Strumenti Utente

Strumenti Sito


digitalhealth:0001a2025

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisioneRevisione precedente
Prossima revisione
Revisione precedente
digitalhealth:0001a2025 [08/09/2025 alle 14:44 (3 giorni fa)] – [Learning Goals] Anna Monrealedigitalhealth:0001a2025 [08/09/2025 alle 14:45 (3 giorni fa)] (versione attuale) – [Hours and Rooms] Anna Monreale
Linea 1: Linea 1:
- 
- 
-====== Hours and Rooms ====== 
- 
-====== Hours and Rooms ====== 
- 
-**Classes** 
- 
-^  Day of Week  ^  Hour  ^  Room  ^  
-|  Monday     09:00 - 11:00  |  Room FIB PS4  |  
-|  Tuesday  |  14:00 - 16:00    Room C        |  
-|  Friday    11:00 - 13:00    Room FIB PS4  |  
- 
- 
- 
-**Office hours - Ricevimento:** 
-Anna Monreale: TBD - Online using Teams or in my Office (Appointment by email). 
-Francesca Naretto: TBD  - Online using Teams or in my Office (Appointment by email). 
- 
- 
-A Teams group will be used ONLY to post news, Q&A, and other stuff related to the course. The lectures will be only in presence and will **NOT** be live-streamed nor registered. 
- 
-====== Learning Material -- Materiale didattico ====== 
- 
-===== Textbook -- Libro di Testo ===== 
- 
-  * Pang-Ning Tan, Michael Steinbach, Vipin Kumar. **Introduction to Data Mining**. Addison Wesley, ISBN 0-321-32136-7, 2006 
-    * [[http://www-users.cs.umn.edu/~kumar/dmbook/index.php]] 
-    * Chapters 4,6 and 8 are also available at the publisher's Web site. 
-  *  Jake VanderPlas. **[[http://shop.oreilly.com/product/0636920034919.do| Python Data Science Handbook: Essential Tools for Working with Data.]]** 1st Edition.  
-  *  For Python Notions: {{ :magistraleinformatica:dmi:python_basics.ipynb.zip | Very basic notions on Python}}  
- 
-===== Slides ===== 
- 
-  * The slides used in the course will be inserted in the calendar after each class. Most of them are part of the slides provided by the textbook's authors [[http://www-users.cs.umn.edu/~kumar/dmbook/index.php#item4|Slides per "Introduction to Data Mining"]]. 
- 
-===== Software===== 
- 
-  * Python - Anaconda (at least 3.7 version!!!): Anaconda is the leading open data science platform powered by Python. [[https://www.anaconda.com/distribution/| Download page]] (the following libraries are already included) 
-  * Scikit-learn: python library with tools for data mining and data analysis [[http://scikit-learn.org/stable/ | Documentation page]] 
-  * Pandas: pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. [[http://pandas.pydata.org/ | Documentation page]] 
- 
-  
-====== Class Calendar (2025/2026) ====== 
-===== First Semester  ===== 
- 
-^ ^ Day ^ Topic ^ Learning material ^ References ^ Video Lectures ^ Teacher ^ 
-|1.  |  22.09 | Overview. Introduction to KDD  + Data Types  | | Chap. 1 Kumar Book | |Monreale | 
- 
-====== Exams ====== 
-**Project ** 
- 
-A project consists in data analyses based on the use of data mining tools.  
-The project has to be performed by a team of 2 students. It has to be performed by using Python. The guidelines require to address specific tasks. Results must be reported in a unique paper. The total length of this paper must be max 25 pages of text including figures. The students must deliver both: paper (single column) and  well commented Python Notebooks. 
- 
- 
- 
-**Students who did not deliver the above project within the deadline need to do written exam. ** 
- 
- 
-**Oral Exam** 
-  * **Project presentation** (with slides) – 15 minutes: mandatory for all the students with question fo understanding the details of any part of the project. 
-  * ** Open questions on the entire program ** 
-  
-**How to book for the exam colloquium? ** 
-  
-In https://esami.unipi.it/ you can find the dates for the exam: one for January and one for February. Each student must do the registration on one of the 2 dates. These are not the dates of the colloquium or project delivery but we will use the list of registered students for organizing the exam dates. After that deadline we will share with you a calendar for the oral exam. 
- 
-  
- 
- 
- 
- 
- 
  
digitalhealth/0001a2025.1757342646.txt.gz · Ultima modifica: 08/09/2025 alle 14:44 (3 giorni fa) da Anna Monreale

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki