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Example of a Decision Tree

Consider the problem of predicting whether a loan borrower will repay the

loan or default on the loan payments.
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Home Marital Annual Defaulted
Owner Status Income Borrower
Yes Single 125K No
No Married | 100K No
No Single 70K No
Yes Married |120K No
No Divorced | 95K Yes
No Married |60K No
Yes Divorced | 220K No
No Single 85K Yes
No Married |75K No
No Single 90K Yes

Training Data

Splitting Attributes
Home |* \
Owner '|
Y‘ey N\IAO v
NO MarSt
Single, Dix¥orced N\‘/Iarried
Income NO

< 80K \> 80K
NO YES

Model: Decision Tree



Another Example of Decision Tree
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Married '
Home Marital Annual Defaulted / \Q‘orced
ID
Owner Status Income Borrower
1 Yes |Single 125K |No e | @I
Yes /] Owner \ No
2 No Married |100K No
3 [No Single | 70K No NO Income
4 |Yes Married | 120K No <8OI,(/ \> 80K
5 No Divorced | 95K Yes
NO YES
6 No Married |60K No
7 Yes Divorced | 220K No
8 |No Single 85K Yes
9 |No Married | 75K No There could be more than one tree that
_ fits the same datal!
10 |No Single 90K Yes




Apply Model to Test Data

Test Data

Start from the root of tree.
, Home Marital Annual Defaulted

' Owner Status Income Borrower

No Married |80K ?
Home
W Owner QO
NO MarSt
Single,?/orced \Married
Income NO

< SOV \> 80K
NO

YES



Apply Model to Test Data

Test Data

g™ Home Marital Annual Defaulted
Owner Status Income Borrower

Married

Home |-~~~
W Owner \\No
NO MarSt
Single,%rced \Married
Income NO

< 8OV \> 80K
NO

YES



Apply Model to Test Data

Test Data

Home Marital Annual Defaulted

Owner Status Income Borrower

_»| No Married |80K ?
Home JPCr
\y Owner QO -
NO MarSt
Single, ?A//orced \Married
Income NO

< 80V \> 80K
NO

YES



Apply Model to Test Data

Test Data

Home Marital Annual Defaulted

Owner Status Income Borrower

Home /-/’
W Owner QO /,/
NO MarSt |
Single,?/orced \Married
Income NO

< SOV \> 80K
NO

YES



Apply Model to Test Data

Test Data

Home Marital Annual Defaulted

Owner Status Income Borrower

Home - .
\iy Owner QO //,
NO MarSt o
Single,?/orced \Married
Income NO

< 80V \> 80K
NO

YES



Apply Model to Test Data

Test Data

Home Marital Annual Defaulted

Owner Status Income Borrower

Home ,
W Owner QO //,/
NO MarSt /,/’
Single, Dj¢orced Married ~ .-~~ Assign Defaulted to
No
Income NO -~

< 8OV \> 80K
NO

YES



Decision Tree Classification Task

Tid Attrib1 Attrib2 Attrib3  Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 | No Small 90K Yes
Training Set

Tid Attrib1  Attrib2  Attrib3  Class

11 | No Small 55K ?

12 | Yes Medium 80K ?

13 | Yes Large 110K ?

14 | No Small 95K i

15 | No Larae 67K 0

Test Set
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Induction
algorithm
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Decision Tree Induction

* Many Algorithms:
* Hunt’s Algorithm (one of the earliest)
* CART
* D3, C4.5
* SLIQ,SPRINT



General Structure of Hunt’s Algorithm

D Home Marital Annual Defaulted

Owner Status Income Borrower

* Let D, be the set of training records that reach a node t 1 |Yes |Single [125K |No
2 | No Married |100K No
* General Procedure: =N |Sige ] T0K e
4 |Yes Married |120K No
* If D, contains records that belong the same class y,, . FEem.. B
then tis a leaf node labeled as y, . .. B
* If D, contains records that belong to more than one 7 |Yes  |Divorced |220K  |No
class, use an attribute test to split the data into 8 |No  [Single 85K  |Yes
smaller subsets. Recursively apply the procedure to 9 |No  |Married |75K  |No
each subset. 10 No Single  |90K Yes

D

t
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Hunt’s Algorithm

Defaulted = No

(7,3)
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Single
Married
Divorced
Married
Divorced
Single
Married

Single

Annual
Income

125K
100K
70K
120K
95K
60K
220K
85K
75K
90K

Defaulted
Borrower

No
No
No
No
Yes
No
No
Yes
No

Yes




Hunt’s Algorithm

Home Marital Annual Defaulted

Home ID Owner Status Income Borrower
Owner _
Yes No 1 Yes Single 125K No
Defaulted = No 2 |No Married |[100K  |No
(7,3) Defaulted = No Defaulted = No 3 No Single 70K No
(3,0) (4,3) 4 |Yes |Married [120K |No
(a) (b) 5 |No Divorced |95K Yes
6 No Married |[60K No
7 Yes Divorced [220K No
8 |No Single 85K Yes
9 No Married |[75K No
10 |No Single 90K Yes




Hunt’s Algorithm

Home Marital Annual Defaulted

([)Iv‘v’nmei D Owner Status Income Borrower

Yes No 1 Yes Single 125K No

Defaulted = No 2 |No Married [100K  |No
(7’3) Defaulted = No Defaulted = No 3 No Single 70K No
(3,0) (4,3) 4 |Yes |Married [120K |No
(a) (b) 5 |No Divorced |95K Yes
6 |No Married |60K No

7 |Yes Divorced (220K No

8 |No Single 85K Yes

9 |No Married |75K No

10 |No Single 90K Yes

Yes

Marital
Status

Defaulted = No
(3,0) single,

Divorced

Married

Defaulted = Yes Defaulted = No

(1,3) (3,0)

(©)



Hunt’s Algorithm

Home Marital Annual Defaulted

Home D owner Status Income Borrower
Owner :
Yes No 1 |Yes Single 125K No
Defaulted = No 2 |No Married |100K  |No
(7 3) Defaulted = No Defaulted = No 3 No Single 70K No
(3,0) (4,3) 4 |Yes  |Married |120K  [No
(a) (b) 5 |No Divorced |95K Yes
6 No Married |[60K No
7 Yes Divorced [220K No
8 |No Single 85K Yes
No 9 No Married |75K No
y " Defaulted = No arital 10 |No Single 90K Yes
- ° Status
. (3’0) Single, Married
Defaulted = No Divorced
Status
(3,0) Single, Married Annual Defaulted = No
Divorced Income (3 0)
Defaulted = Yes Defaulted = No < 80K >= 80K
(1 3) (3 0) Defaulted = No Defaulted = Yes

(1,0) (0,3)

(©) (d)



Design Issues of Decision Tree Induction

* Greedy strategy:

* the number of possible decision trees can be very large, many decision tree
algorithms employ a heuristic-based approach to guide their search in the
vast hypothesis space.

* Split the records based on an attribute test that optimizes certain criterion.



Tree Induction

* How should training records be split?
* Method for specifying test condition depending on attribute types
* Measure for evaluating the goodness of a test condition

* How should the splitting procedure stop?

* Stop splitting if all the records belong to the same class or have identical
attribute values

* Early termination



Methods for Expressing Test Conditions

* Depends on attribute types
* Binary
* Nominal
* Ordinal
* Continuous

* Depends on number of ways to split
e 2-way split
* Multi-way split



Test Condition for Nominal Attribute

* Multi-way split:

e Use as many partitions as distinct values.

* Binary split:
e Divides values into two subsets
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Divorced} Divorced}  Married}



Test Condition for Ordinal Attributes

* Multi-way split:

* Use as many partitions as

distinct values

* Binary split:

e Divides values into two subsets
* Preserve order property among

attribute values

 Shirt
. Size /
\\\\ o /
SmallA
Medium Large Extra Large
/'/ Shlrt Shlrt \
Slze / Slze
{Small, {Large, {Small} {Medium, Large,
Medlum} Extra Large} Extra Large}
‘c/ Shlrt
Slze : .
This grouping
violates order
property
{Small, {Medium,

Large} Extra Large}



Test Condition for Continuous Attributes

Annual
Income?

Annual
Income
> 80K?

[10K,25K) [25K,50K)  [50K,80K)

(i) Binary split (if) Multi-way split



Splitting Based on Continuous Attributes

* Different ways of handling

* Discretization to form an ordinal categorical attribute

Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles),
or clustering.

 Static — discretize once at the beginning
* Dynamic —repeat at each node

* Binary Decision: (A< v) or (A2 v)
» consider all possible splits and finds the best cut
* can be more compute intensive



How to determine the Best Split

Customer Id | Gender | Car Type | Shirt Size Class

1 M Family Small 0

2 M Sports Medium (@]

3 M Sports Medium (@]

4 M Sports Large 0

5 M Sports Extra Large | CO

6 M Sports Extra Large | CO

7 F Sports Small 0

8 F Sports Small C0

9 F Sports Medium 0

LR 10 F uxury arge 0
Before Splitting: 10 records of class 0, i A Il o
12 M Family Extra Large | C1

10 records of class 1 M| Family | Medum | c1

14 M Luxury Extra Large | C1

15 F Luxury Small (@3]

16 F Luxury Small (@3]

17 F Luxury Medium 1

18 F Luxury Medium (@3]

19 F Luxury Medium (@3]

20 F Luxury Large (@3]

\\\ T Car ™ Crietaome
" Gender ) ( Car ( Customer
N o Jype ~_ 1D

Which test condition is the best?



How to determine the Best Split

* Greedy approach:
* Nodes with purer / homogeneous class distribution are preferred

* Need a measure of node impurity:

CO0: 5 C0: 9
C1:5 C1:1
High degree of impurity, Low degree of impurity,

Non-homogeneous Homogeneous



Measures of Node Impurity

* Gini Index GIN](f)ZI—Z:[}?(J'V)]2

J

» Entropy Entropy(t) = -2 p(j|t)log p(j|?)

* Misclassification Error Error(t) =1- max P(i|t)



Finding the Best Split

Compute impurity measure (P) before splitting

2. Compute impurity measure (M) after splitting
 Compute impurity measure of each child node
* M is the weighted impurity of children

3. Choose the attribute test condition that produces the highest gain (Gain
= P-M) or equivalently, lowest impurity measure after splitting (M)



Finding the Best Split

Before Splitting: CO |NOO _ P
C1 NO1

N1 N2
TN T TNZ

N3 N4
co | N10 co | N20 co | N30 CO | N40
Ccl | N11 ci | N21 ct | N31 Cl | N41

M11 M12 M21 M22
g J g J
" g
M1 M2

Gain=P-M1 vs P—-M2



Measure of Impurity: GINI

* Gini Index for a given node t :
GINI() =1- 2 [p(j )]
J

(NOTE: p(j | ¢) is the relative frequency of class j at node t).

* Maximum (1 - 1/nc) when records are equally distributed among all classes,
implying least interesting information

* Minimum (0.0) when all records belong to one class, implying most
interesting information



Measure of Impurity: GINI

* Gini Index for a given node t :
GINI(t) =1-) [p(j )]
J

(NOTE: p(j | ¢) is the relative frequency of class j at node t).

* For 2-class problem (p, 1 — p):
e GINI=1-p?=(1-p)?>=2p(1-p)

Cc1 0 Cc1 1 Cc1 2 Cc1 3
C2 6 C2 5 C2 4 C2 3
Gini=0.000 Gini=0.278 Gini=0.444 Gini=0.500




Computing Gini Index of a Single Node

GINI(1)=1- 3 [p(j| O

C1 0 P(C1)=0/6=0 P(C2)=6/6=1

C2 6 Gini=1-P(C12-P(C22=1-0-1=0
C1 1 P(C1)=1/6 P(C2) = 5/6

C2 5 Gini = 1 — (1/6)2— (5/6)% = 0.278

C1 2 P(C1) = 2/6 P(C2) = 4/6

C2 4 Gini = 1 — (2/6)2— (4/6)% = 0.444




Gini Index for a Collection of Nodes

 When a node p is split into k partitions (children)
k

GINI,,,, = “- GINI(i)

split
i=1 1

where, n. = number of records at child j,
n = number of records at parent node p.

* Choose the attribute that minimizes weighted average Gini index of the children

* Giniindex is used in decision tree algorithms such as CART, SLIQ, SPRINT



Binary Attributes: Computing GINI Index

* Splits into two partitions

* Effect of Weighing partitions:
 Larger and Purer Partitions are sought for.

Parent
C1 7
C2 5
Gini = 0.486
Gini(N1) N N2
: 8_;7(2/6)2_ (1/6)° N1 | N2 Weighted Gini of N1 N2
Ci 5| 2 =6/12 * 0.278 +
Gini(N2) o 11 a 6/12 * 0.444
=1-(2/6)° - (4/6)° Gini=0.361 = 0301

= 0.444 Gain = 0.486 — 0.361 =0.125



Categorical Attributes: Computing Gini Index

* For each distinct value, gather counts for each class in the dataset
* Use the count matrix to make decisions

Two-way split
(find best partition of values)

Multi-way split

Which of these is the best?

|
|
|
!
Familv | Sports L I {Sports, . {Family,
y |sports Luxury Luxury} {Family} {Sports} Luxury}
C1 1 8 1 I C1 9 1 c1 8 2
C2 3 0 7 I C2 7 3 c2 0 10
Gini 0.163 ] Gini 0.468 Gini 0.167




Continuous Attributes: Computing Gini Index

Home Marital Annual

. .« . ID Defaulted
* Use Binary Decisions based on one value Owner Status Income =2
. L 1 Yes Single 125K No
* Several Choices for the splitting value > |No  |Mamied |100K |No
 Number of possible splitting values = Number 3 |No  [Single [70K lo |
of distinct values 4 |Yes |Married |120K |No
iy . 5 |N Divorced | 95K Yes |
* Each splitting value has a count matrix i - —
. . . 6 No Married |60K |
aSSOCIated Wlth It 7 Yes Divorced (220K No
 Class counts in each of the partitions, A<v 8§ |No |Single [85K _ |Yes]
and A>=v 9 |No Married [75K No |
* Simple method to choose best v 10 e [snde Joor el
* For each v, scan the database to gather count Annual Income 7
matrix and compute its Gini index N\
* Computationally Inefficient! (O(N2)) =80 >80
Repetition of work. Defaulted Yes | 0 3

Defaulted No 3 4




Continuous Attributes: Computing Gini Index...

e For efficient computation O(N log N): for each attribute,
— Sort the attribute on values

— Linearly scan these values, each time updating the count matrix and computing gini index
— Choose the split position that has the least Gini index

EEN no | No [No[Yes | Yes [ Yes | No | No | No | Mo |

Annual Income

Sorted Values _

60 | 70 |75|85|90|95|100|120|125| 220



Continuous Attributes: Computing Gini Index...

e For efficient computation: for each attribute,
— Sort the attribute on values
— Linearly scan these values, each time updating the count matrix and computing gini index
— Choose the split position that has the least Gini index

EEN no | No [No[Yes | Yes [ Yes | No | No | No | Mo |

Annual Income

Sorted Values _

60 | 70 |75|85|90|95|100|120| 125| 220
55 || 65 || 72 | 8o | 87 || o2 || 97 | 110 | 122 [ 172 [ 230

Split Positions __,

[<=1>1ll<=]>ll<=]>ll<=]>ll<=] > ll<=] > ll<=] > {l<=] > Jl<=] > JI<=| > [[<=] > |



Continuous Attributes: Computing Gini Index...

e For efficient computation: for each attribute,

— Sort the attribute on values

— Linearly scan these values, each time updating the count matrix and computing gini index
— Choose the split position that has the least Gini index

Sorted Values
Split Positions

EEN no | No [No[Yes | Yes [ Yes | No | No | No | Mo |

Annual Income

— Y | 70 |75|85|90|95|100|120|125| 220

— | 55 | 65 (| 72 || s0 || 87 [ o2 [ 97 || 110 [[ 122 [ 172 | 230
<=| > |[<=| > [[<=]| > [[x<=] > |[<= >"<= >"<= <= >"<= >"<= >"<= >||

Yes 0|3

No 3|4

Gini 0.343




Continuous Attributes: Computing Gini Index...

e For efficient computation: for each attribute,
— Sort the attribute on values
— Linearly scan these values, each time updating the count matrix and computing gini index
— Choose the split position that has the least Gini index l

EEN no | No [No[Yes | Yes [ Yes | No | No | No | Mo |

Annu%l Income
Sorted Values . | - | = | 90 | 95 | 100 | 120 | 125 |

Split Positions . =55 165 [ 72 [ s0 | 87 | 92 || 97 | 110 | 122 | 172 | 230

Yes |0 |3|O0|3]jO0|3]oO0|3|1]|]2)2|1}|3|]0)3|]0)3 |03 |03 ]|0O

No (O (7 (1 (626343 (43|43 (443|526 ]|1)]7]0

Gini 0.420 ([ 0.400 |{ 0.375 |[ 0.343 || 0.417 || 0.400 |[ 0.300 || 0.343 || 0.375 || 0.400 | 0.420




Continuous Attributes: Computing Gini Index...

e For efficient computation: for each attribute,
— Sort the attribute on values
— Linearly scan these values, each time updating the count matrix and computing gini index
— Choose the split position that has the least Gini index

Annual Income

Sorted Values . | - | = | 90 | 95 | 100 | 120 | 125 |
Split Positions __,

Yes |0 |3|O0|3]jO0|3]oO0|3|1]|]2)2|1}|3|]0)3|]0)3 |03 |03 ]|0O

No (O (7 (1 (626343 (43|43 (443|526 ]|1)]7]0

Gini 0.420 ([ 0.400 |{ 0.375 |[ 0.343 || 0.417 || 0.400 |[ 0.300 || 0.343 || 0.375 || 0.400 | 0.420




Measure of Impurity: Entropy

* Entropy at a given node t:
Entropy(t) ==X p(j|t)log p(j|?)
(NOTE: p(j | ¢) is the relative frequency of class j at node t).

* Maximum (log nc) when records are equally distributed among all classes implying least
information

* Minimum (0.0) when all records belong to one class, implying most information

* Entropy based computations are quite similar to the GINI index computations



Computing Entropy of a Single Node
Entropy(t) = =2 p(j |t)log, p(j|?)

C1 0 P(C1)=0/6=0 P(C2)=6/6="1

C2 6 Entropy =—0log0—1log1=-0-0=0

C1 1 P(C1)=1/6 P(C2) = 5/6

C2 5 Entropy = - (1/6) log,, (1/6)— (5/6) log,, (5/6) = 0.65
C1 2 P(C1) =2/6 P(C2)=4/6

C2

=

Entropy = — (2/6) log,, (2/6)— (4/6) log,, (4/6) = 0.92




Computing Information Gain After Splitting

* |Information Gain:

GAIN , = Entropy(p) - (i i Entropy(i))
i=1 n

Parent Node, p is split into k partitions;
n. is number of records in partition i

 Measures Reduction in Entropy achieved because of the split. Choose the
split that achieves most reduction (maximizes GAIN)

* Used in the ID3 and C4.5 decision tree algorithms

* Disadvantage: Tends to prefer splits that result in large number of partitions,
each being small but pure.



Problem with large number of partitions

* Node impurity measures tend to prefer splits that result in large
number of partitions, each being small but pure

e ~~

| Gender | o Car (\,/Customé\r\)

\\\\.,\ P /// \\“\\Type/_/ //’/ \\\‘\ |D////
Yes No

C0:6||CO0: 4

C1:4|/C1:6

e Customer ID has highest information gain because entropy for all the children is zero
* Can we use such a test condition on new test instances?



Solution

* A low impurity value alone is insufficient to find a good attribute test condition
for a node

* Solution: Consider the number of children produced by the splitting attribute in
the identification of the best split

* High number of child nodes implies more complexity

* Method 1: Generate only binary decision trees
* This strategy is employed by decision tree classifiers such as CART

* Method 2: Modify the splitting criterion to take into account the number of
partitions produced by the attribute



Gain Ratio

* @Gain Ratio:

GAIN « N n
GainRATIO = tINFO = —3 " log ™
“~ SplitINFO SPULINFO == "log™

Parent Node, p is split into k partitions
n. is the number of records in partition i

* Adjusts Information Gain by the entropy of the partitioning (SplitINFO).

* Higher entropy partitioning (large number of small partitions) is penalized!
e Used in C4.5 algorithm
* Designed to overcome the disadvantage of Information Gain




Gain Ratio

* @Gain Ratio:

GainRATIO , =
" SplitINFO

GAIN

Split

SplitINFO = —3. ™

. N

n

log

ni

n

Parent Node, p is split into k partitions
n.is the number of records in partition i

CarType

CarType

. {Sports, : {Family,
Family | Sports Luxury o {Family} {Sports} Lo
C1 1 8 1 c1 9 1 C1 8 2
C2 3 0 7 C2 7 3 c2 0 10
Gini 0.163 Gini 0.468 Gini 0.167
SplitINFO = 1.52 SplitINFO = 0.72 SplitINFO = 0.97




Measure of Impurity: Classification Error

* Classification error at a node t :
Error(t) =1—max P(i | t)

e Maximum (1 - 1/nc) when records are equally distributed among all classes,
implying least interesting information

* Minimum (0) when all records belong to one class, implying most interesting
information



Computing Error of a Single Node
Error(t) =1—max P(i | 1)

C1 0 P(C1)=0/6=0 P(C2)=6/6="1

C2 6 Error=1-max (0,1)=1-1=0

C1 1 P(C1)=1/6 P(C2) = 5/6

C2 5 Error =1 —max (1/6, 5/6) =1 - 5/6 = 1/6
C1 2 P(C1) = 2/6 P(C2) = 4/6

C2

=

Error =1 —max (2/6, 4/6) =1 —-4/6 = 1/3




ComEarison among ImEuritx Measures

For a 2-class problem:

1

09

08

07

06F

05F

04

03F

02F

0.1H

0

EntroV

//

~C

/’ Gini \

Misclassification
error

1]

1 1 1 1 1 1 1 1 1
0.1 02 03 04 05 06 07 08 09

P

1

1 Consistency among the impurity mesures

« if a node N1 has lower entropy than node
N2, then the Gini index and error rate of N1
will also be lower than that of N2

| The attribute chosen as splitting criterion by

the impurity measures can still be different!



Misclassification Error vs Gini Index

N

Gini(N1)
=1 — (3/3)2— (0/3)?
=0

Gini(N2)

=1 — (4/7)2= (3/7)?
= 0.489

N2

N1 | N2
Ci | 3| 4
c2 0| 3
Gini=0.342

Parent
C1 7
C2 3
Gini = 0.42

Gini(Children)

=3/10*0

+ 7/10 * 0.489
=0.342

Gini improves but
error remains the

samel!!




Misclassification Error vs Gini Index

N

N1 | N2
Ci 3| 4
c2 0| 3
Gini=0.342

Misclassification error for all three cases = 0.3 !

N2

Parent
C1 7
C2 3
Gini = 0.42

N1 | N2
Ci 3| 4
C2 1| 2
Gini=0.416




Stopping Criteria for Tree Induction

* Stop expanding a node when all the Home
Yes Owner No
records belong to the same class AL \
* Stop expanding a node when all the \ Y MarSt
records have similar attribute Single, ?A//orced \
values — .

* Early termination (discussed later) < 8OV \> 80K
N Y



Algorithms: ID3, C4.5, C5.0, CART

* D3 uses the Hunt’s algorithm with information
gain criterion and gain ratio

°*C4.5 improves ID3
* Needs entire data to fit in memory
* Handles missing attributes and continuous attributes
* Performs tree post-pruning
* C5.0is the current commercial successor of C4.5
* Unsuitable for Large Datasets

* CART builds multivariate decision (binary) trees



Advantages of Decision Tree

* Easy to interpret for small-sized trees

e Accuracy is comparable to other classification techniques for many
simple data sets

* Robust to noise (especially when methods to avoid overfitting are
employed)

* Can easily handle redundant or irrelevant attributes
* Inexpensive to construct

* Extremely fast at classifying unknown record

* Handle Missing Values



Irrelevant Attributes

* Irrelevant attributes are poorly associated with the target class labels, so they
have little or no gain in purity

* In case of a large number of irrelevant attributes, some of them may be
accidentally chosen during the tree-growing process

* Feature selection techniques can help to eliminate the irrelevant attributes
during preprocessing



Redundant Attributes

* Decision trees can handle the presence of redundant attributes

* An attribute is redundant if it is strongly correlated with another
attribute in the data

* Since redundant attributes show similar gains in purity if they are
selected for splitting, only one of them will be selected as an attribute
test condition in the decision tree algorithm.



Advantages of Decision Tree

* Easy to interpret for small-sized trees

e Accuracy is comparable to other classification techniques for many
simple data sets

* Robust to noise (especially when methods to avoid overfitting are
employed)

* Can easily handle redundant or irrelevant attributes
* Inexpensive to construct

e Extremely fast at classifying unknown record

* Handle Missing Values



Computational Complexity

* Finding an optimal decision tree is NP-hard

* Hunt’s Algorithm uses a greedy, top-down, recursive partitioning strategy for
growing a decision tree

* Such techniques quickly construct a reasonably good decision tree even when the
training set size is very large.

* Construction DT Complexity: O(M N log N) where M=n. attributes, N=n. instances

* Once a decision tree has been built, classifying a test record is extremely fast,
with a worst-case complexity of O(w), where w is the maximum depth of the
tree.



Handling Missing Attribute Values

*Missing values affect decision tree construction in three
different ways:
 Affects how impurity measures are computed
* Affects how to distribute instance with missing value to child nodes
* Affects how a test instance with missing value is classified




Computing Impurity Measure

Tid Refund Marital Taxable Before Splitting:
Status  Income Class Entropy(Parent)

=-0.3 10g(0.3)-(0.7)log(0.7) = 0.8813

1 |Yes Single 125K No
2 |No Married | 100K No Class || Class
3 |No Single | 70K No = Yes| = No

_ Refund=Yes 0 3
4 |Yes Married |120K No

Refund=No 2 4
5 |No Divorced | 95K Yes Refund=2 1 0
6 |No Married |60K No _
7 |Yes Divorced | 220K No Split on Refuna:
s |No Single  |85K Vs Entropy(Refund=Yes) =0
9 [No Married |75K No Entropy(Refund=No)
10 ?\ Sl 90K Yes = -(2/6)log(2/6) — (4/6)log(4/6) = 0.9183
\ Entropy(Chlldren
Missing 0) o 9183) = 0.551

value Gain = 0.9 x (0.8813 — 0.551) = 0.3303



Distribute Instances

Tid Refund Marital Taxable

Status Income Class
10 |? Single 90K Yes
Refund

Y(fy \lzlo

Class=Yes O + 3/9 Class=Yes (2 + 6/9

Class=No 3 Class=No 4

Tid Refund Marital Taxable
Status  Income Class
1 Yes Single 125K No
2 |No Married | 100K No
3 |[No Single 70K No
4 |Yes Married | 120K No
5 |No Divorced | 95K Yes
6 |No Married |60K No
N Y es Divorced | 220K No
8 |No Single 85K Yes
9 |No Married | 75K No
Refund
ny \l:lo
Class=Yes 0 Cheat=Yes
Class=No 3 Cheat=No

Probability that Refund=Yes is 3/9
Probability that Refund=No is 6/9

Assign record to the left child with
weight = 3/9 and to the right child with
weight = 6/9



Classify Instances

New record: Married | Single | Divorced | Total
Tid Refund Marital Taxable

Status Income Class Class=No 3 1 0 4

Class=Yes 6/9 1 1 2.67

e I Total @ Q ) 6.67

NO Marst | e _— :
Single PRI e & Probabilistic split method (C4.5)
Divorced \ Probability that Marital Status
TaxInc NO = Married is 3.67/6.67
< 80*f/ \> 80K Probability that Marital Status

NO YES ={Single,Divorced} is 3/6.67



Disadvantages

 Space of possible decision trees is exponentially large. Greedy approaches are
often unable to find the best tree.

* Does not take into account interactions between attributes

* Each decision boundary involves only a single attribute



Handling interactions

Interacting attributes: able to distinguish between classes when
used together, but individually they provide little or no information.

+ : 1000 instances

o : 1000 instances
Test Condition:

X<10andY <10

Entropy (X) : 0.99
Entropy (Y) : 0.99

No reduction in the
iImpurity measure when
used individually



Handling interactions

{ +:1000 instances Entropy (X) : 0.99
1 Entropy (Y) : 0.99
il | 0:1000 instances Entropy (Z) : 0.98
Yo |
| | Adding Z as a noisy Attribute Z will be
o {1 attribute generated chosen for splitting!
T | from a uniform
| distribution
18 1 18 3 o?@?#(’gﬂ i*o* _
Z N 10 e Z ~o10F |

20 0 20
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« Border line between two neighboring regions of different
classes is known as decision boundary

* Decision boundary is parallel to axes because test
condition involves a single attribute at-a-time



O

blique Decision Trees

1

0.
0.8
0.7
05
0.5
04f +++
03F +

0.2 Heg =+

0.1

1 0.3 -+ 1

0 01 02 03 04

e Test condition may involve multiple attributes

e More expressive representation

Class = +

e Finding optimal test condition is computationally expensive

Class =@




Limitations of single attribute-based decision boundaries

oth positive (+) and
2gative (o) classes
anerated from skewed
aussians with centers
1 (8,8) and (12,12)
spectively.

Test Condition
X+y<20




Other Issues

* Data Fragmentation
* Tree Replication



Data Fragmentation

* Number of instances gets smaller as you traverse down the tree

* Number of instances at the leaf nodes could be too small to make any
statistically significant decision



ExEressiveness

* Decision tree provides expressive representation for learning
discrete-valued function

* Every discrete-valued function can be represented as an assignment table,
where every unique combination of discrete attributes is assigned a class

label.
* But they do not generalize well to certain types of Boolean functions

e Example: parity function:
e Class =1 if there is an even number of Boolean attributes with truth value = True
e Class =0 if there is an odd number of Boolean attributes with truth value = True

* For accurate modeling, must have a complete tree

* Not expressive enough for modeling continuous variables
 Particularly when test condition involves only a single attribute at-a-time



Tree Replication
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Same subtree appears in multiple branches



Practical Issues of Classification

e Underfitting and Overfitting
* Costs of Classification



Classification Errors

* Training errors (apparent errors)
* Errors committed on the training set

* Test errors
* Errors committed on the test set

* Generalization errors

* Expected error of a model over random selection of records from same
distribution



Underfitting and Overfittin

I
45 — :
I Overfitting
40F :
N I 2h _"’
351 \ - |,
% — n = F
3 I
30t :

) !

523 :

L I | — Training set
201 : — - - Test set
15 W,

\:\\
10t ! My
5 1 1 1 I 1 1
0 50 100 150 . 200 250 300

Number of nodes

Underfitting: when model is too simple, both training and test errors are large



Example Data Set

To

%@%
o200, i
hond
&8

D

Two class problem:
+ : 5200 instances

® 5000 instances generated

from a Gaussian centered at
(10,10)

* 200 noisy instances added

o : 5200 instances

e Generated from a uniform
distribution

10 % of the data used for
training and 90% of the
data used for testing



Increasing number of nodes in Decision Trees
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Decision Tree with 4 nodes
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Decision Tree with 50 nodes
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Model Overfittin

0.55 T T T T T T T T T T T T T T T T

——%— Train Error ——%— Train Error

~—* Test Error ~—* Test Error

045 =

0.4 ]
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03 T L

Error

025 m

0.2 . i

k&
s
9

01 W

0.05 L L
0 1 2 3 a 5 6 7 8 9 0 20 a0 60 80 100 120 140 160

Numher of Nodes Numher of Nodes

Underfitting: when model is too simple, both training and test errors are large

Overfitting: when model is too complex, training error is small but test error is large



