
DATA MINING 1
Decision Tree Classifiers
Dino Pedreschi, Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 3 “Introduction to Data Mining”, 2nd Edition by
Tan, Steinbach, Karpatne, Kumar

Example of a Decision Tree

ca
tegoric

al

ca
tegoric

al

co
ntin

uous

cla
ss

Home
Owner

MarSt

Income

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model: Decision Tree

Consider the problem of predicting whether a loan borrower will repay the
loan or default on the loan payments.

Another Example of Decision Tree

ca
tegoric

al

ca
tegoric

al

co
ntin

uous

cla
ss

MarSt

Home
Owner

Income

YESNO

NO

NO

Yes No

Married
Single,

Divorced

< 80K > 80K

There could be more than one tree that
fits the same data!

Apply Model to Test Data

Home
Owner

MarSt

Income

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Test Data
Start from the root of tree.

Apply Model to Test Data

MarSt

Income

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Test Data

Home
Owner

Apply Model to Test Data

MarSt

Income

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Test Data

Home
Owner

Apply Model to Test Data

MarSt

Income

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Test Data

Home
Owner

Apply Model to Test Data

MarSt

Income

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Test Data

Home
Owner

Apply Model to Test Data

MarSt

Income

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Test Data

Assign Defaulted to
“No”

Home
Owner

Decision Tree Classification Task

Decision
Tree

Decision Tree Induction

• Many Algorithms:
• Hunt’s Algorithm (one of the earliest)
• CART
• ID3, C4.5
• SLIQ,SPRINT

General Structure of Hunt’s Algorithm

• Let D
t
 be the set of training records that reach a node t

• General Procedure:

• If D
t
 contains records that belong the same class y

t
,

then t is a leaf node labeled as y
t

• If D
t
 contains records that belong to more than one

class, use an attribute test to split the data into
smaller subsets. Recursively apply the procedure to
each subset.

Dt

?

Hunt’s Algorithm

(3,0) (4,3)

(3,0)

(1,3) (3,0)

(3,0)

(1,0) (0,3)

(3,0)

(7,3)

Hunt’s Algorithm

(3,0) (4,3)

(3,0)

(1,3) (3,0)

(3,0)

(1,0) (0,3)

(3,0)

(7,3)

Hunt’s Algorithm

(3,0) (4,3)

(3,0)

(1,3) (3,0)

(3,0)

(1,0) (0,3)

(3,0)

(7,3)

Hunt’s Algorithm

(3,0) (4,3)

(3,0)

(1,3) (3,0)

(3,0)

(1,0) (0,3)

(3,0)

(7,3)

Design Issues of Decision Tree Induction

• Greedy strategy:
• the number of possible decision trees can be very large, many decision tree

algorithms employ a heuristic-based approach to guide their search in the
vast hypothesis space.

• Split the records based on an attribute test that optimizes certain criterion.

Tree Induction

• How should training records be split?
• Method for specifying test condition depending on attribute types
• Measure for evaluating the goodness of a test condition

• How should the splitting procedure stop?
• Stop splitting if all the records belong to the same class or have identical

attribute values
• Early termination

Methods for Expressing Test Conditions

• Depends on attribute types
• Binary
• Nominal
• Ordinal
• Continuous

• Depends on number of ways to split
• 2-way split
• Multi-way split

Test Condition for Nominal Attributes

• Multi-way split:
• Use as many partitions as distinct values.

• Binary split:
• Divides values into two subsets

Test Condition for Ordinal Attributes

• Multi-way split:
• Use as many partitions as

distinct values

• Binary split:
• Divides values into two subsets
• Preserve order property among

attribute values

This grouping
violates order
property

Test Condition for Continuous Attributes

Splitting Based on Continuous Attributes

• Different ways of handling
• Discretization to form an ordinal categorical attribute

 Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles),
or clustering.

• Static – discretize once at the beginning

• Dynamic – repeat at each node

• Binary Decision: (A < v) or (A ≥ v)
• consider all possible splits and finds the best cut

• can be more compute intensive

How to determine the Best Split

Before Splitting: 10 records of class 0,
10 records of class 1

Which test condition is the best?

How to determine the Best Split

• Greedy approach:
• Nodes with purer / homogeneous class distribution are preferred

• Need a measure of node impurity:

High degree of impurity,

Non-homogeneous

Low degree of impurity,

Homogeneous

Measures of Node Impurity

• Gini Index

• Entropy

• Misclassification Error

Finding the Best Split

1. Compute impurity measure (P) before splitting

2. Compute impurity measure (M) after splitting
• Compute impurity measure of each child node
• M is the weighted impurity of children

3. Choose the attribute test condition that produces the highest gain (Gain
= P-M) or equivalently, lowest impurity measure after splitting (M)

Finding the Best Split

B?

Yes No

Node
N3

Node
N4

A?

Yes No

Node
N1

Node
N2

Before Splitting: P

M11 M12 M21 M22

M1 M2
Gain = P – M1 vs P – M2

Measure of Impurity: GINI

• Gini Index for a given node t :

(NOTE: p(j | t) is the relative frequency of class j at node t).

• Maximum (1 - 1/n
c
) when records are equally distributed among all classes,

implying least interesting information
• Minimum (0.0) when all records belong to one class, implying most

interesting information

Measure of Impurity: GINI

• Gini Index for a given node t :

(NOTE: p(j | t) is the relative frequency of class j at node t).

• For 2-class problem (p, 1 – p):
• GINI = 1 – p2 – (1 – p)2 = 2p (1-p)

Computing Gini Index of a Single Node

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0

P(C1) = 1/6 P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6 P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444

Gini Index for a Collection of Nodes

• When a node p is split into k partitions (children)

where, n
i
 = number of records at child i,

 n

 = number of records at parent node p.

• Choose the attribute that minimizes weighted average Gini index of the children

• Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

Binary Attributes: Computing GINI Index

• Splits into two partitions

• Effect of Weighing partitions:
• Larger and Purer Partitions are sought for.

B?

Yes No

Node
N1

Node
N2Gini(N1)

= 1 – (5/6)2 – (1/6)2
= 0.278

Gini(N2)
= 1 – (2/6)2 – (4/6)2
= 0.444

Weighted Gini of N1 N2
= 6/12 * 0.278 +
 6/12 * 0.444
= 0.361

Gain = 0.486 – 0.361 = 0.125

Categorical Attributes: Computing Gini Index

• For each distinct value, gather counts for each class in the dataset

• Use the count matrix to make decisions

Multi-way split Two-way split
(find best partition of values)

Which of these is the best?

Continuous Attributes: Computing Gini Index

• Use Binary Decisions based on one value

• Several Choices for the splitting value
• Number of possible splitting values = Number

of distinct values

• Each splitting value has a count matrix
associated with it

• Class counts in each of the partitions, A < v
and A >= v

• Simple method to choose best v
• For each v, scan the database to gather count

matrix and compute its Gini index
• Computationally Inefficient! (O(N2))

Repetition of work.

≤ 80 > 80

Defaulted Yes 0 3

Defaulted No 3 4

Annual Income ?

Continuous Attributes: Computing Gini Index...

● For efficient computation O(N log N): for each attribute,

– Sort the attribute on values

– Linearly scan these values, each time updating the count matrix and computing gini index

– Choose the split position that has the least Gini index

Split Positions
Sorted Values

Continuous Attributes: Computing Gini Index...

● For efficient computation: for each attribute,

– Sort the attribute on values

– Linearly scan these values, each time updating the count matrix and computing gini index

– Choose the split position that has the least Gini index

Split Positions
Sorted Values

Continuous Attributes: Computing Gini Index...

● For efficient computation: for each attribute,

– Sort the attribute on values

– Linearly scan these values, each time updating the count matrix and computing gini index

– Choose the split position that has the least Gini index

Split Positions
Sorted Values

Continuous Attributes: Computing Gini Index...

● For efficient computation: for each attribute,

– Sort the attribute on values

– Linearly scan these values, each time updating the count matrix and computing gini index

– Choose the split position that has the least Gini index

Split Positions
Sorted Values

Continuous Attributes: Computing Gini Index...

● For efficient computation: for each attribute,

– Sort the attribute on values

– Linearly scan these values, each time updating the count matrix and computing gini index

– Choose the split position that has the least Gini index

Split Positions
Sorted Values

Measure of Impurity: Entropy

• Entropy at a given node t:

(NOTE: p(j | t) is the relative frequency of class j at node t).

• Maximum (log n
c
) when records are equally distributed among all classes implying least

information

• Minimum (0.0) when all records belong to one class, implying most information

• Entropy based computations are quite similar to the GINI index computations

Computing Entropy of a Single Node

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0

P(C1) = 1/6 P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (5/6) = 0.65

P(C1) = 2/6 P(C2) = 4/6

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92

Computing Information Gain After Splitting

• Information Gain:

Parent Node, p is split into k partitions;

n
i
 is number of records in partition i

• Measures Reduction in Entropy achieved because of the split. Choose the
split that achieves most reduction (maximizes GAIN)

• Used in the ID3 and C4.5 decision tree algorithms
• Disadvantage: Tends to prefer splits that result in large number of partitions,

each being small but pure.

Problem with large number of partitions

• Node impurity measures tend to prefer splits that result in large
number of partitions, each being small but pure

• Customer ID has highest information gain because entropy for all the children is zero

• Can we use such a test condition on new test instances?

Solution

• A low impurity value alone is insufficient to find a good attribute test condition
for a node

• Solution: Consider the number of children produced by the splitting attribute in
the identification of the best split

• High number of child nodes implies more complexity

• Method 1: Generate only binary decision trees
• This strategy is employed by decision tree classifiers such as CART

• Method 2: Modify the splitting criterion to take into account the number of
partitions produced by the attribute

Gain Ratio

• Gain Ratio:

Parent Node, p is split into k partitions

n
i
 is the number of records in partition i

• Adjusts Information Gain by the entropy of the partitioning (SplitINFO).
• Higher entropy partitioning (large number of small partitions) is penalized!

• Used in C4.5 algorithm

• Designed to overcome the disadvantage of Information Gain

Gain Ratio

• Gain Ratio:

Parent Node, p is split into k partitions

n
i
 is the number of records in partition i

SplitINFO = 1.52 SplitINFO = 0.72 SplitINFO = 0.97

Measure of Impurity: Classification Error

• Classification error at a node t :

• Maximum (1 - 1/n
c
) when records are equally distributed among all classes,

implying least interesting information
• Minimum (0) when all records belong to one class, implying most interesting

information

Computing Error of a Single Node

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Error = 1 – max (0, 1) = 1 – 1 = 0

P(C1) = 1/6 P(C2) = 5/6

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 2/6 P(C2) = 4/6

Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3

Comparison among Impurity Measures

For a 2-class problem:

Consistency among the impurity mesures
• if a node N1 has lower entropy than node

N2, then the Gini index and error rate of N1
will also be lower than that of N2

The attribute chosen as splitting criterion by
the impurity measures can still be different!

Misclassification Error vs Gini Index

A?

Yes No

Node
N1

Node
N2

Gini(N1)
= 1 – (3/3)2 – (0/3)2
= 0

Gini(N2)
= 1 – (4/7)2 – (3/7)2
= 0.489

Gini(Children)
= 3/10 * 0
+ 7/10 * 0.489
= 0.342

Gini improves but
error remains the
same!!

Misclassification Error vs Gini Index

A?

Yes No

Node
N1

Node
N2

Misclassification error for all three cases = 0.3 !

