• A time series T of length n is divided into w
equal-sized segments; the values in each 
segment are approximated and replaced by 
their average.

• Next, we determine the breakpoints that 
divide the distribution space into ɑ
equiprobable regions, where ɑ is the 
alphabet size specified by the user. 

• The breakpoints are determined such that 
the probability of a segment falling into any 
of the regions is approximately the same. 
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How do we obtain SAX?

• Once the breakpoints are determined, 
each region is assigned to a symbol and the 
PAA coefficients are mapped with the 
symbol corresponding to the region in 
which they reside. 

• The symbols are assigned in a bottom-up 
fashion, i.e., the PAA coefficient that falls in 
the lowest region is converted to “a”, in the 
one above to “b”, and so forth. 
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SAX - Example
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Distances and Approximations
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Discrete Fourier Transform (DFT)

• Represent a TS of length n as a linear combination of w
smooth periodic sinusoidal series (i.e., sines and cosines).

• Each wave is represented by a Fourier coefficient

• This representation is called Frequency Domain

• The DFT concentrates most of its energy in the first few 
Fourier coefficients

• Low-pass filter: approximate a TS by its first w Fourier 
coefficients.

13Time-Independent Approximation



How do we obtain DFT?

• The DFT decomposes a TS T of length n into a sum of n orthogonal basis functions 
using sinusoid waves represented with two numbers: amplitude and phase. 

• A Fourier coefficient (sinusoid wave) is represented by the complex number: Xu = 
(realu, imagu) u = 0, 1, …, n-1

• where the amplitude 𝐴𝑢  = √𝑅𝑒(𝑋𝑢)2+ 𝐼𝑚(𝑋𝑢)2 and the phase 𝜑𝑢 =
 𝑎𝑡𝑎𝑛2(𝑅𝑒 𝑋𝑢

2, 𝐼𝑚(𝑋𝑢)2)

• The n-th point DFT of a TS T = {x1, …, xn} is given by

• DFT(T) = X0, …, Xn-1 = {(real0, imag0), …, (realn-1, imagn-1)}

• with Xu = 
1

𝑛
 σ𝑖=1

𝑛 𝑥𝑖  𝑒−
𝑗2𝜋𝑖

𝑛 u ∈ [0, n), j = −1

• The first Fourier coefficient (X0 = 
1

𝑛
 σ𝑖=1

𝑛 𝑥𝑖  𝑒0) is equal to the mean of a TS and 

can be discarded to obtain offset invariance, i.e., level removal.
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An Example of DFT

• We can decompose the data into 64 
pure sine waves using the Discrete 
Fourier Transform (just the first few 
sine waves are shown).

• The Fourier Coefficients are 
reproduced as a column of numbers 
(just the first 30 or so coefficients 
are shown).

• Note that at this stage we have not 
done dimensionality reduction, we 
have merely changed the 
representation...
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An Example DFT

• … however, note that the first few 
sine waves tend to be the largest 
(equivalently, the magnitude of the 
Fourier coefficients tend to decrease 
as you move down the column).

• We can therefore truncate most of 
the small coefficients with little 
effect. 
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We have 
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of the data.
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An Example of DFT

• Instead of taking the first few 
coefficients, we could take the 
best coefficients

• This can help greatly in terms 
of approximation quality but 
makes indexing hard.

• Note this applies also to 
Wavelets
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DFT - Example
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Symbolic Fourier Approximation (SFA)

• SFA represents a TS with a word

• SFA is composed of 

• a) approximation using the 
Fourier transform

• b) a data adaptive discretization

• The discretization intervals are 
learned from the Fourier 
transformed data distribution rather 
than using fixed intervals with 
Multiple Coefficient Binning (MCB)

19Time-Independent Approximation



SFA Discretization
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• The objective of MCB is 
to minimize the loss of 
information introduced 
by discretization.

• This is achieved by 
applying a discretization 
for each coefficient.

• MCB uses different 
breakpoints for each 
symbol on each 
coefficient.



Comparison of SFA and SAX

• Roughly we can say 

• SAX = PAA + Discretization

• SFA = DFT + Discretization

• Approximation cause a loss of 
information

• Discretization augments the level 
of information loss.

• The higher the number of symbols 
and the alphabet size, the more 
exact is the representation.
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Properties of Symbolic Representations

• Noise removal: discretization

• String representations: allows for string domain algorithms like 
hashing or the bag-of-words to be applied

• Dimensionality reduction: allow for indexing high dimensional data

• Storage reduction: sequences have a much lower memory footprint 
than real-valued time series
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Singular Value Decomposition (SVD)

• SVD is a factorization method that 
decomposes a matrix into three other 
matrices: U, S, and VT (transpose of V):

• X = U S VT

• Input matrix X (m x n) 

• U (m x m) contains orthogonal columns 
that represent the left singular vectors.

• S (m x n) is a diagonal matrix containing 
the singular values.

• VT (n x n) contains orthogonal rows 
representing the right singular vectors.
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SVD for Time Series Approximations

• SVD is similar to DFT and SFT in that it represents the shape 
in terms of a linear combination of basis shapes. 

• DFT and SFT are individual approximations as they examine 
one TS at a time. They are completely independent of the 
rest of the data. 

• SVD is a global approximations as the entire dataset is 
examined and is then rotated such that the first axis has the 
maximum possible variance, the second axis has the 
maximum possible variance orthogonal to the first, the third 
axis has the maximum possible variance orthogonal to the 
first two, etc. 

• The global nature of SVD is both a weakness and a strength.
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Principal Component Analysis (PCA)
• PCA is a statistical procedure that aims to transform data into a 

new coordinate system where the axes are the principal 
components. These components are orthogonal and capture the 
maximum variance in the data. 

25

1. Standardize the Data: Normalize the data X to have zero mean and unit variance 
matrix C.

2. Calculate Covariance Matrix: Calculate the covariance matrix Σ = 𝐶𝑇𝐶 of the 
standardized data.

3. Compute Eigenvectors and Eigenvalues: Compute the eigenvectors and eigenvalues 
of the covariance matrix Σ.

4. Select Principal Components: Sort eigenvalues in descending order and choose the 
top-k eigenvalues to form principal components.

5. Transform Data: Project the original data X into the principal components to create a 
lower-dimensional representation.



Relationships between SVD and PCA

Dealing with data

• PCA primarily deals with the covariance structure of the data. 

• SVD does not rely on a covariance matrix. It is a factorization that decomposes 
the original data without computing covariance.

Computations

• Both PCA and SVD involve eigen-decomposition. 

• PCA performs eigen-decomposition on the covariance matrix of the data which is 
a square symmetric matrix of size m x m where m is the number of time stamp. 

• SVD performs eigen-decomposition on the data matrix itself of size n x m where n
is the number of TS and m is the number of number of time stamps.
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Relationships between SVD and PCA

• PCA is a specific application of SVD, primarily used for dimensionality reduction, 
while SVD is a more general matrix decomposition technique with broader 
applications in linear algebra and data analysis.

• PCA can be solved using SVD

• PCA focuses on the covariance structure and tries to maximize variance along 
orthogonal axes

• SVD focuses on matrix factorization and can handle cases where data is missing. 

• From an application perspective they are used interchangeably.

27



PCA - Example
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Remarks on Approximations

• None of the representations can be superior for all tasks.

• No research has proved how one should choose the best 
representation for the problem at hand and data of interest. 

• The literature is not even consistent on nomenclature.
• Example: Piecewise Aggregate Approximation 

• Piecewise Flat Approximation (Faloutsos et al., 1997)

• Piecewise Constant Approximation

• Segmented Means
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Approximations, Distances and Normalizations

• It does not make any sense to use a distance function accounting for time like 
DTW if a Time-Independent approximation is used.

• Thus, do not use DTW after DTF, SFA, SVD, PCA.

• It does make sense to use DTW after Time-Dependent approximations.

• Thus, you can use DTW after PAA or SAX.

• Normalizations can be applied before and/or after approximations depending on 
the objective of your TSA task.

• Time series normalizations does not make any sense after a Time-Independent 
approximation. 

• In that case traditional “column-wise” normalizations like Min-Max scaling or Z-
Score normalization should be used.
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Clustering Time Series

• It is based on the similarity between time series.

• The most similar data are grouped into clusters, but the clusters 
themselves should be dissimilar.

• These groups to find are not predefined, i.e., it is an unsupervised 
learning task. 

• The two general methods of time series clustering are 
• Partitional Clustering and 

• Hierarchical Clustering



Hierarchical Clustering

• It computes pairwise distance, and then merges 
similar clusters in a bottom-up fashion, without 
the need of providing the number of clusters

• It is one of the best tools to data evaluation, by 
creating a dendrogram of several time series from 
the domain of interest.

• Its application is limited to small datasets due to 
its quadratic computational complexity.



Partitional Clustering

• Typically uses K-Means (or some variant) to optimize the objective 
function by minimizing the sum of squared intra-cluster errors. 

• K-Means is perhaps the most commonly used clustering algorithm in 
the literature, one of its shortcomings is the fact that the number of 
clusters, K, must be pre-specified.

• Also, the distance function plays a fundamental role both for the 
quality of the results and for the efficiency.



Types of Time Series Clustering

• Whole clustering: similar to that of conventional clustering of discrete 
objects. Given a set of individual time series data, the objective is to 
group similar time series into the same cluster. 

• Features-based clustering: extract features, or time series motifs (see 
next lectures) as the features and use them to cluster time series.

• Approximated-based clustering: approximate time series and run 
clustering on the compressed versions.

• Subsequence clustering: given a single time series, subsequence 
clustering is performed on each individual time series extracted from 
the long time series with a sliding window.
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