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Examples of Sequence

• Sequence of different transactions by a customer at an online store:
< {Digital Camera,iPad} {memory card}  {headphone,iPad cover} >

• Sequence of events causing the nuclear accident at 3-mile Island:
(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

<   {clogged resin} {outlet valve closure} {loss of feedwater} 
{condenser polisher outlet valve shut} {booster pumps trip} 
{main waterpump trips} {main turbine trips} {reactor pressure increases}>

• Sequence of books checked out at a library:
<{Fellowship of the Ring} {The Two Towers}  {Return of the King}>



From Itemsets to Sequences

• Frequent itemsets and association rules focus on transactions and the 
items that appear there

• Databases of transactions usually have a temporal information
• Sequential patterns exploit it

• Example data:
• Market basket transactions

• Web server logs

• Tweets

• Workflow production logs



Frequent Patterns

• Events or combinations of events that appear frequently in the data

• E.g. items bought by customers of a supermarket



Frequent Patterns

• Frequent itemsets w.r.t. minimum threshold

• E.g. with Min_freq = 5



Frequent Patterns in Complex Domains

• Frequent sequences (a.k.a. Sequential patterns)

• Input: sequences of events (or of groups)



Frequent Patterns in Complex Domains

• Objective: identify sequences that occur frequently

• Sequential pattern:



Sequential Pattern Discovery: Examples

• In telecommunications alarm logs,

– Inverter_Problem: 

(Excessive_Line_Current) (Rectifier_Alarm) --> (Fire_Alarm)

• In point-of-sale transaction sequences,

–Computer Bookstore:  

(Intro_To_Visual_C)  (C++_Primer) --> (Perl_for_dummies,Tcl_Tk)

–Athletic Apparel Store: 

(Shoes) (Racket, Racketball) --> (Sports_Jacket)



Sequence Data and Terminology

Sequence 

Database

Sequence Element (Transaction) Event

(Item)

Customer Purchase history of a given 

customer

A set of items bought by a 

customer at time t

Books, diary products, 

CDs, etc

Web Data Browsing activity of a particular 

Web visitor

A collection of files viewed by 

a Web visitor after a single 

mouse click

Home page, index page, 

contact info, etc

Event data History of events generated by a 

given sensor

Events triggered by a sensor 

at time t

Types of alarms generated 

by sensors 

Genome 

sequences

DNA sequence of a particular 

species

An element of the DNA 

sequence 

Bases A,T,G,C

Sequence

E1
E2

E1
E3

E2
E3
E4

E2

Element 
(Transaction)

Event 
(Item)



Sequence Data
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Object Timestamp Events

A 10 2, 3, 5

A 20 6, 1

A 23 1

B 11 4, 5, 6

B 17 2

B 21 7, 8, 1, 2

B 28 1, 6

C 14 1, 8, 7

Sequence Database:



Formal Definition of a Sequence

• A sequence is an ordered list of transactions

s = < e1 e2 e3 … >

• Each transaction is attributed to a specific time or location
• Each transaction contains a collection of items

ei = {i1, i2, …, ik}

• We “measure” sequences with two different notions:
• Cardinality of a sequence: |s| is given by the number of transactions of the 

sequence

• Size of a sequence: a k-sequence is a sequence that contains k items



Formal Definition of a Sequence

• Example

s = <   {A,B},   {B,E,F},   {A},   {E,F,H}   >

• Cardinality of s: |s| = 4 transactions

• s is a 9-sequence as it contains k=9 items

• Times associated to elements:
• {A,B} → time=0

• {B,E,F} → time = 120

• {A} → time = 130

• {E,F,H} → time = 200



Sequences without Explicit Time Info

• Default: time of element = position in the sequence

• Example

s = <   {A,C},   {E},   {A,F},   {E,G,H}   >

• Default times associated to transactions:
• {A,C} → time=0

• {E} → time = 1

• {A,F} → time = 2

• {E,G,H} → time = 3



Examples of Sequence

• Web sequence:

< {Homepage}  {Electronics}  {Digital Cameras}  {Canon Digital Camera} {Shopping Cart}  {Order Confirmation}  
{Return to Shopping} >

• Sequence of events causing the nuclear accident at 3-mile Island:
(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

<   {clogged resin & outlet valve closure} {loss of feedwater} 
{condenser polisher outlet valve shut} {booster pumps trip} 
{main waterpump trips & main turbine trips & reactor pressure increases}>

• Sequence of books checked out at a library:
<{Fellowship of the Ring} {The Two Towers}  {Return of the King}>

Singleton elements

Singleton elements

Complex elements



Formal Definition of a Subsequence

• A sequence <a1 a2 … an> is contained in another sequence <b1 b2 … bm> (m ≥ n) if 
there exist integers i1 < i2 < … < in such that a1  bi1 , a2  bi1, …, an  bin

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {8} > < {2} {3,5} > Yes

< {1,2} {3,4} > < {1} {2} > No

< {2,4} {2,4} {2,5} > < {2} {4} > Yes

{A} {B,C} {D}

{D} {A,C} {A,B,C} {F} {B,E} {D}

1 2 3 4 50

I1 = 1 I2 = 2 I3 = 5



Formal Definition of Sequential Pattern

• The support of a subsequence  w is the fraction of data sequences that contain w

{D} {B,C} {F}{D}

1 2 3 4 50

{D} {A,C} {B,C} {B,E}{D}

{D} {A} {A,B,D} {D}

{D} {A,C} {A,B,C} {F} {D}

{A} {B,C} {D}subsequence  w:
Input sequences:

V

V

X

X

support of w: 2/4 = 0.50 (50%)
• A sequential pattern

• is a frequent subsequence 

• i.e., a subsequence whose support is ≥ minsup



Formal Definition of Sequential Pattern

• Remark: a subsequence (i.e. a candidate pattern) might be mapped into a 
sequence in several different ways

• Each mapping is an instance of the subsequence

• In mining sequential patterns we need to find only one instance

{A} {B} {D}

{D} {A,C} {A,B,C} {F} {B,E} {D}

1 2 3 4 50

{D} {A,C} {A,B,C} {F} {B,E} {D}

{D} {A,C} {A,B,C} {F} {B,E} {D}

I1 = 1, I2 = 2, I3 = 5

I1 = 1, I2 = 4, I3 = 5

I1 = 2, I2 = 4, I3 = 5



Exercise 1

find instances/occurrence of the following patterns 

in the input sequence below

< {A,C} {C,D} {F,H} {A,B} {B,C,D}  {E} {A,B,D}  {F}  >

   t=0   t=1  t=2    t=3     t=4     t=5     t=6 t=7

<{C}{H}{C}>

<{A} {F} >

<{A}{A}{D}>

<{A}{A,B}{F}>



Exercise 2

find instances/occurrence of the following patterns 

in the input sequence below

<    {A,C} {C,D,E} {F} {A,H} {B,C,D}  {E} {A,B,D}  >
   t=0   t=1  t=2    t=3     t=4     t=5     t=6

<{C}{H}{C}>

<{A} {B} >

<{C}{C}{E}>

<{A}{E}>



Sequential Pattern Mining: Definition

• Given: 
• a database of sequences 
• a user-specified minimum support threshold, minsup

• Task:
• Find all subsequences with support ≥ minsup



Sequential Pattern Mining: Example

Minsup = 50%

Examples of Frequent Subsequences:

< {1,2} >       s=60%

< {2,3} > s=60%

< {2,4}> s=80%

< {3} {5}> s=80%

< {1} {2} > s=80%

< {2} {2} > s=60%

< {1} {2,3} > s=60%

< {2} {2,3} > s=60%

< {1,2} {2,3} > s=60%

Object Timestamp Events

A 1 1,2,4

A 2 2,3

A 3 5

B 1 1,2

B 2 2,3,4

C 1 1, 2

C 2 2,3,4

C 3 2,4,5

D 1 2

D 2 3, 4

D 3 4, 5

E 1 1, 3

E 2 2, 4, 5



Sequential Pattern Mining: Challenge

• Trivial approach: generate all possible k-subsequences, for 
k=1,2,3,… and compute support

• Combinatorial explosion!
• With frequent itemsets mining we had: 

• N. of k-subsets =                        n = n. of distinct items in the data

• With sequential patterns:
• N. of k-subsequences = 

• The same item can be repeated:
• < {A} {A} {B} {A} … >










k

n

kn



Sequential Pattern Mining: Challenge

• Even if we generate them from input sequences
• E.g.: Given a n-sequence:   <{a b} {c d e} {f} {g h i}>

• Examples of subsequences:

<{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.

• Number of k-subsequences can be extracted from it

<{a  b} {c d  e} {f} {g h  i}>  n = 9

k=4:       Y _    _ Y  Y   _  _  _ Y
126

4

9

:Answer

=







=









k

n

<{a}          {d e}                 {i}>



Generalized Sequential Pattern



Generalized Sequential Pattern (GSP)

• Follows the same structure of Apriori
• Start from short patterns and find longer ones at each iteration

• Based on “Apriori principle” or “anti-monotonicity of support”
• If one sequence S1 is contained in sequence S2, then the support of S2 cannot be larger than 

that of S1:

• Intuitive proof
• Any input sequence that contains S2 will also contain S1

)sup()sup( 2121 SSSS 

{B} {D}
1S

{A} {B,C} {D}2S

{D} {A,C} {A,B,C} {F} {B,E} {D}

Input sequence



Generalized Sequential Pattern (GSP)
• Follows the same structure of Apriori: Start from short patterns and find 

longer ones at each iteration

• Step 1: Make the first pass over the sequence database D to yield all the 
1-transaction frequent sequences

• Step 2: Repeat until no new frequent sequences are found:
• Candidate Generation: Merge pairs of frequent subsequences found in the (k-1)th

pass to generate candidate sequences that contain k items 

• Candidate Pruning: Prune candidate k-sequences that contain infrequent (k-1)-
subsequences

• Support Counting: Make a new pass over the sequence database D to find the 
support for these candidate sequences

• Candidate Elimination: Eliminate candidate k-sequences whose actual support is 
less than minsup



Extracting Sequential Patterns

• Given n items:   i1, i2, i3, …, in
• Candidate 1-subsequences: 

<{i1}>, <{i2}>, <{i3}>, …, <{in}>

• Candidate 2-subsequences:
<{i1, i2}>, <{i1, i3}>, …, <{i1} {i1}>, <{i1} {i2}>, …, <{in-1} {in}>

• Candidate 3-subsequences:
<{i1, i2 , i3}>, <{i1, i2 , i4}>, …, <{i1, i2} {i1}>, <{i1, i2} {i2}>, …,

<{i1} {i1 , i2}>, <{i1} {i1 , i3}>, …, <{i1} {i1} {i1}>, <{i1} {i1} {i2}>, …

• Remark: items within a transaction are ordered
•YES: <{i1, i2 , i3}>        NO: <{i3, i1 , i2}>



Candidate Generation
• Base case (k=2): 

• Merging two frequent 1-sequences <{i1}>  and <{i2}> will produce 
two candidate 2-sequences:             <{i1} {i2}>  and   <{i1 i2}>

• Special case: ii can be merged with itself: <{ii} {ii}> 



Candidate Generation
• General case (k>2):

• A frequent (k-1)-sequence w1 is merged with another frequent (k-
1)-sequence w2 to produce a candidate k-sequence if the 
subsequence obtained by removing the first item in w1 is the same 
as the one obtained by removing the last item in w2

• The resulting candidate after merging is given by the sequence 
w1 extended with the last item of w2. 
• If last two items in w2 belong to the same transaction => last item in w2 becomes part 

of the last transaction in w1:        <{d}{a}{b}> + <{a}{b,c}> = <{d}{a}{b,c}>

• Otherwise, the last item in w2 becomes a separate transaction appended to the end of 
w1:  <{d}{a}{b}> + <{a}{b}{c}> = <{d}{a}{b}{c}> or  <{a,d}{b}> + <{d}{b}{c}> = <{a,d}{b}{c}>

• Special case: check if w1 can be merged with itself
• Works when it contains only one item type: < {a} {a}> + <{a} {a}> = < {a} {a} {a}>



Candidate Generation Examples

• Merging the sequences w1=<{1} {2 3} {4}> and w2 =<{2 3} {4 5}> 
• will produce the candidate sequence < {1} {2 3} {4 5}> because the last two items in 

w2 (4 and 5) belong to the same transaction

• Merging the sequences w1=<{1} {2 3} {4}> and w2 =<{2 3} {4} {5}> 
• will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two items in 

w2 (4 and 5) do not belong to the same transaction

• Can we merge w1 =<{1} {2 6} {4}> and w2 =<{1} {2} {4 5}> ?
• We do not have to merge the sequences w1 =<{1} {2 6} {4}> and w2 =<{1} {2} {4 5}> 

to produce the candidate < {1} {2 6} {4 5}> 
• Notice that if the latter is a viable candidate, it will be obtained by merging w1 with < 

{2 6} {4 5}>



Candidate Pruning

• Based on Apriori principle:
• If a k-sequence W contains a (k-1)-subsequence that is not frequent, then W 

is not frequent and can be pruned

• Method:
• Enumerate all (k-1)-subsequence:

• {a,b}{c}{d}  → {b}{c}{d} , {a}{c}{d} , {a,b}{d} , {a,b}{c}

• Each subsequence generated by cancelling 1 item in W
• Number of (k-1)-subsequences = k

• Remark: candidates are generated by merging two “mother” (k-1)-
subsequences that we know to be frequent
• Correspond to remove the first event or the last one

• Number of significant (k-1)-subsequences to test = k – 2

• Special cases: at step k=2 the pruning has no utility, since the only (k-1)-subsequences are the 
“mother” ones



GSP Example

< {1} {2} {3} >

< {1} {2 5} >

< {1} {5} {3} >

< {2} {3} {4} >

< {2 5} {3} >

< {3} {4} {5} >

< {5} {3 4} >

< {1} {2} {3} {4} >

< {1} {2 5} {3} >

< {1} {5} {3 4} >

< {2} {3} {4} {5} >

< {2 5} {3 4} >
< {1} {2 5} {3} >

Frequent

3-sequences

Candidate

Generation

Candidate

Pruning



GSP Exercise

• Given the following dataset of sequences

• Generate sequential patterns if min_sup = 35%

ID Sequence

1 a b →  a →  b

2 b →  a →  c d

3 a →  b 

4 a →  a →  b d



GSP Exercise - Solution

Sequential pattern Support

a 100 %

b 100 %

d 50 %

a →  a 50 %

a →  b 75 %

a →  d 50 %

b →  a 50 %

a →  a →  b 50 %

ID Sequence

1 a b →  a →  b

2 b →  a →  c d

3 a →  b 

4 a →  a →  b d



Timing Constraints

• Motivation by examples:

• Sequential Pattern {milk} → {cookies} 
• It might suggest that cookies are bought to better enjoy milk
• Yet, we might obtain it even if all customers by milk and after 6 months buy cookies, in which 

case our interpretation is wrong

• {cheese A} → {cheese B}
• Does it mean that buying and eating cheese A induces the customer to try also cheese B (e.g. by 

the same brand)?
• Maybe, yet if they are bought within 20 minutes it is like that they were to be bought together 

(and the customer forgot it)

• {buy PC} → {buy printer}→{ask for repair}
• Is it a good or bad sign?
• It depends on how much time the whole process took:

• Short time => issues,  Long time => OK, normal life cycle



Timing Constraints
• Define 3 types of constraint on the instances to consider

• E.g. ask that the pattern instances last no more than 30 days

{A   B}     {C}    {D   E}

<= ms

<= xg >ng

xg: max-gap   →

ng: min-gap →

ms: maximum span →

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {4,7} {4,5} {8} > < {6} {5} > Yes

< {1} {2} {3} {4} {5}> < {1} {4} > No

< {1} {2,3} {3,4} {4,5}> < {2} {3} {5} > Yes

< {1,2} {3} {2,3} {3,4} {2,4} {4,5}> < {1,2} {5} > No

xg = 2, ng = 0, ms= 4             ➔ consecutive transactions at most distance 2

& overall duration at most 4 time units

Each transaction of the pattern 

instance must be at most xg time 
after the previous one

Each transaction of the pattern 
instance must be at least ng time 
after the previous one

The overall duration of the pattern 

instance must be at most ms



Mining Sequential Patterns with Timing Constraints

• Approach 1:
• Mine sequential patterns without timing constraints

• Postprocess the discovered patterns

• Dangerous: might generate billions of sequential patterns to obtain only a few 
time-constrained ones

• Approach 2:
• Modify GSP to directly prune candidates that violate timing constraints

• Question: Does Apriori principle still hold?



Apriori Principle with Time Constraints

• Case 1: max-span
• Intuitive check

• Does any input sequence that contains S2 will also contain S1 ?

{A} {B,C} {D}

{D} {A,C} {A,B,C} {F} {B,E} {D}

{A} {B}
1S

2S

Input sequence

Span for S2 : Span = 4

Span for S1 : Span = 1

• When S1 has less transactions, S1 span can (only) decrease
• If S2 span is OK, then also S1 span is OK

V



Apriori Principle with Time Constraints

• Case 2: min-gap
• Intuitive check

• Does any input sequence that contains S2 will also contain S1 ?

{A} {B,C} {D}

{D} {A,C} {A,B,C} {F} {B,E} {D}

{A} {D}
1S

2S

Input sequence

Gaps for S2 : Gap = 1 Gap = 3

Gaps for S1 : Gap = 4

• When S1 has less transactions, gaps for S1 can (only) increase
• If S2 gaps are OK, they are OK also for S1

V



Apriori Principle with Time Constraints

• Case 3: max-gap
• Intuitive check

• Does any input sequence that contains S2 will also contain S1 ?

{A} {B,C} {D}

{D} {A,C} {A,B,C} {F} {B,E} {D}

{A} {D}
1S

2S

Input sequence

Gaps for S2 : Gap = 1 Gap = 3

Gaps for S1 : Gap = 4

• When S1 has less transactions, gaps for S1 can (only) increase
• Happens when S1 has lost an internal element w.r.t. S2

• Even if S2 gaps are OK, S1 gaps might grow too large w.r.t. max-gap

X



Apriori Principle for Sequence Data
Object Timestamp Events

A 1 1,2,4

A 2 2,3

A 3 5

B 1 1,2

B 2 2,3,4

C 1 1, 2

C 2 2,3,4

C 3 2,4,5

D 1 2

D 2 3, 4

D 3 4, 5

E 1 1, 3

E 2 2, 4, 5

Suppose:    

xg = 1 (max-gap)

ng = 0 (min-gap)

ms = 5 (maximum span)

minsup = 60%

<{2} {5}>   support = 40%

but

<{2} {3} {5}>   support = 60%

Problem exists because of max-gap constraint

No such problem if max-gap is infinite



Contiguous Subsequences

• s is a contiguous subsequence of 
w = <e1>< e2>…< ek> 

if any of the following conditions hold:
1. s is obtained from w by deleting an item from either e1 or ek

2. s is obtained from w by deleting an item from any 
element ei that contains more than 2 items

3. s is a contiguous subsequence of s’ and s’ is a 
contiguous subsequence of w (recursive definition)

• Examples: s = < {1} {2} > 
• is a contiguous subsequence of 

< {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >  
• is not a contiguous subsequence of

< {1} {3} {2}> and < {2} {1} {3} {2}>

Not interesting 
for our usage

Key point: avoids 
internal “jumps”



Modified Candidate Pruning Step

• Without maxgap constraint:
• A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is 

infrequent

• With maxgap constraint:
• A candidate k-sequence is pruned if at least one of its contiguous (k-1)-

subsequences is infrequent

• Remark: the “pruning power” is now reduced
• Less subsequences to test for “killing” the candidate



Other kinds of patterns for sequences

• In some domains, we may have only one very long time series
• Example: 

• monitoring network traffic events for attacks

• monitoring telecommunication alarm signals

• Goal is to find frequent sequences of events in the time series
• Now we have to count “instances”, but which ones?

• This problem is also known as frequent episode mining

E1

E2

E1

E2

E1

E2

E3

E4 E3  E4

E1

E2

E2  E4 

E3  E5

E2

E3  E5

E1

E2 E3 E1

Pattern: <E1> <E3>

?



References

• Sequential Pattern Mining. Chapter 7. 
Introduction to Data Mining.



Exercises SPM



Sequential Pattern – Exercise 1



Sequential Pattern – Exercise 1



Sequential Pattern – Exercise 1 – Solution



Sequential Pattern – Exercise 2



Sequential Pattern – Exercise 2 – Solution



Sequential Pattern – Exercise 3



Sequential Pattern – Exercise 3 – Solution 



Sequential Pattern – Exercise 4



GSP – Exercise 1



GSP – Exercise 1 – Solution 

{ A }
{ B }
{ C }
{ D }
{ E }
{ BC }
{ AC }
{ CD }
{ AB }

{ A } -> { B }
{ A } -> { C }
{ A } -> { D }
{ B } -> { C }
{ B } -> { D }
{ C } -> { B }
{ C } -> { C }
{ C } -> { D }
{ D } -> { B }
{ D } -> { C }
{ D } -> { D }

{ A } -> { C } -> { C }
{ A } -> { C } -> { D }
{ B } -> { C } -> { D }
{ B } -> { C } -> { C }
{ C } -> { C } -> { C }



GSP – Exercise 1 – Solution 

{ A }
{ B }
{ C }
{ D }

{ BC }
{ AC }
{ CD }
{ AB }

{ A } -> { B }
{ A } -> { C }
{ A } -> { D }
{ B } -> { C }
{ B } -> { D }
{ C } -> { B }
{ C } -> { C }
{ C } -> { D }
{ D } -> { B }
{ D } -> { C }
{ D } -> { D }

{ A } -> { C } -> { C }
{ A } -> { C } -> { D } (pruning)
{ B } -> { C } -> { D }
{ B } -> { C } -> { C }
{ C } -> { C } -> { C }

k=1-seq

k=2-seq

k=2-seq



GSP – Exercise 2



GSP – Exercise 2 – Solution 

Missing from frequent 3-sequences
• A -> D -> D
• B -> D -> D
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