DATA MINING 1
Hierarchical Clustering

Dino Pedreschi, Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 7 “Introduction to Data Mining”, 2nd

Edition by Tan, Steinbach, Karpatne, Kumar <
UNIVERSITA

DI P1sSA




Hierarchical Clustering

* Produces a set of nested clusters organized as a hierarchical tree

* Can be visualized as a dendrogram
* A tree like diagram that records the sequences of merges or splits
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Strengths of Hierarchical Clustering

* Do not have to assume any particular number of clusters

* Any desired number of clusters can be obtained by ‘cutting’ the dendrogram
at the proper level

* They may correspond to meaningful taxonomies

* Example in biological sciences (e.g., animal kingdom, phylogeny
reconstruction, ...)



Hierarchical Clustering

 Two main types of hierarchical clustering
e Agglomerative:
e Start with the points as individual clusters

* At each step, merge the closest pair of clusters until only one cluster (or k
clusters) left

* Divisive:
e Start with one, all-inclusive cluster
e At each step, split a cluster until each cluster contains an individual point (or
there are k clusters)
e Traditional hierarchical algorithms use a similarity or distance matrix
* Merge or split one cluster at a time



Agglomerative Clustering Algorithm

Most popular hierarchical clustering technique

Basic algorithm is straightforward

1
2
3
4.
5
6

Compute the proximity matrix
Let each data point be a cluster
Repeat
Merge the two closest clusters
Update the proximity matrix
Until only a single cluster remains

Key operation is the computation of the proximity of two clusters

Different approaches to defining the distance between clusters distinguish the different
algorithms



Starting Situation

e Start with clusters of individual points and a proximity matrix
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Intermediate Situation

* After some merging steps, we have some clusters
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Intermediate Situation

* We want to merge the two closest

clusters (C2 and C5) and update the

proximity matrix.
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After Merging

* The question is “How do we update

the proximity matrix?”
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How to Define Inter-Cluster Distance
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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Ward Linkage Method

* Ward’s method says that the distance between two clusters, A and B,
is how much the sum of squares will increase when we merge them.
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* where m; is the center of cluster j, and n;is the number of points in it.
* Ais called the merging cost of combining the clusters A and B.

* With hierarchical clustering, the sum of squares starts from zero
(because every point is in its own cluster) and then grows as we
merge clusters.



MIN or Single Link

* Proximity of two clusters is based on the two closest points
in the different clusters

* Determined by one pair of points, i.e., by one link in the
proximity graph

* Example:
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Hierarchical Clustering: MIN
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Strength of MIN

Original Points

» Can handle non-elliptical shapes

Six Clusters
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MAX or Complete Linkage

* Proximity of two clusters is based on the two most distant points in
the different clusters
* Determined by all pairs of points in the two clusters
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Hierarchical Clustering: MAX
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Strength of MAX
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* Tends to break large clusters
 Biased towards globular clusters



Group Average

* Proximity of two clusters is the average of pairwise proximity

between points in the two clusters.

proximity(Cluster, Cluster;) =

> proximity(p,,p;)

p;cClusteg

p;j<Clusteg

| Cluster; | x| Cluster; |

* Need to use average connectivity for scalability since total proximity

favors large clusters
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Hierarchical Clustering: Group Average
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Hierarchical Clustering: Group Average

e Compromise between Single and Complete Link

e Strengths
* Less susceptible to noise and outliers

* Limitations
* Biased towards globular clusters



Cluster Similarity: Ward’s Method

e Similarity of two clusters is based on the increase in squared error
when two clusters are merged
* Similar to group average if distance between points is distance squared
* Less susceptible to noise and outliers

* Biased towards globular clusters

* Hierarchical analogue of K-means
e Can be used to initialize K-means



Hierarchical stermg Comparison
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