
DATA MINING 1 Classification Model Evaluation

Dino Pedreschi, Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 3 "Introduction to Data Mining", 2nd Edition by Tan, Steinbach, Karpatne, Kumar

What is Classification?

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Problem Setting

- Let suppose we have a vector y of actual/real class labels, i.e.,
- y = [0001110101011100]

- Let name y' the vector returned by a trained model f, i.e.,

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.

Confusion Matrix:

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	а	b	
CLASS	Class=No	С	d	

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation

Metrics for Performance Evaluation...

	PREDICTED CLASS				
	Class=Yes Class=No				
ACTUAL	Class=Yes	a (TP)	b (FN)		
CLASS	Class=No c d (TN)				

Most widely-used metric:
$$\frac{a+d}{Accuracy} = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
- Accuracy is misleading because model does not detect any class 1 example

Cost-Sensitive Measures

Precision (p) =
$$\frac{TP}{TP + FP}$$

Recall (r) = $\frac{TP}{TP + FN}$
F-measure (F) = $\frac{2rp}{r + p} = \frac{2TP}{2TP + FN + FP}$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Cost Matrix

	PREDICTED CLASS			
	C(i j)	Class=Yes	Class=No	
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)	
CLASS	Class=No	C(Yes No)	C(No No)	

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
	C(i j)	+	-
ACTUAL CLASS	+	-1	100
	-	1	0

Model M ₁	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	150	40
	-	60	250

Model M ₂	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	250	45
OL/ (OO	-	5	200

Accuracy =
$$80\%$$

Cost = 3910

Accuracy =
$$90\%$$

Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	а	b	
CLASS	Class=No	С	d	

Cost	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	р	р	
CLASS	Class=No	q	р	

Accuracy is proportional to cost if

1.
$$C(Yes|No)=C(No|Yes) = q$$

2.
$$C(Yes|Yes)=C(No|No) = p$$

$$N = a + b + c + d$$

Accuracy =
$$(a + d)/N$$

Binary vs Multiclass Evaluation

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	TP	FN	
02,100	Class=No	FP	TN	

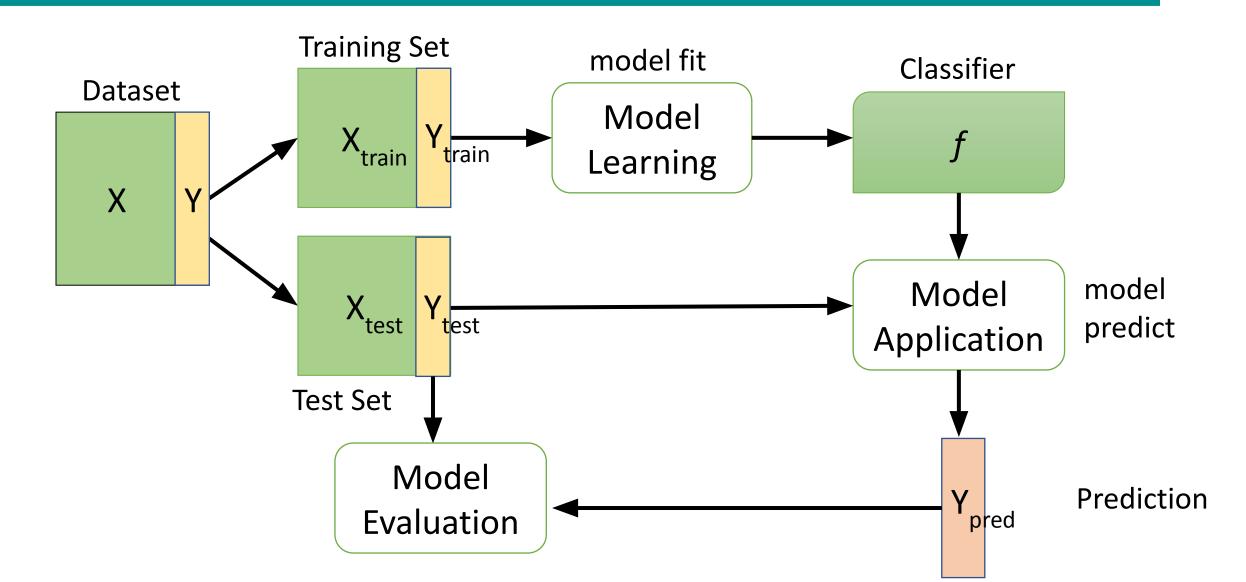
	PREDICTED CLASS			
		Class=A	Class=B	Class=C
ACTUAL CLASS	Class=A	TP-A		
OL/ (GC	Class=B		TP-B	
	Class=C			TP-C

