# DATA MINING 2 Time Series - Similarities & Distances

Riccardo Guidotti

a.a. 2023/2024

Slides edited from Keogh Eamonn's tutorial



# **Distances and Similarities**

- Time series problems such as classification, forecasting, clustering, etc. require the usage of a notion of distance or similarity.
- What is similarity?
- It is the quality or state of being similar, likeness, resemblance, as a similarity of features.
- In TSA we recognize two types of similarity measures depending on the data representation considered:
  - shape-based similarity
  - structural-based similarity



# Shape vs Structural Similarities

#### **Shape-based Similarity**

- The original values of the time series are compared taking time into account.
- Better for short time series.

#### **Structural Similarity**

- Time series are transformed into an alternative representation where the novel features are time-independent.
- Better for long time series.



|   | min | max | mean | std |
|---|-----|-----|------|-----|
| Q | 1.8 | 2.9 | 2.0  | 1.3 |
| С | 0.0 | 1.0 | 0.2  | 1.2 |

#### **Euclidean Distance**

- Given two time series:
  - $Q = q_1 \dots q_n$
  - $C = c_1 \dots c_n$

$$D(Q,C) \equiv \sqrt{\sum_{i=1}^{n} (q_i - c_i)^2}$$

• 
$$T1 = < 56$$
, 176, 110, 95 >  
•  $T2 = < 36$ , 126, 180, 80 >

 $D(T1,T2) = sqrt [ (56-36)^2 + (176-126)^2 + (110-180)^2 + (95-80)^2 ]$ 



# Problems with Euclidean Distance

- Euclidean distance is very sensitive to "distortions" in the data.
- These distortions are dangerous and should be removed.
- Most common distortions:
  - Offset Translation
  - Amplitude Scaling
  - Linear Trend
  - Noise
- They can be removed by using the appropriate normalization.



## Further Problems with Euclidean Distance

• Even after normalization, the Euclidean distance may still be unsuitable for some time series domains since it does not allow for acceleration and deceleration along the time axis.



# **Dynamic Time Warping**

 Sometimes two time series that are conceptually equivalent evolve at different speeds, at least in some moments.



• Euclidean distance - Fixed Time Axis: Sequences are aligned "one to one". Greatly suffers from the misalignment in data.



• Dynamic Time Warping - Warped Time Axis: Nonlinear alignments are possible. Can correct misalignments in data.





https://izbicki.me/blog/converting-images-into-time-series-for-data-mining.html8

# How is DTW Calculated?

- Every possible warping between two time series, is a path through the matrix.
- The constrained sequence of comparisons performed:
  - Start from pair of points (0,0)
  - After point (*i*,*j*), either *i* or *j* increase by one, or both of them
  - End the process on (n,m)





# **Dynamic Programming Approach**



**Step 3**: find the path with the lowest values, i.e., the best alignment between Q and C



# **Dynamic Programming Approach**

 $\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$ Step 2: compute the matrix of all path costs  $\gamma(i,j)$ • Start from cell (1,1)  $\gamma(1,1) = d(q_1,c_1) + \min\{\gamma(0,0), \gamma(0,1), \gamma(1,0)\}$ D(1,1)  $= d(q_1, c_1)$ = D(1,1)• Compute (2,1), (3,1), ..., (n,1)  $\gamma(i,1) = d(q_i,c_1) + \min\{\gamma(i-1,0), \gamma(i-1,1), \gamma(i,0)\}$ D(i,1)  $= d(q_i, c_1) + \gamma(i-1, 1)$  $= D(i,1) + \gamma(i-1,1)$ • Repeat for columns 2, 3, ..., n min +  $\overrightarrow{D(i,1)}$ The general formula applies















#### Point-to-point costs Ч t2 t1 4 Result: 4



## DTW – A Real Example

- This example shows 2 oneweek periods from the power demand time series.
- Note that although they both describe 4-day work weeks, the blue sequence had Monday as a holiday, and the red sequence had Wednesday as a holiday.



## Comparison of Euclidean Distance and DTW



**Word Spotting** 

# Comparison of Euclidean Distance and DTW

- Classification using 1-NN
- Class(x) = class of most similar training object
- Leaving-one-out evaluation
- For each object: use it as test set, return overall average

#### Accuracy

| Dataset             | Euclidean | DTW  |
|---------------------|-----------|------|
| Word Spotting       | 0.95      | 0.99 |
| Sign language       | 0.71      | 0.74 |
| GUN                 | 0.95      | 0.99 |
| Nuclear Trace       | 0.89      | 1.00 |
| Leaves <sup>#</sup> | 0.67      | 0.96 |
| (4) Faces           | 0.94      | 0.97 |
| Control Chart*      | 0.93      | 1.00 |
| 2-Patterns          | 0.99      | 1.00 |

# Comparison of Euclidean Distance and DTW

- Classification using 1-NN
- Class(x) = class of most similar training object
- Leaving-one-out evaluation
- For each object: use it as test set, return overall average
- DTW is two to three orders of magnitude slower than Euclidean distance.

| Dataset       | Euclidean | DTW     |
|---------------|-----------|---------|
| Word Spotting | 40        | 8,600   |
| Sign language | 10        | 1,110   |
| GUN           | 60        | 11,820  |
| Nuclear Trace | 210       | 144,470 |
| Leaves        | 150       | 51,830  |
| (4) Faces     | 50        | 45,080  |
| Control Chart | 110       | 21,900  |
| 2-Patterns    | 16,890    | 545,123 |

#### Milliseconds

# Problems with Dynamic Time Warping

- Dynamic Time Warping gives much better results than Euclidean distance on many problems.
- Dynamic Time Warping is very very slow to calculate!
- Is there anything we can do to speed up similarity search under DTW?
# **Global Constraints**

- Slightly speed up the calculations
- Prevent pathological warpings





# **Global Constraints**

- A global constraint constrains the indices of the warping path  $w_k = (i,j)_k$  such that  $j-r \le i \le j+r$ , where r is a term defining allowed range of warping for a given point in a sequence.
- r can be considered as a *window* that reduces the number of calculus.



Sakoe-Chiba Band

Itakura Parallelogram

### Accuracy vs. Width of Warping Window



# Fast Approximations to DTW

• Approximate the time series with some compressed or downsampled representation and do DTW on the new representation.





# Fast Approximations to DTW

- There is strong visual evidence to suggests it works well
- In the literature there is good experimental evidence for the utility of the approach on clustering, classification, etc.



# **Distances and Normalizations**

- If measuring a distance to account for a shape-based similarity it is important to consider the level then the level, i.e., the mean, should not be removed.
- This kind of reasoning applies also to other features of the TS.

# **Global Structural Features**

# Structure-based Similarity

- For long time series, shape-based similarity typically give poor results.
- Structure-based similarity measure similarly of TS based on high level structure.
- The basic idea is to:
  - 1. extract *global* features from the time series,
  - 2. create a feature vector, and
  - 3. use it to measure similarity with Euclidean distance
- Example of features:
  - mean, variance, skewness, kurtosis,
  - 1<sup>st</sup> derivative mean, 1<sup>st</sup> derivative variance, ...
  - parameters of regression, forecasting, Markov model



| Feature\Time Series | Α   | В   | С   |
|---------------------|-----|-----|-----|
| Max Value           | 11  | 12  | 19  |
| Mean                | 5.3 | 6.4 | 4.8 |
| Min Value           | 3   | 2   | 5   |
| Autocorrelation     | 0.2 | 0.3 | 0.5 |
|                     | ••• | ••• |     |

# **Simple Standard Features**

- Mean
- Standard Deviation
- Variance
- Median
- 10th Percentile
- 25th Percentile
- 75th Percentile
- 90th Percentile
- IQR
- Covariance
- Skewness
- Kurtosis
- Min
- Max





- abs\_energy Returns the absolute energy of the time series which is the sum over the squared values
- absolute\_maximum Calculates the highest absolute value of the time series x.
- absolute\_sum\_of\_changes Returns the sum over the absolute value of consecutive changes in the series x
- agg\_autocorrelation Descriptive statistics on the autocorrelation of the time series.
- agg\_linear\_trend Calculates a linear least-squares regression
  for values of the time series that were aggregated over chunks versus the sequence from 0 up to the number of chunks minus one.
- approximate\_entropy Implements a vectorized Approximate entropy algorithm.
- ar\_coefficient This feature calculator fits the unconditional maximum likelihood of an autoregressive AR(k) process.
- augmented\_dickey\_fuller Does the time series have a unit root?
- autocorrelation Calculates the autocorrelation of the specified lag
- benford\_correlation Useful for anomaly detection applications. Returns the correlation from first digit distribution when
- binned\_entropy First bins the values of x into max\_bins equidistant bins.

- c3 Uses c3 statistics to measure non linearity in the time series
- change\_quantiles First fixes a corridor given by the quantiles ql and qh of the distribution of x.
- cid\_ce This function calculator is an estimate for a time series complexity.
- count\_above Returns the percentage of values in x that are higher than t
- count\_above\_mean Returns the number of values in x that are higher than the mean of x
- count\_below Returns the percentage of values in x that are lower than t
- count\_below\_mean Returns the number of values in x that are lower than the mean of x
- cwt\_coefficients Calculates a Continuous wavelet transform for the Ricker wavelet, also known as the "Mexican hat wavelet" which is defined by
- energy\_ratio\_by\_chunks Calculates the sum of squares of chunk i out of N chunks expressed as a ratio with the sum of squares over the whole series.
- fft\_aggregated Returns the spectral centroid (mean), variance, skew, and kurtosis of the absolute fourier transform spectrum.

- fft\_coefficient Calculates the fourier coefficients of the onedimensional discrete Fourier Transform for real input by fast fourier transformation algorithm
- first\_location\_of\_maximum Returns the first location of the maximum value of x.
- first\_location\_of\_minimum Returns the first location of the minimal value of x.
- fourier\_entropy Calculate the binned entropy of the power spectral density of the time series (using the welch method).
- friedrich\_coefficients Coefficients of polynomial, which has been fitted to the deterministic dynamics of Langevin model
- has\_duplicate Checks if any value in x occurs more than once
- has\_duplicate\_max Checks if the maximum value of x is observed more than once
- has\_duplicate\_min Checks if the minimal value of x is observed more than once
- index\_mass\_quantile Calculates the relative index i of time series x where q% of the mass of x lies left of i.
- kurtosis Returns the kurtosis of x.
- large\_standard\_deviation Does time series have Targe standard deviation?

- last location\_of\_maximum Returns the relative last location of the maximum value of x.
- last\_location\_of\_minimum Returns the last location of the minimal value of x.
- lempel\_ziv\_complexity Calculate a complexity estimate based on the Lempel-Ziv compression algorithm.
- length Returns the length of x
- linear\_trend Calculate a linear least-squares regression for the values of the time series versus the sequence from 0 to length of the time series minus one.
- linear\_trend\_timewise Calculate a linear least-squares regression for the values of the time series versus the sequence from 0 to length of the time series minus one.
- longest\_strike\_above\_mean Returns the length of the longest consecutive subsequence in x that is bigger than the mean of x
- longest\_strike\_below\_mean Returns the length of the longest consecutive subsequence in x that is smaller than the mean of x

- fast fourier matrix\_profile Calculates the 1-D Matrix Profile[1]
  and returns Tukey's Five Number Set plus the mean of that Matrix Profile.
- max\_langevin\_fixed\_point Largest fixed point of dynamics :math:argmax\_x {h=0}` estimated from polynomial, which has been fitted to the deterministic dynamics of Langevin model
- maximum Calculates the highest value of the time series x.
- mean Returns the mean of x
- mean\_abs\_change Average over first differences.
- mean\_change Average over time series differences.
- mean n\_absolute max Calculates the arithmetic mean of the n absolute maximum values of the time series.
- mean\_second\_derivative\_central Returns the mean value of a central approximation of the second derivative
- median Returns the median of x
- minimum Calculates the lowest value of the time series x.
- number\_crossing\_m Calculates the number of crossings of x on m.
- number\_cwt\_peaks Number of different peaks in x.

- number\_peaks Calculates the number of peaks of at least support n in the time series x.
- partial\_autocorrelation Calculates the value of the partial autocorrelation function at the given lag.
- percentage\_of\_reoccurring\_datapoints\_to\_all\_datapoints Returns the percentage of non-unique data points.
- percentage\_of\_reoccurring\_values\_to\_all\_values Returns the percentage of values that are present in the time series more than once.
- permutation\_entropy Calculate the permutation entropy.
- quantile Calculates the q quantile of x.
- query\_similarity\_count This feature calculator accepts an input query subsequence parameter, compares the query (under z-normalized Euclidean distance) to all subsequences within the time series, and returns a count of the number of times the query was found in the time series (within some predefined maximum distance threshold).

- range\_count Count observed values within the interval [min, max).
- ratio\_beyond\_r\_sigma Ratio of values that are more than r \* std (so r times sigma) away from the mean of x.
- ratio\_value\_number\_to\_time\_series\_length Returns a factor which is 1 if all values in the time series occur only once, and below one if this is not the case.
- root\_mean\_square Returns the root mean square (rms) of the time series.
- sample\_entropy Calculate and return sample entropy of x.
- set\_property This method returns a decorator that sets the property key of the function to value
- skewness Returns the sample skewness of x (calculated with the adjusted Fisher-Pearson standardized moment coefficient G1).
- spkt\_welch\_density This feature calculator estimates the cross power spectral density of the time series x at different frequencies.
- standard\_deviation Returns the standard deviation of x
- sum\_of\_reoccurring\_data\_points Returns the sum of all data points, that are present in the time series more than once.
- sum\_of\_reoccurring\_values Returns the sum of all values, that

are present in the time series more than once.

- sum\_values Calculates the sum over the time series values
- symmetry\_looking Boolean variable denoting if the distribution of x looks symmetric.
- time\_reversal\_asymmetry\_statistic Returns the time reversal asymmetry statistic.

value\_count - Count occurrences of value in time series x.

- variance Returns the variance of x
- variance\_larger\_than\_standard\_deviation Is variance higher than the standard deviation?
- variation\_coefficient Returns the variation coefficient (standard error / mean, give relative value of variation around mean) of x

#### catch22: CAnonical Time-series CHaracteristics

- The catch22 feature set spans a diverse range of time-series characteristics representative of the diversity of interdisciplinary methods for TSA.
- Features in catch22 capture TS properties of the distribution of values in the TS, linear and nonlinear temporal autocorrelation properties, scaling of fluctuations, and others.
- Selected by applying the procedure describe in [Lubba 2019] to a set of 93 datasets containing over 147k TS and using a filtered version of the HCTSA feature library (4791 features).
- The reduction from 4791 to 22 features is associated with a 1000-fold reduction in computation time and near linear scaling with TS length, despite an average reduction in classification accuracy of just 7%.

Distribution DN\_HistogramMode\_5 DN\_HistogramMode\_10 Simple temporal statistics SB\_BinaryStats\_mean\_longstretch1 DN\_OutlierInclude\_p\_001\_mdrmd DN\_OutlierInclude\_n\_001\_mdrmd Linear autocorrelation CO\_f1ecac CO\_FirstMin\_ac SP\_Summaries\_welch\_rect\_area\_5\_1 SP\_Summaries\_welch\_rect\_centroid FC\_LocalSimple\_mean3\_stderr Nonlinear autocorrelation CO\_trev\_1\_num CO\_HistogramAMI\_even\_2\_5 IN\_AutoMutualInfoStats\_40\_gaussian\_fmmi Successive differences MD\_hrv\_classic\_pnn40 SB\_BinaryStats\_diff\_longstretch0 SB\_MotifThree\_quantile\_hh FC\_LocalSimple\_mean1\_tauresrat CO\_Embed2\_Dist\_tau\_d\_expfit\_meandiff Fluctuation Analysis SC\_FluctAnal\_2\_dfa\_50\_1\_2\_logi\_prop\_r1 SC\_FluctAnal\_2\_rsrangefit\_50\_1\_logi\_prop\_r1 OthersSB\_TransitionMatrix\_3ac\_sumdiagcov PD\_PeriodicityWang\_th0\_01

Mode of z-scored distribution (5-bin histogram) Mode of z-scored distribution (10-bin histogram)

Longest period of consecutive values above the mean Time intervals between successive extreme events above the mean Time intervals between successive extreme events below the mean

First 1/e crossing of autocorrelation function First minimum of autocorrelation function Total power in lowest fifth of frequencies in the Fourier power spectrum Centroid of the Fourier power spectrum Mean error from a rolling 3-sample mean forecasting

> Time-reversibility statistic,  $\langle (x_{t+1} - x_t)^3 \rangle_t$ Automutual information,  $m = 2, \tau = 5$ First minimum of the automutual information function

 $\begin{array}{c} \mbox{Proportion of successive differences exceeding 0.04 \sigma \ [20]} \\ \mbox{Longest period of successive incremental decreases} \\ \mbox{Shannon entropy of two successive letters in equiprobable 3-letter symbolization} \\ \mbox{Change in correlation length after iterative differencing} \\ \mbox{Exponential fit to successive distances in 2-d embedding space} \end{array}$ 

Proportion of slower timescale fluctuations that scale with DFA (50% sampling) Proportion of slower timescale fluctuations that scale with linearly rescaled range fits

Trace of covariance of transition matrix between symbols in 3-letter alphabet Periodicity measure of [31]

#### **Overview of Global Features and Relationships**



### **Global Feature-based Predictor**



#### Features, Approximations, Distances and Normalizations

- Normalizations can be applied before global features extraction depending on the objective of your TSA task.
- Time-Dependent approximations can be applied before global features extraction depending on the objective of your TSA task.
- It does not make any sense to use Time-Independent approximation after that global features have been extracted.
- It does not make any sense to use a distance function accounting for time like DTW after that global features have been extracted.

# Summary of Time Series Similarity

- If you have short time series
  - use DTW after searching over the warping window size
  - try also to approximate to speed up the calculus
- If you have long time series
  - if you do know something about your data => extract features
  - (and you know nothing about your data => try compression/approximation-based dissimilarity)

## References

- Forecasting: Principles and Practic. Rob J Hyndman and George Athanasaopoulus. (<u>https://otexts.com/fpp2/</u>)
- Time Series Analysis and Its Applications. Robert H. Shumway and David S. Stoffer. 4<sup>th</sup> edition.(<u>http://www.stat.ucla.edu/~frederic/415/S23/tsa4.pdf</u>)
- Mining Time Series Data. Chotirat Ann Ratanamahatana et al. 2010. (<u>https://www.researchgate.net/publication/227001229\_Mining\_Time\_Series\_Data</u>)
- Dynamic Programming Algorithm Optimization for Spoken Word Recognition. Hiroaki Sakode et al. 1978.
- Experiencing SAX: a Novel Symbolic Representation of Time Series. Jessica Line et al. 2009
- Compression-based data mining of sequential data. Eamonn Keogh et al. 2007.



#### Time Series Analysis and Its Applications

With R Examples

Fourth Edition

Description Springer

# **Exercises DTW**

# DTW – Exercise 1

• Given the following input time series:

- A) Compute the distance between "t1" and "t2", using the DTW with distance between points computed as d(x,y) = |x y|.
- B) If we repeat the computation of point (A) above, this time with a Sakoe-Chiba band of size r=1, does the result change? Why?
- C) If we compute DTW(T1,T2), where T1 is equal to t1 in reverse order (namely T1=<0,1,6,3,4>) and similarly for T2 (namely T2=<1,0,7,6,3>), is it true that DTW(T1,T2) = DTW(t1,t2)? Discuss the problem without providing any computation.


















- B) No. Because the DTW optimal path remains inside the band of size r=1
- C) Yes. The optimal path in one direction is the same in the opposite direction. Though, the cumulative costs matrix might look different.

# DTW – Exercise 2

Given the following time series:
t = < 2, 6, 9, 1, 6, 2 >
q = < 5, 1, 5, 5, 8, 4 >

compute

- (i) their Manhattan and Euclidean distance,
- (ii) their DTW, and (iii) their DTW with Sakoe-Chiba band of size r=1 (i.e. all cells at distance <= 1 from the diagonal are allowed).</li>
- For points (ii) and (iii) show the cost matrix and the optimal path found.

• Euclidean = sqrt(74) = 8.6, Manhattan = 20





## DTW – Exercise 3

• Given the following time series:

| ID | Time series              |
|----|--------------------------|
| W  | < 6, 11, 13, 15 >        |
| Х  | < 10, 7, 7, 12, 14, 17 > |
| Y  | < 9, 11, 14, 13, 20 >    |

 Compute the distances among all pairs of time series adopting a Dynamic Time Warping distance, and computing the distances between single points as d(x,y) = | x - y |. For each pair of time series compared also show the matrix used to compute the final result.

| ID | Time series              |
|----|--------------------------|
| W  | < 6, 11, 13, 15 >        |
| Х  | < 10, 7, 7, 12, 14, 17 > |
| Y  | < 9, 11, 14, 13, 20 >    |

#### W – X



#### **W** – Y



X – Y

[1,] [2,] [3,] [4,] [5,] [6,]