Stopping Criteria for Tree Induction

• Stop expanding a node when all the
records belong to the same class

• Stop expanding a node when all the
records have similar attribute
values

• Early termination (discussed later)

MarSt

Income

YN

Y

N

Yes No

Single, Divorced

< 80K > 80K

Home
Owner

Y, Y, Y, N

Algorithms: ID3, C4.5, C5.0, CART

• ID3 uses the Hunt’s algorithm with information
gain criterion and gain ratio

• C4.5 improves ID3
• Needs entire data to fit in memory
• Handles missing attributes and continuous attributes
• Performs tree post-pruning
• C5.0 is the current commercial successor of C4.5
• Unsuitable for Large Datasets

• CART builds multivariate decision (binary) trees

Advantages of Decision Tree

• Easy to interpret for small-sized trees

• Accuracy is comparable to other classification techniques for many
simple data sets

• Robust to noise (especially when methods to avoid overfitting are
employed)

• Can easily handle redundant or irrelevant attributes

• Inexpensive to construct

• Extremely fast at classifying unknown record

• Handle Missing Values

Irrelevant Attributes

• Irrelevant attributes are poorly associated with the target class labels, so they
have little or no gain in purity

• In case of a large number of irrelevant attributes, some of them may be
accidentally chosen during the tree-growing process

• Feature selection techniques can help to eliminate the irrelevant attributes
during preprocessing

Redundant Attributes

• Decision trees can handle the presence of redundant attributes

• An attribute is redundant if it is strongly correlated with another
attribute in the data

• Since redundant attributes show similar gains in purity if they are
selected for splitting, only one of them will be selected as an attribute
test condition in the decision tree algorithm.

Advantages of Decision Tree

• Easy to interpret for small-sized trees

• Accuracy is comparable to other classification techniques for many
simple data sets

• Robust to noise (especially when methods to avoid overfitting are
employed)

• Can easily handle redundant or irrelevant attributes

• Inexpensive to construct

• Extremely fast at classifying unknown record

• Handle Missing Values

Computational Complexity

• Finding an optimal decision tree is NP-hard

• Hunt’s Algorithm uses a greedy, top-down, recursive partitioning strategy for
growing a decision tree

• Such techniques quickly construct a reasonably good decision tree even when the
training set size is very large.

• Construction DT Complexity: O(M N log N) where M=n. attributes, N=n. instances

• Once a decision tree has been built, classifying a test record is extremely fast,
with a worst-case complexity of O(w), where w is the maximum depth of the
tree.

Handling Missing Attribute Values

•Missing values affect decision tree construction in three
different ways:

• Affects how impurity measures are computed
• Affects how to distribute instance with missing value to child nodes
• Affects how a test instance with missing value is classified

Computing Impurity Measure

Split on Refund:

 Entropy(Refund=Yes) = 0

 Entropy(Refund=No)
 = -(2/6)log(2/6) – (4/6)log(4/6) = 0.9183

 Entropy(Children)
 = 0.3 (0) + 0.6 (0.9183) = 0.551

Gain = 0.9 × (0.8813 – 0.551) = 0.3303

Missing
value

Before Splitting:
 Entropy(Parent)
 = -0.3 log(0.3)-(0.7)log(0.7) = 0.8813

Distribute Instances

Refund
Yes No

Refund
Yes No

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with
weight = 3/9 and to the right child with
weight = 6/9

Classify Instances

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single,
Divorced

< 80K > 80K

Married Single Divorced Total

Class=No 3 1 0 4

Class=Yes 6/9 1 1 2.67

Total 3.67 2 1 6.67

New record:

Probability that Marital Status
= Married is 3.67/6.67

Probability that Marital Status
={Single,Divorced} is 3/6.67

Probabilistic split method (C4.5)

Disadvantages

• Space of possible decision trees is exponentially large. Greedy approaches are
often unable to find the best tree.

• Does not take into account interactions between attributes

• Each decision boundary involves only a single attribute

Handling interactions

X

Y

+ : 1000 instances

o : 1000 instances
Test Condition:
 X ≤ 10 and Y ≤ 10

Entropy (X) : 0.99
Entropy (Y) : 0.99

Interacting attributes: able to distinguish between classes when
used together, but individually they provide little or no information.

No reduction in the
impurity measure when

used individually

Handling interactions
+ : 1000 instances

o : 1000 instances

Adding Z as a noisy
attribute generated
from a uniform
distribution

Y

Z

Y

Z

X

Entropy (X) : 0.99
Entropy (Y) : 0.99
Entropy (Z) : 0.98

Attribute Z will be
chosen for splitting!

X

Decision Boundary

• Border line between two neighboring regions of different
classes is known as decision boundary

• Decision boundary is parallel to axes because test
condition involves a single attribute at-a-time

Oblique Decision Trees

x + y <
1

Class = + Class =

● Test condition may involve multiple attributes

● More expressive representation

● Finding optimal test condition is computationally expensive

Limitations of single attribute-based decision boundaries

Both positive (+) and
negative (o) classes
generated from skewed
Gaussians with centers
at (8,8) and (12,12)
respectively.

Test Condition
x + y < 20

Other Issues

• Data Fragmentation

• Tree Replication

Data Fragmentation

• Number of instances gets smaller as you traverse down the tree

• Number of instances at the leaf nodes could be too small to make any
statistically significant decision

Expressiveness

• Decision tree provides expressive representation for learning
discrete-valued function

• Every discrete-valued function can be represented as an assignment table,
where every unique combination of discrete attributes is assigned a class
label.

• But they do not generalize well to certain types of Boolean functions
• Example: parity function:

• Class = 1 if there is an even number of Boolean attributes with truth value = True
• Class = 0 if there is an odd number of Boolean attributes with truth value = True

• For accurate modeling, must have a complete tree

• Not expressive enough for modeling continuous variables
• Particularly when test condition involves only a single attribute at-a-time

Tree Replication

 Same subtree appears in multiple branches

Practical Issues of Classification

• Underfitting and Overfitting

• Costs of Classification

Classification Errors

• Training errors (apparent errors)
• Errors committed on the training set

• Test errors
• Errors committed on the test set

• Generalization errors
• Expected error of a model over random selection of records from same

distribution

Underfitting and Overfitting

Overfitting

Underfitting: when model is too simple, both training and test errors are large

Example Data Set

Two class problem:
+ : 5200 instances

• 5000 instances generated
from a Gaussian centered at
(10,10)

• 200 noisy instances added

o : 5200 instances
• Generated from a uniform
distribution

10 % of the data used for
training and 90% of the
data used for testing

Increasing number of nodes in Decision Trees

Decision Tree with 4 nodes

Decision Tree

Decision boundaries on Training data

Decision Tree with 50 nodes

Decision TreeDecision Tree

Decision boundaries on Training data

Which tree is better?

Decision Tree with 4 nodes

Decision Tree with 50 nodes

Which tree is better ?

Model Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting: when model is too complex, training error is small but test error is large

Model Overfitting

Using twice the number of data instances

• If training data is under-representative, testing errors increase and training errors
decrease on increasing number of nodes

• Increasing the size of training data reduces the difference between training and
testing errors at a given number of nodes

Model Overfitting

Using twice the number of data instances

• If training data is under-representative, testing errors increase and training errors
decrease on increasing number of nodes

• Increasing the size of training data reduces the difference between training and
testing errors at a given number of nodes

Decision Tree with 50 nodes Decision Tree with 50 nodes

Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult to
predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision
tree to predict the test examples using other training records that are
irrelevant to the classification task

Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult to
predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision
tree to predict the test examples using other training records that are
irrelevant to the classification task

Overfitting due to Noise

Decision boundary is distorted by noise point

Notes on Overfitting

• Overfitting results in decision trees that are more complex than
necessary

• Training error no longer provides a good estimate of how well the
tree will perform on previously unseen records

• Need new ways for estimating errors

Model Selection

• Performed during model building

• Purpose is to ensure that model is not overly complex (to avoid
overfitting)

• Need to estimate generalization error
• Using Validation Set

• Incorporating Model Complexity

• Estimating Statistical Bounds

Model Selection Using Validation Set

• Divide training data into two parts:
• Training set:

• use for model building

• Validation set:
• use for estimating generalization error

• Note: validation set is not the same as test set

• Drawback:
• Less data available for training

Data Partitioning

Dataset

Train Test Holdout (e.g.70/30)

Train TestValidation

Train the model for parameter selection Validate the model
(early stopping,

parameter
selection, etc.)

• Test the model
• Compare different

models once
parameters have
been selected

Cross Validation (check potential dataset bias)

Test

Train the model for final testing

• Given two models of similar generalization errors, one should prefer
the simpler model over the more complex model

• For complex models, there is a greater chance that it was fitted
accidentally by errors in data

• Therefore, one should include model complexity when evaluating a
model

Occam’s Razor

Model Selection Incorporating Model Complexity

• Given two models of similar generalization errors, one should prefer
the simpler model over the more complex model

• For complex models, there is a greater chance that it was fitted
accidentally by errors in data

• Therefore, one should include model complexity when evaluating a
model

Gen. Error(Model) = Train. Error(Model, Train. Data) +
 x Complexity(Model)

Estimating Generalization Errors

• Re-substitution errors: error on training (Σ err(t))

• Generalization errors: error on testing (Σ err’(t))

• Methods for estimating generalization errors:
• Pessimistic approach
• Optimistic approach
• Reduced error pruning (REP):

• uses validation data set to estimate generalization error

Estimating the Complexity of Decision Trees

• Pessimistic Error Estimate of decision tree T with k leaf nodes:

• err(T): error rate on all training records
• Ω: Relative cost of adding a leaf node
• k: number of leaf nodes
• N

train
: total number of training records

Estimating the Complexity of Decision Trees: Example

e(TL) = 4/24

e(TR) = 6/24

Ω = 1

egen(TL) = 4/24 + 1*7/24 = 11/24 = 0.458

egen(TR) = 6/24 + 1*4/24 = 10/24 = 0.417

Estimating the Complexity of Decision Trees

• Re-substitution Estimate:
• Using training error as an optimistic estimate of generalization error
• Referred to as optimistic error estimate

e(TL) = 4/24

e(TR) = 6/24

Minimum Description Length (MDL)

• Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
– Cost is the number of bits needed for encoding.
– Search for the least costly model.

• Cost(Data|Model) encodes the misclassification errors.

• Cost(Model) uses node encoding (number of children) plus
splitting condition encoding.

Estimating Statistical Bounds

Before splitting: e = 2/7, e’(7, 2/7, 0.25) = 0.503
e’(T) = 7 × 0.503 = 3.521

After splitting:
e(TL) = 1/4, e’(4, 1/4, 0.25) = 0.537
e(TR) = 1/3, e’(3, 1/3, 0.25) = 0.650
e’(T) = 4 × 0.537 + 3 × 0.650 = 4.098

Therefore, do not split

Apply a statistical correction to the training error rate of the model
that is indicative of its model complexity.
• Need probability distribution of training error: available or assumed.
• The number of errors committed by a leaf node in a decision tree can be

assumed to follow a binomial distribution.

How to Address Overfitting…
• Pre-Pruning (Early Stopping Rule)

• Stop the algorithm before it becomes a fully-grown tree
• Typical stopping conditions for a node:

• Stop if all instances belong to the same class

• Stop if all the attribute values are the same

• More restrictive conditions:
• Stop if number of instances is less than some user-specified threshold

• Stop if class distribution of instances are independent of the available features (e.g.,
using χ 2 test)

• Stop if expanding the current node does not improve impurity
 measures (e.g., Gini or information gain).

• Stop if estimated generalization error falls below certain threshold

How to Address Overfitting…
• Post-pruning

– Grow decision tree to its entirety
– Trim the nodes of the decision tree in a bottom-up fashion
– If generalization error improves after trimming, replace sub-tree by a leaf

node.
– Class label of leaf node is determined from majority class of instances in the

sub-tree
– Can use MDL for post-pruning

Example of Post-Pruning
Class = Yes 20

Class = No 10

Error = 10/30

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

= (9 + 4 × 0.5)/30 = 11/30

PRUNE!

Class = Yes 8
Class = No 4

Class = Yes 3
Class = No 4

Class = Yes 4
Class = No 1

Class = Yes 5
Class = No 1

Decision Trees for Regression

• The same induction and application
procedures can be used.

• The only differences are:
• When leaves are not pure, the average

value is returned as prediction
• Different optimization criterion must

be used such as
• MSE
• MAE

MarSt

Income

4.21.2

3.0

3.8

Yes No

Single, Divorced

< 80K > 80K

Home
Owner

3.0, 2.0, 4.0, 3.0

References

• Classification: Basic Concepts and
Techniques . Chapter 3. Introduction to
Data Mining.

Outlook Temperature Wind Play Tennis

1 Sunny 25 Weak No

2 Sunny 26 Strong No

3 Overcast 27 Weak Yes

4 Rain 19 Weak Yes

5 Rain 8 Weak Yes

6 Rain 7 Strong No

7 Overcast 10 Strong Yes

8 Sunny 15 Weak No

9 Sunny 8 Weak Yes

10 Rain 15 Weak Yes

Outlook Temperature Wind Play Tennis

11 Sunny 14 Strong Yes

12 Overcast 13 Strong Yes

13 Overcast 26 Weak Yes

14 Rain 16 Strong No

Split Wind

Weak Strong

Yes 5 1

No 2 2

7 3

ME 0,28571429 0,33333333

ME 0,3

Gain 0,1

Split Outlook

Sunny Outlook Rain
Yes 1 2 3
No 3 0 1

4 2 4

ME 0,25 0 0,25
ME 0,2
Gain 0,2

Sunny Not Sunny
Yes 1 5
No 3 1

4 6

ME 0,25 0,16666667
ME 0,2
Gain 0,2

Split Temperature

<= <= <= <= <= <= <=

7 8 10 15 19 25 26

Yes 0 6 2 4 3 3 4 2 5 1 5 1 5 1

No 1 3 1 3 1 3 2 2 2 2 3 1 4 0

1 9 3 7 4 6 6 4 7 3 8 2 9 1

ME 0 0,3333 0,3333 0,4286 0,25 0,5 0,3333 0,5 0,2857 0,3333 0,375 0,5 0,4444 0

ME 0,3 0,4 0,4 0,4 0,3 0,4 0,4

Gain 0,1 0 0 0 0,1 0 0

Outlook Not Outlook
Yes 2 4
No 0 4

2 8

ME 0 0,5
ME 0,4
Gain 0

Rain Not Rain
Yes 3 5
No 1 1

4 6

ME 0,25 0,16666667
ME 0,2
Gain 0,2Yes 6 0,4

No 4
P

Split Wind

Weak Strong

Yes 1 0

No 2 1

3 1

ME 0,3333 0

ME 0,25

Gain 0

Split Temperature

<=8 >8 <=15 >15 <=25 >25

Yes 1 0 1 0 1 0

No 0 3 1 2 2 1

1 3 2 2 3 1

ME 0 0 0,5 0 0,3333 0

ME 0 0,25 0,25

Gain 0,25 0 0

P
Yes 1

No 3

ME 0,25

Yes 3

No 1

ME 0,25

P

Split Wind

Weak Strong

Yes 3 0

No 0 1

3 1

ME 0 0

ME 0

Gain 0,25

Split Temperature

<=7 >7 <=8 >8 <=15 >15

Yes 0 3 1 2 2 1

No 1 0 1 0 1 0

1 3 2 2 3 1

ME 0 0 0,5 0 0,3333 0

ME 0 0,25 0,25

Gain 0,25 0 0

Outlook Temp Wind
Play

Tennis
Predicted

11 Sunny 14 Strong Yes No

12 Overcast 13 Strong Yes Yes

13 Overcast 26 Weak Yes Yes

14 Rain 16 Strong No No

TP: 2
FP: 0
FN: 1
TN: 1

Accuracy = 3/4
Precision = TP/ (TP +FP) = 2/2
Recall = TP / (TP + FN) = 2/3

Sex Lies Cookies Present
F 10 Milk Y
M 5 Dark N
F 2 Milk Y
F 3 Dark Y
M 8 Milk N
M 3 No Y
M 10 Dark N
F 2 No N
M 1 No Y

