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Some Models of Network Generation

s Random graphs (Erdds-Renyi models):
= gives few components and small diameter
= does not give high clustering and heavy-tailed degree distributions
= IS the mathematically most well-studied and understood model
s Watts-Strogatz models:
= give few components, small diameter and high clustering
= does not give heavy-tailed degree distributions
m Scale-free Networks:
= gives few components, small diameter and heavy-tailed distribution
= does not give high clustering
»  Hierarchical networks:
= few components, small diameter, high clustering, heavy-tailed
s Affiliation networks:
= Mmodels group-actor formation
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Models of Social Network Generation

= Random Graphs (Erd6s-Rényi models) .
= Watts-Strogatz models

s Scale-free Networks
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The Erdds-Rényi (ER) Model
(Random Graphs)

= All edges are equally probable and appear independently
NW size N > 1 and probability p: distribution G(N,p)
= each edge (u,v) chosen to appear with probability p
= N(N-1)/2 trials of a biased coin flip
The usual regime of interestis when p — 1/N, N is large
= e.g.p=1/2N, p = 1/N, p = 2/N, p=10/N, p = log(N)/N, etc.
= In expectation, each vertex will have a “small” number of neighbors
= Wwill then examine what happens when N - infinity
= can thus study properties of /arge networks with bounded degree
Degree distribution of a typical G drawn from G(N,p):
= draw G according to G(N,p); look at a random vertex u in G
= what is Pr[deg(u) = k] for any fixed k?
= Poisson distribution with mean | = p(N-1) ~ pN
= Sharply concentrated; rnot heavy-tailed
Especially easy to generate NWs from G(N,p)
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Erdos-Rényi Model (1960)

Connect with )
probability p Pal Erdos
0=1/6 (1913-1996)

N=10
(k)~1.5 Poisson distribution
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A Closely Related Model

= For any fixed m <= N(N-1)/2, define distribution
G(N,m):

= choose wniformly at random from all graphs
with exact/y m edges

= G(N,m) is “like” G(N,p) with p = m/(N(N-1)/2)
~ 2Mm/NN2

= this Intuition can be made precise, and is
correct

= If m = cN then p = 2¢/(N-1) — 2c/N
= mathematically trickier than G(N,p)
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Another Closely Related Model

s Graph process model:
= start with N vertices and no edges
= at each time step, add a new edge

= choose new edge randomly from among all missing
edges

= Allows study of the evolution or emergence of properties:
= as the number of edges m grows in relation to N
= equivalently, as p is increased

= For all of these models:

= high probability <-> “almost all” large graphs of a given
density
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Evolution of a Random Network

= We have a large number n of vertices
= We start randomly adding edges one at a time
= At what time t will the network:
= have at least one “large” connected component?
s have a single connected component?
s have “small” diameter?
= have a “large” cligue?
= have a “large” chromatic number?

= How gradually or suddenly do these properties appear?
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Recap

= Model G(N,p):
select each of the possible edges independently with prob. p
expected total number of edges is pN(N-1)/2
expected degree of a vertex is p(N-1)
degree will obey a Poisson distribution (70t heavy-tailed)
= Model G(N,m):
= select exact/y m of the N(N-1)/2 edges to appear
= all sets of m edges equally likely
= Graph process model:
= starting with no edges, just keep adding one edge at a time
= always choose next edge randomly from among all missing edges
= Threshold or tipping for (say) connectivity:
= fewer than m(N) edges - graph almost certainly /70t connected
= more than m(N) edges - graph almost certainly /s connected
= Mmade formal by examining limit as N = infinity
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Combining and Formalizing Familiar Ideas

s EXxplaining wniversal behavior through statistical models
= our models will always generate marny networks
= almost all of them will share certain properties (universals)
= Explaining #jpping through incremental growth
= we gradually add edges, or gradually increase edge probability p
= Mmany properties will emerge very suddenly during this process

crime rate
prob. NW connected

size of police force number of edges
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Monotone Network Properties

= Often interested in /monotone graph properties:
= let G have the property
= add edges to G to obtain G’
= then G’ must have the property also
= Examples:
= G is connected
= G has diameter <= d (70t exactly d)
= G has a clique of size >= k (0t exactly k)
= G has chromatic number >= ¢ (70t exactly c)
= G has a matching of size >=m
= d, k, ¢, m may depend on NW size N (How?)

= Difficult to study emergence of non-monotone properties as the
number of edges is increased

= Wwhat would it mean?
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Formalizing Tipping:
Thresholds for Monotone Progerties

Consider Erdos-Renyi G(N,m) model

= Select m edges at random to include in G

Let P be some monotone property of graphs

= P(G) =1 - G has the property

= P(G) =0 - G does not have the property

Let m(N) be some function of NW size N

= formalize idea that property P appears “suddenly” at m(N) edges
Say that m(N) is a threshold function for P if:

= let m'(N) be any function of N

= look at ratio r(N) = m'(N)/m(N) as N = infinity

= If r(N) = O: probability that P(G) = 1 in G(N,m’'(N)): - 0O

= If r(N) = infinity: probability that P(G) = 1 in G(N,m'(N)): = 1
A purely structural definition of tipping

= tipping results from incremental increase in connectivity
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So Which Properties Tip?

= Just about a// of them!
= The following properties all have threshold functions:
= having a “giant component”
= being connected
= having a perfect matching (N even)
= having “small” diameter
= With remarkable consistency (N = 50):

= glant component ~ 40 edges, connected ~ 100, small
diameter ~ 180

December 9, 2008 Data Mining: Concepts and Techniques

14



Ever More Precise...

= Connected component of size > N/2:
= threshold function is m(N) = N/2 (or p —~ 1/N)
= note: full connectivity /mpossible
= Fully connected:
= threshold function is m(N) = (N/2)log(N) (or p — log(N)/N)
= NW remains extremely sparse. only ~ log(N) edges per vertex
= Small diameter:
= threshold is m(N) — N"™~(3/2) for diameter 2 (or p ~ 2/sqrt(N))
= fraction of possible edges still ~ 2/sqrt(N) = 0

= generate very small worlds
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Other Tipping Points?

= Perfect matchings
= consider only even N
= threshold function: m(N) = (N/2)log(N) (or p — log(N)/N)
= same as for connectivity!
= Cliques
= k-cligue threshold is m(N) = (1/2)N™(2 — 2/(k-1)) (p —
1/N™N(2/k-1))
= edges appear immediately; triangles at N/2; etc.
= Coloring
= k colors required just as k-cliques appear
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Erdos-Renyi Summary

= A model in which all connections are equally likely

= each of the N(N-1)/2 edges chosen randomly &
iIndependently

= As we add edges, a precise sequence of events unfolds:
= graph acquires a giant component
= graph becomes connected
= graph acquires small diameter
= Many properties appear very suddenly (tipping, threshold
= All statements are mathematically precise
= But is this how natural networks form?
= If not, which aspects are unrealistic?
= may all edges are not equally likely!

)
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The Clustering Coefficient of a Network

Let nbr(u) denote the set of neighbors of u in a graph
= all vertices v such that the edge (u,v) is in the graph
The clustering coefficient of u:
= let k = |nbr(u)| (i.e., number of neighbors of u)
= choose(k,2): max possible # of edges between vertices in nbr(u)
= c(u) = (actual # of edges between vertices in nbr(u))/choose(k,2)
= 0 <=c(u) <= 1; measure of cliquishness of u's neighborhood
Clustering coefficient of a graph:
= average of c(u) over all vertices u

k=4
choose(k,2) = 6
c(u) = 4/6 = 0.666...
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The Clustering Coefficient of a Network

Clustering: My friends will likely know each other!

Probability to be connected C » p

/C'_ # of links between 1,2,...n neighbors

Networks are clustered
[large C(p)]
but have a small
characteristic path length
[small L(p)].
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n(n-1)/2
Network C Crand L N

WWW 0.1078 | 0.00023 3.1 153127
internet  [0.18-03| 0.001 | 37376 O
Actor 0.79 | 0.00027 | 3.65 225226
Coauthorship 0.43 | 0.00018 5.9 52909

Metabolic 0.32 0.026 2.9 282

Foodweb 0.22 0.06 2.43 134

C. elegance 0.28 0.05 2.65 282

19

Data Mining: Concepts and Techniques



Erdos-Renyi: Clustering Coefficient

= Generate a network G according to G(N,p)
= Examine a “typical” vertex u in G
= choose u at random among all vertices in G
= what do we expect c(u) to be?
= Answer: exactly p!
= In G(N,m), expect c(u) to be 2m/N(N-1)
Both cases: c(u) entirely determined by overal/ density
= Baseline for comparison with “more clustered” models

= Erdos-Renyi has 10 bias towards clustered or local
edges
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odels of Social Network G
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= Random Graphs (Erd6s-Rényi models)
= Watts-Strogatz models

w\
s Scale-free Networks
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aveman and Solaria
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Erdos-Renyi:

= Sharing a common neighbor makes two vertices no more likely to be

directly connected than two very “distant” vertices

= every edge appears entirely /ndependent/y of existing structure
But in many settings, the oppositeis true:

= you tend to meet new friends through your old friends

= two web pages pointing to a third might share a topic

= two companies selling goods to a third are in related industries
Watts’ Caveman world:

= overall density of edges is low

= but two vertices with a common neighbor are likely connected
Watts’ So/aria world

= overall density of edges low; no special bias towards local edges

= “like” Erdos-Renyi
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It (Somewhat) Precise
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= The a-model has the following parameters or “knobs”:

= N: s/ize of the network to be generated
= k: the average degree of a vertex in the network to be generated
= p: the default probability two vertices are connected
= o: adjustable parameter dictating bias towards local connections
For any vertices u and v:
= define m(u,v) to be the number of common neighbors (so far)
= Key quantity: the propensity R(u,v) of u to connect to v
= if m(u,v) >= Kk, R(u,v) = 1 (share too many friends ot to connect)
= if m(u,v) =0, R(u,v) = p (no mutual friends - no bias to connect)
= else, R(u,v) =p + (m(u,v)/k)™a (1-p)
= Generate NW incrementally
= using R(u,v) as the edge probability; details omitted
Note: a = infinity is “like” Erdos-Renyi (but not exactly)

December 9, 2008 Data Mining: Concepts and Techniques 23



Watts-Strogatz Model
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C(p): clustering coeff.
L(p) : average path length (Watts and Strogatz, Nature 393, 440 (1998)
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Small Worlds and Occam’s Razor

= For small a, should generate large clustering coefficients
= we “programmed” the model to do so
= Watts claims that proving precise statements is hard...
= But we do nor want a new model for every little property
= Erdos-Renyi - small diameter
= o-model = high clustering coefficient
In the interests of Occam’s Razor, we would like to find
= a single, simple model of network generation...
= ... that simultaneously captures many properties
= Watt's small world: small diameter and high clustering
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Meanwhile, Back in the Real World...

= Watts examines three real networks as case studies:
= the Kevin Bacon graph
= the Western states power grid
= the C. elegans nervous system
= For each of these networks, he:
= computes its size, diameter, and clustering coefficient
= compares diameter and clustering to best Erdos-Renyi
approx.
= shows that the best a-model approximation is better
= iImportant to be “fair” to each model by finding best fit
= Overall moral:

= If we care only about diameter and clustering, o Is better
than p
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Case 1: Kevin Bacon Graph

s Vertices: actors and actresses

= Edge between u and v if they appeared in a film together

Rank
] 1
Kevin Bacon 2
3
No. of movies : 46 4
No. of actors : 1811 5
Average separation: 2.79 6
.
8
Is Kevin Bacon 9
10
the most 1
connected actor? 12

NO! ’
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Name

Rod Steiger
Donald Pleasence
Martin Sheen
Christopher Lee
Robert Mitchum
Charlton Heston
Eddie Albert
Robert VVaughn
Donald Sutherland
John Gielgud
Anthony Quinn
James Earl Jones

Kevin Bacon
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Average
distance
2.537527

2.542376
2.551210
2.552497
2.557181
2.566284
2.567036
2.570193
2.577880
2.578980
2.579750
2.584440

2.786981

# of
movies
112

180
136
201
136
104
112
126
107
122
146
112

46

# of
links
2562

2874
3501
2993
2905
2552
3333
2761
2865
2942
2978
3787

1811
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Doneld

#2 Pleasence

#3 Ma r Sheen
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Case 2: New York State Power Grid

= Vertices: generators anu.brStétions
ol —FF

= Edges: high-voltage power transmission lines and transformers
S5sian i @_iﬁlfaté the voltage level

i
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Case 3: C. Elegans Nervous System

= Vertices: neurons in the C. elegans worm
= Edges: axons/synapses between neurons

December 9, 2008

Lt
2] '-____ e g
{III I.
| S
l: T
L] = B
In e
=
LEd e
|-_"_‘.—-_-—,__ g
i W
n! i
. |
k
It = |
o
E
o, P g
|
LE
] '.
l: T
L= -] m

Data Mining: Concepts and Techniques

P H g !

30



Two More Examples

= M. Newman on scientific collaboration networks

= coauthorship networks in several distinct communities
= differences in degrees (papers per author)
= empirical verification of
= giant components
= small diameter (mean distance)
= high clustering coefficient
= Alberich et al. on the Marvel Universe

= purely fictional social network
= two characters linked if they appeared together in an issue
= “empirical” verification of

» heavy-tailed distribution of degrees (issues and characters)
= giant component

« rather small clustering coefficient
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One More (Structural) Property...

A properly tuned a-model can simultaneously explain
= small diameter
= high clustering coefficient
But what about heavy-tailed degree distributions?
= o-model and simple variants will /70t explain this
= Intuitively, no “bias” towards large degree evolves
= all vertices are created equal
Can concoct many bad generative models to explain
= generate NW according to Erdos-Renyi, reject if tails not heavy

= describe fixed NWs with heavy tails
=« all connected to v1; N/2 connected to v2; etc.
= Not clear we can get a precise power law
= not modeling variation

= why would the world evolve this way?

As always, we want a “natural” model

December 9, 2008 Data Mining: Concepts and Techniques
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odels of Social Network G
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= Random Graphs (Erd6s-Rényi models)
= Watts-Strogatz models

s Scale-free Networks 1
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World Wide Web

W W W

Nodes: WWW documents

Links: URL links
800 million documents

ROBOT: collects all
URL”s found 1In a
document and follows
them recursively

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999)
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Pk)

Expected Result

L
(k) ~ 6

P(k=500) ~ 10-%°
Ny ~ 10°

= N(k=500)~10-%
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Real Result
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J. Kleinberg, et. al, Proceedings of the ICCC (1999)
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|,:=2 [1>2>5]

6
*7

L <I>=77
e Finite size scaling: create a network with N nodes with P, (k) and P, (K)

<1>=0.35 + 2.06 log(N)

2ﬂ L L L L L L L e

+«—19 degrees of separation
R. Albert et al Nature (99)

15 nd.edu |
A ' \@ / based on 800 million webpages

— 10 [S. Lawrence et al Nature (99)]
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5| IBM
" A. Broder et al WWW9 (00)
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What does that mean?

Poisson distribution Power-law distribution
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Scale-free Networks

= The number of nodes (N) is not fixed
= Networks continuously expand by additional new nodes
« WWW: addition of new nodes
= Citation: publication of new papers
= The attachment is not uniform

= A node is linked with higher probability to a node that
already has a large number of links

=« WWW: new documents link to well known sites
(CNN, Yahoo, Google)

« Citation: Well cited papers are more likely to be
cited again
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Scale-Free Networks

Start with (say) two vertices connected by an edge
Fori = 3 to N:

=« foreach 1 <=j <, d(J) = degree of vertex j so far
= let Z =S d()) (sum of all degrees so far)

= add new vertex i with k edges back to {1, ..., i-1}:

= 1 IS connected back to j with probability d(j)/Z

Vertices j with high degree are likely to get more links!
“Rich get richer”

Natural model for many processes:

= hyperlinks on the web

= new business and social contacts

= transportation networks

Generates a power law distribution of degrees

= exponent depends on value of k
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Scale-Free Networks

= Preferential attachment explains
= heavy-tailed degree distributions
= small diameter (~log(N), via “hubs”)

= Wil not generate high clustering coefficient
= No bias towards local connectivity, but towards hubs

December 9, 2008 Data Mining: Concepts and Techniques
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Casel: Internet Backbone

Nodes: computers, routers

Links: physical lines

Domain 2

Domain 1

LAN
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Domain 3

Host

® ERouter

Q Domain

1000 F
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(Faloutsos, Faloutsos and Faloutsos, 1999)
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Case2: Actor Connectivity
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Case 3: Science Citation Index

:papers
Links: citations

\\\ 17/

NN

1736 PRL papers (1988)

o ieo 100

(S. Redner, 1998)



Case 4: Science Coauthorship
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. scientist (authors)
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Case 5: Food Web
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. trophic species
Links: trophic interactions

Food Web of Smallmouth Bass
Little Rock Lake (Cannibal)

-~
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1st Tropic Level ..---V.

Mostly Phytoplankton 2nd Trophic Level
Many Zooplankton

R.J. Williams, N.D. Martinez Nature (2000)

December 9, 2008 Data Mining: Concepts and Techniques 46



Case 6: Sex-Web

Nodes: people (Females; Males)
Links: sexual relationships
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4781 Swedes; 18-74;
59% response rate.
Liljeros et al. Nature 2001
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Robustness of

Random vs. Scale-Free Networks

Random Metwork, Accidental Node Fallure

Heiore e _"*-.__._‘

Scale-Free Metwork, Attack on Hubs
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The accidental failure
of a number of nodes
in a random network
can fracture the
system into non-
communicating islands.

Scale-free networks
are more robust in the
face of such failures.

Scale-free networks
are highly vulnerable
to a coordinated attack
against their hubs.
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