DATA MINING 2 Sequential Pattern Mining

Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 5 "Introduction to Data Mining", 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Examples of Sequence

- Sequence of different transactions by a customer at an online store:
 - < {Digital Camera, iPad} {memory card} {headphone, iPad cover} >
- Sequence of events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

- < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

From Itemsets to Sequences

- Frequent itemsets and association rules focus on transactions and the items that appear there
- Databases of transactions usually have a temporal information
 - Sequential patterns exploit it
- Example data:
 - Market basket transactions
 - Web server logs
 - Tweets
 - Workflow production logs

- Events or combinations of events that appear frequently in the data
- E.g. items bought by customers of a supermarket

Frequent Patterns

- Frequent itemsets w.r.t. minimum threshold
- E.g. with Min_freq = 5

Frequent Patterns in Complex Domains

- Frequent sequences (a.k.a. Sequential patterns)
- Input: sequences of events (or of groups)

Frequent Patterns in Complex Domains

- Objective: identify sequences that occur frequently
 - Sequential pattern: { 🕥 🧭 📥 🧔

Sequential Pattern Discovery: Examples

- In telecommunications alarm logs,
 - -Inverter_Problem:

(Excessive_Line_Current) (Rectifier_Alarm) --> (Fire_Alarm)

- In point-of-sale transaction sequences,
 - -Computer Bookstore:

(Intro_To_Visual_C) (C++_Primer) --> (Perl_for_dummies,Tcl_Tk)

-Athletic Apparel Store:

(Shoes) (Racket, Racketball) --> (Sports_Jacket)

Sequence Data and Terminology

Sequence Database	<u>Sequence</u>	Element (Transaction)	Event (<u>Item</u>)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Sequence Data

Formal Definition of a Sequence

A sequence is an ordered list of transactions

 $S = < e_1 e_2 e_3 \dots >$

- Each transaction is attributed to a specific time or location
- Each transaction contains a collection of items

 $e_i = \{i_1, i_2, ..., i_k\}$

- We "measure" sequences with two different notions:
 - Cardinality of a sequence: |s| is given by the number of transactions of the sequence
 - Size of a sequence: a k-sequence is a sequence that contains k items

Formal Definition of a Sequence

Example

 $S = \langle \{A,B\}, \{B,E,F\}, \{A\}, \{E,F,H\} \rangle$

- Cardinality of s: |s| = 4 transactions
- s is a 9-sequence as it contains k=9 items
- Times associated to elements:
 - $\{A,B\} \rightarrow time=0$
 - $\{B,E,F\} \rightarrow time = 120$
 - $\{A\} \rightarrow time = 130$
 - ${E,F,H} \rightarrow time = 200$

Sequences without Explicit Time Info

- Default: time of element = position in the sequence
- Example

 $S = \langle \{A,C\}, \{E\}, \{A,F\}, \{E,G,H\} \rangle$

- Default times associated to transactions:
 - $\{A,C\} \rightarrow time=0$
 - ${E} \rightarrow time = 1$
 - $\{A,F\} \rightarrow time = 2$
 - ${E,G,H} \rightarrow time = 3$

Examples of Sequence

• Web sequence:

Singleton elements

- < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

< {clogged resin & outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips & main turbine trips & reactor pressure increases}>

Complex elements

Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Singleton elements

Formal Definition of a Subsequence

 A sequence <a₁ a₂ ... a_n> is contained in another sequence <b₁ b₂ ... b_m> (m ≥ n) if there exist integers i₁ < i₂ < ... < i_n such that a₁ ⊆ b_{i1}, a₂ ⊆ b_{i1}, ..., a_n ⊆ b_{in}

Formal Definition of Sequential Pattern

• The **support** of a subsequence *w* is the fraction of data sequences that contain w

support of w: 2/4 = 0.50 (50%)

• is a **frequent** subsequence

A sequential pattern

•

• i.e., a subsequence whose support is ≥ *minsup*

Formal Definition of Sequential Pattern

- Remark: a subsequence (i.e. a candidate pattern) might be mapped into a sequence in several different ways
 - Each mapping is an **instance** of the subsequence
 - In mining sequential patterns we need to find only one instance

{A}

{B}

{D}

Exercise 1

□ in the input sequence below

find instances/occurrence of the following patterns

 $\{C\}\{H\}\{C\}>$ $\{A\}\{B\}>$ $\{C\}\{C\}\{E\}>$ $\{A\}\{E\}>$

□ in the input sequence below

Sequential Pattern Mining: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, minsup

- Task:
 - Find all subsequences with support ≥ *minsup*

Sequential Pattern Mining: Example

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Minsup = 50%

Examples of Frequent Subsequences:

< {1,2} >	s=60%
< {2,3} >	s=60%
< {2,4}>	s=80%
< {3} {5}>	s=80%
< {1} {2} >	s=80%
< {2} {2} >	s=60%
< {1} {2,3} >	s=60%
< {2} {2,3} >	s=60%
< {1,2} {2,3} >	s=60%

Sequential Pattern Mining: Challenge

- Trivial approach: generate all possible k-subsequences, for k=1,2,3,... and compute support
- Combinatorial explosion!
 - With frequent itemsets mining we had:

• N. of k-subsets =
$$\binom{n}{k}$$

n = n. of distinct items in the data

- With sequential patterns:
 - N. of k-subsequences = n^k
 - The same item can be repeated:
 - < {A} {A} {B} {A} ... >

Sequential Pattern Mining: Challenge

- Even if we generate them from input sequences
 - E.g.: Given a n-sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences:

 $\label{eq:a} $$ \{c d\} \{f\} \{g\} >, < \{c d e\} >, < \{b\} \{g\} >, etc. $$$

• Number of k-subsequences can be extracted from it

Generalized Sequential Pattern

Generalized Sequential Pattern (GSP)

Follows the same structure of Apriori

- Start from short patterns and find longer ones at each iteration
- Based on "Apriori principle" or "anti-monotonicity of support"
 - If one sequence S1 is contained in sequence S2, then the support of S2 cannot be larger than that of S1:

 $S_1 \subseteq S_2 \Longrightarrow \sup(S_1) \ge \sup(S_2)$

- Intuitive proof
 - Any input sequence that contains S2 will also contain S1

Generalized Sequential Pattern (GSP)

- Follows the same structure of Apriori: Start from short patterns and find longer ones at each iteration
- Step 1: Make the first pass over the sequence database D to yield all the 1-transaction frequent sequences
- **Step 2**: Repeat until no new frequent sequences are found:
 - **Candidate Generation**: Merge pairs of frequent subsequences found in the (k-1)*th* pass to generate candidate sequences that contain k items
 - **Candidate Pruning**: Prune candidate *k*-sequences that contain infrequent (*k*-1)-subsequences
 - Support Counting: Make a new pass over the sequence database D to find the support for these candidate sequences
 - **Candidate Elimination**: Eliminate candidate *k*-sequences whose actual support is less than *minsup*

Extracting Sequential Patterns

- Given *n* items: i₁, i₂, i₃, ..., i_n
 - Candidate 1-subsequences:

 $<\{i_1\}>, <\{i_2\}>, <\{i_3\}>, ..., <\{i_n\}>$

Candidate 2-subsequences:

 $<\!\!\{i_1, i_2\}\!\!>, <\!\!\{i_1, i_3\}\!\!>, ..., <\!\!\{i_1\} \{i_1\}\!\!>, <\!\!\{i_1\} \{i_2\}\!\!>, ..., <\!\!\{i_{n-1}\} \{i_n\}\!\!>$

Candidate 3-subsequences:

 $<\!\!\{i_1, i_2, i_3\}\!\!>, <\!\!\{i_1, i_2, i_4\}\!\!>, ..., <\!\!\{i_1, i_2\} \{i_1\}\!\!>, <\!\!\{i_1, i_2\} \{i_2\}\!\!>, ..., <\!\!\{i_1\} \{i_1, i_2\}\!\!>, <\!\!\{i_1\} \{i_1, i_3\}\!\!>, ..., <\!\!\{i_1\} \{i_1\} \{i_1\}\!\!>, <\!\!\{i_1\} \{i_1\} \{i_2\}\!\!>, ...$

Remark: items within a transaction are ordered
 YES: <{i₁, i₂, i₃}> NO: <{i₃, i₁, i₂}>

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences <{i₁}> and <{i₂}> will produce two candidate 2-sequences: <{i₁} {i₂}> and <{i₁ i₂}>
 - Special case: i_i can be merged with itself: <{i_i} {i_i}

Candidate Generation

- General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged with another frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing the first item in w₁ is the same as the one obtained by removing the last item in w₂
 - The resulting candidate after merging is given by the sequence w₁ extended with the last item of w₂.
 - If last two items in w₂ belong to the same transaction => last item in w₂ becomes part of the last transaction in w₁: <{d}{a}{b}> + <{a}{b,c}> = <{d}{a}{b,c}>
 - Otherwise, the last item in w₂ becomes a separate transaction appended to the end of w₁: <{d}{a}{b}> + <{a}{b}{c}> = <{d}{a}{b}{c}> or <{a,d}{b}> + <{d}{b}{c}> = <{a,d}{b}{c}>
 - Special case: check if w₁ can be merged with itself
 - Works when it contains only one item type: < {a} {a}> + <{a} {a}> = < {a} {a} {a}>

Candidate Generation Examples

- Merging the sequences $w_1 = <\{1\} \{2 \ 3\} \{4\} > and w_2 = <\{2 \ 3\} \{4 \ 5\} >$
- will produce the candidate sequence < {1} {2 3} {4 5}> because the last two items in w₂ (4 and 5) belong to the same transaction
- Merging the sequences $w_1 = <\{1\} \{2 \ 3\} \{4\} > and w_2 = <\{2 \ 3\} \{4\} \{5\} >$
- will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two items in w₂ (4 and 5) do not belong to the same transaction
- Can we merge $w_1 = <\{1\} \{2 \ 6\} \{4\} > and w_2 = <\{1\} \{2\} \{4 \ 5\} > ?$
- We do not have to merge the sequences w₁ =<{1} {2 6} {4}> and w₂ =<{1} {2 }{4 5}> to produce the candidate < {1} {2 6} {4 5}>
- Notice that if the latter is a viable candidate, it will be obtained by merging w1 with <
 {2 6} {4 5}>

Candidate Pruning

- Based on Apriori principle:
 - If a k-sequence W contains a (k-1)-subsequence that is not frequent, then W is not frequent and can be pruned
- Method:
 - Enumerate all (k-1)-subsequence:
 - ${a,b}{c}{d} \rightarrow {b}{c}{d}, {a}{c}{d}, {a,b}{d}, {a,b}{c}$
 - Each subsequence generated by cancelling 1 item in W
 - Number of (k-1)-subsequences = k
 - Remark: candidates are generated by merging two "mother" (k-1)subsequences that we know to be frequent
 - Correspond to remove the first event or the last one
 - Number of significant (k-1)-subsequences to test = k 2
 - Special cases: at step k=2 the pruning has no utility, since the only (k-1)-subsequences are the "mother" ones

GSP Example

• Given the following dataset of sequences

ID		Sequence				
1	a b	\rightarrow	а	\rightarrow	b	
2	b	\rightarrow	а	\rightarrow	c d	
3	а	\rightarrow	b			
4	а	\rightarrow	а	\rightarrow	b d	

• Generate sequential patterns if min_sup = 35%

GSP Exercise - Solution

ID		Sequence				
1	a b	\rightarrow	а	\rightarrow	b	
2	b	\rightarrow	а	\rightarrow	c d	
3	а	\rightarrow	b			
4	а	\rightarrow	а	\rightarrow	b d	

	S	eque	ntial p	attern	Support
а					100 %
b					100 %
d					50 %
а	\rightarrow	а			50 %
а	\rightarrow	b			75 %
а	\rightarrow	d			50 %
b	\rightarrow	а			50 %
а	\rightarrow	а	\rightarrow	b	50 %

