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Probability Notions and Bayes Theorem

* A probabilistic framework for solving classification problems.

* Let P be a probability function that assigns a number between 0 and 1 to
events.

* X = x an events is happening.

* P(X = x) is the probability that events X = x.

e Joint Probability P(X=x, Y=y)

* Conditional Probability P(Y=y | X=x)

 Relationship: P(X,Y) = P(Y|X) P(X) = P(X]|Y) P(Y)

* Bayes Theorem: P(Y[X) = P(X|Y)P(Y) / P(X)

e Another Useful Property: P(X =x) = P(X=x, Y=0) + P(X=x, Y=1)



Bayes Theorem: Example

* Consider a football game. Team 0 wins 65% of the time, Team 1 the
remaining 35%. Among the game won by Team 1, 75% of them are won
playing at home. Among the games won by Team 0, 30% of them are won
at Team 1’s field.

 |[f Team 1 is hosting the next match, which team will most likely win?
* Team O wins: P(Y =0) = 0.65

e Team 1 wins: P(Y=1)=0.35

* Team 1 hosted the match won by Team 1: P(X=1|Y=1) =0.75

e Team 1 hosted the match won by Team 0: P(X=1|Y =0) =0.30

* Objective P(Y=1|X =1)



Bayes Theorem: Example

*P(Y=1|X=1)=P(X=1|Y=1)P(Y=1)/P(X=1) =

e =0.75x0.35/(P(X=1,Y=1)+P(X=1,Y=0))

» =0.75x0.35/(P(X =1|Y =1)P(Y=1) + P(X = 1]Y = 0)P(Y=0))
* =0.75x0.35/(0.75 x 0.35 + 0.30 x 0.65)

» =0.5738

 Therefore Team 1 has a better chance to win the match



Bayes Theorem for Classification

« X denotes the attribute sets, X = {X;, X,, ... X}
e Y denotes the class variable
* We treat the relationship probabilistically using P(Y/X)

Likelihood Prior
WY)p(y) Probability
*P(YIX) = =5
PostZior Evidence

Probability (sum over alternative events)



Bayes Theorem for Classification

* Learn the posterior P(Y [ X) for every combination of X and Y.

* By knowing these probabilities, a test record X’ can be classified by
finding the class Y’ that maximizes the posterior probability P(Y’[X’).

* This is equivalent of choosing the value of Y’ that maximizes
PIX'|Y’)P(Y’).

* How to estimate it?



Naive Bayes Classifier

» |t estimates the class-conditional probability by assuming that the
attributes are conditionally independent given the class label y.

* The conditional independence is stated as:
* PIXIY =y) =i, PAX|Y =)
* where each attribute set X = {X,, X,, ... X}



Conditional Independence

~ Given three variables ¥, X;, X, we can say that Y is independent from
X; given X, if the following condition holds:

* P(Y | Xy, X3) = P(Y[X;)

* With the conditional independence assumption, instead of computing
the class-conditional probability for every combination of X we only
have to estimate the conditional probability of each X; given Y.

* Thus, to classify a record the naive Bayes classifier computes the
posterior for each class Y and takes the maximum class as result

*P(Y|X) =PI, P(X;Y =) /P(X)

How to estimate ?



How to Estimate Probability From Data

Tid Refund Marital

*Class P(Y) = Ny/ N

. Ny number of records with outcome y

* N number of records

e Categorical attributes

*P(X=x | Y=y)=NXy/Ny

. ny records with value x and outcome y

* P(Evade = Yes) = 3/10
 P(Marital Status = Single|Yes) = 2/3
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How to Estimate Probability From Data

Continuous attributes

* Discretize the range into bins
* one ordinal attribute per bin
* violates independence assumption

* Two-way split: (X <v) or (X>v)
* choose only one of the two splits as new attribute

* Probability density estimation:
* Assume attribute follows a normal distribution
» Use data to estimate parameters of distribution (e.g., mean and standard deviation)

* Once probability distribution is known, can use it to estimate the conditional
probability P(X|y)



How to Estimate Probability From Data

Tid Refund Marital

« Normal distribution

*P(Xi=x; | Y=y)=

* U;; can be estimated as the mean of X;
for the records that belongs to class y;

* Similarly, g;; as the standard deviation.

1
V2T Oij

e

(xi = ﬂij)z

2

* P(Income =120|No) = 0.0072

* mean=110
e std dev =54.54
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Example

Given X = {Refund = No, Married, Income = 120k}

* P(Refund=Yes|No) =3/7
* P(Refund=No|No) =4/7
* P(Refund=Yes|Yes) =0
* P(Refund=No|Yes)=1
* P(Marital Status=Single|No) = 2/7
 P(Marital Status=Divorced |No)=1/7
* P(Marital Status=Married |No) = 4/7
* P(Marital Status=Single|Yes) = 2/3
 P(Marital Status=Divorced | Yes)=1/3
* P(Marital Status=Married|Yes) = 0/3
For taxable income:
* If class=No:

* mean=110, variance=2975
* If class=Yes:

* mean=90, variance=25

P(X|Class=No) = P(Refund=No| Class=No)
x P(Married| Class=No)
x P(Income=120K| Class=No)
=4/7 x4/7 x 0.0072
=0.0024
P(X]|Class=Yes) = P(Refund=No| Class=Yes)
x P(Married| Class=Yes)
x P(Income=120K| Class=Yes)
=1x0x1.2x10-9
=0

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)
=> Class = No
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M-estimate of Conditional Probability

«~ |[f one of the conditional probability is zero, then the entire expression
becomes zero.

* For example, given X = {Refund = Yes, Divorced, Income = 120k}, if
P(Divorced |No) is zero instead of 1/7, then
e P(X|No)=3/7 x 0 x 0.00072 =0
* P(X|Yes)=0x1/3x10°=0

N 1
e M-estimate P(X|Y) = == e Ny

(if P(X]Y) =

y+ y +|Y|

* mis a parameter, p is a user-specified parameter (e.g. probability of
observing x; among records with class y;).

* In the example withm =2 and p = 1/m = 1/2 (i.e., Laplacian estimation) we have
e P(Divorced |Yes) = (0+2x1/2)/(3+2) =1/5

is Laplacian estimation)




Naive Bayes Classifier

* Robust to isolated noise points

* Handle missing values by ignoring the instance
during probability estimate calculations

* Robust to irrelevant attributes

* Independence assumption may not hold for
some attributes

* Use other techniques such as Bayesian Belief
Networks (BBN, not treated in this course)
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Exercises - NBC



Play-tennis example. estimating P(x.| C)

Outlook Temperature Humidity Windy Class | P(sunny|p) = P(sunny|n) =
sunny hot high false N
sunny  hot high  true N P(overcast|p) = P(overcast|n) =
overcast hot high false P
rain mild high false P P(rainlp) = P(rainln) =
rain cool normal false P
rain cool normal true N
overcast cool normal true P
sunny  mild high false N _ _
sunny cool normal false P P(hOtlp) _ P(hOtln) -
rain mild normal false P . .
sunny mild normal true P P(mlld|P) = P(m11d|n) =
overcast mild high true P
overcast hot normal false P P(COOllp) — P(coolln) =
rain mild high true N
‘ P(high|p) = i P(high|n) =
P(p) = 9/14 P(normall|p) = P(normal|n) =
P(n) = 5/14

P(true|p) = P(truejn) =

P(false|p) = P(false|n) =




Play-tennis example. estimating P(x: | C)

Outlook Temperature Humidity Windy Class P(sunny|p) — P(sunnyln) =
sunny hot high false N
sunny  hot high  true N | P(overcast|p) = P(overcast|n) =
overcast hot high false P
rain mild high false P P(rain|p) = P(rain|n) —
rain cool normal false P
rain cool normal true N
overcast cool normal true P
sunny  mild high false N _ _
sunny cool normal false P P(hOtlp) B P(hOtln) _
rain mild normal false P . .
sunny mild normal true P P(mlldlp) = P(mlldln) =
overcast mild high true P
overcast hot normal false P P(COOllp) = P(coolln) =
rain mild high true N
‘ P(high|p) = } P(high|n) =
P(p) = P(normall|p) = P(normal|n) =
P(n) =

P(true|p) = P(truejn) =

P(false|p) = P(false|n) =




Play-tennis example. estimating P(x: | C)

Outlook Temperature Humidity Windy Class

sunny hot high false N
sunny hot high true N
overcast hot high false P
rain mild high false P
rain cool normal false P
rain cool normal true N
overcast cool normal true P
sunny mild high false N
sunny cool normal false P
rain mild normal false P
sunny mild normal true P
overcast mild high true P
overcast hot normal false P
rain mild high true N

P(p) = 9/14

P(n) = 5/14

P(sunny|p) = 2/9

P(sunny|n) = 3/5

P(overcast|p) = 4/9

P(overcastin) =0

P(rain|p) = 3/9

P(rain|n) = 2/5

P(hot|p) =2/9

P(hot|n) = 2/5

P(mild|p) = 4/9

P(mild|n) = 2/5

P(cool|p) =3/9

P(coolln) =1/5

P(high|p) = 3/9

P(high|n) = 4/5

P(normal|p) = 6/9

P(normal|n) = 1/5

4

P(true|p) = 3/9

P(true|n) = 3/5

P(false|p) = 6/9

P(false|n) = 2/5




Play-tennis example. estimating P(x.| C)

P(p) = 9/14

P(n) = 5/14

rain

P(sunny|p) = 2/9

P(sunny|n) = 3/5

P(overcast|p) = 4/9

P(overcastjn) =0

P(rain|p) = 3/9

P(rain|n) = 2/§

P(hot|p) = 2/9

P(hot|n) = 2/5

P(mild|p) = 4/9

P(mild|n) = 2/5

P(cool|p) =3/9

P(cool|n) =1/5

P(high|p) = 3/9

P(high|n) = 4/5

P(normal|p) = 6/9

P(normal|n) =1/5

P(true|p) =3/9

P(true|n) = 3/5

P(false|p) = 6/9

P(false|n) = 2/5

hot high

P(X|p)-P(p) =

P(X|n)-P(n) =

mmm

false



Play-tennis example. estimating P(x.| C)

P(p) = 9/14

P(n) = 5/14

rain

P(sunny|p) = 2/9

P(sunny|n) = 3/5

P(overcast|p) = 4/9

P(overcastjn) =0

P(rain|p) = 3/9

P(rain|n) = 2/§

P(hot|p) = 2/9

P(hot|n) = 2/5

P(mild|p) = 4/9

P(mild|n) = 2/5

P(cool|p) = 3/9

P(cool|n) =1/5

P(high|p) = 3/9

P(high|n) = 4/5

P(normal|p) = 6/9

P(normaljn) = 1/5

P(true|p) =3/9

P(trueln) = 3/5

P(falselp) =6/9

P(falseln) = 2/5

mmm

hot high false

P(X|p)-P(p) = P(rain|p)-P(hot|p)-
P(high|p)-P(false|p)-P(p) =

P(X|n)-P(n) =
P(rain|n)-P(hot|n)-P(high|n)-P(false|
n)-P(n) =



Play-tennis example. estimating P(x.| C)

P(p) = 9/14

P(n) = 5/14

rain

P(sunny|p) = 2/9

P(sunny|n) = 3/5

P(overcast|p) = 4/9

P(overcastjn) =0

P(rain|p) = 3/9

P(rain|n) = 2/§

P(hot|p) = 2/9

P(hot|n) = 2/5

P(mild|p) = 4/9

P(mild|n) = 2/5

P(cool|p) = 3/9

P(cool|n) =1/5

P(high|p) = 3/9

P(high|n) = 4/5

P(normal|p) = 6/9

P(normaljn) = 1/5

P(true|p) =3/9

P(trueln) = 3/5

P(falsel_p) =6/9

P(falseln) = 2/5

mmm

hot high false

P(X]|p)-P(p) = P(rain|p)-P(hot|p)-
P(high|p)-P(false|p)-P(p) =3/9 -2/9 -
3/9-6/9-9/14 =0.010582

P(X|n)-P(n) =
P(rain|n)-P(hot|n)-P(high|n)-P(false|
n)-P(n)=2/5-2/5-4/5-2/5-5/14 =
0.018286



Example of Naive Bayes Classifier

Name Give Birth CanFly |Live in Water| Have Legs Class y

human yes no no yes mammals A: attributes
python no no no no non-mammals
salmon no no yes no non-mammals M: mammals
whale yes no yes no mammals
frog no no sometimes |yes non-mammals N: non-mammals
komodo no no no yes non-mammals
bat yes yes no yes mammals
pigeon no yes no yes non-mammals
cat yes no no yes mammals
leopard shark |yes no yes no non-mammals
turtle no no sometimes |yes non-mammals
penguin no no sometimes |yes non-mammals
porcupine yes no no yes mammals
eel no no yes no non-mammals
salamander |no no sometimes |yes non-mammals
gila monster |no no no yes non-mammals
platypus no no no yes mammals
owl no yes no yes non-mammals
dolphin yes no yes no mammals
eagle no yes no yes non-mammals

Give Birth CanFly |Livein Water| Have Legs Class

yes no yes no ?




a) Naive Bayes (3 points)
Given the training set below, build a Naive Bayes classification model (i.e. the corresponding table of probabilities) using (i)
the normal formula and (ii) using Laplace formula. What are the main effects of Laplace on the models?

A | B | class |
no green N
no red ¥
yes green N
no red N
no red Y
no green Y
yes green N
Answer:
Normal Y N N N
| 3 4 0.43 0.57
AlY AN | ATY A|N
yes | 0 2yes 0.00 0.50
no 3 2no | 1.00 0.50
B|Y B[N | B|Y BN
green _ 1] 3 green | 0.33 0.75
red 2 1red 0.67 0.25
Laplace Y N \ ' N
_ 3 4 0.43 0.57
AlY AN | AlY A|N
yes 0 2yes _ 0.20 0.50
no | 3 2no 0.80 0.50
B|Y BN | B|Y B|N
green 1 3 green | 0.40 0.67

red 2 1red 0.60 0.33



a) Naive Bayes (3 points)

Given the training set on the left, build a Naive Bayes classification model and apply it to the test set on the right.

, _

no

science

bad

no

humanities

Y

medium yes science N
bad yes science N
bad yes humanities Y
good no humanities N
good no science ¥
medium no humanities Y

good yes science
medium yes humanities




