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Problem Statement: TSDP

Task-based Session Discovery Problem:

Discover sets of possibly non contiguous queries
issued by users of Web Search Engines for carrying out
specific tasks using Query Log Mining techniques
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Motivation

® Everyone who is now at VWSDM 201 | has dealt with a
lot of “stuff” for organizing her/his attendance

Conference Web site is full of useful information but still
some tasks have to be performed (e.g., book flight,

reserve hotel room, rent car, etc.)

In the last Web era this means to search for suitable
contents over the Internet about achieving those tasks

e Formulate information needs by means of a set of queries
issued to a Web Search Engine (VSE)

Possibly, interleave searches with other information needs

(e.g., reading sport news) ~
wsdm
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The Big Picture
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Related Work

® Previous work on session identification
can be classified into:

|. time-based
2. content-based

3. mixed-heuristics (combining |.and 2.)
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Related Work: time-based

e Silverstein et al. [1] firstly defined the concept of
“session’;

® 2 adjacent queries (q;, qi+1) are part of the same
session if their time submission gap is at most 5
minutes

Gabriele Tolomei - February, 12 201 | 2011 Hong Kong



Related Work: time-based

e Silverstein et al. [1] firstly defined the concept of
“session’;

® 2 adjacent queries (q;, qi+1) are part of the same
session if their time submission gap is at most 5
minutes

e He and Goker [2] used different timeouts to split
user sessions (from | to 50 minutes)

Gabriele Tolomei - February, 12 201 | 2011 Hong Kong



Related Work: time-based

e Silverstein et al. [1] firstly defined the concept of
“session”:

® 2 adjacent queries (q;, qi+1) are part of the same
session if their time submission gap is at most 5
minutes

He and Goker [2] used different timeouts to split
user sessions (from | to 50 minutes)

Radlinski and |Joachims [3] introduced query
chains, i.e., sequence of queries with similar
information need

Gabriele Tolomei - February, 12 201 |



Related Work: time-based

e Silverstein et al. [1] firstly defined the concept of
“session”:

® 2 adjacent queries (q;, qi+1) are part of the same
session if their time submission gap is at most 5
minutes

He and Goker [2] used different timeouts to split
user sessions (from | to 50 minutes)

Radlinski and |Joachims [3] introduced query
chains, i.e., sequence of queries with similar
information need

® |ansen and Spink [4] described a session as the
time gap between the first and last recorded
timestamp on the WSE server

Gabriele Tolomei - February, 12 201 |

2011 Hong Kong



Related Work: time-based

e Silverstein et al. [1] firstly defined the concept of
“session”:

® 2 adjacent queries (qi, gi+1) are part of the same PROs

session if their time submission gap is at most 5 v ease of implementation
minutes

He and Goker [2] used different timeouts to split CONs
user sessions (from | to 50 minutes)

v unable to deal with multi-
tasking behaviors

Radlinski and |Joachims [3] introduced query
chains, i.e., sequence of queries with similar
information need

® |ansen and Spink [4] described a session as the
time gap between the first and last recorded
timestamp on the WSE server

Gabriele Tolomei - February, 12 201 | 2011 Hong Kong



Related Work: content-based

e Some work exploit lexical content of the queries
for determining a topic shift in the stream, i.e.,
session boundary [5,6,7]
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Related Work: content-based

e Some work exploit lexical content of the queries
for determining a topic shift in the stream, i.e., PROs

ion ndary [5,6, ' '
session boundary [5,6,7] v effectiveness improvement

Several string similarity scores have been CON
proposed, e.g., Levenstein, Jaccard, etc. 3
v vocabulary-mismatch problem:

e.g., (‘nba”,kobe bryant™)

Shen et al. [8] compared “expanded
representation” of queries

® expansion of a query q is obtained by concatenating
titles and Web snippets for the top-50 results
provided by a WSE for g
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e He et al [6] extend their previous work to
consider both temporal and lexical features
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Related Work:

He et al. [6] extend their previous work to
consider both temporal and lexical features

Boldi et al. 9] introduce the query-flow graph as
a model for representing VSE log data PROs

® session identification as Traveling Salesman Problem |V effectiveness improvement

e Jones and Klinkner [10] address a problem similar CONs
to the TSDP

v computational complexity

hierarchical search: mission vs. goal

supervised approach: learn a suitable binary classifier
to detect whether two queries (q;, gj) belong to the
same task or not
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Our Approach

