Strumenti Utente

Strumenti Sito


magistraleinformaticaeconomia:va:start

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisioneRevisione precedente
Prossima revisione
Revisione precedente
magistraleinformaticaeconomia:va:start [16/02/2026 alle 09:39 (5 giorni fa)] – [Useful Resources] Salvatore Rinzivillomagistraleinformaticaeconomia:va:start [20/02/2026 alle 10:41 (11 ore fa)] (versione attuale) – [Next Exams] Salvatore Rinzivillo
Linea 13: Linea 13:
   * Thursday, 11:00 - 13:00, Room L1   * Thursday, 11:00 - 13:00, Room L1
  
 +Given the conflict of schedule with other course, please vote for your preferred alternative slots for our Monday and Thursday lessons at the link shared in the telegram channel.
 ===== News ===== ===== News =====
 To keep updated with the last news of the course, subscribe at the Telegram channel: https://t.me/+6PTkOzAWcWswMWI8 To keep updated with the last news of the course, subscribe at the Telegram channel: https://t.me/+6PTkOzAWcWswMWI8
-   :!: **March 21** Today the class will start at 11:30 (instead of the usual 11:15)    +   
-   * **February 19** The start of the course has been postponed due to the teacher being affected by the flu. Lessons will commence on February 26th. +
 ===== Exams ===== ===== Exams =====
 Students will be admitted to the exam after the registration on the website [[http://esami.unipi.it]].  Students will be admitted to the exam after the registration on the website [[http://esami.unipi.it]]. 
Linea 44: Linea 43:
 The student may choose one of the following project proposals. She/he can also propose an additional topic. In this case, a project proposal should be submitted for approval, containing a description of the data, a sketch of the possible visualization, and the motivation for the project. The student may choose one of the following project proposals. She/he can also propose an additional topic. In this case, a project proposal should be submitted for approval, containing a description of the data, a sketch of the possible visualization, and the motivation for the project.
  
-=== Final Exam Project Assignment: VAST Challenge 2024 Datasets ===+=== Final Exam Project Assignment: to be announced ===
  
  
-**Objective:**   
-For your final exam, you will engage with synthetic yet realistic datasets from the VAST Challenge 2024. Your task is to develop a visual analytics solution that addresses specific research questions posed in one of the mini-challenges (MiniChallenge 2 or MiniChallenge 3). 
  
-==== Overview: ==== 
- 
-The datasets for this project are synthetic representations of network graph structures, where entities are depicted as nodes and events or relationships among these entities as edges. Your goal is to analyze these data to uncover insights by answering the research questions provided in the selected MiniChallenge. 
- 
-==== Assignment Details: ==== 
- 
-**Dataset Selection:** 
-   - Choose one of the following MiniChallenges: 
-     - [MiniChallenge 2](https://vast-challenge.github.io/2024/MC2.html) 
-     - [MiniChallenge 3](https://vast-challenge.github.io/2024/MC3.html) 
- 
-**Data Understanding:** 
-   - Familiarize yourself with the synthetic dataset, understanding its structure, nodes (entities), and edges (relationships/events). 
-   - Identify key characteristics of the network, such as node types, edge types, and any metadata provided. 
- 
-**Research Questions:** 
-   - Review the research questions posed by the selected MiniChallenge. 
-   - Your visual analytics solution should address all the questions posed by the challenge. 
- 
-**Visual Analytics Solution:** 
-   - Design and implement a visual analytics system tailored to explore the data effectively in response to the chosen research question(s). 
-   - Utilize appropriate visualization techniques (e.g., graph layouts, node-link diagrams) to represent the network structure clearly. 
-   - Incorporate interactive elements to enable dynamic exploration of the dataset. 
-   - You can preprocess, transform, and prepare the given data in the format that is most appropriate for your visual design 
- 
-**Analysis and Insights:** 
-   - Conduct an analysis using your visual analytics solution to address the selected research question(s). 
-   - Document any insights or patterns discovered during your exploration that relate directly to the research questions. 
- 
- 
- 
- 
- 
-==== Next Exams ==== 
-  * June 9th (submit your project and report by June 5th) 
-  * June 30th (submit your project and report by June 26th) 
-  * July 22th (submit your project and report by July 17th) 
  
 ===== Textbooks ===== ===== Textbooks =====
Linea 121: Linea 81:
  
 | ^ Day ^ Topic ^ Learning material ^ | ^ Day ^ Topic ^ Learning material ^
-^ 01| 2025/02/26 | Intro: Visual Analytics Process; |{{ :magistraleinformaticaeconomia:va:2024:va_lesson1_introcourse.pdf |Slides}} ; VisMaster Book (Chapter 2) | +^ 01| 2026/02/16 | Intro: Visual Analytics Process; |{{ :magistraleinformaticaeconomia:va:2024:va_lesson1_introcourse.pdf |Slides}} ; VisMaster Book (Chapter 2) | 
-^ 02| 2025/02/28 | Vision and Cognition; |{{ :magistraleinformaticaeconomia:va:2025:va_lesson2_vision_perception.pdf | Slides}} | +^ 02| 2025/02/18 | Vision and Cognition; |{{ :magistraleinformaticaeconomia:va:2025:va_lesson2_vision_perception.pdf | Slides}} | 
-^ 03| 2025/03/05 | Visual Variables; | {{ :magistraleinformaticaeconomia:va:2025:va_slide_03_visual-variables-slides.pdf | Slides}} | +
-^ 04| 2025/03/07 | Introduction to Python Altair Library | {{ :magistraleinformaticaeconomia:va:2025:va_slide_04_vegaaltair.pdf | Slides}}; {{https://altair-viz.github.io/index.html| website}} | +
-^ 05| 2025/03/12 | Color Models | {{ :magistraleinformaticaeconomia:va:2025:va_lesson5_colors.pdf | Slides}} | +
-^ | 2025/03/14 | No lesson | --  | +
-^ 06| 2025/03/19 | Toolbox: HTML, CSS, JS | {{ :magistraleinformaticaeconomia:va:2025:va_lesson6_html_css_js.pdf | Slides}} | +
-^ 07| 2025/03/21 | NPM, GIT and Vue.js | {{ :magistraleinformaticaeconomia:va:2025:va_lesson7_nodejs_npm_git.pdf | Slides}} | +
-^ | 2025/03/26 | No lesson | --  | +
-^ | 2025/03/28 | No lesson | --  | +
-^ 08| 2025/04/02 | Chart Taxonomy | {{ :magistraleinformaticaeconomia:va:2025:va_lesson8_charting_taxonomy.pdf | Slides}} | +
-^ 09| 2025/04/04 | Intro to D3.js |  | +
-^ | 2025/04/09 | No lesson | --  | +
-^ | 2025/04/11 | No lesson | --  | +
-^ 10| 2025/04/16 | Scale functions | {{ :magistraleinformaticaeconomia:va:2025:va_lesson10_scales.pdf | Slides}}; {{https://observablehq.com/@d3/introduction-to-d3s-scales | Notebook}} +
-^ 11| 2025/04/23 | Question and answering | --  | +
-^ | 2025/04/30 | Scale functions (cont.d) | {{ :magistraleinformaticaeconomia:va:2025:va_lesson10_scales.pdf | Slides}}; {{https://observablehq.com/@d3/quantile-quantize-and-threshold-scales | Notebook}} +
-^ 12| 2025/05/07 | Hierachical Data | {{ :magistraleinformaticaeconomia:va:2025:va_lesson12_hierarchies.pdf | Slides}} +
-^ 13| 2025/05/09 | Modular Programming in D3 and Javascript| {{https://observablehq.com/d/f9a177396c890d21| Notebook}} |  +
-^ 14| 2025/05/14 | Geographic Data | {{ :magistraleinformaticaeconomia:va:2025:va_lesson14_geography.pdf | Slides}} +
-^ 15| 2025/05/16 | Geography in D3  | {{https://observablehq.com/@rinziv/geographic-data| Notebook}} +
-^ 16| 2025/05/21 | Visual Storytelling | {{ :magistraleinformaticaeconomia:va:2025:va_lesson16_storytelling.pdf | Slides}} +
-^ 17| 2025/05/23 | VAST 2008 - Project  | {{https://github.com/VA602AA-master/VC2018 | GitHUB Repository}} +
-^ 18| 2025/05/28 | VAST 2008 - Project (cont.d) |  | +
-^ 19| 2025/05/30 | VAST 2008 - Project (cont.d) |  |+
 ===== Previous Editions ===== ===== Previous Editions =====
   * [[magistraleinformaticaeconomia:va:Course2025]]   * [[magistraleinformaticaeconomia:va:Course2025]]
magistraleinformaticaeconomia/va/start.1771234779.txt.gz · Ultima modifica: 16/02/2026 alle 09:39 (5 giorni fa) da Salvatore Rinzivillo

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki