Strumenti Utente

Strumenti Sito


mds:dsd:start

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisioneRevisione precedente
Prossima revisione
Revisione precedente
mds:dsd:start [31/08/2025 alle 12:39 (3 settimane fa)] – [Exams] Salvatore Ruggierimds:dsd:start [16/09/2025 alle 19:04 (2 giorni fa)] (versione attuale) Salvatore Ruggieri
Linea 1: Linea 1:
-====== Decision Support Systems - Module I (6 ECTS): Decision Support Databases A.Y. 2024/25 ======+====== Decision Support Systems - Module I (6 ECTS): Decision Support Databases A.Y. 2025/26 ======
  
 This is the first module of [[mds:dss:start|Decision Support Systems]] (801AA, 12 ECTS), previously called [[mds:dsd:2021|Decision Support Databases]] (662AA, 6 ECTS).  This is the first module of [[mds:dss:start|Decision Support Systems]] (801AA, 12 ECTS), previously called [[mds:dsd:2021|Decision Support Databases]] (662AA, 6 ECTS). 
Linea 19: Linea 19:
  
 ^  Day of Week  ^  Hour  ^  Room  ^  ^  Day of Week  ^  Hour  ^  Room  ^ 
-|  Tuesday  |  9:00 - 11:00  |  Fib  | +|  Tuesday  |  9:00 - 11:00  |  Fib H-Lab  | 
-|  Wednesday  |  16:00 - 18:00  |  Fib H-Lab  | +|  Wednesday  |  11:00 - 13:00  |  Fib C1  | 
-|  Thursday  |  11:00 - 13:00  |  Fib A1  | +|  Thursday  |  11:00 - 13:00  |  Fib  | 
-|  Friday  |  11:00 - 13:00  |  Fib C1  |+|  Friday  |  9:00 - 11:00  |  Fib  |
  
  
-A [[https://teams.microsoft.com/l/team/19%3AqCllWc8f7UVglFSVL_MhR4ZjaLlWkUjUvJ3ROQdLSOA1%40thread.tacv2/conversations?groupId=14d45f09-9ae8-4f9f-afd1-114348877094&tenantId=c7456b31-a220-47f5-be52-473828670aa1|Teams channel]] is used to post news, Q&A, and other stuff related to the course. The lectures will be only in presence and will **NOT** be live-streamed, but recordings of the lecture or of the previous years will be made available here for non-attending students. +A [[https://teams.microsoft.com/l/team/19%3AusqwlFga1t005ok91Po4hLFJokX_ujiGafUo6JWWRq01%40thread.tacv2/conversations?groupId=a9d127ae-4a11-4a6b-a045-555d1bab8b85&tenantId=c7456b31-a220-47f5-be52-473828670aa1|Teams channel]] is used to post news, Q&A, and other material related to the course. The lectures will be only in presence and will **NOT** be live-streamed, but recordings of the lecture or of the previous years will be made available here for non-attending students. 
  
 =====Mandatory teaching material ===== =====Mandatory teaching material =====
Linea 41: Linea 41:
 =====Preliminary program and calendar===== =====Preliminary program and calendar=====
  
-  * [[https://esami.unipi.it/programma.php?c=61299&aa=2023|Preliminary program]]. +  * [[https://unipi.coursecatalogue.cineca.it/insegnamenti/2025/52766_691599_78001/2022/52766/11357?coorte=2024&schemaid=9090|Preliminary program]]. 
-  * [[https://didattica.di.unipi.it/en/master-programme-in-data-science-and-business-informatics/academic-calendar-2024-2025/|Calendar of lessons]].+  * [[https://didattica.di.unipi.it/en/master-programme-in-data-science-and-business-informatics/academic-calendar-2025-2026/|Calendar of lessons]].
  
