DATA MINING 1
Density-based Clustering

Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 7 “Introduction to Data Mining”, 2nd

Edition by Tan, Steinbach, Karpatne, Kumar <
UNIVERSITA

DI P1sSA




What is Cluster Analysis?

* Finding groups of objects such that the objects in a group will be similar (or
related) to one another and different from (or unrelated to) the objects in other

roups
5 P Inter-cluster
Intra-cluster distances are
distances are maximized
minimized @
O O




DBSCAN



DBSCAN

« DBSCAN is a density-based algorithm.
 Density = number of points within a specified radius (Eps)

e Apointisa core pointif it has at least a specified number of points
(MinPts) within Eps

* These are points that are at the interior of a cluster
 Counts the point itself

* Aborder point is not a core point, but is in the neighborhood of a core
point

* Anoise point is any point that is not a core point or a border point



DBSCAN: Core, Border, and Noise Points

MinPts = 7

border point core point

noise point



DBSCAN Algorithm

* Eliminate noise points

* Perform clustering on the remaining points
current_cluster_label «— 1
for all core points do
if the core point has no cluster label then
current_cluster_label «— current_cluster_label + 1
Label the current core point with cluster label current_cluster_label
end if
for all points in the Eps-neighborhood, except i*" the point itself do
if the point does not have a cluster label then
Label the point with cluster label current_cluster_label
end if
end for

end for



DBSCAN: Core, Border and Noise Points

Point types:

Original Points

border and noise

=4

10, MinPts

Eps =



When DBSCAN Works Well

Original Points

Clusters

* Resistant to Noise

» Can handle clusters of different shapes and sizes



When DBSCAN Does NOT Work Well

Original Points

 Varying densities

* High-dimensional data

(MinPts=4, Eps=9.92)



DBSCAN: Determining EPS and MinPts

* Ideais that for points in a cluster, their k™ nearest neighbors are at roughly the
same distance

* Noise points have the k" nearest neighbor at farther distance
* So, plot sorted distance of every point to its k" nearest neighbor

50
N S SN SN S S—

1 | i i
0 500 1000 1500 2000 2500 3000
Points Sorted According to Distance of 4th Nearest Neighbor




DBSCAN Evolution

OPTICS



When DBSCAN Works Well

Clusters

Original Points

e Resistant to Noise

e Can handle clusters of different shapes and sizes



When DBSCAN Does NOT Work Well

¢ 8
* + 3

Original Points

e Varying densities

e High-dimensional data o

(MinPts=4, Eps=9.75)



OPTICS

* OPTICS: Ordering Points To Identify the Clustering Structure
* Produces a special order of the dataset wrt its density-based

C
T
C

ustering structure.
nis cluster-ordering contains info equivalent to the density-based

usterings corresponding to a broad range of parameter settings.

e Good for both automatic and interactive cluster analysis, including
finding intrinsic clustering structure.

* Can be represented graphically or using visualization techniques.



OPTICS: Extension from DBSCAN

* OPTICS requires two parameters: Eps =6
ps = 6mm

* £, which describes the maximum distance —
. . MinPts =5
(radius) to consider,

* MinPts, describing the number of points
required to form a cluster

e Core point. A point p is a core point if at least m
MinPts points are found within its €-

neighborhood.

Core_Distance(p) = 3Imm
|

e Core Distance. It is the minimum value of
radius required to classify a given point as a
core point. If the given point is not a Core
point, then it’s Core Distance is undefined.



OPTICS: Extension from DBSCAN

* Reachability Distance. The reachability Eps = 6mm
distance between a point p and q is the MinPts = 5
maximum of the Core Distance of p and the
Distance between p and q.

Core_Distance(p) = 3mm
|

* The Reachability Distance is not defined if g
is not a Core point. Below is the example of
the Reachability Distance.

Reachability_Distance{q,pi= 5mm

Reachability_Distance(r,p) = 3mm

Reachability_Distance(v,p) = 7mm

* In other words, if g is within the core
distance of p then use the core distance,
otherwise the real distance.




OPTICS Pseudo-Code

* For each point p in the dataset
* Initialize the reachability distance of p as undefined

* For each unprocessed point p in the dataset
* Get the neighbors N of p
* Mark p as processed and output to the ordered list
* If pis a core point
* Initialize a priority queue Q to get the closest point to p in terms of reachability
e Call the function update(N, p, Q)
* Foreach pointginQ
* Get the neighbors N’ of g
* Mark g as processed and output to the ordered list
* If g is a core point Call the function update(N’, g, Q)



OPTICS Pseudo-Code

e Function update(N, p, Q)
 Calculate the core distance for p
* For each neighbor g in N (update the reachability)
* If g is not processed
* new_rd = reachability distance between p and g
* If gis notin Q
* Q.insert(q, new rd)
* Else
e Ifnew rd <q.rd
* Q.move _up(qg, new rd)



OPTICS Output

e OPTICS outputs the points in a particular ordering, annotated with

their smallest reachability distance.

* A reachability-plot (a special kind of dendrogram), the hierarchical
structure of the clusters can be obtained easily.

* x-axis: the ordering of the points as processed by OPTICS

* y-axis: the reachability distance

* Points belonging to a cluster have a low reac
nearest neighbor, the clusters show up as va
plot. The deeper the valley, the denser the ¢

hability distance to their
leys in the reachability

uster.



OPTICS Output

nim. 2 Oim. 2
1 1

0.15
0.1
0.05




OPTICS Output

* Clusters are extracted
1. by selecting a range on the x-axis after visual inspection,
2. by selecting a threshold on the y-axis

3. by different algorithms that try to detect the valleys by steepness, knee
detection, or local maxima. Clustering obtained this way usually are
hierarchical, and cannot be achieved by a single DBSCAN run.

reachability distance
reachability distance

b
cluster ordering cluster ordering

>

https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py



https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py

Reachability

-distance o
undefined 1 )
8 4
'3
=

Cluster-order
of the objects



OPTICS: The Radius Parameter

* Both core-distance and reachability-distance are undefined if no
sufficiently dense cluster (w.r.t. €) is available.

* Given a sufficiently large €, this never happens, but then every ¢-
neighborhood query returns the entire database.

* Hence, the € parameter is reguired to cut off the density of clusters that
are no longer interesting, and to speed up the algorithm.

* The parameter € is, strictly speaking, not necessary.
* |t can simply be set to the maximum possible value.

 When a spatial index is available, however, it does play a practical role with
regards to complexity.

* OPTICS abstracts from DBSCAN by removing this parameter, at least to the
extent of only having to give the maximum value.



DBSCAN Evolution

HDBSCAN



HDBSCAN

* HDBSCAN extends DBSCAN by converting it into a hierarchical
clustering algorithm, but it also extracts a flat clustering.

« HDBSCAN bypass the choice of the Eps parameter
« HDBSCAN scans all possible solution with all values of Eps



HDBSCAN Main Steps

A A

Transform the space according to the density/sparsity
Build the minimum spanning tree of the distance weighted graph

Construct a cluster hierarchy of connected components.
Condense the cluster hierarchy based on minimum cluster size.

Extract the stable clusters from the condensed tree.



How HDBSCAN Works

3.0

2.5

20

1.5

1.0

0.5

0.0

-0.5

-1.0
-1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0 2.5




Step 1: Transform The Space

* Goal: Prepare the data for a single linkage clustering (real data is noisy
and single linkage is not robust!)

* Idea: Push sparse points away from the rest of the data before clustering

* How do we evaluate density ?
* Need an inexpensive density estimate = k-NN is the simplest
* Call it the core distance for parameters k and point x;, core,(x;)

Recall
Core point. A point p is a core point if at least MinPts points are found within its e-neighborhood.

Core Distance. It is the minimum value of radius required to classify a given point as a core point.
If the given point is not a Core point, then it’s Core Distance is undefined.



Step 1: Mutual Reachability Distance

* Goal: We need a way to spread apart points with low density
(correspondingly high core distance).

* dreacnklX; X;) = max{core(x;), core\(x;), d(x; x;)}

* Objectives: connect points that are

* close enough to each other : d(x; x;)
* in a dense enough region : core,(x;)

e With this metric dense points (with low core distance) remain the
same distance from each other, but sparser points are pushed away
to be at least their core distance away from any other point.



Step 1: Mutual Reachability Distance

2.6

24

2.2

2.0

1.8

1.6

1.4

0.5 1.0 1.5 2.0

2.5




Step 1: Mutual Reachability Distance

2.6

2.4

2.2

2.0

1.8

1.6

1.4

\

0.5

1.0

15

2.0

2.5




Step 1: Mutual Reachability Distance

2.6

2.4

2.2

2.0

1.8

1.6

1.4

0.5 1.0 1.5 2.0



Step 1: Mutual Reachability Distance

2.6

2.4

2.2

2.0

1.8 ®

core distance

1.6

1.4

0.5 1.0 15 2.0

2.5




Step 1: Mutual Reachability Distance

2.6

2.4

2.2

2.0

1.8 ®

core distance

1.6

1.4

0.5 1.0 1.5 2.0

2.5




Step 1: Mutual Reachability Distance

2.6

core distance

2.4

2.2

2.0

1.8 ®

core distance

1.6

1.4

0.5 1.0 1.5 2.0

2.5




Step 2 : The Minimum Spanning Tree

* Goal: Prepare the data for clustering using d, ..

* |deas:
e Construct a graph that connects all points
* Points are the vertices and the edges are weighted by d,,,,...5
 Start disconnecting points by lowering a threshold

* Among n? possible edges identify with the minimum spanning tree a
threshold such that there is no lower weight edge that could connect the
components

* Prim’s algorithm: build the tree one edge at a time, always adding the lowest
weight edge that connects the current tree to a vertex not yet in the tree



Step 2 : The Minimum Spanning Tree

5 &

0.80

0.72

o o o
& & =
Mutual reachability distance

o
P
=

o
%)
[

0.24

0.16



Step 3: Build the Cluster Hierarchy

* Goal: Given the minimal spanning tree, the next step is to convert
that into the hierarchy of connected components.

* ldea: Sort the edges of the tree by distance (in increasing order) and
then iterate through, creating a new merged cluster for each edge,
i.e., run single linkage hierarchical clustering algorithm



Step 3: Build the Cluster Hierarchy

0.9

0.8

0.7

0.6

—
o

distance

1=
—
—7
L)
H
—H
W

=
(%]

o =
[} —
|
|

= N w > > n o
o 1= (%] o o o =
log(Number of points)

o
o0

o
o



Step 4 : Condense the Cluster Tree

* Goal: Condensing the large and complicated cluster hierarchy into a
smaller tree with a little more data attached to each node.

* [dea: Use a notion of minimum cluster size which we take as a parameter
to HDBSCAN.

* Walk through the hierarchy top down and at each split ask if one of the new clusters
created by the split has fewer points than the minimum cluster size.

* If itis the case, declare it to be ‘points falling out of a cluster’ and have the larger
cluster retain the cluster identity of the parent, marking down which points ‘fell out
of the cluster’, i.e., noise points, and at what distance value that happened.

* On the other hand, if the split is into two clusters each at least as large as the
minimum cluster size then we consider that a true cluster split and let that split
persist in the tree.



Step 4 : Condense the Cluster Tree

0

g 8
Number of points

s
]

&

|



Step 5: Extract the Stable Clusters

* Goal: Choose clusters that persist and have a longer lifetime (short
clusters are probably artifacts of single linkage)

* ldea: Looking at the previous plot we could say that we want to
choose those clusters that have the greatest area of ink in the plot

* Requirement: if you select a cluster, then you cannot select any
cluster that is a descendant of it



Step 5: Extract the Stable Clusters

0

&3 &8 S S 3
Number of points

=
o

-



Step 5: Extract the Stable Clusters (details)

 Use A = 1/distance

* For a given cluster we have A, A.,4 to identify the cluster boundaries

* For a given cluster, the value A € [A 1, Ag] defines at which value a point “fell
out of the cluster”

Compute the stability of a cluster as 3, ¢ ¢ (A;- Agiart)

Declare all leaf nodes to be clusters.

Now work bottom up through the tree.

* If the sum of the stabilities of the child clusters is greater than the stability of the
cluster, then set the cluster stability to be the sum of the child stabilities.

* If, on the other hand, the cluster’s stability is greater than the sum of its children
then we declare the cluster to be a selected cluster and unselect all its descendants.

* Once at the root node all the set of selected clusters is the flat clustering returned.



HDBSCAN Result

3.0

2.5

2.0

15

1.0

0.5

0.0

-1.0

-1.5

-1.0

0.0

0.5

1.0

15

20

25



DBSCAN vs HDBSCAN

Clusters found by HDBSCAN

Clustering took 0.06 s

Clusters found by DBSCAN

Clustering took 0.02 s




References

* Clustering. Chapter 7. Introduction to
Data Mining.

* Mihael Ankerst; Markus M. Breunig; Hans-
Peter Kriegel; Jorg Sander (1999). OPTICS: S RN
Ordering Points To Identify the Clustering Lo BERINCRS |

sk RN AN
introduction to k

Structure. R
DATA MINING
Dk e e S




	Slide 1: DATA MINING 1 Density-based Clustering
	Slide 2: What is Cluster Analysis?
	Slide 3: DBSCAN
	Slide 4: DBSCAN
	Slide 5: DBSCAN: Core, Border, and Noise Points
	Slide 6: DBSCAN Algorithm
	Slide 7: DBSCAN: Core, Border and Noise Points
	Slide 8: When DBSCAN Works Well
	Slide 9: When DBSCAN Does NOT Work Well
	Slide 10: DBSCAN: Determining EPS and MinPts
	Slide 11: DBSCAN Evolution OPTICS
	Slide 12: When DBSCAN Works Well
	Slide 13: When DBSCAN Does NOT Work Well
	Slide 14: OPTICS
	Slide 15: OPTICS: Extension from DBSCAN
	Slide 16: OPTICS: Extension from DBSCAN
	Slide 17: OPTICS Pseudo-Code
	Slide 18: OPTICS Pseudo-Code
	Slide 19: OPTICS Output
	Slide 20: OPTICS Output
	Slide 21: OPTICS Output
	Slide 22
	Slide 23: OPTICS: The Radius Parameter
	Slide 24: DBSCAN Evolution HDBSCAN
	Slide 25: HDBSCAN
	Slide 26: HDBSCAN Main Steps
	Slide 27: How HDBSCAN Works
	Slide 28: Step 1: Transform The Space
	Slide 29: Step 1: Mutual Reachability Distance
	Slide 30: Step 1: Mutual Reachability Distance
	Slide 31: Step 1: Mutual Reachability Distance
	Slide 32: Step 1: Mutual Reachability Distance
	Slide 33: Step 1: Mutual Reachability Distance
	Slide 34: Step 1: Mutual Reachability Distance
	Slide 35: Step 1: Mutual Reachability Distance
	Slide 36: Step 2 : The Minimum Spanning Tree
	Slide 37: Step 2 : The Minimum Spanning Tree
	Slide 38: Step 3: Build the Cluster Hierarchy
	Slide 39: Step 3: Build the Cluster Hierarchy
	Slide 40: Step 4 : Condense the Cluster Tree
	Slide 41: Step 4 : Condense the Cluster Tree
	Slide 42: Step 5: Extract the Stable Clusters
	Slide 43: Step 5: Extract the Stable Clusters
	Slide 44: Step 5: Extract the Stable Clusters (details)
	Slide 45: HDBSCAN Result
	Slide 46: DBSCAN vs HDBSCAN
	Slide 47: References