Formalize the Task-based Session Discovery Problem
Analyze a long-term WSE log of queries

Build a ground-truth of tasks by manually grouping a
sample of task-related queries in the given WSE log

Perform some statistics on top of the ground-truth

Propose several techniques for addressing the TSDP
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Theoretical Model
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" task-based session Oii : TSDP

v O set of actual task-based sessions of i\
v Ci. set of task-based sessions of i, discovered
using partitioning strategy TT

v @ =Ui,|(ei,k and CT[ =Ui,kCi,k
v Find the best partitioning TT* such that:

O= U i,k@i,k TT* = argmaxn &(0O, Cr)
) | where & measures the quality of Crr w.r.t. © |

wsdm
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Data Set: AOL Query Log
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v 3-months collection S ! |
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Data Set: AOL Query Log

v 3-months collection

Original Data Set |v ~20M queries
v ~65/K users

v |-week collection

N v ~100K queries

v 1,000 users

Sample Data Set |v removed empty queries

v removed “non-sense” queries

v removed stop-words

v applied Porter stemming algorithm

Gabriele Tolomei - February, 12 201 |



Data Analysis: query time gap

® Devise a value ty, such that two adjacent queries

whose time gap is smaller than t, should be
considered part of the same time-gap session
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Data Analysis: query time gap

® Devise a value ty, such that two adjacent queries

whose time gap is smaller than t, should be
considered part of the same time-gap session

® Analyze the distribution of time gaps between all the
adjacent query pairs (q;, gi+1) in the original collection

® power-law distribution

P(Xx) o L(X) x* (o> 1)
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Data Analysis: query time gap

Consecutive query pairs time gap distribution
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Data Analysis: query time gap

e Compute the cumulative probability distribution in
order to find x’ such that Pr(X < x’) = P(x’) = A

® A=Pu+0=05+0.341 =0.841 (mean + std. deviation
of a Gaussian distribution)

® estimation of @ = |.58

o P(x)=)\ =084l
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Data Analysis: query time gap

e Compute the cumulative probability distribution in
order to find x’ such that Pr(X < x’) = P(x’) = A

® A=Pu+0=05+0.341 =0.841 (mean + std. deviation
of a Gaussian distribution)

® estimation of @ = |.58

e P(xX)=A=084 —/> |xX’ ~ 26 minutes

® This means 84.1% of consecutive query pairs are
issued within 26 minutes

® X’ can be used as the threshold t,

e compliant with often used 30-minutes threshold FONC

; wsdm
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Ground-truth: construction

® [ong-term sessions of sample data set are first split
using the time threshold devised before (i.e., 26 minutes)
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Ground-truth: construction

Long-term sessions of sample data set are first split
using the time threshold devised before (i.e., 26 minutes)

® obtaining several time-gap sessions

Human annotators group queries that they claim to be
task-related inside each time-gap session

Represents the “optimal” task-based partitioning ©
manually built from actual WSE query log data

Useful both for statistical purposes and evaluation of
automatic task-based session discovery methods

wsdm
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Ground-truth: statistics

v 2,004 queries

v 446 time-gap sessions —
v 1,424 annotated queries
v 307 annotated time-gap sessions

v 554 detected task-based sessions
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Ground-truth: statistics

Time-gap session size distribution

v 4.49 avg. queries per
time-gap session

v more than /0% time-gap
session contains at most
5 queries

Frequency (%)

10 15 20 25 30

Time-gap session size (#queries)
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Ground-truth: statistics

Task size distribution
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v 2.57 avg. queries per task
v ~7/5% tasks contains at
most 3 queries
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Ground-truth: statistics

Task per time-gap session distribution

v |.80 avg. task per time-
gap session

v ~477% time-gap session
contains more than one
task (multi-tasking)

v 1,046 over 1,424 queries

(i.e., ~/4%) included in
multi-tasking sessions

Frequency (%)

o

#Tasks per time-gap session
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Ground-truth: statistics

Multi-tasking degree distribution .
J 89 v overlapping degree of

multi-tasking sessions

v jump occurs whenever
two queries of the same
task are not originally
adjacent

v ratio of task in a time-gap
session that contains at
least one jump

Frequency (%)

0.4 0.6

Multi-tasking degree
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TSDP: approaches

|) TimeSplitting-t

Description:

The idea is that if two consecutive queries are far
away enough then they are also likely to be
unrelated.