Multiclass Evaluation

	PREDICTED CLASS			
		Class=A	Class=B	Class=C
ACTUAL CLASS	Class=A	TP-A	а	b
OL/ (OC	Class=B	С	TP-B	d
	Class=C	е	f	TP-C

Precision (p) =
$$\frac{TP}{TP + FP}$$

Recall (r) = $\frac{TP}{TP + FN}$
F-measure (F) = $\frac{2rp}{r + p}$ = $\frac{2TP}{2TP + FN + FP}$


Α	PREDICTED CLASS			
		Class=A	Class=Not A	
ACTUAL	Class=A	TP-A	a + b	
CLASS	Class=Not A	c + e	TP-B + TP-C + d + f	

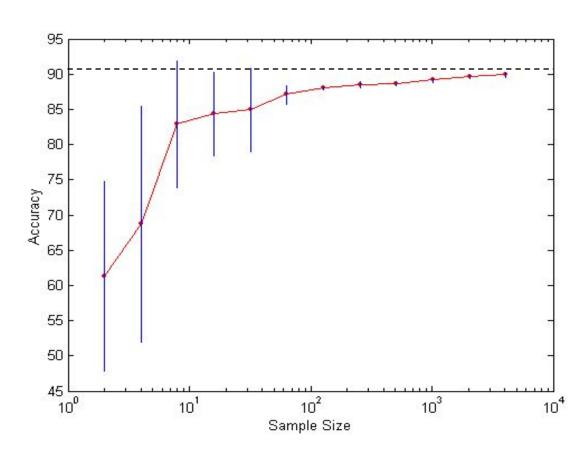
В	PREDICTED CLASS		
ACTUAL CLASS		Class=B	Class=Not B
	Class=B	TP-B	c + d
	Class=Not B	a + f	TP-A + TP-C + b + e

С	PREDICTED CLASS		
ACTUAL CLASS		Class=C	Class=Not C
	Class=C	TP-C	e + f
	Class=Not C	b + d	TP-A + TP-B + a + c

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Evaluation

Parameter Tuning


- It is important that the test data is not used in any way to create the classifier
- Some learning schemes operate in two stages:
 - Stage 1: builds the basic structure
 - Stage 2: optimizes parameter settings
 - The test data can't be used for parameter tuning!
 - Proper procedure uses three sets:
 - training data,
 - validation data,
 - test data
 - Validation data is used to optimize parameters
- Once evaluation is complete, all the data can be used to build the final classifier
- Generally, the larger the training data the better the classifier
- The larger the test data the more accurate the error estimate

Methods for Performance Evaluation

How to obtain a reliable estimate of performance?

- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve:

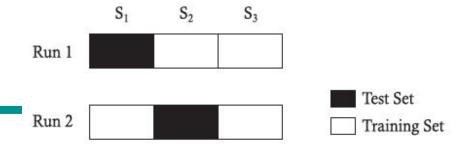
Effect of small sample size:

- Bias in the estimate
- Variance of estimate

- 1. How much a classification model benefits from adding more training data?
- 2. Does the model suffer from a variance error or a bias error?

Methods of Estimation

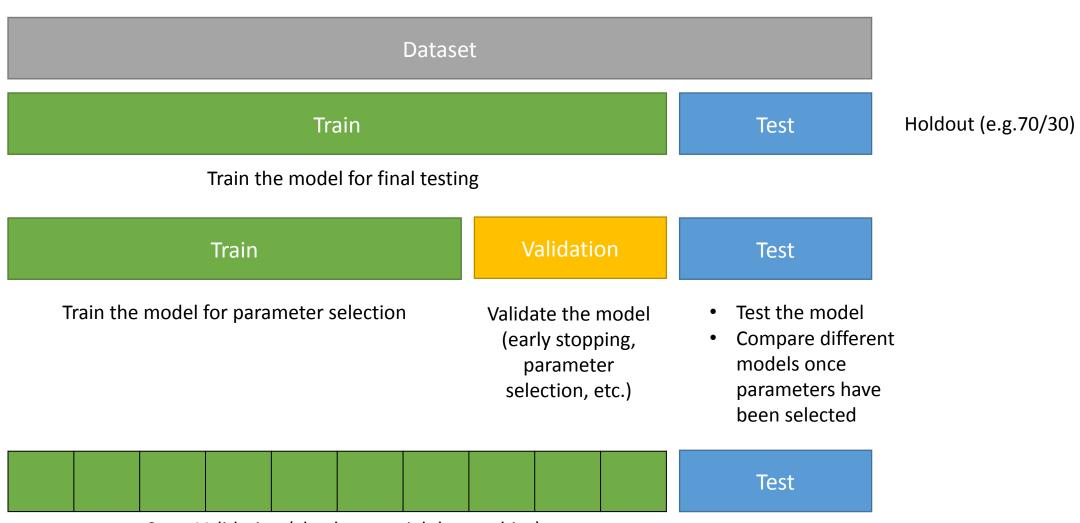
- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement


Holdout

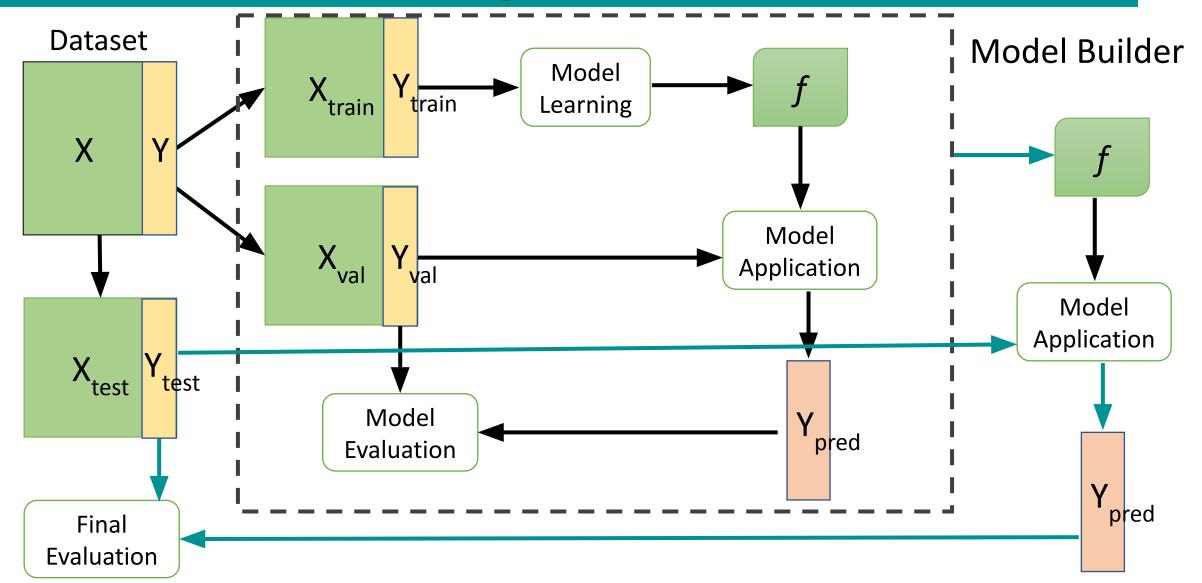
- The holdout method reserves a certain amount for testing and uses the remainder for training
- Usually, one third for testing, the rest for training.
- Typical quantities are 60%-40%, 66%-34%, 70%-30%.
- For small or "unbalanced" datasets, samples might not be representative
 - For instance, few or none instances of some classes
- Stratified sample
 - Balancing the data
 - Make sure that each class is represented with approximately equal proportions in both subsets

Repeated Holdout

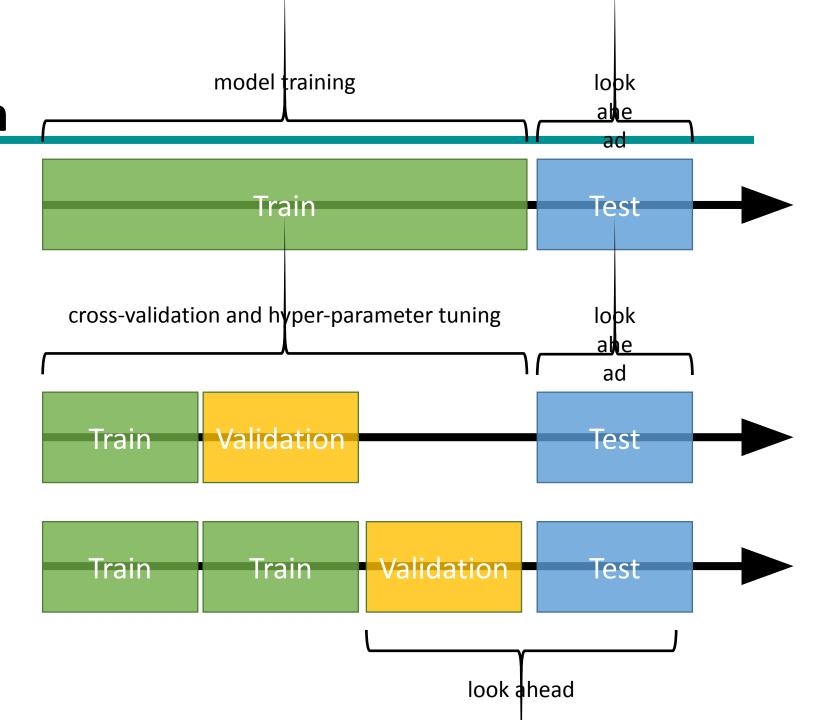
- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training (possibly with stratification)
 - The error rates on the different iterations are averaged to yield an overall error rate
- This is called the repeated holdout method
- Still not optimum: the different test sets overlap


