
DATA MINING 2
Sequential Pattern Mining
Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 5 “Introduction to Data Mining”, 2nd
Edition by Tan, Steinbach, Karpatne, Kumar

Examples of Sequence

• Sequence of different transactions by a customer at an online store:
< {Digital Camera,iPad} {memory card} {headphone,iPad cover} >

• Sequence of events causing the nuclear accident at 3-mile Island:
(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

< {clogged resin} {outlet valve closure} {loss of feedwater}
{condenser polisher outlet valve shut} {booster pumps trip}
{main waterpump trips} {main turbine trips} {reactor pressure increases}>

• Sequence of books checked out at a library:
<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

From Itemsets to Sequences

• Frequent itemsets and association rules focus on transactions and the
items that appear there

• Databases of transactions usually have a temporal information
• Sequential patterns exploit it

• Example data:
• Market basket transactions

• Web server logs

• Tweets

• Workflow production logs

Frequent Patterns

• Events or combinations of events that appear frequently in the data

• E.g. items bought by customers of a supermarket

Frequent Patterns

• Frequent itemsets w.r.t. minimum threshold

• E.g. with Min_freq = 5

Frequent Patterns in Complex Domains

• Frequent sequences (a.k.a. Sequential patterns)

• Input: sequences of events (or of groups)

Frequent Patterns in Complex Domains

• Objective: identify sequences that occur frequently

• Sequential pattern:

Sequential Pattern Discovery: Examples

• In telecommunications alarm logs,

– Inverter_Problem:

(Excessive_Line_Current) (Rectifier_Alarm) --> (Fire_Alarm)

• In point-of-sale transaction sequences,

–Computer Bookstore:

(Intro_To_Visual_C) (C++_Primer) --> (Perl_for_dummies,Tcl_Tk)

–Athletic Apparel Store:

(Shoes) (Racket, Racketball) --> (Sports_Jacket)

Sequence Data and Terminology

Sequence

Database

Sequence Element (Transaction) Event

(Item)

Customer Purchase history of a given

customer

A set of items bought by a

customer at time t

Books, diary products,

CDs, etc

Web Data Browsing activity of a particular

Web visitor

A collection of files viewed by

a Web visitor after a single

mouse click

Home page, index page,

contact info, etc

Event data History of events generated by a

given sensor

Events triggered by a sensor

at time t

Types of alarms generated

by sensors

Genome

sequences

DNA sequence of a particular

species

An element of the DNA

sequence

Bases A,T,G,C

Sequence

E1
E2

E1
E3

E2
E3
E4

E2

Element
(Transaction)

Event
(Item)

Sequence Data

10 15 20 25 30 35

2
3
5

6
1

1

Timeline

Object A:

Object B:

Object C:

4
5
6

2 7
8
1
2

1
6

1

7
8

Object Timestamp Events

A 10 2, 3, 5

A 20 6, 1

A 23 1

B 11 4, 5, 6

B 17 2

B 21 7, 8, 1, 2

B 28 1, 6

C 14 1, 8, 7

Sequence Database:

Formal Definition of a Sequence

• A sequence is an ordered list of transactions

s = < e1 e2 e3 … >

• Each transaction is attributed to a specific time or location
• Each transaction contains a collection of items

ei = {i1, i2, …, ik}

• We “measure” sequences with two different notions:
• Cardinality of a sequence: |s| is given by the number of transactions of the

sequence

• Size of a sequence: a k-sequence is a sequence that contains k items

Formal Definition of a Sequence

• Example

s = < {A,B}, {B,E,F}, {A}, {E,F,H} >

• Cardinality of s: |s| = 4 transactions

• s is a 9-sequence as it contains k=9 items

• Times associated to elements:
• {A,B} → time=0

• {B,E,F} → time = 120

• {A} → time = 130

• {E,F,H} → time = 200

Sequences without Explicit Time Info

• Default: time of element = position in the sequence

• Example

s = < {A,C}, {E}, {A,F}, {E,G,H} >

• Default times associated to transactions:
• {A,C} → time=0

• {E} → time = 1

• {A,F} → time = 2

• {E,G,H} → time = 3

Examples of Sequence

• Web sequence:

< {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation}
{Return to Shopping} >

• Sequence of events causing the nuclear accident at 3-mile Island:
(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

< {clogged resin & outlet valve closure} {loss of feedwater}
{condenser polisher outlet valve shut} {booster pumps trip}
{main waterpump trips & main turbine trips & reactor pressure increases}>

• Sequence of books checked out at a library:
<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Singleton elements

Singleton elements

Complex elements

Formal Definition of a Subsequence

• A sequence <a1 a2 … an> is contained in another sequence <b1 b2 … bm> (m ≥ n) if
there exist integers i1 < i2 < … < in such that a1 bi1 , a2 bi1, …, an bin

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {8} > < {2} {3,5} > Yes

< {1,2} {3,4} > < {1} {2} > No

< {2,4} {2,4} {2,5} > < {2} {4} > Yes

{A} {B,C} {D}

{D} {A,C} {A,B,C} {F} {B,E} {D}

1 2 3 4 50

I1 = 1 I2 = 2 I3 = 5

Formal Definition of Sequential Pattern

• The support of a subsequence w is the fraction of data sequences that contain w

{D} {B,C} {F}{D}

1 2 3 4 50

{D} {A,C} {B,C} {B,E}{D}

{D} {A} {A,B,D} {D}

{D} {A,C} {A,B,C} {F} {D}

{A} {B,C} {D}subsequence w:
Input sequences:

V

V

X

X

support of w: 2/4 = 0.50 (50%)
• A sequential pattern

• is a frequent subsequence

• i.e., a subsequence whose support is ≥ minsup

Formal Definition of Sequential Pattern

• Remark: a subsequence (i.e. a candidate pattern) might be mapped into a
sequence in several different ways

• Each mapping is an instance of the subsequence

• In mining sequential patterns we need to find only one instance

{A} {B} {D}

{D} {A,C} {A,B,C} {F} {B,E} {D}

1 2 3 4 50

{D} {A,C} {A,B,C} {F} {B,E} {D}

{D} {A,C} {A,B,C} {F} {B,E} {D}

I1 = 1, I2 = 2, I3 = 5

I1 = 1, I2 = 4, I3 = 5

I1 = 2, I2 = 4, I3 = 5

Exercise 1

find instances/occurrence of the following patterns

in the input sequence below

< {A,C} {C,D} {F,H} {A,B} {B,C,D} {E} {A,B,D} {F} >

 t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

<{C}{H}{C}>

<{A} {F} >

<{A}{A}{D}>

<{A}{A,B}{F}>

Exercise 2

find instances/occurrence of the following patterns

in the input sequence below

< {A,C} {C,D,E} {F} {A,H} {B,C,D} {E} {A,B,D} >
 t=0 t=1 t=2 t=3 t=4 t=5 t=6

<{C}{H}{C}>

<{A} {B} >

<{C}{C}{E}>

<{A}{E}>

Sequential Pattern Mining: Definition

• Given:
• a database of sequences
• a user-specified minimum support threshold, minsup

• Task:
• Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Example

Minsup = 50%

Examples of Frequent Subsequences:

< {1,2} > s=60%

< {2,3} > s=60%

< {2,4}> s=80%

< {3} {5}> s=80%

< {1} {2} > s=80%

< {2} {2} > s=60%

< {1} {2,3} > s=60%

< {2} {2,3} > s=60%

< {1,2} {2,3} > s=60%

Object Timestamp Events

A 1 1,2,4

A 2 2,3

A 3 5

B 1 1,2

B 2 2,3,4

C 1 1, 2

C 2 2,3,4

C 3 2,4,5

D 1 2

D 2 3, 4

D 3 4, 5

E 1 1, 3

E 2 2, 4, 5

Sequential Pattern Mining: Challenge

• Trivial approach: generate all possible k-subsequences, for
k=1,2,3,… and compute support

• Combinatorial explosion!
• With frequent itemsets mining we had:

• N. of k-subsets = n = n. of distinct items in the data

• With sequential patterns:
• N. of k-subsequences =

• The same item can be repeated:
• < {A} {A} {B} {A} … >

k

n

kn

Sequential Pattern Mining: Challenge

• Even if we generate them from input sequences
• E.g.: Given a n-sequence: <{a b} {c d e} {f} {g h i}>

• Examples of subsequences:

<{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.

