How to model diffusion?

Probabilistic models:

= Models of influence or disease spreading

= An infected node tries to “push”
the contagion to an uninfected node

= Example:

® You “catch” a disease with some prob.
from each active neighbor in the network

Decision based models:

" Models of product adoption, decision making

= A node observes decisions of its neighbors
and makes its own decision

= Example:
® You join demonstrations if k of your friends do so too



Decision-based diffusion models

Collective action
[Granovetter 1978]



Collective Action [Granovetter, 78]

= Model where everyone sees everyone
else’s behavior

= Examples:
= Clapping or getting up and leaving in a theater
= Keeping your money or not in a stock market

= Neighborhoods in cities changing ethnic composition
= Riots, protests, strikes



The model of collective action

n people — everyone observes all actions
Each person i has a threshold ¢,

= Node /i will adopt the behavior iff at
least t; other people are adopters:

>

= Small t;: early adopter

P(adoption)

o

= Large t;: late adopter

The population is described by {t,,...,t }
= F(x) ... fraction of people with threshold t; < x



Dvnamics of collective action

F(x) fractlon of people W|th threshold < X
s(t) ... number of participants at time t

Easy to simulate: = y=x
S( ) =0 L
s(1) = F(O)
s(2) = F(s(1)) = F(F(0))
s(t+1) = F(s(t)) = F**1(0)

lterating to y=F(x).

Fixed point.
F(0)

There could be other fixed

points but starting from O
we never reach them



Fragile vs. robust fixed points

y=x

F(x)

Fragile
fixed point

y:

Robust
fixed point




Distribution of thresholds (trust)

Each threshold t; is drawn independently from
some distribution F(x) = Pr[thresh <x]

Suppose: Normal with u=n/2, variance c
Small c: Large G:

‘‘‘‘‘‘
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Simulation
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Weaknesses of the CA model

No notion of social network — more influential
users

It matters who the early adopters are, not just
how many

Models people’s awareness of size of participation
not just actual number of people participating

Modeling thresholds

= Richer distributions

= Deriving thresholds from more basic assumptions

game theoretic models



Decision-based diffusion models

Game-theoretic models of cascades
[Moore 2000]



Game theoretic models of cascades

2 players — each chooses technology A or B

You gain more payoff if your friend has adopted the
same behavior as you

Local view of the
network of node v




Rules of the game

Payoff matrix:
If both v and w adopt behavior A,
they each get payoff a>0

If v and w adopt behavior B,
they reach get payoff b>0

If v and w adopt the opposite
behaviors, they each get 0

40

w
Each node v is playing a copy of the A b

game with each of its neighbors o A a, a 0,0
Payoff: sum of node payoffs per game & [ 0.0 b,




Decision rule for node v

Threshold:
v choses A if p>q

b
1 a—+b

Let v have d neighbors
Assume fraction p of v's neighbors adopt A

Payoff, = a-p-d If vchooses A
=b-(1-p)-d If vchooses B

Thus: a-p-d>b-(1-p)-d



Example

Scenario:

Graph where everyone starts with B.
Small set S of early adopters of A

Hard wire S — they keep using A no matter
what payoffs tell them to do

Payoffs are set in such a way that nodes say:
If at least 50% of my friends are red I’'ll be red

(this means: a = b+g)



S ={u,v}

If more than
50% of my
friends are red
I’'ll be red
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Stopping cascades

What prevents cascades from spreading?
Def: Cluster of density p is a set of nodes C
where each node in the set has at least p
fraction of edges in C.

p=3/5 pP=2/3



Stopping cascades

Let S be an initial set of adopters of A
All nodes apply threshold g to decide
whether to switch to A

1) If G\S contains a cluster of density >(1-g)
then S can not cause a cascade

2) If S fails to create a cascade, then
there is a cluster of density >{1-q) in G\S