Timing Constraints

- Motivation by examples:
- Sequential Pattern {milk} \rightarrow {cookies}
 - It might suggest that cookies are bought to better enjoy milk
 - Yet, we might obtain it even if all customers by milk and **after 6 months** buy cookies, in which case our interpretation is wrong
- {cheese A} \rightarrow {cheese B}
 - Does it mean that buying and eating cheese A induces the customer to try also cheese B (e.g. by the same brand)?
 - Maybe, yet if they are bought within 20 minutes it is like that they were to be bought together (and the customer forgot it)
- {buy PC} \rightarrow {buy printer} \rightarrow {ask for repair}
 - Is it a good or bad sign?
 - It depends on how much time the whole process took:
 - Short time => issues, Long time => OK, normal life cycle

Timing Constraints

ΙA

- Define 3 types of constraint on the instances to consider
 - E.g. ask that the pattern instances last no more than 30 days

B } { C } { D E }	x _g : max-gap →	instance must be at most x _g time after the previous one
<= x _g >n _g	n _g : min-gap →	Each transaction of the pattern instance must be at least n _g time after the previous one
<= m _s	m _s : maximum span →	The overall duration of the pattern instance must be at most m s

 $x_g = 2, n_g = 0, m_s = 4$

consecutive transactions at most distance 2 & overall duration at most 4 time units

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	
< {1} {2} {3} {4} {5}>	< {1} {4} >	
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	

Mining Sequential Patterns with Timing Constraints

- Approach 1:
 - Mine sequential patterns without timing constraints
 - Postprocess the discovered patterns
 - Dangerous: might generate billions of sequential patterns to obtain only a few time-constrained ones
- Approach 2:
 - Modify GSP to directly prune candidates that violate timing constraints
 - Question: Does Apriori principle still hold?

Apriori Principle with Time Constraints

- Case 1: max-span
- Intuitive check
 - Does any input sequence that contains S2 will also contain S1?

• When S1 has less transactions, S1 span can (only) decrease

V

• If S2 span is OK, then also S1 span is OK

Apriori Principle with Time Constraints

- Case 2: min-gap
- Intuitive check
 - Does any input sequence that contains S2 will also contain S1?

- When S1 has less transactions, gaps for S1 can (only) increase
 - If S2 gaps are OK, they are OK also for S1

Apriori Principle with Time Constraints

- Case 3: max-gap
- Intuitive check
 - Does any input sequence that contains S2 will also contain S1?

- When S1 has less transactions, gaps for S1 can (only) increase x
 - Happens when S1 has lost an internal element w.r.t. S2
 - Even if S2 gaps are OK, S1 gaps might grow too large w.r.t. max-gap

Apriori Principle for Sequence Data

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Suppose:

 $n_g = 0$ (min-gap)

 $m_s = 5$ (maximum span)

minsup = 60%

<{2} {5}> support = 40% but

<{2} {3} {5}> support = 60%

Problem exists because of max-gap constraint No such problem if max-gap is infinite

Contiguous Subsequences

s is a contiguous subsequence of

 $w = \langle e_1 \rangle \langle e_2 \rangle ... \langle e_k \rangle$

- if any of the following conditions hold:
 - **1**. *s* is obtained from *w* by deleting an item from either e_1 or e_k
 - s is obtained from w by deleting an item from any element e_i that contains more than 2 items
 - *3. s* is a contiguous subsequence of *s*' and *s*' is a contiguous subsequence of *w* (recursive definition)
- Examples: s = < {1} {2} >
 - is a contiguous subsequence of
 - $< \{1\} \{2 \ 3\}>, < \{1 \ 2\} \{2\} \{3\}>, and < \{3 \ 4\} \{1 \ 2\} \{2 \ 3\} \{4\}>$
 - is not a contiguous subsequence of
 - $< \{1\} \{3\} \{2\} > and < \{2\} \{1\} \{3\} \{2\} >$

Modified Candidate Pruning Step

- Without maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
 - A candidate *k*-sequence is pruned if at least one of its **contiguous** (*k*-1)subsequences is infrequent
 - Remark: the "pruning power" is now reduced
 - Less subsequences to test for "killing" the candidate

Other kinds of patterns for sequences

- In some domains, we may have only one very long time series
 - Example:
 - monitoring network traffic events for attacks
 - monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
 - Now we have to count "instances", but which ones?
 - This problem is also known as frequent episode mining

References

• Sequential Pattern Mining. Chapter 7. Introduction to Data Mining.

Exercises SPM

Sequential Pattern – Exercise 1

a) (3 points) Given the following input sequence

< {A}	{ B , F }	{E}	{A,B}	{A,C,D}	{F}	{ B,E }	{C,D} >
t=0	t=1	t=2	t=3	t=4	t=5	t=6	t=7

show all the occurrences (there can be more than one or none, in general) of each of the following subsequences in the input sequence above. Repeat the exercise twice: the first time considering no temporal constraints (left column): the second time considering min-gap = 1 (i.e. gap > 1, right column). Each occurrence should be represented by its corresponding list of time stamps, e.g..: <0,2,3> = <t=0, t=2, t=3>.

	Occurrences	Occurrences with min-gap =1
<i>ex.:</i> <{B}{E}>	<1,2> <1,6> <3,6>	<1,6><3,6>
$w_1 = \langle \{A\} \{B\} \{E\} \rangle$		
$w_2 = \langle \{B\} \{D\} \rangle$		
$w_3 = \langle F \} \{ E \} \{ C, D \} \rangle$		

Sequential Pattern – Exercise 1

a) (3 points) Given the following input sequence

< {A}	{ B , F }	{E}	{A,B}	{A,C,D}	{F}	{ B,E }	{C,D} >
t=0	t=1	t=2	t=3	t=4	t=5	t=6	t=7

show all the occurrences (there can be more than one or none, in general) of each of the following subsequences in the input sequence above. Repeat the exercise twice: the first time considering no temporal constraints (left column): the second time considering min-gap = 1 (i.e. gap > 1, right column). Each occurrence should be represented by its corresponding list of time stamps, e.g..: <0,2,3> = <t=0, t=2, t=3>.

Occurrences	Occurrences with min-gap =1
<mark><1,2> <1,6> <3,6></mark>	<mark><1,6><3,6></mark>
	Occurrences <1,2> <1,6> <3,6>

Sequential Pattern – Exercise 1 – Solution

a) (3 points) Given the following input sequence

< {A}	{ B , F }	{E}	{A,B}	{A,C,D}	{F}	{ B,E }	{C,D} >
t=0	t=1	t=2	t=3	t=4	t=5	t=6	t=7

show all the occurrences (there can be more than one or none, in general) of each of the following subsequences in the input sequence above. Repeat the exercise twice: the first time considering no temporal constraints (left column): the second time considering min-gap = 1 (i.e. gap > 1, right column). Each occurrence should be represented by its corresponding list of time stamps, e.g..: <0,2,3> = <t=0, t=2, t=3>.

Answer:		
	Occurrences	Occurrences with min-gap =1
<i>ex.:</i> <{B}{E}>	<mark><1,2> <1,6> <3,6></mark>	<mark><1,6><3,6></mark>
$w_1 = \langle \{A\} \{B\} \{E\} \rangle$	<mark><0,1,2> <0,1,6> <0,3,6></mark>	<mark><0,3,6></mark>
$w_2 = \langle \{B\} \{D\} \rangle$	<mark><1,4> <1,7> <3,4> <3,7> <6,7></mark>	<mark><1,4> <1,7> <3,7></mark>
$w_3 = \langle F \} \{ E \} \{ C, D \} \rangle$	<mark><1,2,4> <1,2,7> <1,6,7> <5,6,7></mark>	none

Sequential Pattern – Exercise 2

a) (3 points) Given the following input sequence

< { B , F }	{A}	{A,B}	{C,D,F}	{E}	{ B,E }	{C,D} >
t=0	t=1	t=2	t=3	t=4	t=5	t=6

show all the occurrences (there can be more than one or none, in general) of each of the following subsequences in the input sequence above. Repeat the exercise twice: the first time considering no temporal constraints (left column): the second time considering max-gap = 4 (i.e. gap <= 4, right column). Each occurrence should be represented by its corresponding list of time stamps, e.g..: <0,2,3> = <t=0, t=2, t=3>.

	Occurrences	Occurrences with max-gap =4
$w_1 = \langle \{B\} \{E\} \rangle$		
$w_2 = \langle \{B\} \{D\} \rangle$		
$w_3 = \langle F \} \{ B \} \{ C, D \} \rangle$		

Sequential Pattern – Exercise 2 – Solution

a) (3 points) Given the following input sequence

< {B,F}	{A}	{A,B}	{C,D,F}	{E}	{ B,E }	{C,D} >
t=0	t=1	t=2	t=3	t=4	t=5	t=6

show all the occurrences (there can be more than one or none, in general) of each of the following subsequences in the input sequence above. Repeat the exercise twice: the first time considering no temporal constraints (left column): the second time considering max-gap = 4 (i.e. gap <= 4, right column). Each occurrence should be represented by its corresponding list of time stamps, e.g..: <0,2,3> = <t=0, t=2, t=3>.

Answer:

	Occurrences	Occurrences with max-gap =4
$w_1 = \langle \{B\} \{E\} \rangle$	<mark><0,4> <0,5> <2,4> <2,5></mark>	<mark><0,4> <2,4> <2,5></mark>
$w_2 = \langle \{B\} \{D\} \rangle$	<0,3> <0,6> <2,3> <2,6>	<0,3> <2,3> <2,6>
	< 5,6 >	< 5,6 >
$w_3 = \langle F \} \{ B \} \{ C, D \} \rangle$	<mark><0,2,3> <0,2,6> <0,5,6></mark> <mark><3,5,6></mark>	<mark><0,2,3> <0,2,6></mark> <mark><3,5,6></mark>

Sequential Pattern – Exercise 3

Given the input sequences listed in the table below (column 1), show for each of them **all the occurrences** of subsequences $\{A\} \rightarrow \{D\}$ and $\{A\} \rightarrow \{C,D\}$, and finally write its total support. Repeat the exercise twice: the first time **considering no temporal constraints** (columns 2 and 4); the second time **considering min-gap = 1** (i.e. gap > 1) (columns 3 and 5). Each occurrence should be represented by its corresponding list of time stamps, e.g.: <0,2,3> = <t=0, t=2, t=3>.

column 1	column 2	column 3	column 4	column 5
	$\{A\} \rightarrow \{D\}$)}	$\{\mathbf{B}\} \rightarrow +$	{C,D}
	No constraints	min-gap = 1	No constraints	min-gap = 1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
$< \{A,B\} \{C\} \{A,B\} \{C,D\} > t=0 t=1 t=2 t=3$				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
$< \{A,F\} \{B,C\} \{A,B\} \{E\} \{D\} > t=0$ t=1 t=2 t=3 t=4				
$< \{A,B,F\} \{A,C\} \{A,B,D\} \{C\} \{C,D\} > \\ t=0 t=1 t=2 t=3 t=4$				
Total support:				

Sequential Pattern – Exercise 3 – Solution

Given the input sequences listed in the table below (column 1), show for each of them **all the occurrences** of subsequences $\{A\} \rightarrow \{D\}$ and $\{A\} \rightarrow \{C,D\}$, and finally write its total support. Repeat the exercise twice: the first time **considering no temporal constraints** (columns 2 and 4); the second time **considering min-gap = 1** (i.e. gap > 1) (columns 3 and 5). Each occurrence should be represented by its corresponding list of time stamps, e.g.:: <0,2,3> = <t=0, t=2, t=3>.

