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Revisited slides from Lecture Notes for Chapter 7 “Introduction to Data Mining”, 2nd 
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Hierarchical Clustering 

• Produces a set of nested clusters organized as a hierarchical tree

• Can be visualized as a dendrogram
• A tree like diagram that records the sequences of merges or splits
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Strengths of Hierarchical Clustering

• Do not have to assume any particular number of clusters
• Any desired number of clusters can be obtained by ‘cutting’ the dendrogram 

at the proper level

• They may correspond to meaningful taxonomies
• Example in biological sciences (e.g., animal kingdom, phylogeny 

reconstruction, …)



Hierarchical Clustering

• Two main types of hierarchical clustering

• Agglomerative:  

• Start with the points as individual clusters

• At each step, merge the closest pair of clusters until only one cluster (or k 
clusters) left

• Divisive:  

• Start with one, all-inclusive cluster 

• At each step, split a cluster until each cluster contains an individual point (or 
there are k clusters)

• Traditional hierarchical algorithms use a similarity or distance matrix

• Merge or split one cluster at a time



Agglomerative Clustering Algorithm

• Most popular hierarchical clustering technique

• Basic algorithm is straightforward
1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity matrix

6. Until only a single cluster remains

• Key operation is the computation of the proximity of two clusters
• Different approaches to defining the distance between clusters distinguish the different 

algorithms



Starting Situation 

...
p1 p2 p3 p4 p9 p10 p11 p12

• Start with clusters of individual points and a proximity matrix
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Intermediate Situation

...
p1 p2 p3 p4 p9 p10 p11 p12

• After some merging steps, we have some clusters 
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Intermediate Situation

...
p1 p2 p3 p4 p9 p10 p11 p12

• We want to merge the two closest 
clusters (C2 and C5)  and update the 
proximity matrix. 
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After Merging

...
p1 p2 p3 p4 p9 p10 p11 p12

• The question is “How do we update 
the proximity matrix?” 
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How to Define Inter-Cluster Distance
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 MIN

 MAX

 Group Average

 Distance Between Centroids

 Other methods driven by an objective 

function

– Ward’s Method uses squared error
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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Ward Linkage Method

• Ward’s method says that the distance between two clusters, A and B, 
is how much the sum of squares will increase when we merge them.

• where mj is the center of cluster j, and nj is the number of points in it.

• Δ is called the merging cost of combining the clusters A and B. 

• With hierarchical clustering, the sum of squares starts from zero 
(because every point is in its own cluster) and then grows as we 
merge clusters. 



MIN or Single Link 
• Proximity of two clusters is based on the two closest points 

in the different clusters
• Determined by one pair of points, i.e., by one link in the 

proximity graph

• Example:

Distance Matrix:



Hierarchical Clustering: MIN

Nested Clusters Dendrogram
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Strength of MIN

Original Points Six Clusters

• Can handle non-elliptical shapes



Limitations of MIN

Original Points

Two Clusters

• Sensitive to noise and outliers
Three Clusters



MAX or Complete Linkage

• Proximity of two clusters is based on the two most distant points in 
the different clusters

• Determined by all pairs of points in the two clusters

Distance Matrix:



Hierarchical Clustering: MAX

Nested Clusters Dendrogram
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Strength of MAX

Original Points Two Clusters

• Less susceptible to noise and outliers



Limitations of MAX

Original Points Two Clusters

• Tends to break large clusters

• Biased towards globular clusters



Group Average
• Proximity of two clusters is the average of pairwise proximity 

between points in the two clusters.

• Need to use average connectivity for scalability since total proximity 
favors large clusters
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Distance Matrix:



Hierarchical Clustering: Group Average

Nested Clusters Dendrogram
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Hierarchical Clustering: Group Average

• Compromise between Single and Complete Link

• Strengths
• Less susceptible to noise and outliers

• Limitations
• Biased towards globular clusters



Cluster Similarity: Ward’s Method

• Similarity of two clusters is based on the increase in squared error 
when two clusters are merged

• Similar to group average if distance between points is distance squared

• Less susceptible to noise and outliers

• Biased towards globular clusters

• Hierarchical analogue of K-means
• Can be used to initialize K-means



Hierarchical Clustering: Comparison

Group Average

Ward’s Method
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