SEQUENCE COMPARISON AND
DATABASE SEARCH

In this chapter we present some of the most practical and widely
used methods for sequence comparison and database search. Se-
quence comparison is undoubtedly the most basic operation in
computational biology. It appears explicitly or implicitly in all
subsequent chapters of this book. It has also many applications
in other subareas of computer science.
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BIOLOGICAL BACKGROUND
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Why compare sequences? Why use a computer to do that? How to compare sequences
using computers? These are the main questions that will concern us in this chapter. We
will answer the first two in this section, and devote the rest of the chapter to the last one.

Sequence comparison is the most important primitive operation in computational bi-
ology, serving as a basis for many other, more complex, manipulations. Roughly speak-
ing, this operation consists of finding which parts of the sequences are alike and which
parts differ. However, behind this apparently simple concept, a great variety of truly dis-
tinct problems exist, with diverse formalizations and sometimes requiring completely
different data structures and algorithms for an efficient solution.

As examples, we will give a list of problems that often appear in computational bi-
ology. In these examples we use two notions that will be precisely defined in later sec-
tions. One is the similarity of two sequences, which gives a measure of how similar the
sequences are. The other is the alignment of two sequences, which is a way of placing
one sequence above the other in order to make clear the correspondence between similar
characters or substrings from the sequences. The examples (and the whole chapter) also
use basic concepts about strings, which are defined in Section 2.1. Here are the examples.

1. We have two sequences over the same alphabet, both about the same length (tens
of thousands of characters). We know that the sequences are almost equal, with
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only a few isolated differences such as insertions, deletions, and substitutions of
characters. The average frequency of these differences is low, say, one each hun-
dred characters. We want to find the places where the differences occur.

2. We have two sequences over the same alphabet with a few hundred characters
each. We want to know whether there is a prefix of one which is similar to a suf-
fix of the other. If the answer is yes, the prefix and the suffix involved must be
produced.

3. We have the same problem as in (2), but now we have several hundred sequences
that must be compared (each one against all). In addition, we know that the great
majority of sequence pairs are unrelated, that is, they will not have the required
degree of similarity.

4. We have two sequences over the same alphabet with a few hundred characters
each. We want to know whether there are two substrings, one from each sequence,
that are similar.

5. We have the same problem as in (4), but instead of two sequences we have one
sequence that must be compared to thousands of others.

Problems like (1) appear when, for instance, the same gene is sequenced by two differ-
ent labs and they want to compare the results; or even when the same long sequence is
typed twice into the computer and we are looking for typing errors. Problems like (2) and
(3) appear in the context of fragment assembly in programs to help large-scale DNA se-
quencing. Problems like (4) and (5) occur in the context of searches for local similarities
using large biosequence databases.

We will see in this chapter that a single basic algorithmic idea can be used to solve all
of the above problems. However, this may not be the most efficient solution. Sometimes
less general but faster methods are better suited to each task.

The use of computers hardly needs justification when we deal with large quantities
of data, as in searches in large databases. Yet, even in cases where we could conceivably
do comparisons “by hand,” the use of computers is safer and more convenient, as the
following examples, taken from a paper by Smith and coworkers [176], illustrate.

In a 1979 paper, Sims and colleagues examined similar regions from the DNA of
two bacteriophages [173]. They presented an alignment between regions of the H-gene
from phages St-1 and G4 containing 11 matches (that is, 11 columns in which there are
equal characters in both sequences). The procedure they uscd to obtain good alignments
was described as the “insertion of occasional gaps to maximize homology [number of
identities].” Smith and colleagues [176], however, produced 12 matches in an alignment
found by computer, which was certainly overlooked by the first group of researchers.

In another 1979 paper, Rosenberg and Court completed a study aligning 46 promoter
sequences from various organisms [164]. The multiple alignment was constructed start-
ing from the alignment of certain regions reputed relatively invariant and then extending
this “seed” alignment in both directions without introducing gaps. Although the resulting
alignment was good as a whole, the pairwise alignments obtained from it were relatively
poor. This happens fairly frequently in multiple alignments, but in this case Smith and
colleagues found, with the help of a computer, an alignment between two substrings of
the sequences involved that had 44 identical characters over a total of 45. This is cer-
tainly an astonishingly good local alignment, and the fact that it is not even mentioned




by Rosenberg and Court must mean again that they were not able to find it by hand.
These two examples show that the use of computers can reveal intriguing similari-
ties that might go unnoticed otherwise.

— ——— =
COMPARING TWO SEQUENCES
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In this section we study methods for comparing two sequences. More specifically, we are
interested in finding the best alignments between these two sequences. Several versions
of this problem occur in practice, depending on whether we are interested in alignments
involving the entire sequences or just substrings of them. This leads to the definition
of global and local comparisons. There is also a third kind of comparison in which we
are interested in aligning not arbitrary substrings, but prefixes and suffixes of the given
sequences. We call this third kind semiglobal comparison. All the problems mentioned
can be solved efficiently by dynamic programming, as we will see in the sequel.

3.2.1 GLOBAL COMPARISON —
THE BASIC ALGORITHM

Consider the following DNA sequences: GACGGATTAG and GATCGGAATAG. We can-
not help but notice that they actually look very much alike, a fact that becomes more
obvious when we align them one above the other as follows.

GA-CGGATTAG

GATCGGAATAG 31

The only differences are an extra T in the second sequence and a change from & to T in
the fourth position from right to left. Observe that we had to introduce a space (indicated
by a dash above) in the first sequence to let equal bases before and after the space in the
two sequences align perfectly.

Our goal in this section is to present an efficient algorithm that takes two sequences
and determines the best alignment between them as we did above. Of course, we must
define what the “best” alignment is before approaching the problem. To simplify the dis-
cussion, we will adopt a simple formalism; later, we will see possible generalizations.

To begin, let us be precise about what we mean by an alignment between two se-
quences. The sequences may have different sizes. As we saw in the recent example,
alignments may contain spaces in any of the sequences. Thus, we define an alignment
as the insertion of spaces in arbitrary locations along the sequences so that they end up
with the same size. Having the same size, the augmented sequences can now be placed
one over the other, creating a correspondence between characters or spaces in the first
sequence and characters or spaces in the second sequence. In addition, we require that
no space in one sequence be aligned with a space in the other. Spaces can be inserted
even in the beginning or end of sequences.
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Given an alignment between two sequences, we can assign a score to it as follows.
Each column of the alignment will receive a certain value depending on its contents and
the total score for the alignment will be the sum of the values assigned to its columns. If
a column has two identical characters, it will receive value +1 (a match). Different char-
acters will give the column value —1 (a mismatch). Finally, a space in a column drops
down its value to —2. The best alignment will be the one with maximum total score. This
maximum score will be called the similarity between the two sequences and will be de-
noted by sim(s, #) for sequences s and 7. In general, there may be many alignments with
maximum score.

To exercise these definitions, let us compute the score of alignment (3.1). There are
nine columns with identical characters, one column with distinct characters, and one col-
umn with a space, giving a total score of

Ox14+1x(=1)+1x(-2)=6.

Why did we choose these particular values (+1, —1, and —2)? This scoring system is
often used in practice. We reward matches and penalize mismatches and spaces. In Sec-
tion 3.6.2 we discuss in more detail the choice of these parameters.

One approach to computing the similarity between two sequences would be to gen-
erate all possible alignments and then pick the best one. However, the number of align-
ments between two sequences is exponential, and such an approach would result in an
intolerably slow algorithm. Fortunately, a much faster algorithm exists, which we will
now describe.

The algorithm uses a technique known as dynamic programming. It basically con-
sists of solving an instance of a problem by taking advantage of already computed solu-
tions for smaller instances of the same problem. Given two sequences s and ¢, instead of
determining the similarity between s and ¢ as whole sequences only, we build up the so-
lution by determining all similarities between arbitrary prefixes of the two sequences. We
start with the shorter prefixes and use previously computed results to solve the problem
for larger prefixes.

Let m be the size of s and n the size of ¢. There are m + 1 possible prefixes of s and
n + 1 prefixes of ¢, including the empty string. Thus, we can arrange our calculations in
an (m + 1) x (n+ 1) array where entry (i, j) contains the similarity between s[1..i] and
t[1.j]. -

Figure 3.1 shows the array corresponding to s = AARE and + = AGC. We placed s
along the left margin and ¢ along the top to indicate the prefixes more easily. Notice that
the first row and the first column are initialized with multiples of the space penalty (-2
in our case). This is because there is only one alignment possible if one of the sequences
is empty: Just add as many spaces as there are characters in the other sequence. The score
of this alignment is —2k, where k is the length of the nonempty sequence. Hence, filling
the first row and column is easy.

Now let us concentrate on the other entries. The key observation here is that we
can compute the value for entry (i, j) looking at just three previous entries: those for
(i-1,j),G—=1,j—1),and (i, j — 1). The reason is that there are just three ways
of obtaining an alignment between s[1..i] and 7[1..j], and each one uses one of these
previous values. In fact, to get an alignment for s[1..i]and r[1.. j], we have the following
three choices:
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1 -1 1
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FIGURE 3.1

Bidimensional array for computing optimal alignments. The
value in the upper left corner of cell (i, j) indicates whether
s[i] = t[j]. Indices of rows and columns start at zero.

e Align s[1..i] with ¢[1..j — 1] and match a space with [ ], or

e Align s[1..i — 1] with ¢[1..j — 1] and match s[i] with ¢{j], or

e Align s[1..; — 1] with ¢[1..j] and match s[i] with a space.

These possibilities are exhaustive because we cannot have two spaces paired in the
last column of the alignment. Scores of the best alignments between smaller prefixes are

already stored in the array if we choose an appropriate order in which to compute the
entries. As a consequence, the similarity sought can be determined by the formula



sim(s o] [y = 1)) — 2
sim(s[1..7], e[V j]) = max { sim(s{1..0 — 1], r[1..J —1]) + p(i. j) (3.2)
sim(s{1..i — 1], 2[1..7]) — 2,

where p(i, j)is +1if s[i] = t[j]and —1if s[i] # ¢[J]. The values of p(i, j) are written
in the upper left corners of the boxes in Figure 3.1. If we denote the array by a, this
equation can be rewritten as follows:

ali,j—1]-2
ali, jl=max{ ali —1,j— 114 p(i, j) (3.3)
ali =1, j]-2.

As we mentioned earlier, a good computing order must be followed. This is easy to
accomplish. Filling in the array either row by row, left to right on each row, or column by
column, top to bottom on each column, suffices. Any other order that makes sure a[i, j —
I}, ali =1, j —1],and a[i — 1, j] are available when a[7, j] must be computed is fine,
too.

Finally, we drew arrows in Figure 3.1 to indicate where the maximum value comes
from according to Equation (3.3). For instance, the value of a[ 1, 2] was taken as the max-
imum among the following figures.

all,1]=-2=-1
af0,1]-1=-3
al0, 2] — 2 = —6.

Therefore, there is only one way of getting this maximum value, namely, coming from
entry (1, 1), and that is what the arrows show.

Figure 3.2 presents an algorithm for filling in an array as explained. This algorithm
computes entries row by row. It depends on a parameter g that specifies the space penalty

Algorithm Similarity
input: sequences s and ¢
output: similarity between s and ¢
m < |s|
n <« {t|
fori < 0tom do
ali,0] «ixg
for j < Otondo
al0, j] « jxg
fori < 1 tom do
for j < 1tondo
afi, j] < max(ali -1, j] + g,
ali — 1, j — 11+ pG, j),
ali,j—11+g)
return a[m, n]

FIGURE 3.2

Basic dynamic programming algorithm for comparison of
1wo sequences.



(usually ¢ < 0) and on a scoring function p for pairs of characters. We have used ¢ =
=2, pla,b) =1ifa=b,and p(a,b) = —1if a # b in Figure 3.1.

Optimal Alignments

We saw how to compute the similarity between two sequences. Here we will see how to
construct an optimal alignment between them. The arrows in Figure 3.1 will be useful
in this respect. All we need to do is start at entry (m, n) and follow the arrows until we
get to (0, 0). Each arrow used will give us one column of the alignment. In fact, consider
an arrow leaving entry (7, j). If this arrow is horizontal, it corresponds to a column with
a space in s matched with ¢[j]; if it is vertical, it corresponds to s[i] matched with a
space in t; finally, a diagonal arrow means s[7] matched with ¢[j]. Observe that the first
sequence, s, is always placed along the vertical edge. Thus, an optimal alignment can
be easily constructed from right to left if we have the matrix a computed by the basic
algorithm. It is not necessary to implement the arrows expllcltly — a simple test can be
used to choose the next entry to visit.

Figure 3.3 shows a recursive algorithm for determmlng an optimal alignment given
the matrix a and sequences s and ¢. The call Alzgn(m n, len) will construct an optimal
alignment. The answer will be given in a pair of vectors align-s and align-r that will hold
in the positions 1../en the aligned characters, which can be either spaces or symbols from
the sequences. The variables align-s and align-t are treated as globals in the code. The

Algorithm Align
input: indices i, j, array a given by algorithm Similarity
output: alignment in align-s, align-t, and length in len
ifi =0and j = 0 then = Yo opem ©
len < 0 :
elseif/ > Oand a[i, j] =a[i — 1, j] + g then
Align(i — 1, j, len)
len < len + 1
align-s[len] « s[i]
align-t[len] « -
elseifi > 0and j > Oandali, j]=ali — 1, j — 1]+ p(i, j) then
Align(i — 1, j — 1, len)
len <« len + 1
align-s(len] < s[i]
align-t[len] <« t[j]
else /hastobe j>0andali, jl=ali,j—1]1+¢
Align(i, j — 1, len)
len < len + 1
align-s(len] « -
align-t{len] < t[j]

FIGURE 3.3

Recursive algorithm for optimal alignment.
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length of the alignment is also returned by the algorithm in the parameter /en. Note that
max(|s|, |t]) < len <m + n.

As we said previously, many optimal alignments may exist for a given pair of se-
quences. The algorithm of Figure 3.3 returns just one of them, giving preference to the
edges leaving (i, j) in counterclockwise order (see Figure 3.4).

maximum
preference

minimum
preference
FIGURE 3.4
Arrow preference.

As a result, the optimal alignment returned by this algorithm has the following general
characteristic: When there is choice, a column with a space in ¢ has precedence over a
column with two symbols, which in turn has precedence over a column with a space in
s For instance, when aligning s = ATAT with t = TATA, we get

-ATAT
TATA-

rather than

ATAT-
-TATA

which is the other optimal alignment for these two sequences. Similarly, when aligning
s = AA with r = AAAR, we get -

--aa

AAAA

although there are five other optimal alignments. This alignment is sometimes referred
to as the upmost alignment because it uses the arrows higher up in the matrix. To reverse
these preferences, we would reverse the order of the if statements in the code, obtaining
the downmost alignment in this case. A column appearing in both the upmost and down-
most alignments will be present in all optimal alignments between the two sequences
considered.

It is possible to modify the algorithm to produce all optimal alignments between s
and 7. We need to keep a stack with the points at which there are options and backtrack
to them to explore all possibilities of reaching (0, 0) through the arrows. However, there
might be a very large number of optimal alignments. In these cases, it is often advisable



to keep some sort of short representation of all or part of these alignments, for instance,™
the upmost and downmost ones.

Let us now determine the complexity of the algorithms described in this section.
The basic algorithm of Figure 3.2 has four loops. The first two do the initialization and
consume time O (m) and O (n), respectively. The last two loops are nested and fill the rest
of the matrix. The number of operations performed depends essentially on the number
of entries that must be computed, that is, the size of the matrix. Thus, we spend time
O (mn) in this part and this is the dominant term in the time complexity. The space used is
also proportional to the size of the matrix. Hence, the complexity of the basic algorithm
is O(mn) both for time and space. If the sequences have the same or nearly the same
length, say n, we get O (n?). That is why we say that these algorithms have quadratic
complexity.

The construction of the alignment — given the already filled matrix — is done in
time O (len), where len is the size of the returned alignment, which is O(m + n).

3.2.2 LOCAL COMPARISON

A local alignment between s and ¢ is an alignment between a substring of s and a sub-
string of 7. In this section we present an algorithm to find the highest scoring local align-
ments between two sequences.

This algorithm is a variation of the basic algorithm. The main data structure is. as
before, an (m + 1) x (n+ 1) array. Only this time the interpretation of the array values is
different. Each entry (i, j) will hold the highest score of an alignment between a suffix
of s[1..7] and a suffix of ¢[1..j]. The first row and the first column are initialized with
Ze10S.

For any entry (i, j), there is always the alignment between the empty suffixes of
s[1..i] and t[1.. ], which has score zero; therefore the array will have all entries greater
than or equal to zero. This explains in part the initialization above.

Following initialization, the array can be filled in the usual way, with a[i, j]depend-
ing on the value of three previously computed entries. The resulting recurrence is

ali, j~1]+g
oo | ali =1 =114 pG, )
Rt iy Ve
05

that is, the same as in the basic algorithm, except that now we have a fourth possibility,
not available in the global case, of an empty alignment.

In the end, it suffices to find the maximum entry in the whole array. This will be
the score of an optimal local alignment. Any entry containing this value can be used as
a starting point to get such an alignment. The rest of the alignment is obtained tracing
back as usual, but stopping as soon as we reach an entry with no arrow going out. Alter-
natively, we can stop as soon as we reach an entry with value zero.

In general, when doing local comparison, we are interested not only in the optimal
alignments, but also in near optimal alignments with scores above a certain threshold.
References to methods for retrieving near optimal alignments are given in the biblio-
graphic notes.



3.2.3 SEMIGLOBAL COMPARISON

In a semiglobal comparison, we score alignments ignoring some of the end spaces in the
sequences. An interesting characteristic of the basic dynamic programming algorithm is
that we can control the penalty associated with end spaces by doing very simple modi-
fications to the original scheme.

Let us begin by defining precisely what we mean by end spaces and why it might
be better to let them be included for free in certain situations. End spaces are those that
appear before the first or after the last character in a sequence. For instance, all the spaces
in the second sequence in the alignment below are end spaces, while the single space in
the first sequence is not an end space:

CAGCA-CTTGGATTCTCGG

4
---CAGCGTGG-------~ (3.4)

Notice that the lengths of these two sequences differ considerably. One has size 8, and the
other has 18 characters. When this happens, there will be many spaces in any alignment,
giving a large negative contribution to the score. Nevertheless, if we ignore end spaces,
the alignment is pretty good, with 6 matches, 1 mismatch, and 1 space.

Observe that this is not the best alignment between these sequences. In alignment
(3.5) below we present another alignment with a higher score (—12 against —19 of the
previous one) according to the scoring system we have been using so far.

CAGCACTTGGATTCTCGG (3.5)

In spite of having scored higher and having matched all characters of the second se-
quence with identical characters in the first one, this alignment is not so interesting from
the point of view of finding similar regions in the sequences. The second sequence was
simply torn apart brutally by the spaces just for the sake of matching exactly its char-
acters. If we are looking for regions of the longer sequence that are approximately the
same as the shorter sequence, then undoubtedly the first alignment (3.4) is more to the
point. This is reflected in the scores obtained when we disregard (that is, not charge for)
end spaces: (3.4) gets 3 points against the same —12 for (3.5).

Let us now describe a variation of the basic algorithm that will ignore end spaces.
Consider initially the case where we do not want to charge fogspaces after the last charac-
ter of 5. Take an optimal alignment in this case. The spaces after the end of s are matched
to a suffix of ¢. If we remove this final part of the alignment, the remaining is an align-
ment between s and a prefix of 7, with score equal to the original alignment. Therefore,
to get the score of the optimal alignment between s and ¢ without charge for spaces after
the end of s, all we need to do is to find the best similarity between s and a prefix of 7. But
we saw in Section 3.2.1 that the entry (i, j) of matrix a contains the similarity between
s[1..i]and r[1../]. Hence, it suffices to take the maximum value in the last row of a, that
18,

X n .
sim(s, 1) = maxa[m, j].
j=1

Notice that in this section we have changed the definition of sim(s. 1) so that it now in-
chcates similarity, ignoring final spaces in s. The expression above gives the score of the




best alignment. To recover the alignment itself, we proceed just as in the basic algorithm,
but starting at (m, k) where k is such that sim(s, t) = a[m, k].

An analogous argument solves the case in which we do not charge for final spaces
in . We take the maximum along the last column of a in this case. We can even combine
the two ideas and seek the best alignment without charging for final spaces in either se-
quence. The answer will be found by taking the maximum along the border of the matrix
formed by the union of the last row and the last column. In all cases, to recover an op-
timal alignment, we start at an array entry that contains the similarity value and follow
the arrows until we reach (0, 0). Each arrow will give one column of the alignment as in
the basic case.

Now let us turn our attention to the case of initial spaces. Suppose that we want the
best alignment that does not charge for initial spaces in s. This is equivalent to the best
alignment between s and a suffix of 7. To get the desired answer, we use an (m + 1) x
(n+ 1) array just as in the basic algorithm, but with a slight difference. Each entry (i, j)
now will contain the highest similarity between s[1..i] and a suffix of a prefix, which is
to say a suffix of #[1..7].

Doing that, it is clear that a[m, n] will be the answer. What is less clear, but nev-
ertheless true, is that the array can be filled in using exactly the same formula as in the
basic algorithm! That is Equation (3.3). The initialization will be different, however. The
first row must be initialized with zeros instead of multiples of the space penalty because
of the new meaning of the entries. We leave it to the reader to verify that Equation (3.3)
works in this case.

We can apply the same trick and initialize the first column with zeros, and by doing
this we will be forgiving spaces before the beginning of ¢. If in addition we initialize
both the first row and the first column with zeros, and proceed with Equation (3.3) for
the other entries, we will be computing in each entry the highest similarity between a
suffix of s and a suffix of 7. To find an optimal alignment, we follow the arrows from the
maximum value entry until we reach one of the borders initialized with zeros, and then
follow the border back to the origin.

Table 3.1 summarizes these variations. There are four places where we may not want
to charge for spaces: beginning or end of s, and beginning or end of r. We can com-
bine these conditions independently in any way and use the variations above to find the
similarity. The only things that change are the initialization and where to look for the
maximum value. Forgiving initial spaces translates into initializing certain positions with
zero. Forgiving final spaces means looking for the maximum along certain positions. But
filling in the array is always the same process, using Equation (3.3).

TABLE 3.1

Summary of end space charging procedures.

Place where spaces are not charged for | Action

Beginning of first sequence Initialize first row with zeros
End of first sequence Look for maximum in last row
Beginning of second sequence Initialize first column with zeros

End of second sequence Look for maximum in last column
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EXTENSIONS TO THE BASIC ALGORITHMS
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The algorithms presented in Section 3.2 are generally adequate for most applications.
Sometimes, however, we have a special situation and we need a better algorithm. In this
section we study a few techniques that can be employed in some of these cases.

One kind of improvement is related to the problem’s computational complexity. We
show that it is possible to reduce the space requirements of the algorithms from quadratic
(mn) to linear (m+n), at a cost of roughly doubling computation time. On the other hand,
we show a way of reducing also the time complexity, but this only works for similar
sequences and for a certain family of scoring parameters.

Another improvement has to do with the biological interpretation of alignments.
From the biological point of view, it is more realistic to consider a series of consecutive
spaces instead of individual spaces. We study variants of the basic algorithms adapted
to this point of view.

3.3.1 SAVING SPACE

The quadratic complexity of the basic algorithms makes them unattractive in some ap-
plications involving very long sequences or repeated comparison of several sequences.
No algorithm is known that uses asymptotically less time and has the same generality,
although faster algorithms exist if we restrict ourselves to particular choices of the pa-
rameters.

With respect to space, however, it is possible to improve complexity from quadratic
to linear and keep the same generality. The price to pay is an increase in processing
time, which will roughly double. Nevertheless, the asymptotic time complexity is still
the same, and in many cases space and not time is the limiting factor, so this improvement
is of great practical value. In this section we describe this elegant space-saving technique.

We begin by noticing that computing sim(s, #) can be easily done in linear space.
Each row of the matrix depends only on the preceding one, and it is possible to perform
the calculations keeping only one vector in memory, which will hold partly the new row
being computed and partly the previous row. This is done In the code shown in Figure 3.5.
Obviously, the same is valid for columns, and if m < n, using this trick with the columns
uses less space. Notice that at the end of each iteration in the loop on i in Figure 3.5 the
vector a contains the similarities between s[1..7] and all prefixes of . This fact will be
used later.

The hard part is to get an optimal alignment in linear space. The algorithm we saw
carlier depends on the whole matrix to do its job. To remove this difficulty, we use a
divide and conquer strategy, that is, we divide the problem into two smaller subproblems
and later combine their solutions to obtain a solution for the whole problem.

The key idea is the following. Fix an optimal alignment and a position / in s, and
consider what can possibly be matched with s[i] in this alignment. There are only two
possibilities:



Algorithm BestScore
input: sequences s and ¢
output: vector a
m <« |s|
n <« lt|
for j < Otondo
aljl < jxg
fori < 1tomdo
old « a[0]
al0] «<ixg
for j < 1tondo
temp < alj]
alj] < max(alj] + g,
old + p(i, j),
alj —11+g)
old « temp

FIGURE 3.5

Algorithm for similarity in linear space. In the end, a[n]
contains sim(s, t).

1. The symbol ¢[j] will match s[¢], for some j in 1..n.
2. A space between ¢[j] and ¢[j + 1] will match s[i], for some j in 0..n.

In the second case the index j varies between 0 and n because there is always one
more position for spaces than for symbols in a sequence. We also abused notation when
J = 0orj = n. What we mean in these cases is that the space will be before [1] or

after t[n], respectively.
. X
Optimal ( " )

Let
denote an optimal alignment between x and y. Every alignment between s and ¢, optimal
or not, satisfies (1) or (2). In particular, our fixed optimal alignment must satisfy one of
these as well. If it satisfies (1), to obtain all of it we must concatenate

g s(l..i—1] s[i] . sli +1..m]
Opnmal( Mj— 1] ) + (] + 0pt1ma1< 7 L] ) (3.6)

while in case (2) we must concatenate

. s[1..0 —1] sli] : sli + 1..m)
()pumal( 11..j] ) + U7 Opllmal( ¢[j + Ln]) ) (3.7)

These considerations give us a recursive method to compute an optimal alignment, as
long as we can determine, for a given i, which one of the cases (1) or (2) occurs and
what is the corresponding value of ;.

This can be done as follows. According to Equations (3.6) and (3.7) we need, for
fixed i, the similarities between s[1..i — 1] and an arbitrary prefix of 7, and also the simi-
larities between s[7 4 1..m] and an arbitrary suffix of ¢. If we had these values, we could



explicitly compute the scores of the j alignments represented in (3.6) and of the j + 1
alignments represented in (3.7). By choosing the best among these, we will have the in-
formation necessary to proceed in the recursion.

As we saw earlier, it is possible to compute in linear space the best scores between
a given prefix of s and all prefixes of ¢ (see Figure 3.5). A similar algorithm exists for
suffixes. Hence, our problem is almost solved. The only thing left is to decide which
value of i to use in each recursive call. The best choice is to pick i as close as possible to
the middle of the sequence. The complete code appears in Figure 3.6. In this code, the
call

BestScore(s[a..i — 1], t[c..d], pref-sim)

returns in pref-sim the similarities between s[a..i — 1] and t[c..j] forall j inc — 1..d.
Analogously, the call

BestScoreRev(s{i + 1..b], t[c..d], suff-sim)

returns in suff-sim the similarities between s{i +1..b] and ¢[j +1..d] forall j inc—1..d.
The call

Align(1,m, 1, n, 1, len)

will return an optimal alignment in the global variables align-s and align-t, and the size
of this alignment in /en.

One last concern remains: Can the processing time go up too much with these ad-
ditional calculations? Not really. In fact, the time roughly doubles, as we show below.

Let 7 (m, n) be the number of times a maximum is computed in the internal loop of
BestScore or BestScoreRev as a result of a call Align(a, b, ¢, d, start, end) where m =
b—a+1landn = ¢ —d + 1. It is easy to see that the total processing time will be
proportional to 7 (m, n) plus linear terms due to control and initializations. We claim
that 7(m, n) < 2mn.

A proof can be developed by induction on m. For m = 1 no maximum computations
will occur, so obviously 7(1,n) < 2n. Form > 1 we will have a call to BestScore
with at most mn /2 maximum computations, another such amount for BestScoreRev, and
two recursive calls to Align, producing at most 7(m /2, j) and T'(m /2, n — j) maximum
computations. Adding this all up, we have .

mn mn

=i phroal T(m/2, j) +T(m/2,n— j)
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T(m,n)
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m.;r +mj+mn—j)

=2mn,

proving the claim.

3.3.2 GENERAL GAP PENALTY FUNCTIONS

Let us define a gap as being a consecutive number & = | of spaces. It is generally ac-
cepted that, when mutations are involved. the occurrence of a gap with k spaces is more
probable than the occurrence of k isolated spaces. This is because a gap may be due to a



Algorithm Align
input: sequences s and ¢, indices a, b, ¢, d, start position start
output: optimal alignment between s[a..b] and t[c..d] placed in vectors align-s
and align-t beginning at position start and ending at end
if s[a..b] empty or t{c..d) empty then
/ Base case: s[a..b] empty ort[c..d] empty
Align the nonempty sequence with spaces
end <« start + max(|s|, |t])
else
/ General case
i < [(a+b)/2]
BestScore(s[a..(i — 1)], t[c..d], pref-sim)
BestScoreRev(s[(i + 1)..b], t[c..d], suff-sim)

posmax <« ¢ — 1
typemax <— SPACE
vmax <« pref-sim{c — 1] + g + suff-sim[c — 1]
for j < ctoddo
if pref-sim(j — 11+ p(i, j) + suff-sim[j] > vmax then
posmax <« j
typemax < SYMBOL
vmax <« pref-sim[j — 1] + p(i, j) + suff-sim[ ]

if pref-sim| j] + g + suff-sim{j] > vmax then
posmax < j
fypemax < SPACE
vmax <« pref-sim[ j] + g + suff-sim[j]

if rypemax = SPACE then
Align(a,i — 1, ¢, posmax, start, middle)
align-s[middle] <« s[i]
align-t{middle) < SPACE
Align(i + 1, b, posmax + 1, d, middle + 1, end)
else / typemax = SYMBOL
Align(a,i — 1, ¢, posmax — 1, start, middle)
align-s{middle] « s[i)
align-t[middle] < t[posmax)]
Align(i + 1, b, posmax + 1, d, middle + 1, end)

FIGURE 3.6

An optimal alignment algorithm that uses linear space.

single mutational event that removed a whole stretch of residues, while separated spaces
are most probably due to distinct events, and the occurrence of one event is more com-
mon than the occurrence of several events.

Up to now, we have not made any distinction between clustered or isolated spaces.
This means that a gap is penalized through a linear function. Denoting by w (k), for k >
1, the penalty associated with a gap with k spaces, we have



w(k) = bk,

where b is the absolute value of the score associated with a space.

In this section we present an algorithm that computes similarities with respect to
general gap penalty functions w. The algorithm has time complexity O (n*) for sequences
of length n and is therefore slower than the basic algorithm. The algorithm still has a
lot in common with the basic algorithm. The main difference is the fact that the scoring
scheme is not additive, in the sense that we cannot break an alignment in two parts and
expect the total score to be the sum of the partial scores. In particular, we cannot sepa-
rate the last column of an alignment and expect the alignment score to be the sum of the
score for this last column and the score for the remaining prefix of the alignment. How-
ever, score additivity is still valid if we break the alignment in block boundaries. Every
alignment can be uniquely decomposed into a number of consecutive blocks. There are
three kinds of blocks, enumerated below.

1. Two aligned characters from &

2. A maximal series of consecutive characters in r aligned with spaces in s

3. A maximal series of consecutive characters in s aligned with spaces in ¢

The term maximal means that it cannot be extended further. Figure 3.7 shows an
alignment and its blocks. Blocks in the first category above receive score p(a, b), where

a and b are the two aligned characters. Blocks in categories ( 2) and ( 3) receive score
—w(k), where k is the length of the gap series.

5 AAC---AATTCCGACTAC

5 ACTACCT------ CGC--

S Alajlc|---|a]|TaTcce |a|c| T aAc

$ Alc|T|lacc| T | ——mmm- cle|c|--
FIGURE 3.7

An alignment and its blocks.

-

The scoring of an alignment is not done at the cotumn level now but rather at the
block level. Accordingly, only if we break in block boundaries can we expect score ad-
ditivity to hold. This implies some significant changes in our dynamic programming al-
gorithm to compute the similarity under a general gap penalty function. Instead of rea-
soning on the last column of the alignment, we must reason on the last block. Further-
more, blocks cannot follow other blocks arbitrarily. A block of type 2 or 3 above cannot
follow another block of the same type. This requires that we keep, for each pair (i, j).
not only the best score of an alignment between prefixes s(1../] and ¢[1.. ], but rather
the best score of these prefixes that ends in a particular type of block.

To compare sequence s of length m to sequence 1 of length n, we use three arrays of
size (m+1) x (n+ 1), one for each type of ending block. Array a is used for alignments
ending in character-character blocks; b is used for alignments ending in spaces in s and
c1s used for alignments ending with spaces in 7.



Initialization of the first row and column is done as follows, according to the mean- éf
ing of the arrays:

af0,0]=0
b[0, j1 = —w(j)
cli, 0] = —w().

All other values in the initial row and column should be set to —oo to make them harm-
less in the maximum computations that use them.

We now ask the standard question — What type of block terminates our optimal
alignment? The answer determines which array, a, b, or ¢, will be updated. The recur-
rence relations are as follows:

ali —1,j - 1]
ali, j1=p@, j)+max{ bli — 1, — 1]
cli—1,j7—1]
R ali, j — k] = w(k), forl <k < j
b["”—m‘”‘l cli, j = k] = w(k), for 1 <k < |
i, ] = ali =k, j] —wk), forl <k <i
ALl =IBKT 46 o ol ot = B 2,

As usual, p(i, j) indicates the score of a matching between s{i] and #[ j].

Notice that entries in arrays b and ¢ depend on more than one earlier value, be-
cause the last block can have variable length. Also, when computing an entry of b, we do
not look at previous b entries, because type 2 blocks cannot immediately follow type 2
blocks. Likewise, ¢ entries do not depend directly on earlier ¢ entries. To obtain the final
answer, that is, the value of sim(s, ¢), we take the maximum among a[m, n], b[m, n],
and c[m, n].

The time complexity of the algorithm is O (mn? +m?*n). To see this, count the num-
ber of times some entry of some array is read, based on the given formulas. This is the
dominant term in the time complexity. It is easy to see that to compute ali, j], b[i, j],
and c[i, j], we need to perform

3425420
accesses to previous array entries, which sum up to
m n
Y > B +2j+2i)
i=] j=I

accesses for the entire arrays. The sum above can be computed in closed form as follows.

n
Y Qi +2j+3)=2ni+nln+ 1)+ 3n = 2ni +n® + 4n
j=1

m
py ) o ) 5 ” s
Z(Bm +n7+4n) = nm(m+ 1) +mn~ +dmn = m°n + Smn + mn>.
=1
Getting an optimal alignment is straightforward. The same ideas used in the pre-
vious algorithms work. We trace back in the arrays the entries that contributed to the




maximum computations, at the same time keeping track of which array we used.

Thus, we see that it is possible to use any gap penalty function. However, the price to
pay for this generality is a considerable ircrease in computing time and in storage space
(the three auxiliary arrays). This can be critical when sequence comparison by dynamic
programming is the bottleneck of a larger computation.

3.3.3 AFFINE GAP PENALTY FUNCTIONS

We have seen that the basic algorithm with a linear gap function runs in O (n?) time, for
sequences of length n; we have also seen that allowing general gap functions makes the
running time go up to O (n*). The question we now pose is: If we use a less general gap
penalty function but one that still charges less for 2 gap with k spaces than for k isolated
spaces, can we still get an O(n?) algorithm? In this section we show that this is in fact
possible.

If we want to introduce the idea that k spaces together are more probable than k
isolated spaces (or at least equally probadle), we must have

wk) < kw(l)
or, in general,
wiky + ka + - + k) Swiky) + wika) + -+ wiky,). (3.8)

A function w that satisfies Equation (3.8)is called a subadditive function. An affine func-
tion is a function w of the form w(k) = h + gk. k > 1, with w(0) = 0. It will be
subadditive if &, g > 0.

Another way of thinking about a function w as above is by saying that the first space
in a gap costs h + g, while the other spaces cost g. This cost is based on the difference
Aw(k) = w(k) — w(k — 1) of the penal:y from k — 1 spaces to k spaces.

Let us now describe the dynamic programming algorithm for this case. The main
difference between the basic algorithm and this one is that here we need to make a dis-
tinction between the first space in a gap and the others, so that they can be penalized
accordingly. This is accomplished by the use of three arrays, a. b, and ¢, as was done for
the general gap function case. The entries in each one of these arrays have the following
meaning: ~

ali, j] = maximum score of an alignment between s[1..i] and
t(1..j] that ends in s[i] matched with ¢[].

b(i. j] = maximum score of an alignment between s[1..] and
t(1..7) that ends in a space matched with [ /].

c[i. j} = maximum score of an alignment between s[1..i] and
t[1..j] that ends in s[i ] matched with a space.

The entries (i, j) of these arrays depend on previous entries according to the fol-
lowing formulas, validfor 1 <i smard1 < j <m

ali-1,j-1]

afi. jl1= pG. jy+max{ bli —1.j—1]}
cli—1.j~1]



—(th+g)+ali,j—1]
bli, j] = max —g+bli,j-1]
—~(h+g)+cli,j—1]
~th+g)+ali—1,J]
cli,j]=max{ —(h+g) +bli —1, ]
—g+cli -1, j].

As before, p(i, j) indicates the score of a matching between s[i] and 7{;].

Let us understand the preceding formulas. The formula for a[i, j] includes the term
p(i, j), which is the score of the last column, plus the best score of an alignment between
the prefixes s[1..i — 1] and r[1..j — 1].

For b[i, j], we know that the last column will contain a space. We still have to check
whether this is the first space of a gap or a continuation space, so that we can penalize
it correctly. Furthermore, we need to read from the arrays the values of the best scores
for the prefixes involved, namely, s[1..i] and ¢{1..j — 1]. That is why we always look
atentries (i, j — 1) in the formulas for b[i, j]. Alignments corresponding to a[i, j — 1]
and c[i, j — 1] do not end with a space in s, hence the final space must be penalized
as the first of a gap, that is, subtracting h + g. Alignments corresponding to b{i, j — 1]
already have a space in s at the end, so the space matched with 7 j] must be penalized as
a continuation space, that is, subtracting g. These three possibilities are exhaustive, so
taking the maximum among them gives the correct value. A similar argument explains
the formula for c[i, j].

The initialization of the arrays requires some care. Again, it will depend on whether
we want to charge for initial spaces. To make it concrete, let us assume that we want to
charge for all spaces, leaving to the reader the task of adapting the algorithm to the other
cases.

The entries that need initialization are those with indices of the form (i, 0) for 0 <
i <mor(0, j)for0 < j < n. The initialization has to be done according to the contents
of each array as given in the definition. Thus, for array b, for instance, we have

bli,0]==0c for 0<i<m and
bl0, jl=—(h+gj) for 1 <j<n.

We assign the value —oc to b[i, 0] to be consistent with the definition, because there
is no alignment between s[1..i] and r[1..0] (an empty sequence) in which a space is
matched with t[0], since there is no [0]. Hence, if there are no alignments, the maximum
value must be —oc, which is the identity for maximum computations. On the other hand,
there is exactly one alignment ending with a space in s between s[1..0] (empty sequence
again) and ¢[1.. ], and this alignment has score —(h + gj).

In an analogous manner we initialize ¢ letting

c[li,0]=~(h+gi) for 1 <i<m and

cl0, jl]==oc for 0<j<n,
and, finally,
al0,0] =0,
ali,0))]=—o¢c for l<i<m and

al0, jl=—-o0c for 1 <

1o



In the initialization of @ we used alignments that do not end in spaces, generalizing
the given definition. To get the final result, that is, the similarity, it suffices to take the
maximum among a(m, n], b[m, n}, and c[m, n], given that this covers all possibilities.

We can construct an optimal alignment in a manner analogous to the case of general
gap functions. Just trace back from the final position (m, n) the entries that were chosen
as maxima in the process of filling the arrays until the initial position (0, 0) is reached.
During this traceback, it is necessary to remember not only the current position but also
which array (a, b, or c) it belongs to.

We leave to the reader the task of verifying that the time complexity of this algorithm
is indeed O(mn). The version just described has space complexity O (mn) as well, but
linear-space versions have been.developed (see the bibliographic notes).

3.3.4 COMPARING SIMILAR SEQUENCES

Two sequences are similar when they “look alike™ in some sense. We have already devel-
oped our intuition about the concept of similarity and have formalized it through align-
ments and scores. So, for us, two sequences are similar when the scores of the opti-
mal alignments between them are very close to the maximum possible (where “maxi-
mum possible” will be made precise). This section is about faster algorithms to find good
alignments in this case. We analyze global alignments only.

Let us first treat the case where the two sequences of interest, s and ¢, have the same
length n. This is a fair assumption, given that we are focusing on similar sequences. If s
and 1 have the same length, the dynamic programming matrix is a square matrix and its
main diagonal runs from position (0, 0) to (n, n). Following this diagonal corresponds to
the unique alignment without spaces between s and . If this is not an optimal alignment,
we need to insert some spaces in the sequences to obtain a better score. Notice that spaces
will always be inserted in pairs, one in s and one in 1.

As we insert these space pairs, the alignment is thrown off the main diagonal. Con-
sider for a moment the following two sequences:

s = GCGCATGGATTGAGCGA
t = TGCGCCATGGATGAGCA.

-

The optimal alignments correspond to paths that reach dp to the diagonal twice removed
from the main one, as in Figure 3.8. The best alignments include two pairs of spaces.
In this case, the number of space pairs is equal to how far the alignment departed from
the main diagonal, but this does not always happen. One thing is certain, though: The
number of space pairs is greater than or equal to the maximum departure.

The basic idea then goes as follows. If the sequences are similar, the best alignments
have their paths near the main diagonal. To compute the optimal score and alignments,
it is not necessary to fill in the entire matrix. A narrow band around the main diagonal
should suffice.

The algorithm KBand in Figure 3.9 performs the matrix fill-in in a band of horizon-
tal (or vertical) width 2k + 1 around the main diagonal. At the end, the entry a[n, n]
contains the highest score of an alignment confined to that band. This algorithm runs in
time O (kn). which is a big win over the usual O(n*) if k is small compared to n.
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FIGURE 3.8

An optimal alignment and its corresponding path in the
dynamic programming matrix. A line is drawn along the
main diagonal.

Observe that we do not use entries outside of the k-strip at all. We do not initialize
them, and we do not consult them for maximum computations. To test whether a certain
position (i, j) is inside the k-strip, we use the following criterion:

InsideStrip(i, j, k) = (—=k < i — j < k).

As in the other dynamic programming algorithms, each entry a[i, j] depends on a[i —
1, jl,ali—1, j—1),and a[i, j — 1]. In the code, we need not test position (i —1, j —1),
because it is in the same diagonal as (i, j), so it will always be inside the strip. Tests must
be performed for (i — 1, j) and (i, j — 1), which may be outside the strip when (i, j) is
in the border.

How can we use algorithm KBand? We choose a value for k and run the algorithm. If
aln, n] is greater than or equal to the best score that could possibly come from an align-
ment with k + 1 or more space pairs, we are lucky: We have found an optimal alignment
with just O (kn) steps. The best possible score, given that we have at least k + 1 space
pairs, is

Mn—k—1)+2k+ g, (3.9)

which is computed assuming that there are exactly k + 1 space pairs and that the other
pairs are matches. Here M is the score of a match, and g is added for each space. We will
assume that M > O and g < 0.
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Algorithm KBand
input: sequences s and ¢ of equal length n, integer &
output: best score of alignment at most k diagonals away from main diagonal
n < |s|
fori < Otokdo
ali,0] «ixg
for j <~ Otokdo
al0, j] < jxg
fori <« 1 tondo
ford « —k tok do
J<i+d
ifl<j<nds (s
// compute maximum among predecessors
ali, j1 < ali = 1,j =11+ pG, j)
if InsideStrip(i — 1, j, k) then
ali, j} < max(ali, j},ali — 1, j1+g)
if InsideStrip(i, j — 1, k) then
a(i, j]1 <« max(ali, jl,ali, j — 11+ g)
return afn, nj

FIGURE 3.9

Algorithm for k-strip around main diagonal.

If a[n, n]is smaller than the quantity (3.9), we double k and run the algorithm again.
If the initial value of k is 1, further values will be powers of two. The stop condition
becomes

aln,n) > Mm —k—1)+2(k+ 1)g,

which is equivalent to

5 Mn — ai(n, n] _1
- M —2g

At this point, we have already run the algorithm many times, each time with a larger

k, so that the total complexity is
~

n+2n+4n+ -+ kn < 2kn,

assuming we use powers of two. To bound this total complexity, we need an upper bound
on k. Now, we did not stop earlier, so

k  Mn — agp(n, n)
# e g

2 M —2g

If ag[n, n] = ai2{n, n], then this is the optimum score sim(s, 1), and our bound is

b (MBS )
M —-2g

Wag{n.n} = a; »[n. n), then optimal alignments have more than & /2 pairs of spaces.
p g p




and therefore

k k
sim(s,t)5M(n—§—1>+2(5+1>g,

<o (Mr—simG.D )
M —2g

which leads to

almost the same bound as above.

Observe that M — 2g is a constant. The time complexity is then O(dn), where d
is the difference between the maximum possible score Mn — the score of two identical
sequences — and the optimal score. Thus, the higher the similarity, the faster the answer.

It is straightforward to extend this method to general sequences, not necessarily with
the same length. Space-saving versions can also be easily derived.

—
COMPARING MULTIPLE SEQUENCES

N :: B

So far in this chapter we have concentrated on the comparison between a pair of se-
quences. However we often are given several sequences that we have to align simultane-
ously in the best possible way. This happens, for example, when we have the sequences
for certain proteins that have similar function in a number of different species. We may
want to know which parts of these sequences are similar and which parts are different.
To get this information, we need to build a multiple alignment for these sequences, and
that is the topic of this section.

The notion of multiple alignment is a natural generalization of the two-sequence
case. Let sy, ..., 5x be a set of sequences over the same alphabet. A multiple alignment
involving si, . .., 5 is obtained by inserting spaces in the sequences in such a way as to
make them all of the same size. It is customary to place the extended sequences in a ver-
tical list so that characters — or spaces — in corresponding positions occupy the same
column. We further require that no column be made exclusively of spaces. Figure 3.10
shows a multiple alignment involving four short amino acid sequences. (Multiple align-
ments are more common with proteins, so in some of our examples in this section we
use sequences of amino acids.)

One important issue to decide in multiple alignment is the precise definition of the

MQPILLL
MLR-LL~-
MK-ILLL
MPPVLIL

FIGURE 3.10

Multiple alignment of four amino acid sequences.