column 1	column 2	column 3	column 4	column 5
	$\{\mathbf{A}\} \rightarrow \{\mathbf{D}\}$	}	$\{\mathbf{B}\} \rightarrow \{$	{C,D}
	No constraints	min- $gap = 1$	No constraints	min-gap = 1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<mark><0,2>, <0,4></mark>	<mark><0,2> <0,4></mark>	<mark><0,2>, <0,4></mark>	<mark><0,2>, <0,4></mark>
$< \{A,B\} \{C\} \{A,B\} \{C,D\} > t=0 t=1 t=2 t=3$	<mark><0,3> <2,3></mark>	<mark><0,3></mark>	<mark><0,3>, <2,3></mark>	<mark><0,3></mark>
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<1,2> <1,3> <2,3>	<mark><1,3></mark>	<1,2>	none
$< \{A,F\} \{B,C\} \{A,B\} \{E\} \{D\} > t=0$ t=1 t=2 t=3 t=4	<mark><0,4> <2,4></mark>	<mark><0,4> <2,4></mark>	none	none
$< \{A,B,F\} \{A,C\} \{A,B,D\} \{C\} \{C,D\} > \\ t=0 t=1 t=2 t=3 t=4$	<0,2> <0,4> <1,2>, <1,4> <2,4>	<0,2> <0,4> <1,4> <2,4>	<mark><0,4><2,4></mark>	<mark><0,4> <2,4></mark>
Total support:	<mark>5 (100%)</mark>	<mark>5 (100%)</mark>	<mark>4 (80%)</mark>	<mark>3 (60%)</mark>

Sequential Pattern – Exercise 4

Given the input sequences listed in the table below (column 1), show for each of them **all the occurrences** of subsequences $\{A\} \rightarrow \{A\} \rightarrow \{D\}$ and $\{B\} \rightarrow \{C,D\}$, and finally write its total support. Repeat the exercise twice: the first time **considering no temporal constraints** (columns 2 and 4); the second time **considering max-gap = 2** (i.e. gap <= 2) (columns 3 and 5). Each occurrence should be represented by its corresponding list of time stamps, e.g.:: <0,2,3> = <t=0, t=2, t=3>.

column 1	column 2	column 3	column 4	column 5
	$\{A\} \rightarrow \{A\}$	$ angle ightarrow \{\mathbf{D}\}$	$\{\mathbf{B}\} \to \{$	C,D}
	No constraints	max- $gap = 2$	No constraints	max- $gap = 2$
$ < \{A,B,F\} \{C\} \{A,C,D,F\} \{E\} \{C,D\} > \\ t=0 t=1 t=2 t=3 t=4 $				
$< \{A,B\} \{C\} \{A,B\} \{C,D\} > t=0 t=1 t=2 t=3$				
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$< A,B $ {A} {A,D} {A} {C} {A} {C,D} t=0 t=1 t=2 t=3 t=4 t=5 t=6	NOT REQUESTED			
Total support:				

GSP – Exercise 1

b) **(3 points)** Simulate the execution of the GSP algorithm on the following dataset of sequences, assuming a minimum support threshold of 60%.

{ A } -> { B C } -> { C } -> { D } { A C } -> { B } -> { C } -> { C } { D } -> { C } -> { B } -> { C D } { A B } -> { D } -> { C D } -> { E }

GSP – Exercise 1 – Solution

b) **(3 points)** Simulate the execution of the GSP algorithm on the following dataset of sequences, assuming a minimum support threshold of 60%.

{ A } -> { B C } -> { C } -> { D } { A C } -> { B } -> { C } -> { C } { D } -> { C } -> { B } -> { C D } { A B } -> { D } -> { C D } -> { E }

GSP – Exercise 1 – Solution

b) **(3 points)** Simulate the execution of the GSP algorithm on the following dataset of sequences, assuming a minimum support threshold of 60%.

{ A } -> { B	C } -> { C } -> { D }	
{ A C } -> {	B } -> { C } -> { C }	
$\{ D \} \rightarrow \{ C \}$		
{ A B } -> {]	D } -> { C } -> { C D } -> { E }	
	k=2-seq	
{ A }	{ A } -> { B }	{ A } -> { C } -> { C }
{ B } k=1-seq	{ A } -> { C }	{
{ C }	{ A } -> { D }	{B}->{C}->{D}
{ D }	{ B } -> { C }	{B}->{C}->{C}
	{ B } -> { D }	{C}->{C}->{C}
k-2 cog	{ C } > { B }	
{BC} ^{k=2-seq}	{ C } -> { C }	
{ AC }	{ C } -> { D }	
{ CD }	{ D } > { B }	
{ AB }	{D} > {C}	
	{ D } > { D }	

GSP – Exercise 2

b) **(3 points)** Running the GSP algorithm on a dataset of sequences, at the end of the second iteration it found the frequent 3-sequences on the left, and at the next iteration it generated (among the others) the candidate 4-sequences on the right. Which of the candidates will be **pruned**, and why?

Frequent 3-sequences

$\{AB\} \rightarrow \{C\}$	$\{A\} \rightarrow \{D\} \rightarrow \{C\}$
$\{AB\} \rightarrow \{D\}$	$\{ B \} \rightarrow \{ C \} \rightarrow \{ C \}$
$\{A\} \rightarrow \{CD\}$	$\{ B \} \rightarrow \{ C \} \rightarrow \{ D \}$
$\{ B \} \rightarrow \{ C D \}$	$\{ B \} \rightarrow \{ D \} \rightarrow \{ C \}$
$\{A\} \rightarrow \{C\} \rightarrow \{C\}$	$\{ D \} \rightarrow \{ C \} \rightarrow \{ C \}$
$\{A\} \rightarrow \{C\} \rightarrow \{D\}$	$\{ D \} \rightarrow \{ C \} \rightarrow \{ D \}$

Candidates

1.	$\{AB\} \rightarrow \{CD\}$
2.	$\{A\} \rightarrow \{D\} \rightarrow \{C\} \rightarrow \{D\}$
3.	$\{ B \} \rightarrow \{ D \} \rightarrow \{ C \} \rightarrow \{ D \}$
4.	$\{AB\} \rightarrow \{D\} \rightarrow \{C\}$
5.	$\{AB\} \rightarrow \{C\} \rightarrow \{D\}$

GSP – Exercise 2 – Solution

b) **(3 points)** Running the GSP algorithm on a dataset of sequences, at the end of the second iteration it found the frequent 3-sequences on the left, and at the next iteration it generated (among the others) the candidate 4-sequences on the right. Which of the candidates will be **pruned**, and why?

Frequent 3-sequences

$\{A\} \rightarrow \{D\} \rightarrow \{C\}$
$\{B\} \rightarrow \{C\} \rightarrow \{C\}$
$\{ B \} \rightarrow \{ C \} \rightarrow \{ D \}$
$\{ B \} \rightarrow \{ D \} \rightarrow \{ C \}$
$\{ D \} \rightarrow \{ C \} \rightarrow \{ C \}$
$\{ D \} \rightarrow \{ C \} \rightarrow \{ D \}$

Candidates

```
1. \{AB\} \rightarrow \{CD\}

2. \{A\} \rightarrow \{D\} \rightarrow \{C\} \rightarrow \{D\}

3. \{B\} \rightarrow \{D\} \rightarrow \{C\} \rightarrow \{D\}

4. \{AB\} \rightarrow \{D\} \rightarrow \{C\}

5. \{AB\} \rightarrow \{C\} \rightarrow \{D\}
```

Answer:

Candidates

```
1. \{AB\} \rightarrow \{CD\}

2. \{A\} \rightarrow \{D\} \rightarrow \{C\} \rightarrow \{D\} \leftarrow PRUNED

3. \{B\} \rightarrow \{D\} \rightarrow \{C\} \rightarrow \{D\} \leftarrow PRUNED

4. \{AB\} \rightarrow \{D\} \rightarrow \{C\}

5. \{AB\} \rightarrow \{C\} \rightarrow \{D\}
```

Missing from frequent 3-sequences

- A -> D -> D
- B -> D -> D