• Number of k-subsequences can be extracted from it

<{a b} {c d e} {f} {g h i}> n = 9

k=4: Y _ _ Y Y _ _ _ Y
126

4

9

:Answer

=

=

k

n

<{a} {d e} {i}>

Generalized Sequential Pattern

Generalized Sequential Pattern (GSP)

• Follows the same structure of Apriori
• Start from short patterns and find longer ones at each iteration

• Based on “Apriori principle” or “anti-monotonicity of support”
• If one sequence S1 is contained in sequence S2, then the support of S2 cannot be larger than

that of S1:

• Intuitive proof
• Any input sequence that contains S2 will also contain S1

)sup()sup(2121 SSSS

{B} {D}
1S

{A} {B,C} {D}2S

{D} {A,C} {A,B,C} {F} {B,E} {D}

Input sequence

Generalized Sequential Pattern (GSP)
• Follows the same structure of Apriori: Start from short patterns and find

longer ones at each iteration

• Step 1: Make the first pass over the sequence database D to yield all the
1-transaction frequent sequences

• Step 2: Repeat until no new frequent sequences are found:
• Candidate Generation: Merge pairs of frequent subsequences found in the (k-1)th

pass to generate candidate sequences that contain k items

• Candidate Pruning: Prune candidate k-sequences that contain infrequent (k-1)-
subsequences

• Support Counting: Make a new pass over the sequence database D to find the
support for these candidate sequences

• Candidate Elimination: Eliminate candidate k-sequences whose actual support is
less than minsup

Extracting Sequential Patterns

• Given n items: i1, i2, i3, …, in
• Candidate 1-subsequences:

<{i1}>, <{i2}>, <{i3}>, …, <{in}>

• Candidate 2-subsequences:
<{i1, i2}>, <{i1, i3}>, …, <{i1} {i1}>, <{i1} {i2}>, …, <{in-1} {in}>

• Candidate 3-subsequences:
<{i1, i2 , i3}>, <{i1, i2 , i4}>, …, <{i1, i2} {i1}>, <{i1, i2} {i2}>, …,

<{i1} {i1 , i2}>, <{i1} {i1 , i3}>, …, <{i1} {i1} {i1}>, <{i1} {i1} {i2}>, …

• Remark: items within a transaction are ordered
•YES: <{i1, i2 , i3}> NO: <{i3, i1 , i2}>

Candidate Generation
• Base case (k=2):

• Merging two frequent 1-sequences <{i1}> and <{i2}> will produce
two candidate 2-sequences: <{i1} {i2}> and <{i1 i2}>

• Special case: ii can be merged with itself: <{ii} {ii}>

Candidate Generation
• General case (k>2):

• A frequent (k-1)-sequence w1 is merged with another frequent (k-
1)-sequence w2 to produce a candidate k-sequence if the
subsequence obtained by removing the first item in w1 is the same
as the one obtained by removing the last item in w2

• The resulting candidate after merging is given by the sequence
w1 extended with the last item of w2.
• If last two items in w2 belong to the same transaction => last item in w2 becomes part

of the last transaction in w1: <{d}{a}{b}> + <{a}{b,c}> = <{d}{a}{b,c}>

• Otherwise, the last item in w2 becomes a separate transaction appended to the end of
w1: <{d}{a}{b}> + <{a}{b}{c}> = <{d}{a}{b}{c}> or <{a,d}{b}> + <{d}{b}{c}> = <{a,d}{b}{c}>

• Special case: check if w1 can be merged with itself
• Works when it contains only one item type: < {a} {a}> + <{a} {a}> = < {a} {a} {a}>

Candidate Generation Examples

• Merging the sequences w1=<{1} {2 3} {4}> and w2 =<{2 3} {4 5}>
• will produce the candidate sequence < {1} {2 3} {4 5}> because the last two items in

w2 (4 and 5) belong to the same transaction

• Merging the sequences w1=<{1} {2 3} {4}> and w2 =<{2 3} {4} {5}>
• will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two items in

w2 (4 and 5) do not belong to the same transaction

• Can we merge w1 =<{1} {2 6} {4}> and w2 =<{1} {2} {4 5}> ?
• We do not have to merge the sequences w1 =<{1} {2 6} {4}> and w2 =<{1} {2} {4 5}>

to produce the candidate < {1} {2 6} {4 5}>
• Notice that if the latter is a viable candidate, it will be obtained by merging w1 with <

{2 6} {4 5}>

Candidate Pruning

• Based on Apriori principle:
• If a k-sequence W contains a (k-1)-subsequence that is not frequent, then W

is not frequent and can be pruned

• Method:
• Enumerate all (k-1)-subsequence:

• {a,b}{c}{d} → {b}{c}{d} , {a}{c}{d} , {a,b}{d} , {a,b}{c}

• Each subsequence generated by cancelling 1 item in W
• Number of (k-1)-subsequences = k

• Remark: candidates are generated by merging two “mother” (k-1)-
subsequences that we know to be frequent
• Correspond to remove the first event or the last one

• Number of significant (k-1)-subsequences to test = k – 2

• Special cases: at step k=2 the pruning has no utility, since the only (k-1)-subsequences are the
“mother” ones

GSP Example

< {1} {2} {3} >

< {1} {2 5} >

< {1} {5} {3} >

< {2} {3} {4} >

< {2 5} {3} >

< {3} {4} {5} >

< {5} {3 4} >

< {1} {2} {3} {4} >

< {1} {2 5} {3} >

< {1} {5} {3 4} >

< {2} {3} {4} {5} >

< {2 5} {3 4} >
< {1} {2 5} {3} >

Frequent

3-sequences

Candidate

Generation

Candidate

Pruning

GSP Exercise

• Given the following dataset of sequences

• Generate sequential patterns if min_sup = 35%

ID Sequence

1 a b → a → b

2 b → a → c d

3 a → b

4 a → a → b d

GSP Exercise - Solution

Sequential pattern Support

a 100 %

b 100 %

d 50 %

a → a 50 %

a → b 75 %

a → d 50 %

b → a 50 %

a → a → b 50 %

ID Sequence

1 a b → a → b

2 b → a → c d

3 a → b

4 a → a → b d

Timing Constraints

• Motivation by examples:

• Sequential Pattern {milk} → {cookies}
• It might suggest that cookies are bought to better enjoy milk
• Yet, we might obtain it even if all customers by milk and after 6 months buy cookies, in which

case our interpretation is wrong

• {cheese A} → {cheese B}
• Does it mean that buying and eating cheese A induces the customer to try also cheese B (e.g. by

the same brand)?
• Maybe, yet if they are bought within 20 minutes it is like that they were to be bought together

(and the customer forgot it)

• {buy PC} → {buy printer}→{ask for repair}
• Is it a good or bad sign?
• It depends on how much time the whole process took:

• Short time => issues, Long time => OK, normal life cycle

Timing Constraints
• Define 3 types of constraint on the instances to consider

• E.g. ask that the pattern instances last no more than 30 days

{A B} {C} {D E}

<= ms

<= xg >ng

xg: max-gap →

ng: min-gap →

ms: maximum span →

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {4,7} {4,5} {8} > < {6} {5} > Yes

< {1} {2} {3} {4} {5}> < {1} {4} > No

< {1} {2,3} {3,4} {4,5}> < {2} {3} {5} > Yes

< {1,2} {3} {2,3} {3,4} {2,4} {4,5}> < {1,2} {5} > No

xg = 2, ng = 0, ms= 4 ➔ consecutive transactions at most distance 2

& overall duration at most 4 time units

Each transaction of the pattern

instance must be at most xg time
after the previous one

Each transaction of the pattern
instance must be at least ng time
after the previous one

The overall duration of the pattern

instance must be at most ms

Mining Sequential Patterns with Timing Constraints

• Approach 1:
• Mine sequential patterns without timing constraints

• Postprocess the discovered patterns

• Dangerous: might generate billions of sequential patterns to obtain only a few
time-constrained ones

• Approach 2:
• Modify GSP to directly prune candidates that violate timing constraints

• Question: Does Apriori principle still hold?

Apriori Principle with Time Constraints

• Case 1: max-span
• Intuitive check

• Does any input sequence that contains S2 will also contain S1 ?

{A} {B,C} {D}

{D} {A,C} {A,B,C} {F} {B,E} {D}

{A} {B}
1S

2S

Input sequence

Span for S2 : Span = 4

Span for S1 : Span = 1

• When S1 has less transactions, S1 span can (only) decrease
• If S2 span is OK, then also S1 span is OK

V

Apriori Principle with Time Constraints

• Case 2: min-gap
• Intuitive check

• Does any input sequence that contains S2 will also contain S1 ?

{A} {B,C} {D}

{D} {A,C} {A,B,C} {F} {B,E} {D}

{A} {D}
1S

2S

Input sequence

Gaps for S2 : Gap = 1 Gap = 3

Gaps for S1 : Gap = 4

• When S1 has less transactions, gaps for S1 can (only) increase
• If S2 gaps are OK, they are OK also for S1

V

Apriori Principle with Time Constraints

• Case 3: max-gap
• Intuitive check

• Does any input sequence that contains S2 will also contain S1 ?

{A} {B,C} {D}

{D} {A,C} {A,B,C} {F} {B,E} {D}

{A} {D}
1S

2S

Input sequence

Gaps for S2 : Gap = 1 Gap = 3

Gaps for S1 : Gap = 4

• When S1 has less transactions, gaps for S1 can (only) increase
• Happens when S1 has lost an internal element w.r.t. S2

• Even if S2 gaps are OK, S1 gaps might grow too large w.r.t. max-gap

X

Apriori Principle for Sequence Data
Object Timestamp Events

A 1 1,2,4

A 2 2,3

A 3 5

B 1 1,2

B 2 2,3,4

C 1 1, 2

C 2 2,3,4

C 3 2,4,5

D 1 2

D 2 3, 4

D 3 4, 5

E 1 1, 3

E 2 2, 4, 5

Suppose:

xg = 1 (max-gap)

ng = 0 (min-gap)

ms = 5 (maximum span)

minsup = 60%

<{2} {5}> support = 40%

but

<{2} {3} {5}> support = 60%

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

Contiguous Subsequences

• s is a contiguous subsequence of
w = <e1>< e2>…< ek>

if any of the following conditions hold:
1. s is obtained from w by deleting an item from either e1 or ek

2. s is obtained from w by deleting an item from any
element ei that contains more than 2 items

3. s is a contiguous subsequence of s’ and s’ is a
contiguous subsequence of w (recursive definition)

• Examples: s = < {1} {2} >
• is a contiguous subsequence of

< {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >
• is not a contiguous subsequence of

< {1} {3} {2}> and < {2} {1} {3} {2}>

Not interesting
for our usage

Key point: avoids
internal “jumps”

Modified Candidate Pruning Step

• Without maxgap constraint:
• A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is

infrequent

• With maxgap constraint:
• A candidate k-sequence is pruned if at least one of its contiguous (k-1)-

subsequences is infrequent

• Remark: the “pruning power” is now reduced
• Less subsequences to test for “killing” the candidate

Other kinds of patterns for sequences

• In some domains, we may have only one very long time series
• Example:

• monitoring network traffic events for attacks

• monitoring telecommunication alarm signals

• Goal is to find frequent sequences of events in the time series
• Now we have to count “instances”, but which ones?

• This problem is also known as frequent episode mining

E1

E2

E1

E2

E1

E2

E3

E4 E3 E4

E1

E2

E2 E4

E3 E5

E2

E3 E5

E1

E2 E3 E1

Pattern: <E1> <E3>

?

References

• Sequential Pattern Mining. Chapter 7.
Introduction to Data Mining.

Exercises SPM

Sequential Pattern – Exercise 1

Sequential Pattern – Exercise 1

Sequential Pattern – Exercise 1 – Solution

Sequential Pattern – Exercise 2

Sequential Pattern – Exercise 2 – Solution

Sequential Pattern – Exercise 3

Sequential Pattern – Exercise 3 – Solution

Sequential Pattern – Exercise 4

GSP – Exercise 1

GSP – Exercise 1 – Solution

{ A }
{ B }
{ C }
{ D }
{ E }
{ BC }
{ AC }
{ CD }
{ AB }

{ A } -> { B }
{ A } -> { C }
{ A } -> { D }
{ B } -> { C }
{ B } -> { D }
{ C } -> { B }
{ C } -> { C }
{ C } -> { D }
{ D } -> { B }
{ D } -> { C }
{ D } -> { D }

{ A } -> { C } -> { C }
{ A } -> { C } -> { D }
{ B } -> { C } -> { D }
{ B } -> { C } -> { C }
{ C } -> { C } -> { C }

GSP – Exercise 1 – Solution

{ A }
{ B }
{ C }
{ D }

{ BC }
{ AC }
{ CD }
{ AB }

{ A } -> { B }
{ A } -> { C }
{ A } -> { D }
{ B } -> { C }
{ B } -> { D }
{ C } -> { B }
{ C } -> { C }
{ C } -> { D }
{ D } -> { B }
{ D } -> { C }
{ D } -> { D }

{ A } -> { C } -> { C }
{ A } -> { C } -> { D } (pruning)
{ B } -> { C } -> { D }
{ B } -> { C } -> { C }
{ C } -> { C } -> { C }

k=1-seq

k=2-seq

k=2-seq

GSP – Exercise 2

GSP – Exercise 2 – Solution

Missing from frequent 3-sequences
• A -> D -> D
• B -> D -> D

	Slide 1: DATA MINING 2 Sequential Pattern Mining
	Slide 2: Examples of Sequence
	Slide 3: From Itemsets to Sequences
	Slide 4: Frequent Patterns
	Slide 5: Frequent Patterns
	Slide 6: Frequent Patterns in Complex Domains
	Slide 7: Frequent Patterns in Complex Domains
	Slide 8: Sequential Pattern Discovery: Examples
	Slide 9: Sequence Data and Terminology
	Slide 10: Sequence Data
	Slide 11: Formal Definition of a Sequence
	Slide 12: Formal Definition of a Sequence
	Slide 13: Sequences without Explicit Time Info
	Slide 14: Examples of Sequence
	Slide 15: Formal Definition of a Subsequence
	Slide 16: Formal Definition of Sequential Pattern
	Slide 17: Formal Definition of Sequential Pattern
	Slide 18: Exercise 1
	Slide 19: Exercise 2
	Slide 20: Sequential Pattern Mining: Definition
	Slide 21: Sequential Pattern Mining: Example
	Slide 22: Sequential Pattern Mining: Challenge
	Slide 23: Sequential Pattern Mining: Challenge
	Slide 24: Generalized Sequential Pattern
	Slide 25: Generalized Sequential Pattern (GSP)
	Slide 26: Generalized Sequential Pattern (GSP)
	Slide 27: Extracting Sequential Patterns
	Slide 28: Candidate Generation
	Slide 29: Candidate Generation
	Slide 31: Candidate Generation Examples
	Slide 32: Candidate Pruning
	Slide 33: GSP Example
	Slide 34: GSP Exercise
	Slide 35: GSP Exercise - Solution
	Slide 36: Timing Constraints
	Slide 37: Timing Constraints
	Slide 38: Mining Sequential Patterns with Timing Constraints
	Slide 39: Apriori Principle with Time Constraints
	Slide 40: Apriori Principle with Time Constraints
	Slide 41: Apriori Principle with Time Constraints
	Slide 42: Apriori Principle for Sequence Data
	Slide 43: Contiguous Subsequences
	Slide 44: Modified Candidate Pruning Step
	Slide 45: Other kinds of patterns for sequences
	Slide 46: References
	Slide 47: Exercises SPM
	Slide 48: Sequential Pattern – Exercise 1
	Slide 49: Sequential Pattern – Exercise 1
	Slide 50: Sequential Pattern – Exercise 1 – Solution
	Slide 51: Sequential Pattern – Exercise 2
	Slide 52: Sequential Pattern – Exercise 2 – Solution
	Slide 53: Sequential Pattern – Exercise 3
	Slide 54: Sequential Pattern – Exercise 3 – Solution
	Slide 55: Sequential Pattern – Exercise 4
	Slide 56: GSP – Exercise 1
	Slide 57: GSP – Exercise 1 – Solution
	Slide 58: GSP – Exercise 1 – Solution
	Slide 59: GSP – Exercise 2
	Slide 60: GSP – Exercise 2 – Solution