Cross Validation

Run 3


- Avoids overlapping test sets
 - First step: data is split into k subsets of equal size
 - Second step: each subset in turn is used for testing and the remainder for training
- This is called k-fold cross-validation
- Often the subsets are stratified before cross-validation is performed
- The error estimates are averaged to yield an overall error estimate
- Even better: repeated stratified cross-validation E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)

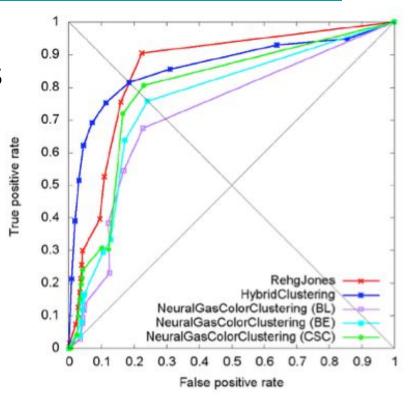
Data Partitioning



Cross Validation (check potential dataset bias)

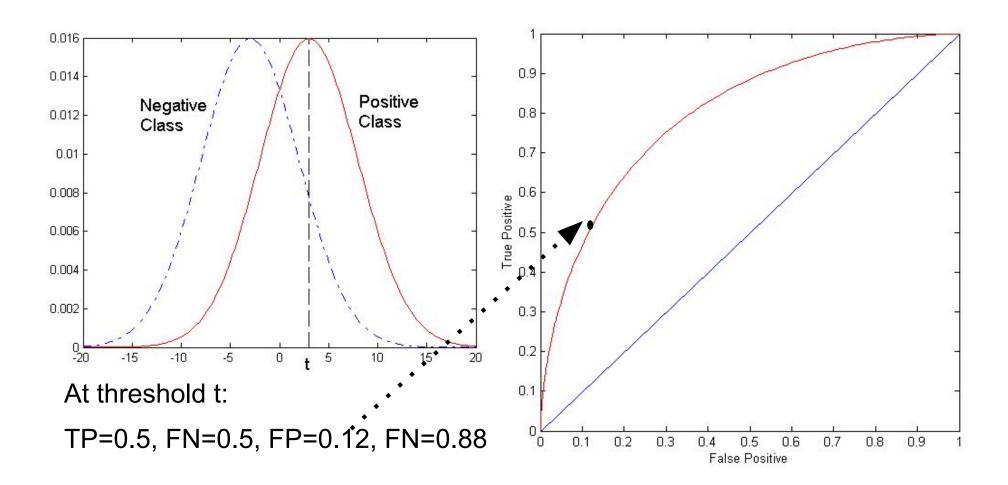
Evaluation: Training, Validation, Tests

Cross Validation with Time


- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

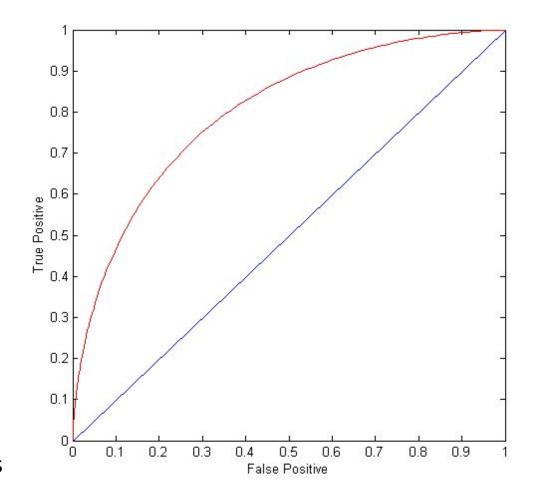
ROC (Receiver Operating Characteristic)

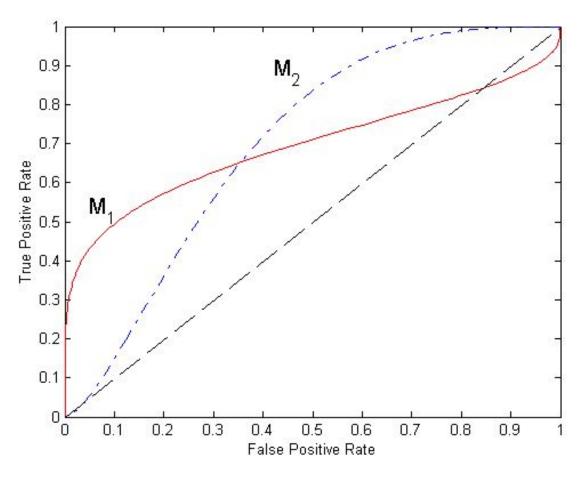
- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point


Receiver Operating Characteristic Curve

- It illustrates the ability of a binary classifier as its discrimination threshold THR is varied.
- The *ROC* curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various THR.
- The TPR = TP / (TP + FN) is also known as sensitivity, recall or probability of detection.
- The FPR = FP / (TN + FP) is also known as probability of *false alarm* and can be calculated as (1 specificity).

ROC Curve


- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

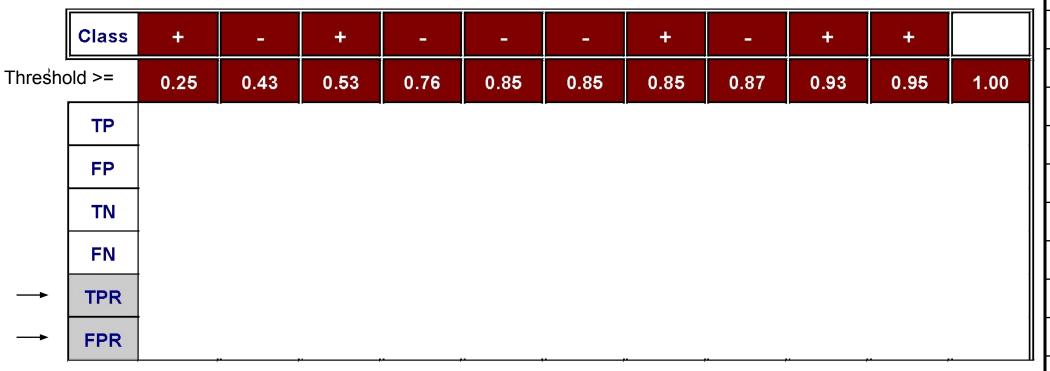

ROC Curve

(TP,FP):

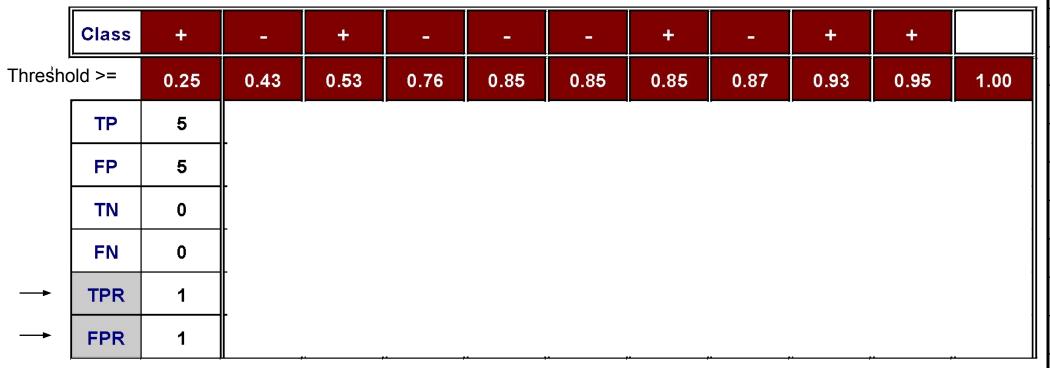
- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (0,1): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal: Area = 1
 - Random: Area = 0.5


How to Construct the ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+


- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP,
 TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

TPR = TP / (TP + FN)FPR = FP / (TN + FP)

How to Construct the ROC curve

	-	
Inst.	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	ı
4	0.85	ı
5	0.85	ı
6	0.85	+
7	0.76	1
8	0.53	+
9	0.43	-
10	0.25	+

Inst.	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

	Class	+	-	+	-	-	-	+) -	+	+	
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4									
	FP	5	5									
	TN	0	0									
	FN	0	1									
	TPR	1	0.8									
	FPR	1	1									

	_	
Inst.	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

Class	+	-	+	-	-	-	+		+	+	
old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
TP	5	4	4		-						
FP	5	5	4								
TN	0	0	1								
FN	0	1	1								
TPR	1	0.8	0.8								
FPR	1	1	0.8								
	TP FN TPR	TP 5 FP 5 TN 0 FN 0 TPR 1	Did >= 0.25 0.43 TP 5 4 FP 5 5 TN 0 0 FN 0 1 TPR 1 0.8	Did >= 0.25 0.43 0.53 TP 5 4 4 FP 5 5 4 TN 0 0 1 FN 0 1 1 TPR 1 0.8 0.8	Did >= 0.25 0.43 0.53 0.76 TP 5 4 4 FP 5 5 4 TN 0 0 1 FN 0 1 1 TPR 1 0.8 0.8	Did >= 0.25 0.43 0.53 0.76 0.85 TP 5 4 4 FP 5 5 4 TN 0 0 1 FN 0 1 1 TPR 1 0.8 0.8	old >= 0.25 0.43 0.53 0.76 0.85 0.85 TP 5 4 4 FP 5 5 4 TN 0 0 1 FN 0 1 1 TPR 1 0.8 0.8	Did >= 0.25 0.43 0.53 0.76 0.85 0.85 TP 5 4 4 FP 5 5 4 TN 0 0 1 FN 0 1 1 TPR 1 0.8 0.8	TP 5 4 4 FP 5 5 4 TN 0 0 1 1 TPR 1 0.8 0.8	Old >= 0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 TP	TP 5 4 4 FP 5 5 4 TN 0 0 1 1 TPR 1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

		_
Inst.	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

	Class	+	-	+	-	-	-	+		+	+	
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3							
	FP	5	5	4	4							
	TN	0	0	1	1							
	FN	0	1	1	2							
	TPR	1	0.8	0.8	0.6							
	FPR	1	1	0.8	0.8		. ,	. ,		. ,	. ,	

Inst.	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

Γ												
	Class	+	-	+	-	-	-	+	-	+	+	
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3						
	FP	5	5	4	4	3						
	TN	0	0	1	1	2						
	FN	0	1	1	2	2						
	TPR	1	0.8	0.8	0.6	0.6						
	FPR	1	1	0.8	0.8	0.6						

Inst.	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

	Class	+	-	+	-	-		+	-	+	+	
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2			
	FP	5	5	4	4	3	2	1	1			
	TN	0	0	1	1	2	3	4	4			
	FN	0	1	1	2	2	2	2	3			
→	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4			
\rightarrow	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	. ,		

Inst.	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

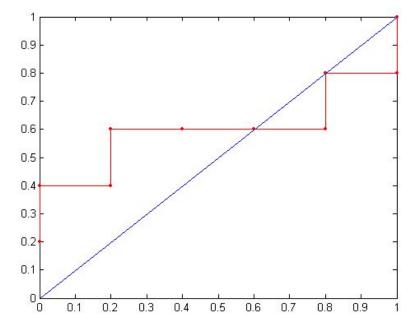
	Class	+	, - ,	+	-	<u>.</u>	-	+		+	+	
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2		
	FP	5	5	4	4	3	2	1	1	0		
	TN	0	0	1	1	2	3	4	4	5		
	FN	0	1	1	2	2	2	2	3	3		
-	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4		
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0		

Inst.	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

	Class	+	-	+	-	-	-	+	-	+	+	
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	
	FP	5	5	4	4	3	2	1	1	0	0	
	TN	0	0	1	1	2	3	4	4	5	5	
	FN	0	1	1	2	2	2	2	3	3	4	
→	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	

Inst.	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	_
8	0.53	+
9	0.43	-
10	0.25	+

	Class	+	- J	+	-	- [- -	+	-	+	+	
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0


Inst.	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

How to Construct the ROC curve

	Class	+	, - ,	+	-	, <u>-</u>	- -	+	-	+	+	
Threshold	=< b	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

$$TPR = TP / (TP + FN)$$

 $FPR = FP / (TN + FP)$

ROC Curve:

Inst.	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	ı
4	0.85	1
5	0.85	1
6	0.85	+
7	0.76	ı
8	0.53	+
9	0.43	-
10	0.25	+

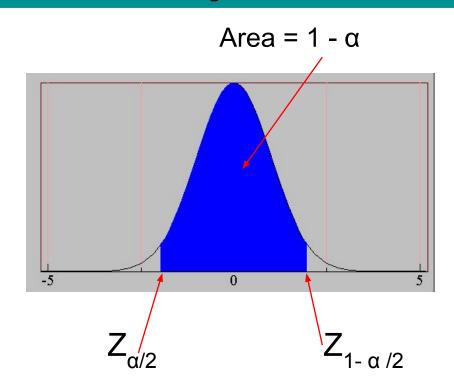
Test of Significance

- Given two models:
 - Model M1: accuracy = 85%, tested on 30 instances
 - Model M2: accuracy = 75%, tested on 5000 instances
- Can we say M1 is better than M2?
 - How much confidence can we place on accuracy of M1 and M2?
 - Can the difference in performance measure be explained as a result of random fluctuations in the test set?

Confidence Interval for Accuracy

- Prediction can be regarded as a Bernoulli trial (binomial random experiment)
 - A Bernoulli trial has 2 possible outcomes
 - Possible outcomes for prediction: correct or wrong
 - Probability of success is constant
 - Collection of Bernoulli trials has a Binomial distribution:
 - x ~ Bin(N, p) x: # of correct predictions, N trials, p constant prob.
 - e.g: Toss a fair coin 50 times, how many heads would turn up? Expected number of heads = $N \times p = 50 \times 0.5 = 25$

Given x (# of correct predictions) or equivalently, acc=x/N, and N (# of test instances)


Can we predict p (true accuracy of model)?

Confidence Interval for Accuracy

- For large test sets (N > 30),
 - acc has a normal distribution with mean p and variance p(1-p)/N

$$P(Z_{\alpha/2} < \frac{acc - p}{\sqrt{p(1-p)/N}} < Z_{1-\alpha/2})$$

• Confidence Interval for p:

$$p = \frac{2 \times N \times acc + Z_{\alpha/2}^{2} \pm \sqrt{Z_{\alpha/2}^{2} + 4 \times N \times acc - 4 \times N \times acc^{2}}}{2(N + Z_{\alpha/2}^{2})}$$

Confidence Interval for Accuracy

 Consider a model that produces an accuracy of 80% when evaluated on 100 test instances:

$$- N=100, acc = 0.8$$

- Let $1-\alpha = 0.95$ (95% confidence)
- Which is the confidence interval?
- From probability table, $Z_{\alpha/2}$ =1.96

N	50	100	500	1000	5000
p(lower)	0.670	0.711	0.763	0.774	0.789
p(upper)	0.888	0.866	0.833	0.824	0.811

1-α	Z
0.99	2.58
0.98	2.33
0.95	1.96
0.90	1.65

Comparing Performance of 2 Models

- Given two models, say M1 and M2, which is better?
 - M1 is tested on D1 (size=n1), found error rate = e_1
 - M2 is tested on D2 (size=n2), found error rate = e_2
 - Assume D1 and D2 are independent
 - If n1 and n2 are sufficiently large, then

$$e_1 \sim N(\mu_1, \sigma_1)$$

 $e_2 \sim N(\mu_2, \sigma_2)$

– Approximate variance of error rates:

$$\hat{\sigma}_{i} = \frac{e_{i}(1-e_{i})}{n_{i}}$$

Comparing Performance of 2 Models

- To test if performance difference is statistically significant: $d = e_1 e_2$
 - d $\sim N(d_+, \sigma_+)$ where d₊ is the true difference
 - Since D1 and D2 are independent, their variance adds up:

$$\sigma_t^2 = \sigma_1^2 + \sigma_2^2 \cong \hat{\sigma}_1^2 + \hat{\sigma}_2^2$$

$$= \frac{e1(1-e1)}{n!} + \frac{e2(1-e2)}{n2}$$
 • It can be shown at (1- α) confidence level,

$$d_{t} = d \pm Z_{\alpha/2} \hat{\sigma}_{t}$$

An Illustrative Example

- Given: M1: n1 = 30, e1 = 0.15 M2: n2 = 5000, e2 = 0.25
- d = |e2 e1| = 0.1 (2-sided test to check: dt = 0 or dt <> 0)

$$\hat{\sigma}_d^2 = \frac{0.15(1 - 0.15)}{30} + \frac{0.25(1 - 0.25)}{5000} = 0.0043$$

• At 95% confidence level, $Z_{\alpha/2} = 1.96$

$$d_{t} = 0.100 \pm 1.96 \times \sqrt{0.0043} = 0.100 \pm 0.128$$

=> Interval contains 0 => difference may not be statistically significant

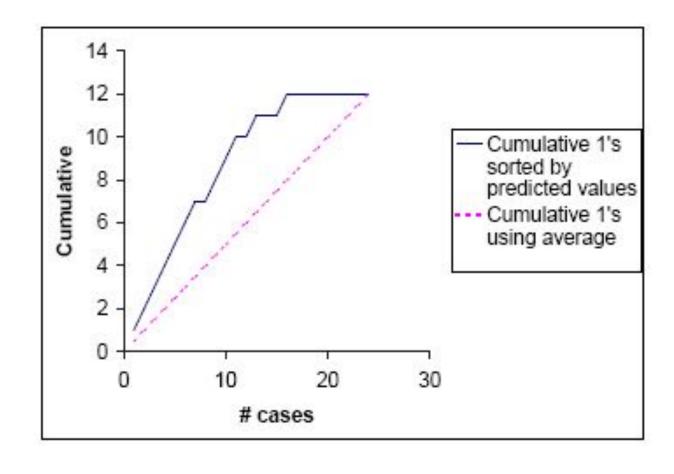
Comparing Performance of 2 Algorithms

- Each learning algorithm may produce k models:
 - L1 may produce M11, M12, ..., M1k
 - L2 may produce M21, M22, ..., M2k
- If models are generated on the same test sets D1,D2, ..., Dk (e.g., via cross-validation)

 - For each set: compute $d_j = e_{1j} e_{2j}$ d_j has mean d_t and variance $\sigma_t^2 \sum_{t=0}^k (d_j \overline{d})^2$

$$\hat{\sigma}_t^2 = \frac{\sum_{j=1}^{j=1} (k_j - k_j)}{k(k-1)}$$

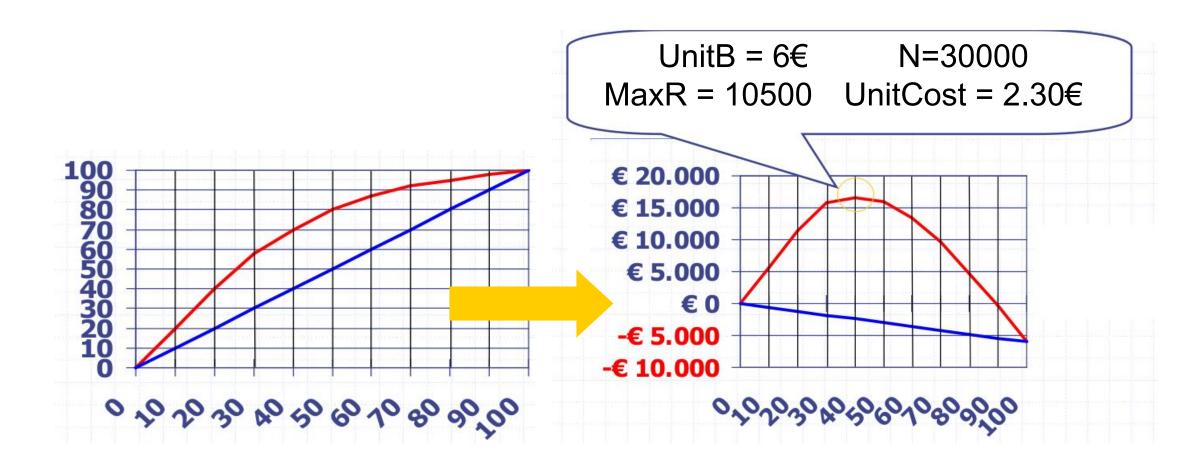
$$d_t = \overline{d} \pm t_{1-\alpha,k-1} \hat{\sigma}_t$$


Lift Chart

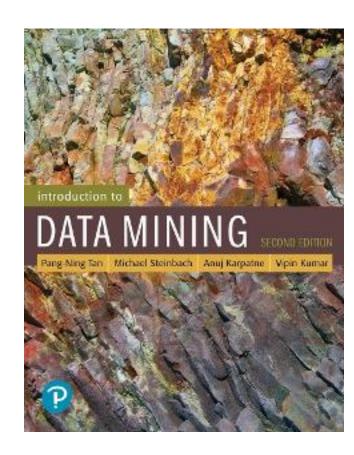
- The lift curve is a popular technique in direct marketing.
- The input is a dataset that has been "scored" by appending to each case the estimated probability that it will belong to a given class.
- The cumulative *lift chart* (also called *gains chart*) is constructed with the cumulative number of cases (descending order of probability) on the x-axis and the cumulative number of true positives on the y-axis.
- The dashed line is a reference line. For any given number of cases (the x-axis value), it represents the expected number of positives we would predict if we did not have a model but simply selected cases at random. It provides a benchmark against which we can see performance of the model.

Notice: "Lift chart" is a rather general term, often used to identify also other kinds of plots. Don't get confused!

Lift Chart – Example


Serial no.	Predicted prob of 1	Actual Class	Cumulative Actual class
1	0.995976726	1	1
2	0.987533139	1	2
3	0.984456382	1	3
4	0.980439587	1	4
5	0.948110638	1	5
6	0.889297203	1	6
7	0.847631864	1	7
8	0.762806287	0	7
9	0.706991915	1	8
10	0.680754087	1	9
11	0.656343749	1	10
12	0.622419543	0	10
13	0.505506928	1	11
14	0.47134045	0	11
15	0.337117362	0	11
16	0.21796781	1	12
17	0.199240432	0	12
18	0.149482655	0	12
19	0.047962588	0	12
20	0.038341401	0	12
21	0.024850999	0	12
22	0.021806029	0	12
23	0.016129906	0	12
24	0.003559986	0	12

Lift Chart – Application Example


- From Lift chart we can easily derive an "economical value" plot, e.g. in target marketing.
- Given our predictive model, how many customers should we target to maximize income?
- Profit = UnitB*MaxR*Lift(X) UnitCost*N*X/100
- UnitB = unit benefit, UnitCost = unit postal cost
- N = total customers
- MaxR = expected potential respondents in all population (N)
- Lift(X) = lift chart value for X, in [0,...,1]

Lift Chart – Application Example

References

• Chapter 3. Classification: Basic Concepts and Techniques.

