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Some Models of Network GenerationSome Models of Network Generation

Random graphs (Erdös-Rényi models):
gives few components and small diameter
does not give high clustering and heavy-tailed degree distributions
is the mathematically most well-studied and understood modelis the mathematically most well-studied and understood model

Watts-Strogatz models:
give few components, small diameter and high clustering
does not give heavy-tailed degree distributions

Scale-free Networks:
gives few components small diameter and heavy-tailed distributiongives few components, small diameter and heavy tailed distribution
does not give high clustering

Hierarchical networks:
f ll di hi h l i h il dfew components, small diameter, high clustering, heavy-tailed

Affiliation networks:
models group-actor formation
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Models of Social Network GenerationModels of Social Network Generation

Random G aphs (E dös Rén i models)Random Graphs (Erdös-Rényi models)

Watts-Strogatz modelsg

Scale-free Networks
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The Erdös-Rényi (ER) Model
(Random Graphs)(Random Graphs)

All edges are equally probable and appear independently
NW i N 1 d b bili di ib i G(N )NW size N > 1 and probability p: distribution G(N,p)

each edge (u,v) chosen to appear with probability p
N(N-1)/2 trials of a biased coin flip( )/ t a s o a b ased co p

The usual regime of interest is when p ~ 1/N, N is large
e.g. p = 1/2N, p = 1/N, p = 2/N, p=10/N, p = log(N)/N, etc.
i t ti h t ill h “ ll” b f i hbin expectation, each vertex will have a “small” number of neighbors
will then examine what happens when N infinity
can thus study properties of large networks with bounded degreey p p g g

Degree distribution of a typical G drawn from G(N,p):
draw G according to G(N,p); look at a random vertex u in G
what is Pr[deg(u) = k] for any fixed k?what is Pr[deg(u) = k] for any fixed k?
Poisson distribution with mean l = p(N-1) ~ pN
Sharply concentrated; not heavy-tailed
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Especially easy to generate NWs from G(N,p)



Erdös-Rényi Model (1960)y ( )

Pál ErdösPál Erdös
Connect with 
probability p

(1913-1996)
p y p

p=1/6
N=10N 10 
〈k〉~1.5 Poisson distribution

- Democratic

- Random
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A Closely Related ModelA Closely Related Model

For any fixed m <= N(N-1)/2 define distributionFor any fixed m <  N(N 1)/2, define distribution 
G(N,m):

choose uniformly at random from all graphschoose uniformly at random from all graphs 
with exactly m edges
G(N ) i “lik ” G(N ) ith /(N(N 1)/2)G(N,m) is “like” G(N,p) with p = m/(N(N-1)/2) 
~ 2m/N^2
this intuition can be made precise, and is 
correct
if m = cN then p = 2c/(N-1) ~ 2c/N
mathematically trickier than G(N,p)

December 9, 2008 Data Mining: Concepts and Techniques 7

mathematically trickier than G(N,p)



Another Closely Related ModelAnother Closely Related Model

Graph process model: 

start with N vertices and no edges

at each time step, add a new edgeat each time step, add a new edge

choose new edge randomly from among all missing 
edgesedges

Allows study of the evolution or emergence of properties:

as the number of edges m grows in relation to Nas the number of edges m grows in relation to N

equivalently, as p is increased

ll f h d lFor all of these models: 

high probability “almost all” large graphs of a given 
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Evolution of a Random NetworkEvolution of a Random Network

We have a large number n of verticesWe have a large number n of vertices

We start randomly adding edges one at a time

At what time t will the network:

have at least one “large” connected component?g p

have a single connected component?

h “ ll” dhave “small” diameter?

have a “large” clique?

have a “large” chromatic number?

How gradually or suddenly do these properties appear?
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How gradually or suddenly do these properties appear?



RecapRecap

Model G(N,p):
select each of the possible edges independently with prob. p
expected total number of edges is pN(N-1)/2
expected degree of a vertex is p(N-1)expected degree of a vertex is p(N-1)
degree will obey a Poisson distribution (not heavy-tailed)

Model G(N,m):
select exactly m of the N(N-1)/2 edges to appear
all sets of m edges equally likely

Graph process model:Graph process model:
starting with no edges, just keep adding one edge at a time
always choose next edge randomly from among all missing edges

Th h ld i i f ( ) i iThreshold or tipping for (say) connectivity:
fewer than m(N) edges graph almost certainly not connected
more than m(N) edges graph almost certainly is connected
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made formal by examining limit as N infinity



Combining and Formalizing Familiar IdeasCombining and Formalizing Familiar Ideas

Explaining universal behavior through statistical modelsp g g
our models will always generate many networks
almost all of them will share certain properties (universals)

Explaining tipping through incremental growth
we gradually add edges, or gradually increase edge probability p
many properties will emerge very suddenly during this processmany properties will emerge very suddenly during this process
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Monotone Network PropertiesMonotone Network Properties

Often interested in monotone graph properties:
let G have the property
add edges to G to obtain G’
then G’ must have the property alsothen G  must have the property also

Examples:
G is connected
G has diameter <= d (not exactly d)
G has a clique of size >= k (not exactly k)
G has chromatic number >= c (not exactly c)G has chromatic number >  c (not exactly c)
G has a matching of size >= m
d, k, c, m may depend on NW size N (How?)

Diffi l d f i hDifficult to study emergence of non-monotone properties as the 
number of edges is increased

what would it mean?
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Formalizing Tipping:
Th h ld f M t P tiThresholds for Monotone Properties

Consider Erdos-Renyi G(N m) modelConsider Erdos-Renyi G(N,m) model
select m edges at random to include in G

Let P be some monotone property of graphs
P(G) = 1 G has the property
P(G) = 0 G does not have the property

Let m(N) be some function of NW size NLet m(N) be some function of NW size N
formalize idea that property P appears “suddenly” at m(N) edges

Say that m(N) is a threshold function for P if:
l ’( ) b f flet m’(N) be any function of N
look at ratio r(N) = m’(N)/m(N) as N infinity
if r(N) 0: probability that P(G) = 1 in G(N,m’(N)): 0( ) 0 p obab y a ( ) ( , ( )) 0
if r(N) infinity: probability that P(G) = 1 in G(N,m’(N)): 1

A purely structural definition of tipping
ti i lt f i t l i i ti it
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So Which Properties Tip?So Which Properties Tip?

Just about all of them!Just about all of them!

The following properties all have threshold functions:

having a “giant component”having a giant component

being connected

h i f t t hi (N )having a perfect matching (N even)

having “small” diameter

With remarkable consistency (N = 50):

giant component ~ 40 edges, connected ~ 100, small 
diameter ~ 180
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Ever More PreciseEver More Precise…

Connected component of size > N/2:Connected component of size  N/2:

threshold function is m(N) = N/2 (or p ~ 1/N)

note: full connectivity impossiblenote: full connectivity impossible

Fully connected:

threshold function is m(N) = (N/2)log(N) (or p ~ log(N)/N)threshold function is m(N) = (N/2)log(N) (or p ~ log(N)/N)

NW remains extremely sparse: only ~ log(N) edges per vertex

S ll di tSmall diameter:

threshold is m(N) ~ N^(3/2) for diameter 2 (or p ~ 2/sqrt(N))

fraction of possible edges still ~ 2/sqrt(N) 0

generate very small worlds
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Other Tipping Points?Other Tipping Points?

Perfect matchingsPerfect matchings

consider only even N

threshold function: m(N) = (N/2)log(N) (or p ~ log(N)/N)threshold function: m(N) = (N/2)log(N) (or p ~ log(N)/N)

same as for connectivity!

CliCliques

k-clique threshold is m(N) = (1/2)N^(2 – 2/(k-1)) (p ~ 
1/N^(2/k 1))1/N^(2/k-1))

edges appear immediately; triangles at N/2; etc.

Coloring

k colors required just as k-cliques appear
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Erdos-Renyi SummaryErdos Renyi Summary

A model in which all connections are equally likelyq y y
each of the N(N-1)/2 edges chosen randomly & 
independently

As we add edges, a precise sequence of events unfolds:
graph acquires a giant component

h b t dgraph becomes connected
graph acquires small diameter

Many properties appear very suddenly (tipping thresholds)Many properties appear very suddenly (tipping, thresholds)
All statements are mathematically precise
But is this how natural networks form?But is this how natural networks form?
If not, which aspects are unrealistic?

may all edges are not equally likely!
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The Clustering Coefficient of a NetworkThe Clustering Coefficient of a Network

Let nbr(u) denote the set of neighbors of u in a graph( ) g g p
all vertices v such that the edge (u,v) is in the graph

The clustering coefficient of u:
let k = |nbr(u)| (i.e., number of neighbors of u)
choose(k,2): max possible # of edges between vertices in nbr(u)
c(u) = (actual # of edges between vertices in nbr(u))/choose(k 2)c(u) = (actual # of edges between vertices in nbr(u))/choose(k,2)
0 <= c(u) <= 1; measure of cliquishness of u’s neighborhood

Clustering coefficient of a graph:
average of c(u) over all vertices u

k = 4
choose(k,2) = 6
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choose(k,2)  6
c(u) = 4/6 = 0.666…



The Clustering Coefficient of a Network

Clustering: My friends will likely know each other!

The Clustering Coefficient of a Network

Probability to be connected C » p

C =
# of links between 1,2,…n neighbors

n(n-1)/2

Network C Crand L N

WWW 0.1078 0.00023 3.1 153127

3015
Networks are clustered    

[large C(p)]                         

Internet 0.18-0.3 0.001 3.7-3.76 3015-
6209

Actor 0.79 0.00027 3.65 225226

but have a small 
characteristic path length                            

[small L(p)]

Coauthorship 0.43 0.00018 5.9 52909

Metabolic 0.32 0.026 2.9 282

Foodweb 0 22 0 06 2 43 134
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[small L(p)]. Foodweb 0.22 0.06 2.43 134

C. elegance 0.28 0.05 2.65 282



Erdos-Renyi: Clustering CoefficientErdos Renyi: Clustering Coefficient

Generate a network G according to G(N,p)Generate a network G according to G(N,p)
Examine a “typical” vertex u in G 

choose u at random among all vertices in Gchoose u at random among all vertices in G
what do we expect c(u) to be?

Answer: exactly p!Answer: exactly p!
In G(N,m), expect c(u) to be 2m/N(N-1)
Both cases: c(u) entirely determined by overall densityBoth cases: c(u) entirely determined by overall density
Baseline for comparison with “more clustered” models

Erdos-Renyi has no bias towards clustered or localErdos-Renyi has no bias towards clustered or local 
edges
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Models of Social Network GenerationModels of Social Network Generation

Random G aphs (E dös Rén i models)Random Graphs (Erdös-Rényi models)

Watts-Strogatz modelsg

Scale-free Networks
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Caveman and SolariaCaveman and Solaria
Erdos-Renyi:

sharing a common neighbor makes two vertices no more likely to be 
directly connected than two very “distant” vertices
every edge appears entirely independently of existing structureevery edge appears entirely independently of existing structure

But in many settings, the opposite is true:
you tend to meet new friends through your old friends
two web pages pointing to a third might share a topic
two companies selling goods to a third are in related industries

W tt ’ C ldWatts’ Caveman world:
overall density of edges is low
but two vertices with a common neighbor are likely connectedbut two vertices with a common neighbor are likely connected

Watts’ Solaria world
overall density of edges low; no special bias towards local edges
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Making it (Somewhat) Precise: the α-modelMaking it (Somewhat) Precise: the α model

The α-model has the following parameters or “knobs”:

N: size of the network to be generated
k: the average degree of a vertex in the network to be generated
p: the default probability two vertices are connectedp: the default probability two vertices are connected
α: adjustable parameter dictating bias towards local connections

For any vertices u and v:
define m(u,v) to be the number of common neighbors (so far)

Key quantity: the propensity R(u,v) of u to connect to v
if m(u,v) >= k, R(u,v) = 1 (share too many friends not to connect)if m(u,v) >  k, R(u,v)  1 (share too many friends not to connect)
if m(u,v) = 0, R(u,v) = p (no mutual friends no bias to connect) 
else, R(u,v) = p + (m(u,v)/k)^α (1-p)

G t NW i t llGenerate NW incrementally
using R(u,v) as the edge probability; details omitted

Note: α = infinity is “like” Erdos-Renyi (but not exactly)
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Watts-Strogatz ModelWatts Strogatz Model
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C(p) : clustering coeff.          
L(p) : average path length (Watts and Strogatz, Nature 393, 440 (1998))



Small Worlds and Occam’s RazorSmall Worlds and Occam s Razor

For small α, should generate large clustering coefficientsFor small α, should generate large clustering coefficients
we “programmed” the model to do so
Watts claims that proving precise statements is hard…Watts claims that proving precise statements is hard…

But we do not want a new model for every little property
Erdos-Renyi small diameterErdos Renyi small diameter
α-model high clustering coefficient

In the interests of Occam’s Razor we would like to findIn the interests of Occam s Razor, we would like to find
a single, simple model of network generation…

that simultaneously captures many properties… that simultaneously captures many properties
Watt’s small world: small diameter and high clustering
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Meanwhile Back in the Real WorldMeanwhile, Back in the Real World…

Watts examines three real networks as case studies:
the Kevin Bacon graph
the Western states power grid
the C. elegans nervous system

For each of these networks, he:
computes its size, diameter, and clustering coefficient
compares diameter and clustering to best Erdos-Renyi 
approxapprox.
shows that the best α-model approximation is better
important to be “fair” to each model by finding best fitimportant to be fair  to each model by finding best fit

Overall moral:
if we care only about diameter and clustering, α is better
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if we care only about diameter and clustering, α is better 
than p



Case 1: Kevin Bacon GraphCase 1: Kevin Bacon Graph

Vertices: actors and actresses
Edge between u and v if they appeared in a film together

Rank Name Average
di t

# of
i

# of
li kdistance movies links

1 Rod Steiger 2.537527 112 2562
2 Donald Pleasence 2.542376 180 2874
3 Martin Sheen 2.551210 136 3501

Kevin Bacon

4 Christopher Lee 2.552497 201 2993
5 Robert Mitchum 2.557181 136 2905
6 Charlton Heston 2.566284 104 2552
7 Eddi Alb 2 567036 112 3333

No. of movies : 46       
No. of actors : 1811         
Average separation: 2.79

Is Kevin Bacon 
h

7 Eddie Albert 2.567036 112 3333
8 Robert Vaughn 2.570193 126 2761
9 Donald Sutherland 2.577880 107 2865

10 John Gielgud 2.578980 122 2942the most 
connected actor?

10 John Gielgud 2.578980 122 2942
11 Anthony Quinn 2.579750 146 2978
12 James Earl Jones 2.584440 112 3787
…
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NO! 876 Kevin Bacon 2.786981 46 1811
…
876 Kevin Bacon 2.786981        46       1811



Rod Steiger#1

#876#876
Kevin Bacon

Donald 
#2 Pleasence#2
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Case 2: New York State Power GridCase 2: New York State Power Grid

Vertices: generators and substationsg
Edges: high-voltage power transmission lines and transformers
Line thickness and color indicate the voltage level

Red 765 kV, 500 kV; brown 345 kV; green 230 kV; grey 138 kV
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Case 3: C Elegans Nervous SystemCase 3: C. Elegans Nervous System

Vertices: neurons in the C. elegans wormg
Edges: axons/synapses between neurons
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Two More ExamplesTwo More Examples

M. Newman on scientific collaboration networks
coauthorship networks in several distinct communities
differences in degrees (papers per author)
empirical verification of 

giant components
small diameter (mean distance)small diameter (mean distance)
high clustering coefficient

Alberich et al. on the Marvel Universe
purely fictional social network
two characters linked if they appeared together in an issue
“empirical” verification ofempirical  verification of

heavy-tailed distribution of degrees (issues and characters)
giant component
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rather small clustering coefficient



One More (Structural) Property…One More (Structural) Property…
A properly tuned α-model can simultaneously explain

ll di tsmall diameter
high clustering coefficient

But what about heavy-tailed degree distributions?But what about heavy tailed degree distributions?
α-model and simple variants will not explain this
intuitively, no “bias” towards large degree evolves
all vertices are created equal

Can concoct many bad generative models to explain
t NW di t E d R i j t if t il t hgenerate NW according to Erdos-Renyi, reject if tails not heavy

describe fixed NWs with heavy tails
all connected to v1; N/2 connected to v2; etc.all connected to v1; N/2 connected to v2; etc.
not clear we can get a precise power law
not modeling variation

h ld th ld l thi ?
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why would the world evolve this way?
As always, we want a “natural” model



Models of Social Network GenerationModels of Social Network Generation

Random G aphs (E dös Rén i models)Random Graphs (Erdös-Rényi models)

Watts-Strogatz modelsg

Scale-free Networks
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World Wide WebWorld Wide Web

Nodes: WWW documents 
Links: URL links
800 million documents 
(S. Lawrence, 1999)

ROBOT: collects all 
URL’s found in aURL s found in a 
document and follows 
them recursively
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R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999)



World Wide Web

R l R lt

World Wide Web

Expected Result Real Result

γ = 2 45 γ i = 2 1γout  2.45 γ in   2.1

〈k〉 ~ 6

P(k 500) 10 99 P (k) ~ k-γout P (k) ~ k- γinP(k=500) ~ 10-99

NWWW ~ 109

Pout(k)  ~ k γ

P(k=500) ~ 10-6

Pin(k)  ~ k γ

NWWW ~ 109

⇒ N(k=500) ~ 103
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⇒ N(k=500)~10-90
⇒ N(k 500)  10

J. Kleinberg, et. al, Proceedings of the ICCC (1999)



World Wide Web

l15=2 [1→2→5]3
6

World Wide Web

l17=4 [1→3→4→6 → 7]

< l > = ??

1

2

4

5

6

7

• Finite size scaling: create a network with N nodes with Pin(k) and Pout(k)

l 0 35 2 06 l (N)

… < l > = ??2 5

< l > = 0.35 + 2.06 log(N)

19 degrees of separation
R Alb l N (99)

l >

nd.edu
R. Albert et al Nature (99)

based on 800 million webpages                
[S. Lawrence et al Nature (99)]

< 

[ ( )]

A. Broder et al WWW9 (00)
IBM
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What does that mean?What does that mean?
Poisson distribution Power-law distribution
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Exponential Network Scale-free Network



Scale-free NetworksScale free Networks

The number of nodes (N) is not fixedThe number of nodes (N) is not fixed

Networks continuously expand by additional new nodes

WWW dditi f dWWW: addition of new nodes

Citation: publication of new papers

The attachment is not uniform

A node is linked with higher probability to a node that 
already has a large number of links

WWW: new documents link to well known sites 
(CNN, Yahoo, Google)

Citation: Well cited papers are more likely to be 
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cited again



Scale-Free NetworksScale Free Networks
Start with (say) two vertices connected by an edge

i 3For i = 3 to N:
for each 1 <= j < i, d(j) = degree of vertex j so far
let Z = S d(j) (sum of all degrees so far)let Z = S d(j) (sum of all degrees so far)
add new vertex i with k edges back to {1, …, i-1}:

i is connected back to j with probability d(j)/Zj p y (j)/
Vertices j with high degree are likely to get more links!
“Rich get richer”
N t l d l fNatural model for many processes:

hyperlinks on the web
new business and social contactsnew business and social contacts
transportation networks

Generates a power law distribution of degrees
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p g
exponent depends on value of k



Scale-Free Networks

Preferential attachment explains

Scale Free Networks

Preferential attachment explains

heavy-tailed degree distributions

small diameter (~log(N), via “hubs”)

Will not generate high clustering coefficient

no bias towards local connectivity, but towards hubsy,
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Case1: Internet BackboneCase1: Internet Backbone

Nodes: computers routersNodes: computers, routers 
Links: physical lines
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(Faloutsos, Faloutsos and Faloutsos, 1999)
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Case2: Actor ConnectivityCase2: Actor Connectivity

Nodes: actors    
Links: cast jointly

Days of Thunder (1990) 
Far and Away     (1992)  
Eyes Wide Shut (1999) Links: cast jointlyEyes Wide Shut  (1999)

N = 212,250 actors     
〈k〉 = 28.78〈k〉  28.78

P(k) ~k-γ

γ=2.3
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Case 3: Science Citation IndexCase 3: Science Citation Index
25

Nodes: papers 
Links: citations

5

Links: citations
Witten-Sander

PRL 1981
22121736 PRL papers (1988)

P(k) ~k-γ

(γ = 3)
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(S. Redner, 1998)



Case 4: Science Coauthorship

Nodes: scientist (authors) 

Case 4: Science Coauthorship

( )
Links: write paper together
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(Newman, 2000, H. Jeong et al 2001)



Case 5: Food Web

Nodes: trophic speciesNodes: trophic species     
Links: trophic interactions
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R.J. Williams, N.D. Martinez Nature (2000)R. Sole (cond-mat/0011195)



Case 6: Sex-Web

Nodes: people (Females; Males)Nodes: people (Females; Males)
Links: sexual relationships

4781 Swedes; 18-74; 
59% t
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Liljeros et al. Nature 2001
59% response rate.



Robustness of 
Random vs Scale-Free NetworksRandom vs. Scale Free Networks

The accidental failure 
of a number of nodes 
in a random network 
can fracture the 
system into non-
communicating islands.

Scale-free networks 
are more robust in the 
face of such failures.

Scale-free networksScale-free networks 
are highly vulnerable 
to a coordinated attack 
against their hubs
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against their hubs.


