Social Network Analysis

Dino Pedreschi

KDD LAB

Università di Pisa & ISTI-CNR

Diffusion, Spreading & Epidemics (1)

Epidemic spreading – Why?

Why is the spreading process important?

"Epidemic"

Biological:

Airborne diseases (flu, SARS, ...)

- Venereal diseases (HIV, ...)
- Other infectious diseases including some cancers (HPV, ...)
- Parasites (bedbugs, malaria, ...)

Digital:

- Computer viruses, worms
- Mobile phone viruses

Conceptual/Intellectual:

- Diffusion of innovations
- Rumors
- Memes
- Business practices

http://en.wikipedia.org/wiki/Epidemic

Biological: Notable Epidemic Outbreaks

The Great Plague

HIV

HIV prevalence in adults, end 2001

SARS

1918 Spanish flu

H1N1 flu

Epidemic spreading – Why does it matter now?

→ perfect conditions for epidemic spreading.

Airline figure: L. Hufnagel et al. PNAS 101, 15124 (2004)

Large population can provide the "fuel"

Separate, small population (hunter-gatherer society, wild animals)

Connected, highly populated areas (cities)

Human societies have "**crowd diseases**", which are the consequences of large, interconnected populations (Measles, tuberculosis, smallpox, influenza, common cold, ...)

14th Century – The Great Plague

4 years from France to Sweden

Limited by the speed of human travel

http://en.wikipedia.org/wiki/Black_Death http://de.wikipedia.org/wiki/Schwarzer_Tod

21st Century – SARS

Source: World Health Organization

Computer Viruses, Worms, Mobile Phone Viruses

SMARTPHONES ON THE RISE

GROWTH IN MOBILE MALWARE

Hypponen M. Scientific American Nov. 70-77 (2006).

Code Red Worm paralyzed many countries' Internet

http://www.caida.org/publications/visualizations/

Diffusion of Innovation – The Adoption Curve

Information Spreading

Epidemic Spreading – Network

 Epidemic spreading always implies network structure!

Spreading happens only when the carries of the diseases/virus/idea are connected to each other.

Epidemic Spreading – Network

Epidemic Spreading – Network

The transportation network

L. Hufnagel et al. *PNAS* **101**, 15124 (2004)

Internet

http://www.caida.org/publications/visualizations/

Group formation dynamics

Group formation in networks

- In a social network nodes explicitly declare group membership:
 - Facebook groups, Publication venue
- Can think of groups as node colors
- Gives insights into social dynamics:
 - Recruits friends? Memberships spread along edges
 - Doesn't recruit? Spread randomly
- What factors influence a person's decision to join a group?

Group memberships spread over the network:

- Red circles represent existing group members
- Yellow squares may join

• Question:

• How does prob. of joining a group depend on the number of friends already in the group?

Diminishing returns:

- Probability of joining increases with the number of friends in the group
- But increases get smaller and smaller

Connectedness of friends and group membership

- x and y have three friends in the group
- x's friends are independent
- y's friends are all connected

Who is more likely to join?

Competing sociological theories:

- Information argument [Granovetter '73]
- Social capital argument [Coleman '88]

Information argument:

- Unconnected friends give independent support
- Social capital argument:
 - Safety/trust advantage in having friends who know each other

... and the winner is ...

[Backstrom et al., KDD 2006]

The strength of **strong** ties

- A person is more likely to join a group if
 - she has more friends who are already in the group
 - friends have more connections between themselves
- So, groups form clusters of tightly connected nodes