Model Overfitting

Errar
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Error
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Using twice the number of data instances

« [f training data is under-representative, testing errors increase and training errors
decrease on increasing number of nodes

* Increasing the size of training data reduces the difference between training and

testing errors at a given number of nodes



Model Overfitting
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Decision Tree with 50 nodes
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01

Using twice the number of data instances

« [f training data is under-representative, testing errors increase and training errors
decrease on increasing number of nodes

* Increasing the size of training data reduces the difference between training and
testing errors at a given number of nodes



Overfitting due to Insufficient Examples

4

35¢
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% 05 1 15 2 25 3 35 4
Lack of data points in the lower half of the diagram makes it difficult to
predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision
tree to predict the test examples using other training records that are
irrelevant to the classification task



Overfitting due to Insufficient Examples
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Lack of data points in the lower half of the diagram makes it difficult to
predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision
tree to predict the test examples using other training records that are
irrelevant to the classification task



Overfitting due to Noise

4

Decision boundary is distorted by noise point



Notes on Overfitting

e Qverfitting results in decision trees that are more complex than
necessary

* Training error no longer provides a good estimate of how well the
tree will perform on previously unseen records

* Need new ways for estimating errors



Model Selection

* Performed during model building

* Purpose is to ensure that model is not overly complex (to avoid
overfitting)

* Need to estimate generalization error
* Using Validation Set

* Incorporating Model Complexity

* Estimating Statistical Bounds



Model Selection Using Validation Set

* Divide training data into two parts:
* Training set:
* use for model building

e Validation set:
* use for estimating generalization error
 Note: validation set is not the same as test set

* Drawback:
* Less data available for training



Data Partitioning

Train the model for final testing

Train the model for parameter selection Validate the model e Test the model
(early stopping, * Compare different
parameter models once
selection, etc.) parameters have

been selected

_

Cross Validation (check potential dataset bias)




Occam’s Razor

* Given two models of similar generalization errors, one should prefer
the simpler model over the more complex model

* For complex models, there is a greater chance that it was fitted
accidentally by errors in data

* Therefore, one should include model complexity when evaluating a
model



Model Selection Incorporating Model Complexity

* Given two models of similar generalization errors, one should prefer
the simpler model over the more complex model

* For complex models, there is a greater chance that it was fitted
accidentally by errors in data

* Therefore, one should include model complexity when evaluating a
model

Gen. Error(Model) = Train. Error(Model, Train. Data) +
x Complexityg(Model)



Estimating Generalization Errors

* Re-substitution errors: error on training (2 err(t))

* Generalization errors: error on testing (2 err’(t))

* Methods for estimating generalization errors:
e Pessimistic approach
* Optimistic approach
e Reduced error pruning (REP):
* uses validation data set to estimate generalization error



Estimating the Complexity of Decision Trees

* Pessimistic Error Estimate of decision tree 7 with k leaf nodes:
k

;
N, train

errgen(l) = err(T) + Q X

* err(T): error rate on all training records
 (): Relative cost of adding a leaf node

* k: number of leaf nodes

* N, :total number of training records



Estimating the Complexity of Decision Trees: Example

Decision Tree, T, Decision Tree, T,

€. (T)=4/24 + 177/24 = 11/24 = 0.458

gen

errgen(T') = err(T) + 2 X

egen(TR) =6/24 + 1*4/24 = 10/24 = 0.417



Estimating the Complexity of Decision Trees

* Re-substitution Estimate:
* Using training error as an optimistic estimate of generalization error
» Referred to as optimistic error estimate

e(T,) = 4/24

e(T,) = 6/24

Decision Tree, T, Decision Tree, T,



Minimum Description Length QMDL!

X Y Yes A No
X
X 1 OA/ \?3? X Z
X B4 B 1 :
2 0 \ X2 ?
Xs | 0 il X
3 ?
X4 1 o

X, |
kr.' T — [ " mom
1 X, | »

* Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
— Cost is the number of bits needed for encoding.
— Search for the least costly model.

 Cost(Data|Model) encodes the misclassification errors.

* Cost(Model) uses node encoding (humber of children) plus
splitting condition encoding.



Estimating Statistical Bounds

Apply a statistical correction to the training error rate of the model

that is indicative of its model complexity.

* Need probability distribution of training error: available or assumed.

* The number of errors committed by a leaf node in a decision tree can be
assumed to follow a binomial distribution.

Before splitting: e =2/7, €'(7, 2/7, 0.25) = 0.503
e'(T)=7 x 0.503 = 3.521

After splitting:
e(T,)=1/4, e'(4,1/4,0.25) = 0.537
e(T;) = 1/3, €'(3,1/3,0.25) = 0.650
e'(T)=4 x0.537 + 3 x 0.650 = 4.098

2 2
z e(l—e z
e+ 0‘]6 +z,, (N )+4§‘\;22
e'(N,e,a) = >

Therefore, do not split



How to Address Overfitting...

* Pre-Pruning (Early Stopping Rule)
* Stop the algorithm before it becomes a fully-grown tree

* Typical stopping conditions for a node:
e Stop if all instances belong to the same class
e Stop if all the attribute values are the same

* More restrictive conditions:
* Stop if number of instances is less than some user-specified threshold

» Stop if class distribution of instances are independent of the available features (e.g.,
using X 2 test)

» Stop if expanding the current node does not improve impurity
measures (e.g., Gini or information gain).

e Stop if estimated generalization error falls below certain threshold



How to Address Overfitting...

* Post-pruning
— Grow decision tree to its entirety
— Trim the nodes of the decision tree in a bottom-up fashion

— If generalization error improves after trimming, replace sub-tree by a leaf
node.

— Class label of leaf node is determined from majority class of instances in the
sub-tree

— Can use MDL for post-pruning



E

xample of Post-Prunin

Class =Yes | 20

Class=No |10

Error = 10/30

Training Error (Before splitting) = 10/30
Pessimistic error = (10 + 0.5)/30 = 10.5/30
Training Error (After splitting) = 9/30
Pessimistic error (After splitting)

=(9+4 x0.5)/30 =11/30

PRUNE!
A1 A4
A2 A3
Class = Yes Class = Yes Class = Yes Class=Yes | 5
Class = No Class = No Class = No Class = No




Decision Trees for Regression

* The same induction and application gome
Yes LOALET No
procedures can be used. / \
3.0,2.0,4.0,3.0 —
* The only differences are: T e MarsSt
* When leaves are not pure, the average S'”g'e’?//orced \
value is returned as prediction Income 3.8
* Different optimization criterion must < soV \> 80K
be used such as
1.2 4.2
* MISE
* MAE
1 Nsampl -1 n Lo — 1
. 9 samples
MSE(y, §) = >, w-9)" MAE@,9) = —— 3 |w-9
Nsamples i—0 Msamples o ’
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1 Sunny Weak

2 Sunny 26 Strong No
3 Overcast 27 Weak Yes
4 Rain 19 Weak Yes
5 Rain 8 Weak Yes
6 Rain 7/ Strong No
7/ Overcast 10 Strong Yes
8 Sunny 15 Weak No
9 Sunny 8 Weak Yes

10 Rain 15 Weak Yes



Sunny Strong
12 Overcast 13 Strong Yes
13 Overcast 26 Weak Yes

14 Rain 16 Strong No



Split Wind

Yes
No

ME
ME
Gain

Yes
No

Split Outlook
Weak SRS Sunny Outlook Rain
5 1 Yes 1 2 3
2 2 No 3 0 1
7 3 4 2 4
0,28571429 0,33333333 ME 0,25 0
0,3
0,1 ain 0,
Sunny Not Sunny
Yes 1 5
No 3 1
4 6
ME 0,25 0,16666667
0,4 ME 0,2
Gain 0,2
Split Temperature
<= <= <= <=
7 8 10 15
Yes 0 6 2 4 3 3 4
No 1 3 1 3 1 3 2
9 3 7 6 6
ME 0 0,3333 0,3333 10,4286 0,25 0,5 0,3333
ME 0,3 0,4 0,4 0,4
Gain 0,1 0 0 0

0,25

Outlook Not Outlook

Yes
No
ME
ME
Gain
Yes
No
ME
ME
Gain
<=
19
2 5 1
2 2 2
4 7 3

0,5 0,2857 0,3333
0,3
0,1

2 4
0 4
2 8
0 0,5
0,4
0
Rain Not Rain
3 5
1 1
4 6

0,25 0,16666667

0,2
0,2
<= <=
25 26
5 1 5
3 1 4
8 2 9
0,375 0,5 0,4444
0,4 0,4

0 0



Outlook Temperature Wind Play Tennis

3 Overcast
7 Overcast

algorithm ends

Split Wind
Weak Strong
Yes 3 0
No 0 1
3 1
ME 0
ME 0
Gain 0,2

27 Weak
10 Strong

Split Temperature

<=7 >7
Yes 0 3
No 1 0
1 3
ME 0 0
ME 0
Gain 0,25

<=8 >8
2
1 0
2 2
0,5 0
0,25
0

Split Wind
Weak
Yes 1
No 2
3
ME 0,3333
ME 0,25
Gain 0
<=15 >15
2 1
1 0
3 1
0,3333 0
0,25

Outlook Temperature

1 Sunny 25
2 Sunny 26
8 Sunny 15
9 Sunny 8
Split Temperature
Strong
0 <=8
1 Yes 1
1 No 0
1
0
ME 0
ME 0
Gain
Outlook Temperature
4 Rain 19
5 Rain 8
6 Rain 7
10 Rain 15

Wind
Weak
Strong
Weak
Weak

>8

Wind
Weak
Weak
Strong
Weak

Play Tennis
No
No
No
Yes

0,5 0
0,25

Play Tennis
Yes
Yes
No
Yes

P

Yes
No
ME

0,3333
0,25

Yes
No
ME

0,25

>25

0,25



; ¥ Pl
- Play Tennis yes Tennis

elif Outlook = Sunny Sunny Strong
if Temperature <=8
- Play Tennis yes 12 Overcast 13 Strong Yes Yes
else Temperature > 8

13 Overcast 26 Weak Yes Yes
- Play Tennis no
else Outlook = Rain 14 Rain 16 Strong No No
if Wind = Weak
| - Play Tennis yes P: 2
else Wind = Strong | EP- 0
- Play Tennis no EN: 1
TN: 1

Accuracy = 3/4
Precision = TP/ (TP +FP) = 2/2
Recall=TP /(TP + FN) = 2/3



-m-m-

F Milk Y
M 5 Dark N
F 2 Milk Y
F 3 Dark Y
M 8 Milk N
M 3 No Y
M 10 Dark N
F 2 No N
M 1 No Y