Two consecutive queries (qi, gi+1) are in the same
task-based session if and only if their time
submission gap is lower than a certain threshold t.

(
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The idea is that if two consecutive queries are far
away enough then they are also likely to be
unrelated.
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Description:

Queries are grouped using clustering algorithms,
which exploit several query features. Clustering
algorithms assembly such features using two
different distance functions for computing query-
pair similarity.

Two queries (g, qj) are in the same task-based
session if and only if they are in the same cluster.

.
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Description:

Queries are grouped using clustering algorithms,
which exploit several query features. Clustering
algorithms assembly such features using two
different distance functions for computing query-
pair similarity.

Two queries (g, qj) are in the same task-based
session if and only if they are in the same cluster.

PROs:
v able to detect multi-tasking sessions
v able to deal with “noisy queries” (i.e., outliers)

CON:s:

v O(n?) time complexity (almost quadratic in the
number n of queries due to all-pairs-similarity
computational step)

Methods: QC-MEANS, QC-ScAN, QC-wcc, and

. QC-HTC

~

.

wsdm

2011 Hong Kong




Query Features

Content-based (pcontent)

v two queries (qi, qj) sharing common
terms are likely related
vV Wiaccard: Jaccard index on query 3-grams

| . T(q1) NT(g2)]
fjaccard(q1,q2) =1 T (q1) UT(q2)|

v Ulevenstein: NOrmalized Levenstein
distance

(:uj accard T [levenstein )
2

Hecontent (Q1, CI2) —
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Query Features

Content-based (Mcontent)

v two queries (qi, qj) sharing common
terms are likely related
vV Wiaccard: Jaccard index on query 3-grams

| . T(q1) NT(g2)]
fjaccard(q1,q2) =1 T (q1) UT(q2)|

v Ulevenstein: NOrmalized Levenstein
distance

(:uj accard T levenstein )
2

Hecontent ((I1, q2) —
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Semantic-based (Usemantic)

v using Wikipedia and Wiktionary for
“expanding” a query q

v “wikification” of g using vector-space
model

Ct) = (c1,c0, ..., cw)

v relatedness between (q;, qj) computed
using cosine-similarity

6)(QI)'6)(Q2)
rel(qi,q2) =
PTG @l

Mwikification(q1,q2) = 1 — rel(q1, q2)

,Usemantz'c(q1, CJ2) - min(/«twiktionary, ,Uwz'kipedia)
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Distance Functions: 4 vs. Y2

v Convex combination

U1 = - [heontent T (1 — Ol) * lsemantic

v Conditional formula u»

Idea: if two queries are close in term of lexical
content, the semantic expansion could be
unhelpful.Vice-versa, nothing can be said when
queries do not share any content feature

g = Hcontent if Heontent < t
mln(,UJcontenta b - ,Ufsemantz'c) otherwise.

v Both i and ps relies on the estimation of
some parameters,i.e., 0, t,and b
v Use ground-truth for tuning parameters
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QC-MEANS

o Centroid-based algorithm inspired by K-MEANS [I11]
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o Centroid-based algorithm inspired by K-MEANS [I1]

® The input parameter K, i.e., number of output
clusters produced, is replaced with p
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o Centroid-based algorithm inspired by K-MEANS [I1]

® The input parameter K, i.e., number of output
clusters produced, is replaced with p

® O defines the maximum radius of a centroid-based
cluster
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QC-MEANS

Centroid-based algorithm inspired by K-MEANS [11]

The input parameter K, i.e., number of output
clusters produced, is replaced with p

0 defines the maximum radius of a centroid-based
cluster

e deals with the variance of sessions size
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QC-MEANS

Centroid-based algorithm inspired by K-MEANS [11]

The input parameter K, i.e., number of output
clusters produced, is replaced with p

0 defines the maximum radius of a centroid-based
cluster

e deals with the variance of sessions size

® avoids to “apriori”’ specify the parameter K

wsdm

Gabriele Tolomei - February, 12 201 | 2011 Hong Kong



QC-SCAN

e Density-based algorithm inspired by DB-SCAN [12]
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QC-SCAN

e Density-based algorithm inspired by DB-SCAN [12]

® Produces clusters of several shapes (not only circles)
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QC-SCAN

Density-based algorithm inspired by DB-SCAN [12]

Produces clusters of several shapes (not only circles)

Deals with the presence of outliers in WSE log data
(i.e.,'noisy queries”™)
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QC-SCAN

Density-based algorithm inspired by DB-SCAN [12]
Produces clusters of several shapes (not only circles)

Deals with the presence of outliers in WSE log data
(i.e.,'noisy queries”™)

2 input parameters needed as for classical DB-SCAN:

Gabriele Tolomei - February, 12 201 |



QC-SCAN

Density-based algorithm inspired by DB-SCAN [12]
Produces clusters of several shapes (not only circles)

Deals with the presence of outliers in WSE log data
(i.e.,'noisy queries”™)

2 input parameters needed as for classical DB-SCAN:

® minPts = minimum number of queries which a cluster
has to be composed of

wsdm
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QC-SCAN

Density-based algorithm inspired by DB-SCAN [12]
Produces clusters of several shapes (not only circles)

Deals with the presence of outliers in WSE log data
(i.e.,'noisy queries”™)

2 input parameters needed as for classical DB-SCAN:

® minPts = minimum number of queries which a cluster
has to be composed of

® ecps = neighborhood degree between queries in a cluster

wsdm
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QC-wcCC

® Models each time-gap session (0 as a weighted
undirected graph G = (V, E, w)
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QC-wcCC

® Models each time-gap session (0 as a weighted
undirected graph G = (V, E, w)

® set of nodesV are the queries in
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QC-wcCC

® Models each time-gap session (p as a weighted
undirected graph G = (V, E, w)

® set of nodesV are the queries in

® set of edges E are weighted by the similarity of the
corresponding nodes

wsdm
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QC-wcCC

® Models each time-gap session © as a weighted
undirected graph Gy = (V, E, w)

® set of nodesV are the queries in

® set of edges E are weighted by the similarity of the
corresponding nodes

® Drop weak edges,i.e., with low similarity, assuming the
corresponding queries are not related and obtaining G’

wsdm
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QC-wcCC

® Models each time-gap session © as a weighted
undirected graph Gy = (V, E, w)
® set of nodesV are the queries in

® set of edges E are weighted by the similarity of the
corresponding nodes

Drop weal edges, i.e., with low similarity, assuming the
corresponding queries are not related and obtaining G’

Clusters are built on the basis of strong edges by finding
all the connected components of the pruned graph G’

wsdm
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QC-wcCC

® Models each time-gap session © as a weighted
undirected graph Gy = (V, E, w)
® set of nodesV are the queries in

® set of edges E are weighted by the similarity of the
corresponding nodes

Drop weal edges, i.e., with low similarity, assuming the
corresponding queries are not related and obtaining G’

Clusters are built on the basis of strong edges by finding
all the connected components of the pruned graph G’

O(m?) time complexity where m = |V/|

, wsdm
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QC-HTC

® Variation of QC-wWCC based on head-tail components
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QC-HTC

® Variation of QC-wWCC based on head-tail components

® Does not need to compute the full similarity graph
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QC-HTC

® Variation of QC-wWCC based on head-tail components
® Does not need to compute the full similarity graph

e Exploits the sequentiality of query submissions to
reduce the number of similarity computations

wsdm
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QC-HTC

Variation of QC-wcCC based on head-tail components
Does not need to compute the full similarity graph

Exploits the sequentiality of query submissions to
reduce the number of similarity computations

Performs 2 steps:
|. sequential clustering

2. merging

wsdm
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QC-HTC: sequential clustering

e Partition each time-gap session into sequential
clusters containing only queries issued in a row
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QC-HTC: sequential clustering

Partition each time-gap session into sequential
clusters containing only queries issued in a row

Each query in every sequential cluster has to be
“similar enough” to the chronologically next one
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QC-HTC: sequential clustering

Partition each time-gap session into sequential
clusters containing only queries issued in a row

Each query in every sequential cluster has to be
“similar enough” to the chronologically next one

Need to compute only the similarity between one
query and the next in the original data

wsdm
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QC-HTC: merging

® Merge together related sequential clusters due to
multi-tasking

wsdm
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QC-HTC: merging

® Merge together related sequential clusters due to
multi-tasking

® Hyp:a cluster is represented by its chronologically-
first and last queries, i.e., head and tail, respectively
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QC-HTC: merging

® Merge together related sequential clusters due to
multi-tasking

® Hyp:a cluster is represented by its chronologically-
first and last queries, i.e., head and tail, respectively

Given two sequential clusters c;, ¢; and h;, t;, and hj,
tj, their corresponding head and tail queries the
similarity s(c;, ¢;) is computed as follow:

wsdm

Gabriele Tolomei - February, 12 201 | 2011 Hong Kong




QC-HTC: merging

® Merge together related sequential clusters due to
multi-tasking

® Hyp:a cluster is represented by its chronologically-
first and last queries, i.e., head and tail, respectively

Given two sequential clusters c;, ¢; and h;, t;, and hj,
tj, their corresponding head and tail queries the
similarity s(c;, ¢;) is computed as follow:

S(Ci, Cj) = min w(e(qi, qj)) s.t. i € {h;, ti} and qj € {h;, t;}
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QC-HTC: merging

® Merge together related sequential clusters due to
multi-tasking

® Hyp:a cluster is represented by its chronologically-
first and last queries, i.e., head and tail, respectively

Given two sequential clusters c;, ¢; and h;, t;, and hj,
tj, their corresponding head and tail queries the
similarity s(c;, ¢;) is computed as follow:

S(Ci, Cj) = min w(e(qi, C|j)) s.t. i € {h;, ti} and qj € {h;, t;}

® ciand cjare merged as long as s(cj, ¢j) > 1

® h; tiand hj, tjare updated consequently

, wsdm
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QC-HTC: time complexity

® |n the first step the algorithm computes the similarity
only between one query and the next in the original data

e O(m) where m is the size of the time-gap session
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QC-HTC: time complexity

® |n the first step the algorithm computes the similarity
only between one query and the next in the original data

e O(m) where m is the size of the time-gap session

® |n the second step the algorithm computes the pairwise
similarity between each sequential cluster

e O(k?) where k is the number of sequential clusters
o ifl=[-mwith 0=B=<I then time complexity is O([3? - m?)

* e B =1/2=0(m%4) = 4 times better than QC-wcC

wsdm
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Setup

® Run and compare all the proposed
approaches with:
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® Run and compare all the proposed
approaches with:

® [5-26:time-splitting technique (baseline)
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Setup

® Run and compare all the proposed
approaches with:

® [5-26:time-splitting technique (baseline)

o (FG:session extraction method based on the
query-flow graph model (state of the art)
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Evaluation

® Measure the degree of correspondence between manually
extracted tasks, i.e., ground-truth, and tasks output by algorithms

wsdm
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Evaluation

® Measure the degree of correspondence between manually
extracted tasks, i.e., ground-truth, and tasks output by algorithms

a) F-measure

v evaluates the extent to
which a task contains
only and all the objects
of a class

v combines p(i, j) and r(i, j)
the precision and recall
of task i w.r.t. class j

Y oa ) — 2Xp(’l:,j)>(’f’(’i,j)
F(i,j) = p(i,5)+7(%,7)
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Evaluation

® Measure the degree of correspondence between manually
extracted tasks, i.e., ground-truth, and tasks output by algorithms

a) F-measure b) Rand

v evaluates the extent to v pairs of objects instead
which a task contains of singleton
only and all the objects v foo, for, fio, fi1
of a class
v combines p(i, j) and r(i, j
the Precisipo(n gnd rec(alll) R = Joo+ /11
) ) foot+fo1+fio+f11
of task i w.r.t. class |

; ; - 2Xp(’l:,j))(’f'(’l:,j)
F(i,7) = =G5+
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Evaluation

® Measure the degree of correspondence between manually
extracted tasks, i.e., ground-truth, and tasks output by algorithms

a) F-measure

v evaluates the extent to
which a task contains
only and all the objects
of a class

v combines p(i, j) and r(i, j)
the precision and recall
of task i w.r.t. class j

; ; S 2Xp(’l:,j))(’f'(’l:,j)
F(i,7) = =G5+

b) Rand

v pairs of objects instead
of singleton
¥ foo, for, fio, fi1

R — foot+f11

~ foo+for+fio+f11

c) Jaccard

v pairs of objects instead
of singleton
Y for, fio, fi

_ f11
J = for+fio+f11

Gabriele Tolomei - February, 12 201 |
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Results: TS-t

Table 1: TS-5, TS-15, and T'S-26.

F-measure | Rand | Jaccard

TS-5 0.28 0.75 0.03
TS-15 0.28 0.71 0.08
TS-26 0.65 0.34 0.34

e 3 time thresholds used: 5, |5, and 26 minutes
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Results: TS-t

Table 1: TS-5, 1TS-15, and T'S-26.

F-measure | Rand | Jaccard

-5 0.28 0.75 0.03
5 0.28 0.71 0.08
6 0.65 0.34 0.34

TS-1
TS-2

e 3 time thresholds used: 5, |5, and 26 minutes

o Note:[5-26 was used for splitting sample data set

® task-based sessions concur with time-gap sessions

wsdm
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Results: QFG

Table 2: QFG: varying the threshold 7.

Yl

F-measure

Rand

Jaccard

0.1
0.2
0.3
04
0.5
0.6

0.68
0.68
0.69
0.70
0.71
0.74

0.47
0.49
0.51
0.55
0.59
0.65

0.36
0.36
0.37
0.38
0.38
0.39

1 0.7

0.77

0.71

0.40

0.8
0.9

0.77
0.77

0.71
0.71

0.40
0.40
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v trained on a segment of
our sample data set

v best results using n = 0.7

v vs. baseline:

* +16% F-measure
- +52% Rand
- +15% Jaccard

2011 Hong Kong



Results: QC-MEANS

Table 3: QC-MEANS: 1 VS. us.

QC-MEANS

F-measure

Rand

Jaccard

)

0
0.5
1

0.71
0.68
0.68

0.73
0.70
0.70

0.26
0.14
0.13

QC-MEANS ,,,

F-measure

Rand

Jaccard

0.72
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0.74

0.27

v max radius p = 0.4
v best results using 1
v vs. baseline:

* +10% F-measure
- +549% Rand
» -21% Jaccard

v vs. QFG:
* -6% F-measure
» +49% Rand
» -33% Jaccard




Results: QC-SCAN

v minPts =2 and eps = 0.4

Table 4: QC-SCAN: py VS. fio. v best results using 1

QC-ScaN . .
13‘-measurelu1 Rand | Jaccard J VS. basellne-
(1—a)

° + o -
0 0.77 0.71 0.17 |67% F-measure
0.5 0.74 0.68 0.06 « +579% Rand
1 0.75 0.68 0.07 . .44%, Jaccard
QC-SCAN 4, .
F-measure | Rand | Jaccard ‘/ Vs. QFG
* same F-measure

- same Rand
» -53% Jaccard

0.77 0.71 0.19
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Results: QC-wcCC

Table 5: QC-wcc: p; vs. ps varying the threshold 7.

QC-wee 4, (a=0.5)
N F-measure | Rand | Jaccard

0.1

0.78

0.71

0.42

1 0.2

0.81

0.78

0.43

0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.79
0.75
0.72
0.75
0.74
0.74
0.72

0.77
0.73
0.71
0.70
0.69
0.68
0.67

0.37
0.27
0.20
0.14
0.11
0.07
0.04

QC-WCC py (1 =0.5,b=14)

N

F-measure

Rand

Jaccard

0.1
0.2

0.67
0.78

0.45
0.71

0.33
0.42

0.3

0.81

0.78

0.44

0.4
0.5
0.6
0.7
0.8
0.9

0.81
0.80
0.78
0.75
0.71
0.69

0.78
0.77
0.75
0.73
0.70
0.68

0.41
0.37
0.32
0.23
0.15
0.08

v best results using 12 and
n=20.3

v vs. baseline:
* +207% F-measure

» +56% Rand
» +23% Jaccard

v vs. OFG:
« +5% F-measure
» +9% Rand
» +10% Jaccard
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Results: QC-HTC

Table 6: QC-HTC: 1 vs. pus varying the threshold .

QC-HTC 4, (a =0.5)

Yl

F-measure

" Rand

Jaccard

0.1

0.78

0.72

0.41

| 0.2

0.80

0.78

0.41

0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.78
0.75
0.73
0.75
0.74
0.74
0.72

0.76
0.73
0.70
0.70
0.69
0.68
0.67

0.35
0.25
0.18
0.13
0.10
0.06
0.03

QC-HTC 4, (1 =0.5,b=14)

yl

F-measure

Rand

Jaccard

0.1
0.2

0.68
0.78

0.56
0.73

0.32
0.41

1 0.3

0.80

0.78

0.43

0.4
0.5
0.6
0.7
0.8
0.9

0.80
0.78
0.77
0.74
0.71

0.68

0.77
0.76
0.74
0.72
0.70

0.67

0.38
0.34
0.30
0.21
0.14
0.07
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v best results using 12 and
n=20.3
v vs. baseline:

* +19% F-measure
- +56% Rand
» +21% Jaccard

v vs. OFG:
« +49% F-measure
» +9% Rand
» +8% Jaccard
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Results: best

Table 7: Best results obtained with each method.

F-measure | Rand | Jaccard

TS-26 (baseline) 0.65 0.34 0.34
QFG pest (state of the art) 0.77 0.71 0.40

QC-MEANS pest 0.72 0.74 0.27
QC-SCAN pest 0.77 0.71 0.19

QC-WCC ooy 0.81 0.78 | 0.44
QC‘HTC best
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Results: Wiki impact

Table 8: The impact of Wikipedia: p1 vs. o

QC-HTC ,,;, (=1) QC-HTC ,, (0.5, 4)
Query 1D Query String Query 1D Query String
63 los cabos
64 cancun
65 hurricane wilma 65 hurricane wilma
68 hurricane wilma 68 hurricane wilma

® Benefit of using VWikipedia instead of only lexical
content when computing query distance function
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Results: Wiki impact

Table 8: The impact of Wikipedia: p1 vs. o

QC-HTC ,;, (v =1) QC-HTC ,, (0.5, 4)
Query ID Query String Query 1D Query String
63 los cabos
64 cancun
65 hurricane wilma 65 hurricane wilma
68 hurricane wilma 68 hurricane wilma

Benefit of using VWikipedia instead of only lexical
content when computing query distance function

Capturing other two queries that are lexically
different but somehow “semantically” similar
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Conclusions

® |ntroduced the Task-based Session Discovery Problem

e from a WSE log of user activities extract several sets of
queries which are all related to the same task
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Conclusions

® |ntroduced the Task-based Session Discovery Problem

e from a WSE log of user activities extract several sets of
queries which are all related to the same task

o Compared clustering solutions exploiting two
distance functions based on query content and
semantic expansion (i.e., VWiktionary and Wikipedia)
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Conclusions

® |ntroduced the Task-based Session Discovery Problem

e from a WSE log of user activities extract several sets of
queries which are all related to the same task

o Compared clustering solutions exploiting two
distance functions based on query content and
semantic expansion (i.e., VWiktionary and Wikipedia)

Proposed novel graph-based heuristic QC-HTC, lighter
than QC-wWCC, outperforming other methods in
terms of F-measure, Rand and Jaccard index

wsdm
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Future VVork

® Why should we stop here!
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Future VVork

® Why should we stop here!

® Once discovered, smaller tasks might be part of a
bigger and more complex task, i.e., process
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Gabriele Tolomei -

Future VVork

Why should we stop here!?

Once discovered, smaller tasks might be part of a
bigger and more complex task, i.e., process

The task “fly to Hong Kong” might be a step of the
process “traveling to Hong Kong”, which in turn
could involve several other tasks...

®, o
February, 12 201 | wsd m
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Envision

® Make Web Search Engine the “universal driver” for
executing our daily activities on the Web
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Envision

® Make Web Search Engine the “universal driver” for
executing our daily activities on the Web

® Once user types in a query, WSE should “infer the
process” user aims to perform (if any) = serendipity!
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Envision

® Make Web Search Engine the “universal driver” for
executing our daily activities on the Web

® Once user types in a query, WSE should “infer the
process” user aims to perform (if any) = serendipity!

® Results should be no longer only list of plain links but
also processes (or part of those)
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Envision

Make Web Search Engine the “universal driver” for
executing our daily activities on the Web

Once user types in a query, VWSE should “infer the
process” user aims to perform (if any) = serendipity!

Results should be no longer only list of plain links but
also processes (or part of those)

Recommendation of queries and/or Web pages both
intra- and inter-task, which the process is composed of

task vs. query recommendation

) wsdm
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