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Distances and Similarities

• Time series problems such as classification, 
forecasting, clustering, etc. require the usage of a 
notion of distance or similarity.

• What is similarity?

• It is the quality or state of being similar, likeness, 
resemblance, as a similarity of features. 

• In TSA we recognize two types of similarity measures 
depending on the data representation considered:

• shape-based similarity

• structural-based similarity
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Shape vs Structural Similarities

Shape-based Similarity

• The original values of the time series 
are compared taking time into account. 

• Better for short time series.

Structural Similarity

• Time series are transformed into an 
alternative representation where the 
novel features are time-independent.

• Better for long time series.
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• Given two time series:
• Q = q1 … qn

• C = c1 … cn

• T1 = < 56,       176,        110,        95  >

• T2 = < 36,       126,        180,        80  >
D(T1,T2) = sqrt [ (56-36)2 + (176-126)2 + (110-180)2 + (95-80)2 ]
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Problems with Euclidean Distance

• Euclidean distance is very sensitive to 
“distortions” in the data.

• These distortions are dangerous and 
should be removed.

• Most common distortions:

• Offset Translation

• Amplitude Scaling

• Linear Trend

• Noise

• They can be removed by using the 
appropriate normalization.
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Further Problems with Euclidean Distance

• Even after normalization, the Euclidean distance may still be 
unsuitable for some time series domains since it does not allow for 
acceleration and deceleration along the time axis. 
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Dynamic Time Warping

• Sometimes two time series that are 
conceptually equivalent evolve at different 
speeds, at least in some moments.

E.g. correspondence of peaks in 
two similar time series

• Euclidean distance - Fixed Time 
Axis: Sequences are aligned 
“one to one”. Greatly suffers 
from the misalignment in data.

• Dynamic Time Warping - Warped Time 
Axis: Nonlinear alignments are possible. 
Can correct misalignments in data.

7



Mountain Gorilla

Lowland Gorilla

https://izbicki.me/blog/converting-images-into-time-series-for-data-mining.html8



How is DTW Calculated?

• Every possible warping between two 
time series, is a path through the matrix. 

• The constrained sequence of 
comparisons performed:
• Start from pair of points (0,0)
• After point (i,j), either i or j increase 

by one, or both of them
• End the process on (n,m)

C

Q

Warping path w

Euclidean distance-like parts:
Both time series move

Time warping parts:
Only one time series moves

9



Dynamic Programming Approach

Step 1: Compute the matrix of all point-to-point 
distances d(qi,cj) = | Qi – Cj |

Step 2: Compute the cumulative cost matrix as

• Start from cell (1,1)

• Compute (2,1), (3,1), …, (n,1)

• Repeat for columns 2, 3, …, n

• Final distance value is in the last cell computed

Step 3: find the path with the lowest values, i.e., the 
best alignment between Q and C

(i,j) = d(qi,cj) + min{ 

(i-1,j-1), (i-1,j ), (i,j-1) }

C
Q

Result

Result
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Dynamic Programming Approach

Step 2: compute the matrix of all path costs  (i,j)

• Start from cell (1,1)
(1,1)   =   d(q1,c1) + min{ (0,0), (0,1), (1,0)} 

=   d(q1,c1)

=   D(1,1)

• Compute (2,1), (3,1), …, (n,1)
(i,1)   =   d(qi,c1) + min{ (i-1,0), (i-1,1), (i,0) } 

=   d(qi,c1) + (i-1,1)

=   D(i,1) + (i-1,1)

• Repeat for columns 2, 3, …, n
– The general formula applies

D(1,1)

+ 

D(i,1)

min + 

D(i,1)

X X X

X X

(i,j)   =   d(qi,cj) + min{ (i-1,j-1), (i-1,j ), (i,j-1) }
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DTW – Example
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DTW – A Real Example

• This example shows 2 one-
week periods from the 
power demand time series.

• Note that although they 
both describe 4-day work 
weeks, the blue sequence 
had Monday as a holiday, 
and the red sequence had 
Wednesday as a holiday.
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Comparison of Euclidean Distance and DTW
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Comparison of Euclidean Distance and DTW

• Classification using 1-NN

• Class(x) = class of most similar 
training object

• Leaving-one-out evaluation

• For each object: use it as test set, 
return overall average

Dataset Euclidean DTW

Word Spotting 0.95 0.99

Sign language 0.71 0.74

GUN 0.95 0.99

Nuclear Trace 0.89 1.00

Leaves# 0.67 0.96

(4) Faces 0.94 0.97

Control Chart* 0.93 1.00

2-Patterns 0.99 1.00

Accuracy
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Comparison of Euclidean Distance and DTW

• Classification using 1-NN

• Class(x) = class of most similar 
training object

• Leaving-one-out evaluation

• For each object: use it as test set, 
return overall average

• DTW is two to three orders of 
magnitude slower than Euclidean 
distance.

Milliseconds

Dataset Euclidean DTW

Word Spotting 40 8,600 

Sign language 10 1,110

GUN 60 11,820 

Nuclear Trace 210 144,470 

Leaves 150 51,830 

(4) Faces 50 45,080

Control Chart 110 21,900

2-Patterns 16,890 545,123
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Problems with Dynamic Time Warping 

• Dynamic Time Warping gives much better results than Euclidean 
distance on many problems.

• Dynamic Time Warping is very very slow to calculate!

• Is there anything we can do to speed up similarity search under DTW? 
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Global Constraints

• Slightly speed up the calculations

• Prevent pathological warpings
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Sakoe-Chiba Band Itakura Parallelogram
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Global Constraints

• A global constraint constrains the indices of the warping path wk = 
(i,j)k such that j-r  i  j+r, where r is a term defining allowed range of  
warping for a given point in a sequence.

• r can be considered as a window that reduces the number of calculus.

ri

Sakoe-Chiba Band Itakura Parallelogram
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Accuracy vs. Width of Warping Window
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Fast Approximations to DTW

• Approximate the time series with some compressed or downsampled
representation and do DTW on the new representation. 

C

Q
C

Q
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Fast Approximations to DTW

• There is strong visual evidence to suggests it works well

• In the literature there is good experimental evidence for the utility of 
the approach on clustering, classification, etc.

0.07 sec

1.03 sec
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Distances and Normalizations

• If measuring a distance to account for a shape-based similarity it is 
important to consider the level then the level, i.e., the mean, should 
not be removed.

• This kind of reasoning applies also to other features of the TS.
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Global Structural Features
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Structure-based Similarity

• For long time series, shape-based similarity 
typically give poor results.

• Structure-based similarity measure similarly of 
TS based on high level structure.

• The basic idea is to:
1. extract global features from the time series, 
2. create a feature vector, and 
3. use it to measure similarity with Euclidean distance

• Example of features: 
• mean, variance, skewness, kurtosis, 
• 1st derivative mean, 1st derivative variance, … 
• parameters of regression, forecasting, Markov model

A

B

C

Feature\Time Series A B C

Max Value 11 12 19

Mean 5.3 6.4 4.8

Min Value 3 2 5

Autocorrelation 0.2 0.3 0.5

… … … …
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Simple Standard Features

• Mean

• Standard Deviation

• Variance

• Median

• 10th Percentile

• 25th Percentile

• 75th Percentile

• 90th Percentile

• IQR

• Covariance

• Skewness

• Kurtosis

• Min

• Max
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TSFresh Features
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TSFresh Features
• abs_energy - Returns the absolute energy of the time series 

which is the sum over the squared values
• absolute_maximum - Calculates the highest absolute value of 

the time series x.

• absolute_sum_of_changes - Returns the sum over the absolute 
value of consecutive changes in the series x

• agg_autocorrelation - Descriptive statistics on the 
autocorrelation of the time series.

• agg_linear_trend - Calculates a linear least-squares regression 
for values of the time series that were aggregated over chunks 
versus the sequence from 0 up to the number of chunks minus 
one.

• approximate_entropy - Implements a vectorized Approximate 
entropy algorithm.

• ar_coefficient - This feature calculator fits the unconditional 
maximum likelihood of an autoregressive AR(k) process.

• augmented_dickey_fuller - Does the time series have a unit 
root?

• autocorrelation - Calculates the autocorrelation of the specified 
lag

• benford_correlation - Useful for anomaly detection 
applications. Returns the correlation from first digit distribution 
when

• binned_entropy - First bins the values of x into max_bins
equidistant bins.

• c3 - Uses c3 statistics to measure non linearity in the time 
series

• change_quantiles - First fixes a corridor given by the quantiles 
ql and qh of the distribution of x.

• cid_ce - This function calculator is an estimate for a time series 
complexity.

• count_above - Returns the percentage of values in x that are 
higher than t

• count_above_mean - Returns the number of values in x that are 
higher than the mean of x

• count_below - Returns the percentage of values in x that are 
lower than t

• count_below_mean - Returns the number of values in x that 
are lower than the mean of x

• cwt_coefficients - Calculates a Continuous wavelet transform 
for the Ricker wavelet, also known as the "Mexican hat 
wavelet" which is defined by

• energy_ratio_by_chunks - Calculates the sum of squares of 
chunk i out of N chunks expressed as a ratio with the sum of 
squares over the whole series.

• fft_aggregated - Returns the spectral centroid (mean), variance, 
skew, and kurtosis of the absolute fourier transform spectrum.
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TSFresh Features
• fft_coefficient - Calculates the fourier coefficients of the one-

dimensional discrete Fourier Transform for real input by fast 
fourier transformation algorithm

• first_location_of_maximum - Returns the first location of the 
maximum value of x.

• first_location_of_minimum - Returns the first location of the 
minimal value of x.

• fourier_entropy - Calculate the binned entropy of the power 
spectral density of the time series (using the welch method).

• friedrich_coefficients - Coefficients of polynomial, which has 
been fitted to the deterministic dynamics of Langevin model

• has_duplicate - Checks if any value in x occurs more than once

• has_duplicate_max - Checks if the maximum value of x is 
observed more than once

• has_duplicate_min - Checks if the minimal value of x is 
observed more than once

• index_mass_quantile - Calculates the relative index i of time 
series x where q% of the mass of x lies left of i.

• kurtosis - Returns the kurtosis of x.

• large_standard_deviation - Does time series 
have large standard deviation?

• last_location_of_maximum - Returns the relative last location 
of the maximum value of x.

• last_location_of_minimum - Returns the last location of the 
minimal value of x.

• lempel_ziv_complexity - Calculate a complexity estimate based 
on the Lempel-Ziv compression algorithm.

• length - Returns the length of x

• linear_trend - Calculate a linear least-squares regression for the 
values of the time series versus the sequence from 0 to length 
of the time series minus one.

• linear_trend_timewise - Calculate a linear least-squares 
regression for the values of the time series versus the sequence 
from 0 to length of the time series minus one.

• longest_strike_above_mean - Returns the length of the longest 
consecutive subsequence in x that is bigger than the mean of x

• longest_strike_below_mean - Returns the length of the longest 
consecutive subsequence in x that is smaller than the mean of x
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TSFresh Features
• fast fourier matrix_profile - Calculates the 1-D Matrix Profile[1] 

and returns Tukey's Five Number Set plus the mean of that 
Matrix Profile.

• max_langevin_fixed_point - Largest fixed point of dynamics 
:math:argmax_x {h=0}` estimated from polynomial, which has 
been fitted to the deterministic dynamics of Langevin model

• maximum - Calculates the highest value of the time series x.

• mean - Returns the mean of x

• mean_abs_change - Average over first differences.

• mean_change - Average over time series differences.

• mean_n_absolute_max - Calculates the arithmetic mean of the 
n absolute maximum values of the time series.

• mean_second_derivative_central - Returns the mean value of a 
central approximation of the second derivative

• median - Returns the median of x

• minimum - Calculates the lowest value of the time series x.

• number_crossing_m - Calculates the number of crossings of x 
on m.

• number_cwt_peaks - Number of different peaks in x.

• number_peaks - Calculates the number of peaks of at least 
support n in the time series x.

• partial_autocorrelation - Calculates the value of the partial 
autocorrelation function at the given lag.

• percentage_of_reoccurring_datapoints_to_all_datapoints -
Returns the percentage of non-unique data points.

• percentage_of_reoccurring_values_to_all_values - Returns the 
percentage of values that are present in the time series more 
than once.

• permutation_entropy - Calculate the permutation entropy.

• quantile - Calculates the q quantile of x.

• query_similarity_count - This feature calculator accepts an 
input query subsequence parameter, compares the query 
(under z-normalized Euclidean distance) to all subsequences 
within the time series, and returns a count of the number of 
times the query was found in the time series (within some 
predefined maximum distance threshold).
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TSFresh Features
• range_count - Count observed values within the interval [min, 

max).

• ratio_beyond_r_sigma - Ratio of values that are more than r * 
std (so r times sigma) away from the mean of x.

• ratio_value_number_to_time_series_length - Returns a factor 
which is 1 if all values in the time series occur only once, and 
below one if this is not the case.

• root_mean_square - Returns the root mean square (rms) of the 
time series.

• sample_entropy - Calculate and return sample entropy of x.

• set_property - This method returns a decorator that sets the 
property key of the function to value

• skewness - Returns the sample skewness of x (calculated with 
the adjusted Fisher-Pearson standardized moment coefficient 
G1).

• spkt_welch_density - This feature calculator estimates the cross 
power spectral density of the time series x at different 
frequencies.

• standard_deviation - Returns the standard deviation of x

• sum_of_reoccurring_data_points - Returns the sum of all data 
points, that are present in the time series more than once.

• sum_of_reoccurring_values - Returns the sum of all values, that 

are present in the time series more than once.

• sum_values - Calculates the sum over the time series values

• symmetry_looking - Boolean variable denoting if the 
distribution of x looks symmetric.

• time_reversal_asymmetry_statistic - Returns the time reversal 
asymmetry statistic.

• value_count - Count occurrences of value in time series x.

• variance - Returns the variance of x

• variance_larger_than_standard_deviation - Is variance higher 
than the standard deviation?

• variation_coefficient - Returns the variation coefficient 
(standard error / mean, give relative value of variation around 
mean) of x
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catch22: CAnonical Time-series CHaracteristics

• The catch22 feature set spans a diverse range of time-series characteristics 
representative of the diversity of interdisciplinary methods for TSA. 

• Features in catch22 capture TS properties of the distribution of values in 
the TS, linear and nonlinear temporal autocorrelation properties, scaling of 
fluctuations, and others.

• Selected by applying the procedure describe in [Lubba 2019] to a set of 93 
datasets containing over 147k TS and using a filtered version of the HCTSA 
feature library (4791 features). 

• The reduction from 4791 to 22 features is associated with a 1000-fold 
reduction in computation time and near linear scaling with TS length, 
despite an average reduction in classification accuracy of just 7%.
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Overview of Global Features and Relationships
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Global Feature-based Predictor
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Features, Approximations, Distances and Normalizations

• Normalizations can be applied before global features extraction depending on the 
objective of your TSA task.

• Time-Dependent approximations can be applied before global features extraction 
depending on the objective of your TSA task.

• It does not make any sense to use Time-Independent approximation after that 
global features have been extracted.

• It does not make any sense to use a distance function accounting for time like 
DTW after that global features have been extracted.
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Summary of Time Series Similarity

• If you have short time series

• use DTW after searching over the warping window size

• try also to approximate to speed up the calculus

• If you have long time series

• if you do know something about your data =>
extract features

• (and you know nothing about your data => 
try compression/approximation-based dissimilarity)
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Exercises DTW



DTW – Exercise 1

• Given the following input time series:

• A) Compute the distance between “t1” and “t2”, using the DTW with 
distance between points computed as d(x,y) = |x – y|.

• B) If we repeat the computation of point (A) above, this time with a 
Sakoe-Chiba band of size r=1, does the result change? Why?

• C) If we compute DTW(T1,T2), where T1 is equal to t1 in reverse order 
(namely T1=<0,1,6,3,4>) and similarly for T2 (namely T2=<1,0,7,6,3>), 
is it true that DTW(T1,T2) = DTW(t1,t2)? Discuss the problem without 
providing any computation.
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t1
t2

t1
t2

t1
t2

• A)

• B) No. Because the DTW optimal path remains inside the band of size r=1

• C) Yes. The optimal path in one direction is the same in the opposite direction. 
Though, the cumulative costs matrix might look different.



DTW – Exercise 2

• Given the following time series:

compute 

• (i) their Manhattan and Euclidean distance, 

• (ii) their DTW, and (iii) their DTW with Sakoe-Chiba band of size r=1 
(i.e. all cells at distance <= 1 from the diagonal are allowed). 

• For points (ii) and (iii) show the cost matrix and the optimal path 
found.



DTW – Exercise 2 - Solution

• Euclidean = sqrt(74) = 8.6, Manhattan = 20 

• DTW = 14

• DTW r=1  = 17



DTW – Exercise 3

• Given the following time series:

• Compute the distances among all pairs of time series adopting a 
Dynamic Time Warping distance, and computing the distances 
between single points as d(x,y) = | x – y |. For each pair of time series 
compared also show the matrix used to compute the final result.



DTW – Exercise 3 - Solution

(4)
(1)
(3)
(5)

(1)
(4)
(5)
(8)

(1)
(4)
(5)
(8)

(6)
(1)
(1)
(3)

(8)
(3)
(1)
(4)

(11)
(6)
(4)
(2)

(3)
(2)
(5)
(6)

(5)
(0)
(2)
(4)

(8)
(3)
(1)
(1)

(7)
(2)
(0)
(2)

(14)
(9)
(7)
(5)

(1)
(2)
(2)
(3)
(5)
(8)

(1)
(4)
(4)
(1)
(3)
(6)

(4)
(7)
(7)
(2)
(0)
(3)

(3)
(6)
(6)
(1)
(1)
(4)

(10)
(13)
(13)
(8)
(6)
(3)
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