  
 =====Exams===== =====Exams=====
  
-__//There are no mid-terms//.__ The exam of Decision Support Systems (801AA, 12 ECTS) consists of a written part and an oral part on the topics of the first module (50% of the final grade), and a lab project with discussion on the topics of the second module (50% of the final grade). The written part consists of open questions, small exercises, and a Data Warehouse design problem. Each question is assigned a grade, summing up to 30 points. Students are admitted to the oral part if they receive a grade of at least 18 points. Oral consists of critical discussion of the written part and of open questions and problem solving on the topics of the course. See [[mds:lbi:start|Module II: Laboratory of Data Science]] for the lab project. **The project of Module II can be discussed only after passing Module I and not later than one year since then.**+The exam of Decision Support Systems (801AA, 12 ECTS) consists of
 +  * a written part and an oral part on the topics of the first module (50% of the final grade). The written part consists of open questions, small exercises, and a Data Warehouse design problem. Each question is assigned a grade, summing up to 30 points. Students are admitted to the oral part if they receive a grade of at least 18 points. Oral consists of critical discussion of the written part and of open questions and problem solving on the topics of the course. **The written part of the first module can be passed during the semester through two mid-terms (//compitini//): one early in November, and one at mid-December.** 
 +  * and a lab project with discussion on the topics of the second module (50% of the final grade). See [[mds:lbi:start|Module II: Laboratory of Data Science]] for the lab project. **The project of Module II can be discussed only after passing Module I and not later than one year since then.** 
  
 Registration to the written exam is mandatory (pay attention at the deadlines!): [[https://esami.unipi.it/esami2/|register here]]\\ Registration to the written exam is mandatory (pay attention at the deadlines!): [[https://esami.unipi.it/esami2/|register here]]\\
Linea 66: Linea 69:
  
 ^ # ^ Date ^ Room ^ Topic ^ Mandatory teaching material ^  ^ # ^ Date ^ Room ^ Topic ^ Mandatory teaching material ^ 
-|01| 17/09 9-11 | Fib-| Course overview. Need for Strategic Information. Information Systems in Organizations: Operational and Decision support. Data driven Decision support systems and Business Intelligence applications.  [[http://131.114.72.230/dsd/video/dsd01_20220915.mp4|rec01 (.mp4)]] | **[DW: 1.1-1.2]**  {{:mds:dsd:dsd01.pdf|slides01 (.pdf)}} | +|01| 16/09 9-11 | Fib-L1 | Course overview. Need for Strategic Information. Information Systems in Organizations: Operational and Decision support. Data driven Decision support systems and Business Intelligence applications.  [[http://131.114.72.230/dsd/video/dsd01_20220915.mp4|rec01 (.mp4)]] | **[DW: 1.1-1.2]**  {{:mds:dsd:dsd01.pdf|slides01 (.pdf)}} | 
-|02| 19/09 11-13 | Fib-A1 | The data warehouse (DW) and DW architectures. What to model in a DW: Facts, measures, dimensions and dimensional hierarchies. Examples of data analysis. Exercises on data analysis in SQL.  [[http://131.114.72.230/dsd/video/dsd02_20180919.flv|rec02 (.flv)]] | **[DW: 1.3-1.7]**  {{:mds:dsd:dsd02.pdf|slides02 (.pdf)}} | +|02| 17/09 11-13 | Fib-C1 | The data warehouse (DW) and DW architectures. What to model in a DW: Facts, measures, dimensions and dimensional hierarchies. Examples of data analysis. Exercises on data analysis in SQL.  [[http://131.114.72.230/dsd/video/dsd02_20180919.flv|rec02 (.flv)]] | **[DW: 1.3-1.7]**  {{:mds:dsd:dsd02.pdf|slides02 (.pdf)}} | 
-|03| 20/09 11-13 | Fib-L1 | Recalls: the Object Data Model. {{:mds:dsd:dsd03.assignments.pdf|Exercises at home (Assignments I and II) for the lesson 05}}. [[http://131.114.72.230/dsd/video/dsd03_20210921.mp4|rec03 (.mp4)]] | **[DB: 1.1, 2.1-2.5]**  {{:mds:dsd:dsd03.pdf|slides03 (.pdf)}} | +|03| 18/09 11-13 | Fib-| Recalls: the Object Data Model. {{:mds:dsd:dsd03.assignments.pdf|Exercises at home (Assignments I and II) for the lesson 05}}. [[http://131.114.72.230/dsd/video/dsd03_20210921.mp4|rec03 (.mp4)]] | **[DB: 1.1, 2.1-2.5]**  {{:mds:dsd:dsd03.pdf|slides03 (.pdf)}} | 
-|04| 24/09 9-11 | Fib-C | DW modeling. Representation of facts, measures, dimensions, attributes and dimensional hierarchies. Key steps in conceptual design from business questions. How to identify facts, measures, dimensions, dimensional attributes and hierarchies. Examples. {{:mds:dsd:dsd04.assignments.pdf|Exercises at home (University exams) for the lesson 05}}.  [[http://131.114.72.230/dsd/video/dsd04_20170929.flv|rec04 (.flv)]] | **[DW: 2.1]**  {{:mds:dsd:dsd04.pdf|slides04 (.pdf)}} | +|04| 19/09 9-11 | Fib-C | DW modeling. Representation of facts, measures, dimensions, attributes and dimensional hierarchies. Key steps in conceptual design from business questions. How to identify facts, measures, dimensions, dimensional attributes and hierarchies. Examples. {{:mds:dsd:dsd04.assignments.pdf|Exercises at home (University exams) for the lesson 05}}.  [[http://131.114.72.230/dsd/video/dsd04_20170929.flv|rec04 (.flv)]] | **[DW: 2.1]**  {{:mds:dsd:dsd04.pdf|slides04 (.pdf)}} | 
-|05| 26/09 11-13 | Fib-A1 | The example of a data model for Master program exams. Presentation and discussion of the Hospital case study.  {{:mds:dsd:dsd05.assignments.pdf|Exercises at home (Assignment III) for the lesson 07}}.  [[http://131.114.72.230/dsd/video/dsd05_20210928.mp4|rec05 (.mp4)]] | **[DW: 2.1, A.1]**  {{:mds:dsd:dsd05.pdf|slides05 (.pdf)}} | +|05| 23/09 9-11 | Fib-L1 | The example of a data model for Master program exams. Presentation and discussion of the Hospital case study.  {{:mds:dsd:dsd05.assignments.pdf|Exercises at home (Assignment III) for the lesson 07}}.  [[http://131.114.72.230/dsd/video/dsd05_20210928.mp4|rec05 (.mp4)]] | **[DW: 2.1, A.1]**  {{:mds:dsd:dsd05.pdf|slides05 (.pdf)}} | 
-|06| 27/09 11-13 | Fib-C1 | Recalls: the relational model and relational algebra. Exercises. {{:mds:dsd:dsd06.assignments.pdf|Exercises at home (Assignment IV) for the lesson 08}}. [[http://131.114.72.230/dsd/video/dsd06_20211001.mp4|rec06 (.mp4)]] | **[DB: 3.1-3.2]**  {{:mds:dsd:dsd06.pdf|slides06 (.pdf)}} | +|06| 24/09 11-13 | Fib-C1 | Recalls: the relational model and relational algebra. Exercises. {{:mds:dsd:dsd06.assignments.pdf|Exercises at home (Assignment IV) for the lesson 08}}. [[http://131.114.72.230/dsd/video/dsd06_20211001.mp4|rec06 (.mp4)]] | **[DB: 3.1-3.2]**  {{:mds:dsd:dsd06.pdf|slides06 (.pdf)}} | 
-|07| 01/10 9-11 | Fib-C | More about data mart conceptual design, changing dimensions and advanced data model features. From Conceptual design to relational logical design. Star model, snowflake, and constellation. Logical schema of the Hospital case study. {{:mds:dsd:dsd07.assignments.pdf|Exercises at home (Travel agency) for the lesson 09}}.  [[http://131.114.72.230/dsd/video/dsd07_20211005.mp4|rec07 (.mp4)]] | **[DW: 2.1, 2.2, A.1, B.1]**  {{:mds:dsd:dsd07.pdf|slides07 (.pdf)}} | +|07| 25/09 11-13 | Fib-C | More about data mart conceptual design, changing dimensions and advanced data model features. From Conceptual design to relational logical design. Star model, snowflake, and constellation. Logical schema of the Hospital case study. {{:mds:dsd:dsd07.assignments.pdf|Exercises at home (Travel agency) for the lesson 09}}.  [[http://131.114.72.230/dsd/video/dsd07_20211005.mp4|rec07 (.mp4)]] | **[DW: 2.1, 2.2, A.1, B.1]**  {{:mds:dsd:dsd07.pdf|slides07 (.pdf)}} | 
-|08| 03/10 11-13 | Fib-A1 | Recalls: the relational model and relational algebra. Logical trees. {{:mds:dsd:dsd08.jrsexercises.pdf|Exercises with JRS}}.  {{:mds:dsd:dsd08.assignments.pdf|Exercises at home (Airline companies) for the lesson 09}}. [[http://131.114.72.230/dsd/video/dsd08_20211008.mp4|rec08 (.mp4)]] | **[DB: 3.2-3.4]**  {{:mds:dsd:dsd08.pdf|slides08 (.pdf)}} | +|08| 26/09 9-11 | Fib-| Recalls: the relational model and relational algebra. Logical trees. {{:mds:dsd:dsd08.jrsexercises.pdf|Exercises with JRS}}.  {{:mds:dsd:dsd08.assignments.pdf|Exercises at home (Airline companies) for the lesson 09}}. [[http://131.114.72.230/dsd/video/dsd08_20211008.mp4|rec08 (.mp4)]] | **[DB: 3.2-3.4]**  {{:mds:dsd:dsd08.pdf|slides08 (.pdf)}} | 
-|09| 04/10 11-13 | Fib-C1 | Discussion of students' solutions of conceptual and logical design case studies.   [[http://131.114.72.230/dsd/video/dsd09_20211012.mp4|rec09 (.mp4)]] | **[DW: A.2, B.2]**  {{:mds:dsd:dsd09.pdf|slides09 (.pdf)}} | +|09| 30/09 9-11 | Fib-L1 | Discussion of students' solutions of conceptual and logical design case studies.   [[http://131.114.72.230/dsd/video/dsd09_20211012.mp4|rec09 (.mp4)]] | **[DW: A.2, B.2]**  {{:mds:dsd:dsd09.pdf|slides09 (.pdf)}} | 
-|10| 8/10 11-13 | Fib-C | Data Warehouse design approaches. Data mart logical design.  [[http://131.114.72.230/dsd/video/dsd10_20211015.mp4|rec08 (.mp4)]] | **[DW: 3.1-3.5]**  {{:mds:dsd:dsd10.pdf|slides10 (.pdf)}} | +|10| 3/10 9-11 | Fib-C | Data Warehouse design approaches. Data mart logical design.  [[http://131.114.72.230/dsd/video/dsd10_20211015.mp4|rec08 (.mp4)]] | **[DW: 3.1-3.5]**  {{:mds:dsd:dsd10.pdf|slides10 (.pdf)}} | 
-|11| 15/10 11-13 | Fib-| Slowly changing dimensions, fast changing dimensions, shared dimensions. Recursive hierarchies. Multivalued dimensions. {{:mds:dsd:dsd11.assignments.pdf|Exercises at home (Travel agency extended) for the lesson 12}}.   [[http://131.114.72.230/dsd/video/dsd11_20221020.mp4|rec09 (.mp4)]] | **[DW: 3.1-3.5]**  {{:mds:dsd:dsd11.pdf|slides11 (.pdf)}} | +|11| 08/10 11-13 | Fib-C1 | Slowly changing dimensions, fast changing dimensions, shared dimensions. Recursive hierarchies. Multivalued dimensions. {{:mds:dsd:dsd11.assignments.pdf|Exercises at home (Travel agency extended) for the lesson 12}}.   [[http://131.114.72.230/dsd/video/dsd11_20221020.mp4|rec09 (.mp4)]] | **[DW: 3.1-3.5]**  {{:mds:dsd:dsd11.pdf|slides11 (.pdf)}} | 
-|12| 16/10 16-18 | Fib-| A DW to support Analytical CRM Analysis. Wrap up on DW design.  {{:mds:dsd:dsd12.assignments.pdf|Exercises at home for the lesson 14}}. [[http://131.114.72.230/dsd/video/dsd12_20211022.mp4|rec12 (.mp4)]] | **[DW: 4.1-4.8]**  {{:mds:dsd:dsd12.pdf|slides12 (.pdf)}} | +|12| 09/10 11-13 | Fib-| A DW to support Analytical CRM Analysis. Wrap up on DW design.  {{:mds:dsd:dsd12.assignments.pdf|Exercises at home for the lesson 14}}. [[http://131.114.72.230/dsd/video/dsd12_20211022.mp4|rec12 (.mp4)]] | **[DW: 4.1-4.8]**  {{:mds:dsd:dsd12.pdf|slides12 (.pdf)}} | 
-|13| 17/10 11-13 | Fib-A1 | Multidimensional Cube model: OLAP Operations. The extended cube and the lattice of cuboids. Pivot tables in Excel. [[http://131.114.72.230/dsd/video/dsd13_20241017.mp4|rec13 (.mp4)]] **Additional learning material:** G. Harvey. Excel 2013 All-in-One For Dummies, 2013. [[http://131.114.72.230/dsd/PivotTable2013BookVIIchpt2.pdf|Chp. VII-2]] and [[http://131.114.72.230/dsd/HerbalTeas.xlsx|example data for pivot table]]. | **[DW: 2.3, 2.4]**  {{:mds:dsd:dsd13.pdf|slides13 (.pdf)}} | +|13| 10/10 9-11 | Fib-| Multidimensional Cube model: OLAP Operations. The extended cube and the lattice of cuboids. Pivot tables in Excel. [[http://131.114.72.230/dsd/video/dsd13_20241017.mp4|rec13 (.mp4)]] **Additional learning material:** G. Harvey. Excel 2013 All-in-One For Dummies, 2013. [[http://131.114.72.230/dsd/PivotTable2013BookVIIchpt2.pdf|Chp. VII-2]] and [[http://131.114.72.230/dsd/HerbalTeas.xlsx|example data for pivot table]]. | **[DW: 2.3, 2.4]**  {{:mds:dsd:dsd13.pdf|slides13 (.pdf)}} | 
-|14| 18/10 11-13 | Fib-C1 | Recalls on: DBMS, from SQL to extended relational algebra. Exercises. {{:mds:dsd:dsd14.assignments.pdf|Exercises at home for the lesson 15}}. [[http://131.114.72.230/dsd/video/dsd14_20221102.mp4|rec14 (.mp4)]] | **[DB: 4.1-4.2,5.1-5.11]**  {{:mds:dsd:dsd14.pdf|slides14 (.pdf)}} | +|14| 15/10 11-13 | Fib-C1 | Recalls on: DBMS, from SQL to extended relational algebra. Exercises. {{:mds:dsd:dsd14.assignments.pdf|Exercises at home for the lesson 15}}. [[http://131.114.72.230/dsd/video/dsd14_20221102.mp4|rec14 (.mp4)]] | **[DB: 4.1-4.2,5.1-5.11]**  {{:mds:dsd:dsd14.pdf|slides14 (.pdf)}} | 
-|15| 22/10 9-11 | Fib-C | OLAP systems. Data Analysis Using SQL. Simple reports. Examples. Moderately Difficult Reports. Solutions in SQL. {{:mds:dsd:dsd15.foodmart.pdf|Foodmart datawarehouse schema}}. [[http://131.114.72.230/dsd/video/dsd15_20211102.mp4|rec15 (.mp4)]] | **[DW: 5.1-5.3]**  {{:mds:dsd:dsd15.pdf|slides15 (.pdf)}} | +|15| 16/10 11-13 | Fib-C | OLAP systems. Data Analysis Using SQL. Simple reports. Examples. Moderately Difficult Reports. Solutions in SQL. {{:mds:dsd:dsd15.foodmart.pdf|Foodmart datawarehouse schema}}. [[http://131.114.72.230/dsd/video/dsd15_20211102.mp4|rec15 (.mp4)]] | **[DW: 5.1-5.3]**  {{:mds:dsd:dsd15.pdf|slides15 (.pdf)}} | 
-|16| 25/10 11-13 | Fib-C1 | Examples of variance reports. Very Difficult Reports without Analytic SQL. Example of reports with ranks. Analytic Functions with the use of partitions and running totals. Examples.  {{:mds:dsd:dsd16.assignments.pdf|Exercises at home for the lesson 17}}. [[http://131.114.72.230/dsd/video/dsd16_20211105.mp4|rec16 (.mp4)]] | **[DW: 5.4-5.5]**  {{:mds:dsd:dsd16.pdf|slides16 (.pdf)}} | +|16| 17/10 9-11 | Fib-| Examples of variance reports. Very Difficult Reports without Analytic SQL. Example of reports with ranks. Analytic Functions with the use of partitions and running totals. Examples.  {{:mds:dsd:dsd16.assignments.pdf|Exercises at home for the lesson 17}}. [[http://131.114.72.230/dsd/video/dsd16_20211105.mp4|rec16 (.mp4)]] | **[DW: 5.4-5.5]**  {{:mds:dsd:dsd16.pdf|slides16 (.pdf)}} | 
-| | 31/10 11-13 |   | **Lesson canceled due to a strike.**  |   | +|1721/10 9-11 | Fib-L1 | Analytic Functions with the use of moving windows. Examples. Exercises on Analytic SQL. {{:mds:dsd:dsd17.assignments.pdf|Exercises during the lesson and at home}} and [[http://131.114.72.230/dsd/dsd.17.solutions.txt|solutions]]. [[http://131.114.72.230/dsd/video/dsd17_20211109.mp4|rec17 (.mp4)]] | **[DW: 5.5-5.6]**  {{:mds:dsd:dsd17.pdf|slides17 (.pdf)}} | 
-|17| 05/11 9-11 | Fib-| Analytic Functions with the use of moving windows. Examples. Exercises on Analytic SQL. {{:mds:dsd:dsd17.assignments.pdf|Exercises during the lesson and at home}} and [[http://131.114.72.230/dsd/dsd.17.solutions.txt|solutions]]. [[http://131.114.72.230/dsd/video/dsd17_20211109.mp4|rec17 (.mp4)]] | **[DW: 5.5-5.6]**  {{:mds:dsd:dsd17.pdf|slides17 (.pdf)}} | +|18| 22/10 11-13 | Fib-C1  | Recalls of relational DBMS internals: Storage, Indexing and Query Evaluation. Physical operators and physical plans for projection, selection, joins and grouping. Examples. [[http://131.114.72.230/dsd/video/dsd18_20211112.mp4|rec18 (.mp4)]] | **[DB: 6.1-6.6, 6.8, 7.1-7.2]**  {{:mds:dsd:dsd18.pdf|slides18 (.pdf)}} | 
-|18| 08/11 11-13 | Fib-C1  | Recalls of relational DBMS internals: Storage, Indexing and Query Evaluation. Physical operators and physical plans for projection, selection, joins and grouping. Examples. [[http://131.114.72.230/dsd/video/dsd18_20211112.mp4|rec18 (.mp4)]] | **[DB: 6.1-6.6, 6.8, 7.1-7.2]**  {{:mds:dsd:dsd18.pdf|slides18 (.pdf)}} | +|19| 23/10 11-13 | Fib-C | Data Warehouse Systems: Special-Purpose Indexes and Star Query Plan. Bitmap indexes. Join indexes. Star queries optimization and query plans. Examples. Table partitioning. [[http://131.114.72.230/dsd/video/dsd19_20211116.mp4|rec19 (.mp4)]] | **[DW: 6.1-6.4]**  {{:mds:dsd:dsd19.pdf|slides19 (.pdf)}} | 
-|19| 12/11 9-11 | Fib-C | Data Warehouse Systems: Special-Purpose Indexes and Star Query Plan. Bitmap indexes. Join indexes. Star queries optimization and query plans. Examples. Table partitioning. [[http://131.114.72.230/dsd/video/dsd19_20211116.mp4|rec19 (.mp4)]] | **[DW: 6.1-6.4]**  {{:mds:dsd:dsd19.pdf|slides19 (.pdf)}} | +|20| 24/10 9-11 | Fib-| The problem of materialized views selection. The lattice of views and the greedy algorithm HRU for the selection of materialized views. Examples. Other algorithms for the choice of the views to materialize with a workload and dimensional hierarchies.  {{:mds:dsd:dsd20.assignments.pdf|Exercises at home for the lesson 21}}. [[http://131.114.72.230/dsd/video/dsd20_20211119.mp4|rec20 (.mp4)]] | **[DW: 7.1-7.7]**  {{:mds:dsd:dsd20.pdf|slides20 (.pdf)}} | 
-|20| 15/11 11-13 | Fib-C1 | The problem of materialized views selection. The lattice of views and the greedy algorithm HRU for the selection of materialized views. Examples. Other algorithms for the choice of the views to materialize with a workload and dimensional hierarchies.  {{:mds:dsd:dsd20.assignments.pdf|Exercises at home for the lesson 21}}. [[http://131.114.72.230/dsd/video/dsd20_20211119.mp4|rec20 (.mp4)]] | **[DW: 7.1-7.7]**  {{:mds:dsd:dsd20.pdf|slides20 (.pdf)}} | +|21| 28/10 9-11 | Fib-L1 | Recalls of functional dependency properties and how they are used to reason about the properties of the result of a query. Properties of the group-by operator.   [[http://131.114.72.230/dsd/video/dsd21_20221130.mp4|rec21 (.mp4)]] | **[DW: 8.1-8.2, DB: 3.5.1-3.5.4]**  {{:mds:dsd:dsd21.pdf|slides21 (.pdf)}} | 
-|21| 22/11 11-13 | Fib-C1 | Recalls of functional dependency properties and how they are used to reason about the properties of the result of a query. Properties of the group-by operator.   [[http://131.114.72.230/dsd/video/dsd21_20221130.mp4|rec21 (.mp4)]] | **[DW: 8.1-8.2, DB: 3.5.1-3.5.4]**  {{:mds:dsd:dsd21.pdf|slides21 (.pdf)}} | +|2231/10 9-11 | Fib-| The problem of evaluating the group-by before the join operator. First case: Invariant grouping. Examples. Other cases: double grouping, grouping and counting. Examples with star queries.  [[http://131.114.72.230/dsd/video/dsd22_20221201.mp4|rec22 (.mp4)]] | **[DW: 8.3-8.6]**  {{:mds:dsd:dsd22.pdf|slides22 (.pdf)}} | 
-| | 29/11 11-13 |   | **Lesson canceled due to a strike.**  |   | +|23| 06/11 11-13  | Fib-C  | The problem of query rewrite to use a materialized view. Hypothesis and two approaches: With a compensation on the logical view plan, and with a transformation of logical query plan. Examples. [[http://131.114.72.230/dsd/video/dsd23_20241210.mp4|rec23 (.mp4)]] | **[DW: 9.1-9.4]**  {{:mds:dsd:dsd23.pdf|slides23 (.pdf)}} | 
-|22| 6/12 11-13 | Fib-C1 | The problem of evaluating the group-by before the join operator. First case: Invariant grouping. Examples. Other cases: double grouping, grouping and counting. Examples with star queries.  [[http://131.114.72.230/dsd/video/dsd22_20221201.mp4|rec22 (.mp4)]] | **[DW: 8.3-8.6]**  {{:mds:dsd:dsd22.pdf|slides22 (.pdf)}} | +|MT107/11 9-11  | Fib-C  First mid-term (topics up to lesson 17 included)  |  
-|23| 10/12 9-11  | Fib-C  | The problem of query rewrite to use a materialized view. Hypothesis and two approaches: With a compensation on the logical view plan, and with a transformation of logical query plan. Examples. [[http://131.114.72.230/dsd/video/dsd23_20241210.mp4|rec23 (.mp4)]] | **[DW: 9.1-9.4]**  {{:mds:dsd:dsd23.pdf|slides23 (.pdf)}} | +|24| 14/11 9-11  | Fib-| Data Warehousing trends: column-oriented DW, main-memory DW, Big Data framework. [[http://131.114.72.230/dsd/video/dsd24_20211203.mp4|rec24 (.mp4)]] | **[DW: 6.5-6.8]**  {{:mds:dsd:dsd24.pdf|slides24 (.pdf)}} 
-| | 13/11 11-13   | **No lesson on this date.**    +|MT2| 12/12 9-11  | Fib-C  | Second mid-term (all topics)  |  
-|24| 17/12 9-11  | Fib-C1 | Data Warehousing trends: column-oriented DW, main-memory DW, Big Data framework. [[http://131.114.72.230/dsd/video/dsd24_20211203.mp4|rec24 (.mp4)]] | **[DW: 6.5-6.8]**  {{:mds:dsd:dsd24.pdf|slides24 (.pdf)}} |+
  
  
 =====Previous years===== =====Previous years=====
  
 +  * [[mds:dsd:2024|Decision Support Databases  A.Y. 2024/25]]
   * [[mds:dsd:2023|Decision Support Databases  A.Y. 2023/24]]   * [[mds:dsd:2023|Decision Support Databases  A.Y. 2023/24]]
   * [[mds:dsd:2022|Decision Support Databases  A.Y. 2022/23]]   * [[mds:dsd:2022|Decision Support Databases  A.Y. 2022/23]]
mds/dsd/start.1756643996.txt.gz · Ultima modifica: 31/08/2025 alle 12:39 (3 settimane fa) da Salvatore Ruggieri

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki