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g?;ab Complex (Social) Networks

* Big graph data and social, information, biological and
technological networks

* The architecture of complexity and how real
networks differ from random networks:

— node degree and long tails,
— social distance and small worlds,

— clustering and triadic closure.

* Comparing real networks and random graphs.

e The main models of network science: small world
and preferential attachment.



g?;ab Complex (Social) Networks

e Strong and weak ties, community structure and long-
range bridges.

e Robustness of networks to failures and attacks.

e Cascades and spreading. Network models for
diffusion and epidemics. The strength of weak ties
for the diffusion of information. The strength of
strong ties for the diffusion of innovation.

* Practical network analytics with Cytoscape and
Gephi.

* Simulation of network processes with NetLogo.



@ab Complex (Social) Networks

* Textbooks
— Albert-Laszlo Barabasi. Network Science (2016)
— http://barabasi.com/book/network-science

— David Easley, Jon Kleinberg: Networks, Crowds, and Markets
(2010)

— http://www.cs.cornell.edu/home/kleinber/networks-book/

 Network Analytics Software (open):
— Cytoscape: http://www.cytoscape.org/
— Gephi: http://gephi.github.io/

* Network Data Repository
— http://networkrepository.com/

e Simulation of network models: NetLogo



Part 2

Small-world & Preferential attachment recap
Measuring small-worlds with big data
Strength of weak ties

Centrality measures

Strength of weak ties, centrality and mobility
Community discovery

Link prediction

Multi-dimensional network analysis



ARE REAL NETWORKS LIKE RANDOM GRAPHS?

As quantitative data about real networks became available, we can
compare their topology with the predictions of random graph theory.

Note that once we have N and <k> for a random network, from it we can derive every
measurable property. Indeed, we have:

Average path length:
logN
< lrand >

Clustering Coefficient:

. _p (B =N
Degree Distribution: rand — P =

])rand (k) = C]If]—lpk(l _ p)N j]




The small-world model



Milgram experiment
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Real networks are between random
networks and lattices
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somewnhere here



Watts-Strogatz model

Steve Strogatz

I NATURE|VOL 353[4 JUNE 19%

Collective dynamics of
‘small-world’ networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall,
Cornell University, Ithaca, New York 14853, USA

Networks of coupled dynamical systems have been used to model
biological oscillators'™, Josephson junction arrays™, excitable
media’, neural networks®', spatial games', genetic control
networks' and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.

—




REGULAR SMALL-WORLD  RANDOM

Increasing randomness



Average path length vs. clustering coefficient
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Hubs represent the most striking difference between a random and a scale-
free network.Their emergence in many real systems raises several
fundamental questions:

*Why does the random network model of Erdés and Rényi fail to reproduce
the hubs and the power laws observed in many real networks?

* Why do so different systems as the WWW or the cell converge to a similar
scale-free architecture!?



Growth and preferential attachment



BA MODEL: Growth

ER model:
the number of nodes, N, is fixed (static models)

networks expand through the addition
of new nodes

Barabasi & Albert, Science 286, 509 (1999)
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BA MODEL.: Preferential attachment

ER model: links are added randomly to the network

New nodes prefer to connect to the more connected nodes

Barabasi & Albert, Science 286, 509 (1999) Network Science: Evolving Network Models rebruary 14, 2011



Growth and Preferential Sttachment

The random network model differs from real networks in two important
characteristics:

Growth: While the random network model assumes that the number of

nodes is fixed (time invariant), real networks are the result of a growth
process that continuously increases.

Preferential Attachment: While nodes in random networks randomly choose
their interaction partner, in real networks new nodes prefer to link to the more
connected nodes.

Barabasi & Albert, Science 286, 509 (1999)



The Barabasi-Albert model



Origin of SF networks: Growth and preferential attachment

(1) Networks continuously expand by the GROWTH:

addition of new nodes add a new node with m links

WWW : addition of new documents
PREFERENTIAL ATTACHMENT:

(2) New nodes prefer to link to highly the probability that a node connects to a node
connected nodes. with k links is proportional to k.

WWW : linking to well known sites

k.
[I(k,)=—
Y — Zlkl
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Barabasi & Albert, Science 286, 509 (1 999) Network Science: Evolving Network Models rebruary 14, 2011
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MILESTONES

George Kinsley Zipf
WEALTH DISTRIBUTION
Gydrgy Pélya ECONOMIST Herbert Alexander Simon Robert Merton
POLYA PROCESS MASTER EQUATION MATTHEW EFFECT
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Albert-Laszl6 Barabasi & Réka Albert
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Gybrgy Pélya (1887-1985)
Preferential attachment made its
first appearance in 1923 in the
celebrated urn model of the
Hungarian mathematician Gyorgy
Pélya [2]. Hence, in mathematics
preferential attachment is often
called a Pdlya process.

George Udmy Yule (1871-1951)

used preferential attachment to
explain the power-law distribution of
the number of species per genus of
flowering plants [3]. Hence, in
statistics preferential attachment is
often called a Yule process.

l

Robert Gibrat (1904-1980)

proposed that the size and the
growth rate of a firm are indepen-
dent. Hence, larger firms grow
faster [4]. Called proportional growth,
this is a form of preferential
attachment.

[ ]

George Kinsley Zipf [1902-1950)
used preferential attachment to
explain the fat tailed distribution of
wealth in the society [5].

|

Herbert Alexander Simon (1916-2001)
used preferential attachment to
explain the fat-tailed nature of the
distributions describing city sizes,
word frequencies, or the number of
papers published by scientists [6].

Derek de Solla Price (1922-1983)

used preferential attachment to
explain the citation statistics of
scientific publications, referring to it
as cumulative advantage [7].

[ ]

Robert Merton (1910-2003)

In sociology preferential attachment
is often called the Matthew effect,
named by Merton [8] after a passage
in the Gospel of Matthew.

Barabisi (1967) & Albert (1972]
introduce the term preferential
attachment in the context of networks
[1] to explain the origin of their
power-law degree distribution.



Measuring the small-world property



SIX DEGREES | small worlds
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Frigyes Karinthy, 1929
Stanley Milgram, 1967
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The Small-world experiment

6.2 on the average, thus
“6 degrees of separation”

S (S [ | [T N (R B
I 2 2 4 5 6 7 B 9 10

People what owned stock kSR O WD

had shortest paths to the stockbroker than
random people: 5.4 vs. 5.7

People from the Boston area have even closer
paths: 4.4



Planetary-Scale Views on an Instant-
Messaging Network

Jure Leskovec & Eric Horvitz
Microsoft Research Technical Report MSR-TR-2006-186 June 2007



Messaging as a network




IM communication network

240 million people (people that login in June '06)
9.1 billion buddy edges (friendship links)
ommunicat 1 (take only 2-user
conversations)
Edge if the users exchanged at least 1 message
180 million people
1.3 billion edges
30 billion conversations



Hops Nodes
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The giant connected component
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Image by Matthew Hurst /
Blogosphere



The strength of weak ties



The strength of weak ties

* MarkS. Granovetter, 1973
* His PhD thesis: how people get to know about new jobs?

 Through personal contacts
» Surprise: often acquaintances, not close friends

e Why?

Y
V2

The Strength of Weak Ties ——
STOR
Mark S. Granovetter

American Journal of Sociology, Volume 78, Issue 6 (May, 1973), 13601380,
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Triadic closure

If two people in a network have a S St
friend in common there is an increased likelihood SIS IR 72
they will become friends themselves CTmeaats



Triadic closure

Triadic closure == High

If Band C have a friend A in common, then:

Bis C
(since they both spend time with A)
BandC each other

(since they have a friend in common)
A has to bring B and C together

(as it is hard for A to maintain two disjoint relationships)

e W i



Strong Triadic Closure

Friendship
Communication

We characterize links as either
(friends) or
(acquaintances)

Def:

If A has links to B and C,
then there must be a link (B,C)
(that can be strong or weak)



Bridges and Local Bridges

Edge (A,B) is a if deleting it would
make A and B in be in two separate connected

components.

—@—
S

|




Bridges and Local Bridges

Edge (A,B) is a A and B have no
friends in common

of a local bridge is the distance of the edge
endpoints if the edge is deleted




Local Bridges and Weak ties

Claim: If node A satisfies Strong Triadic Closure and is
involved in at least two ties, then any
adjacent to A must be a tie.

Proof by contradiction:

A satisfies Strong
Triadic Closure

Let A-B be local bridge
and a tie

Then B-C must exist
because of Strong
Triadic Closure

But then (A,B) is



Tie strenqgth in real data
.

But, today we have large who-talks-to-whom
graphs:
Email, Messenger, Cell phones, Facebook

Cell-phone network of 20% of country’s
population



Country-wide mobile phone data

when
you
call

where
you
call

Number of events

who
you
call

Service area delimit ™o Recorded path
» Mobile phone tower « Preferred position :7: g ~4 km



Social proximity and tie strength

e How connected are u and v in the social network.

— Various well-established measures of network proximity, based on
the common neighbors (Jaccard, Adamic-Adar) or the structure of
the paths (Katz) connecting u and v in the who-calls-whom network.

e How intense is the interaction between u and v.

— Number of calls as strength of tie



Strength of weak ties

* Large scale empirical validation of
Granovetter s theory
— Social proximity increases with tie strength
— Weak ties span across different communities

 J.-P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz,
A.-L. Barabasi. Structure and tie strengths in mobile communication
networks. PNAS 104 (18), 7332-7336 (2007).



Neighborhood Overlap
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Neighborhood overlap
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Size of largest component

Removing links based on overlap
* Low to high
- ngh to |OW Analisi di reti sociali — Aprile 2011




Seminar 4



Centrality

How important is a node in a network?
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DEGREE CENTRALITY

K= number of links




Most Connected Actors in Hollywood

(measured in the late 90’s)

D SR
| THATS AL FOIKS® |

{1 MEL BLANC
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A-L Barabasi, “Linked”, 2002
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C(G)=
(G)=1/10(1+2*3+2*3+4+3*
5)




Hollywood Revolves Around

Click on a name to see that person's table.
Steiger, Rod (2.678695)

Lee, Christopher (I) (2.684104)

Hopper, Dennis (2.698471)

Sutherland, Donald (I) (2.701850)

Keitel, Harvey (2.705573)

Pleasence, Donald (2.707490)

von Sydow, Max (2.708420)

Caine, Michael (1) (2.720621)

Sheen, Martin (2.721361) (‘
Quinn, Anthony (2.722720)

Heston, Charlton (2.722904)
Hackman, Gene (2.725215)
Connery, Sean (2.730801)

Stanton, Harry Dean (2.737575)
Welles, Orson (2.744593)

Mitchum, Robert (2.745206)

Gould, Elliott (2.746082)

Plummer, Christopher (1) (2.746427)
Coburn, James (2.746822)
Borgnine, Ernest (2.747229)

Rod Steiger
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| PR(A)=PR(B)/4 + PR(C)/3 + PR(D)+PR(E)/2
! A random surfer eventually stops clicking
| PR(X)=(1-d)/N + d(XPR(y)/k(y))
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0.2

N
O,

-
-

o
o

Back to Granovetter

’ D
¢ O
o True
(@)
* Permuted % "
strengths

OO0
DO 000000
: o 00
Betweenness o
centrality
0 02 04 06 08 1

Edge strength (#calls)

.;"“\ - ‘ {'.‘3'
Vet o . .’.‘ o .o
. ..‘ " 0“ . 2 a\. .’
R AAL - 3§ Y A
°® - - a: - \Fp# %
N &
‘. - $' . R 2 e - . . o ,
, LI - R
b .‘: s. .‘ A a'e 4 : :'
0. ' [ [ ' = .
:‘d . o; y “o LR
ow 1 2 AT



Human mobility, social ties
and link prediction

Dashun Wang, Dino Pedreschi, Chaoming Song, Fosca Giannott;,
Albert-Laszlo Barabasi

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining — KDD
2011



Colocation, social proximity, tie strength

e How similar is the movement of users u and v

— Various co-location measures, quantifying the similarity between
the movement routines of u and v (mobile homophily)

e How connected are u and v in the social network.

— Various well-established measures of network proximity, based on
the common neighbors (Jaccard, Adamic-Adar) or the structure of
the paths (Katz) connecting u and v in the who-calls-whom network.

e How intense is the interaction between u and v.
— Number of calls as strength of tie



Network proximity vs. mobile homophily

e B e
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mobility dimension of the “strength of weak ties”
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mobility similarity mobility similarity

e co-location, network proximity and tie strength
strongly correlate with each other

* measured on 3 months of calls, 6 Million users,
nation-wide (large European country)
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Community discovery

How to highlight the modular
structure of a network?



Community structure




Communities
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DEMON
A Local-first Discovery Method For
Overlapping Communities

Giulio Rossettil?2 ,Michele Coscia3, Fosca Giannotti2, Dino Pedreschil:2

1 Computer Science Dep., University of Pisa, Italy
2 |STI - CNR KDDLab, Pisa, Italy
3Harvard Kennedy School, Cambridge, MA, US

DEMON

@
Democratic Estimate of the Modular Organization of a Network




Communities 1n (Social) Networks

e Communities can be seen as the
basic bricks of a (social) network

« In simple, small, networks it is easy
identify them by looking at the
structure..




Reducing the complexity

Real Networks are Complex
Objects

Can we make them “simpler”? =
A\VEAY
U

Ego- orks

210

networks built upon a focal node, the
"ego”, and the nodes to whom ego is
directly connected to, including the
ties, if any, among the alters

|



DEMON Algorithm

* For each node n:

Extract the Ego Network of n
Remove n from the Ego Network
Perform a Label Propagation?
Insert n in each community found

ok W e

Update the raw community set C

* For each raw community cin C

1. Merge with “similar” ones in the set (given a threshold)

(i.e. merge iff at most the €% of the smaller one is not included in the bigger one)

1Usha N. Raghavan, R’eka Albert, and Soundar Kumara. Near linear time algorithm to detect community structures
in large-scale networks. Physical Review E



Label Propagation — the idea

Each node has an unique label (i.e. its
id)

In the first (setup) iteration each node,
with probability a, change its label to
one of the labels of its neighbors;

At each subsequent iteration each node
adopt as label the one shared (at the
end of the previous iteration) by the
majority of its neighbors;

We iterate untill consensus is reached.




DEMON - Two nice properties

* |Incrementality:

Given a graph G, an initial set of communities C and an incremental update AG consisting of new nodes and new edges
added to G, where AG contains the entire ego networks of all new nodes and of all the preexisting nodes reached by new
links, then

DEMON(AG U G,C) = DEMON(A G, DEMON(G,C))

« Compositionality:
Consider any partition of a graph G into two subgraphs G1, G2 such that, for any node v of G, the entire ego network of vin G
is fully contained either in G1 or G2. Then, given an initial set of communities C:

DEMON(G, U G,,C) = Max(DEMON(G,,C), DEMON(G,,C))

Those property makes the algorithm highly parallelizable: it can run independently on different
fragments of the overall network with a relatively small combination work



DEMON @ Work

DEMON was successfully applied to different networks and its communities were
validated against their semantics

Social Networks
— Skype, Facebook, Twitter, Last.fm, 20lines

Colocation Networks
— Foursquare

Collaboration Networks
— DBLP, IMDb, US Congress

Product Networks
— Amazon



4.

DEMON@Work

Personal Facebook Communities

Log out from Facebook and
clean your browser cookies

Visit:
kddsna.isti.cnr.it:8080

Log In with Facebook

Select one of the two
options:
1. “Visualize your network”
2. “Demon Communities”

Wait for the data to be
collected and displayed

Zoom-in/out and drag
communities with your
mouse

KDD Social Network Analysis Home

Connect With Load Your Data
Facebook

Avallable Analysis

Log In with Facebook in order to visualize the available

analysis.

Community #2

Daniei@Conte

Amministrazione C@riere Internazionali
Pietro R@llichieni

Valentln@uadnno Bruno@arino

Francesco % meﬂla
Eduardo R@giero Gallo
Martina VeA.m@ﬁm. Galloni

Fabrizi@Gelardi

Download Community Data

Subgraph Detail
Number of Nodes: 13
Average Clustering: 0.598
Density: 0.513
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Bottom-up (local) vs top-down
(global) community detection



[Girvan-Newman PNAS ‘o2]

Method 1: Girvan-Newman

Divisive hierarchical clustering based on the
notion of edge

Remove edges in decreasing betweenness







100 cuts
500 cuts

0 cuts
120 cuts




Hierarchical decomposition

 How to select the number of clusters/communities?




How to evaluate the quality of a
network partition into
communities?



Modularity

() = (number of edges within groups) —
(expected number within groups)

Actual number of edges betweeniand jis

A — 1 if there is an edge (i, j),
Y] 0 otherwise.

Expected number of edges betweeniand jis

kik;
Expected number = —~.
2m



Modularity

() = (number of edges within groups) —

k
ZA;;'_

| 5J

rJ

2m

o(c;,c;)

(expected number within groups)
Then:

. humber of edges

m ..
Aij .. T1if(i))) is edge, else 0

k
C
3

. ... degree of node i

i ... group id of node i
(a,b) ... 1ifa=b, else O



= Modularity is useful for selecting the
number of clusters:




Community discovery

Challenging task
Many competing approaches
Huge literature

Recent surveys:

— Michele Coscia, Fosca Giannotti, Dino Pedreschi: A
classification for community discovery methods in complex
networks. Statistical Analysis and Data Mining 4(5):
512-546 (2011)

— Santo Fortunato: Community detection in graphs
Physics Reports 486 (3), 75-174 (2010)



Discover the borders of mobility

Salvatore Rinzivillo, Mainardi, Pezzoni, ibele Coscia, Dino dresc, Fosca Giannotti:
Discovering the Geographical Borders of Human Mobility. KI 26(3): 253-260 (2012)
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Demon communities

Overlapping |
Microscopic |
High homophily '

People belonging to the same

e social context often show some degree of homopily:

~ ” '
X /
- 7
' J
\
(i.e. same age, level of education) .

Application: classification
E.g. user engagement



Skype Network Data

Semantic rich dataset:

— Social Graph

(built upon users contact lists
~billions of nodes)

— Users Geographic
presence

(city, nation...)

— Users Monthly
Activity

(individual’s days of Audio\Video\Chat
products usage)




Problem: Service Usage

Given an online platform we often we need to estimate
how its services (i.e., Skype Audio\Video call) are used by
the registered users.

In particular we can be asked to answer the following
guestions:

Q1: Can Service Usage be described as a function of the
?

Q2: If so, at which scale should we analyze the network in
order to perform a descriptive analysis?



Classifier features

For each network
partition obtained,
we built classifier
and trained it to
discriminate
between High and
Low active
communities.

COMMUNITY FORMATION FEATURES

STRUCTURAL FEATURES Ty first user arrival time
N number of nodes ITgug ;\I/Ee user inter-arrival
AD4 guml.)er of edges IT ;4 std of user inter-arrival
onsity - time

co global clusnerm.g ITy ¢ last-first  inter-arrival
CCauvg average clustering ’ fime
Adeg degree assortativity
deg Szam max degree (commu- GEOGRAPHIC FEATURES

nity links) N, number of countries
de ggv g avg degree (community Eg country entropy

links) Smaz percentage of most rep-
de g?rffm max degree (all links) resented country
deg Zf,lq avg degree (all links) Ny n}lmber of cities
T closed triads E¢ cityentropy
Topen open triads distgny g avg geographic dis-
Oy neighborhood nodes tance _
O. outgoing edges distmaz max geographic dis-
Egist num. edges with dis- tance
3 tance : ACTIVITY FEATURES

approx. diameter _

- Video mean number of days of

T approx. radius video
J conductance Chat mean number of days of

chat




Target Class (for each service)

The target class identify the Service
Activity Level (High/Low)

0.10

Median: 7.00

Two scenarios:
Mean: 7.75
L ) L . 0.08} Sta 4.62
1. Low/High activity is identified by 75p: 10.55

the median of the distribution

(i.e., an highly active community have and avg ool DI

activity > than the median o
activity distribution)

2. High activity
communities are the
one above the 75th

25 30

percentile

35



“Social Engagement” : Skype social gra

Problem:

Given the Skype social graph and its user
information (i.e,, location...) predict average
level of community activity for the Audio
\Video services.

Question:
The CD method chosen will affect the
classification results?

Main Results:

* The smaller and denser communities
are the better

* Demon outperforms Louvain,
Ego-Nets and BFS

* Topological, Temporal and
Geographical features of communities
are valuable activity level predictors

0.1

HDemon25: Audio engagement distribution

Median: 7.00

Mean: 7.75
== Std: 4.62
75p: 10.55

0.90 Audio

B Ego-Network
0.85}| « BFS

A Louvain0
0.80 A Louvainé

® HDemon25 (]
0.75 HDemon50
gO 70
< o m
0.65

* A

0.60
0.55
0582 03 04 05 06 07 08 09 1.0

Avq. Density

0.5

Audio: HDemon25

£ 0.0
=)
B
g
2 -0.5
©
9]
'
-1.0
D Ng N CCS,0C, JTo, B ITyg Ny T
0.90 Audio
W Ego-Network
0.85 * BFS
A Louvain0
0.80 A Louvainé
() ® HDemon25
0.75 ¢ HDemon50
30.70
< |
0.65
A *
0.60 )
0.55
050 20 40 60 80 100
Avq. Size

G. Rossetti, L. Pappalardo, R. Kikas, F. Giannotti, D. Pedreschi, M. Dumas
Community-centric analysis of service en- gagement in Skype social networks.
IEEE ASONAM 2015, France (Accepted)



Tiles: evolutionary community
discovery
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Dynamic Networks

Jan

The majority of data mining problems on

Feb

network have been formulated to fit static
scenarios

Mar

— Community Discovery, Link Prediction, Frequent Pattern Mining

Evolution has been analyzed almost only through

temporal discretization...

— Separate analysis of chronologically ordered snapshot of the same
network

... and\or through remporal “aggregation”

— 1i.e. producing a single weighted graph
(edge weighted w.r.t. their number of presence, frequency...)




Are we missing something?

Real world networks evolve quickly: oQ QQ
— Social interactions 1 i t
— Buyer-seller e

A |||¢ N it
— Stock-exchanges s iy
s \% Sellers Ln.

In these scenarios a QSSA (Quasi Steady State Assumption) rarely holds:

— Network cannot be “‘frozen in time”
* Nodes and edges rise and fall producing perturbation on the whole topology
— The reduction to static scenarios trough temporal discretization is not
always a good 1dea

* How can we chose the temporal threshold?
* To what extent can we trust the obtained results?



The Idea... TILES

Temporal Interaction a Local Edge Strategy

* Imagined for social "interaction" networks
— Multiple time stamped interactions between the same couple of nodes

* Domino Effect

— TILES incrementally updates community memberships when a new interaction
take place (it operates on an interaction stream)

— A single parameter: interaction time to live (TTL) that regulates interaction
vanishing (non monotonic network growth)

* Output
— Multiple time stamped observation of overlapping communities

————————————————————————————————————————————

______________________

C

___________________________________________



Tiles Community Insights

CG - Community size distribution

10°
Experiments real interaction networks show that: ot o
1o* ! - 15th day|
i . - 21th day
. . . . . . . . iy - 27thda
« Community size distribution and overlap distribution are & -y :
. =10’ "L edm,
long tailed 5 o,
E * e,
8 107 %, .?-"4 .
¢ Community stability varies w.r.t. topology * -
e TTL affects community life-cycle ,, =
. . 10 0 1 2 3
(birth, split, merge, death events) v ¥ dNodes v
* Smaller and denser communities live longer than bigger  1.o—CG,- Community stability. Node stability
and sparser ones £ os
8 0.6 \ _ ) ) ) ] R
g. 04 I ———— s Teave
5 —— Join
M 50‘2 o —— Stable
,’ - \\ 0.00 5 - ]:0 15 20 25 30
(D () :
\\I_/ ': . § 08
? E s/ E 06
B """"" 1A 804 S T [ teave]]
- St ) — T,
B---:A 353227 D 005 -'s-/ 10 Dls 20 25 30
. B ays
b FI> 1|0 1|5 2|0

Weeks



Group formation dynamics



Group formation in networks

= In a social network nodes explicitly N\ .
declare group membership: AN R
o AN/
" Facebook groups, Publication venue a4 \
«— R\ [}
. \ Tl,l q |}/ '\,\ f
= Can think of groups as node colors ¢ o~ />;( 5
= Gives insights into social dynamics: ”
Q
= Recruits friends? Memberships spread \ A
along edges ’\\ \ o
, _ O R —7 .
= Doesn’t recruit? Spread randomly Vet ¢4
. AVAVLYAY,
= What factors influence a person’s A N
decision to join a group? k"____ﬂ/



Group memberships
spread over the network:

Red circles represent \
existing group members Ij

squares may join

\

How does prob. of joining |

a group depend on the /4

number of friends already
in the group?




probability

Probablity of joining a community when kirnends are already members
0.025

. T ;'1
0.02 . ‘ T | * -
/ rlT |/ | NAUAR
N\ X d T ' \
}x +"' =N\ & |/ \l
TT HEA i | X vl
X L1L1¥]°
0015 | {’_' B - =14

FH
001 - x
.
' LiveJournal:
ooos |/ 1 million users
250,000 groups
‘ 0 5 10 15 20 25 30 35 40 45 50

Diminishing returns:

P Iow aoniy

01

0.08

0.06 |-

0.04

0.02

FProbabliity of Joining a conference when k coauthors are already ‘'members’ of that conference

FIAN
\ 7 \
3 ~ A ‘, \ a"v 1 -1
e \ / ¥ \ A
) x \ LY

\
¥

< DBLP: 400,000 papers

100,000 authors
2,000 conferences

" Probability of joining increases with the
number of friends in the group

" But increases get smaller and smaller



Connectedness of friends and group
membership

" x and y have three friends in the group
" x's friends are independent

" y’s friends are all connected

Who is more likely to join?



= Competing sociological theories:
" |[nformation argument [Granovetter 73]

" Social capital argument [Coleman '88]

(o]
o 0

= [nformation argument:

" Unconnected friends give independent support
= Social capital argument:

= Safety/trust advantage in having friends
who know each other

... and the winneriis ...



[Backstrom et al., KDD 2006]

Probability

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

Probability of joining a community versus adjacent pairs of friends in the community

] I L 1

3 friends

LiveJournal: 1 million users, 250,000 groups 4 friends

y friends

Social capital argument wins!

Prob. of joining Increases with the

b number of adjacent members.

! I | |

0 0.2 0.4 06 08

Proportion of Pairs Adjacent




The strength of strong ties

A person is more likely to
join a group if

she has more friends who

are already in the group

friends have more "'
connections between \
themselves

.._.

/‘




Link prediction

Which new links will appear in the
social network?



Link prediction in social networks

* Can new social links be predicted?

| )



Link prediction in social networks

* Social networks are very sparse

* Disproportion between possible links and
links that actually form in the network.

* From a machine learning perspective, link
prediction is a binary classification problem
over an extremely unbalanced dataset, where
positive cases are overwhelmed by negative

CasSes.



The link prediction challenge

* |n a phone call graph with 10° users, the average
degree is around 4, so we have 4*10° links, vs.
the number of potential links in the order of 1012

— One new link every one million possibilities!

 Therefore, the trivial “no-link” classifier that
always predicts the absence of any links has an
extremely low classification error around 10,
i.e. an amazing accuracy of 99.999999 %!

* The challenge is in improving the classification
accuracy on the positive cases (precision).



* Previous results seem to imply that new links
form more likely WITHIN communtites rather
than ACROSS communities



Unsupervised vs. Supervised methods

* Unsupervised link prediction, based on scores of
topology measures such as common neighbors,
Jaccard coefficient, Adamic/Adar measure, Katz

* D. Liben-Nowell, J. Kleinberg. The link prediction problem for social networks. J.
of Am. Soc. for Information Science and Technology, 58(7):1019-1031, 2007.

* Supervised classification, based on techniques for
handling the disproportion of the negative cases
of various machine learning/data mining methods

* R. N. Lichtenwalter, J. T. Lussier, N. V. Chawla. New perspectives and methods in
link prediction. ACM SIGKDD - Int. Conf on Knowledge Discovery in Databases.
2010.



How likely two nodes x and y belong
to the same community?

* [Liben-Nowell and Kleinberg 2006]

common neighbors I I'(x) N I'(y)|
Jaccard’s coefficient T 0 20l
[I'(x) U Ty
Adamic/Adar 2 e N To) T
preferential attachment | T(x)| - | ()]
Katzg PRV |paths£ﬂ,|

where paths ‘f}}, ‘= {paths of length exactly € from x to y}



Performance of predictors (wrt random)

random predictor
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Country-wide tele-communication data

when
you
call
2 where
()]
3 you
©
. call
Fe! I
=
g |
Z
who
~ Service area delimit ™o Recorded path yOU
» Mobile phone tower « Preferred position :7: g ~4 km

call



Link prediction in mobile social networks

* |In mobile call records we have also location/
mobility in space and time as a further
dimension, besides topology

* |s mobility a good predictor for future links?

* Can we build high-precision link predictors
using combined topology/mobility features?



Link prediction in geo-social networks




Correlation: Colocation, social proximity, tie strength
Table: Pearson Coefficients

ColL SCos w

-
,
0 o oo | 0w oo
< D RN

-m--




<AA>

Human mobility and social ties

100

i} 200 F
A

|
igiiii

°fy 1, digh

X
N PR sl

1 1 » s 2 2's axal o s 2 22
107 107 10° 10" 107 107 10

mobility similarity mobility similarity

co-location, network proximity and tie strength
strongly correlate with each other

measured on 3 months of calls, 6 Million users,
nation-wide (large European country)

mobility dimension of the “strength of weak
ties”



Unsupervised link prediction

Progressive sampling of missing links

Progressive Sampling

1,0000 \ 52M E
0,9000 N\ 2
0,8000 : ive
£ oo N\ = | | "Coees
8§ o0.6000 i\\\ S 1% 5] fos| [rsed  foos ¢
T o0 BANGAN _ o
0,4000 12484 links |
0,3000
0,2000
0,1000
0.0000 1% 25% 50% 75% 100%
ce Adamic Adar 0,9841 0,2507 0,2441 0,1988 0,1602
= Common Neighbors 0,9829 0,2507 0,2507 0,0895 0,0715
Cosine Colocation 0,5794 0,1871 0,1325 0,1069 0,0906
we ST Colocation 0,5203 0,1817 0,1295 0,1049 0,0884
e Jaccard 0,9833 0,2507 0,2363 0,1777 0,1505
e Ktz 0,6451 0,3014 0,2333 0,2047 0,1762
Random 0,0237 0,0010 0,0005 0,0003 0,0002




Supervised link prediction

1,0000
0,9000
E 0,8000
30,7000
g 0,6000
0,5000
0,4000
0,3000
02000 Supervised
0,1000
0,0000 1% 25% 50% 75% 100%
= Katz (unsupervised) 0,6451 0,3014 0,2333 0,2047 0,1762
we TOpology & Mobility 0,9746 0,6378 0,4654 0,3740 0,3076
~=Topology 0,9741 0,6008 0,4294 0,3295 0,2668
s MO lity 0,9306 0,4214 0,2724 0,2036 0,1629
= RaNdOM 0,0237 0,0010 0,0005 0,0003 0,0002




Potential links with common neighbors

Unsupervised precision

Katz 9.1%
Adamic-Adar 7.8%
SCos 5.6%

Weighted SCos 5.6%
Extra-role CoL 5.1%
Weighted CoL 5.1%

CN 5.1%
ColL 5.0%
Jaccard 3.0%

Classification

Pred. class=0 Pred. class=1
6,627 82
actual class=1 117 228

actual class=0

decision-tree: AA>0.5 and SCol[>0.7
73.5% precision and 66.1% recall

Combining topology and mobility
measures Is the key to achieving
high precision and recall.



People is predictable!

Probability of a new link between two (disconnected) random
users:

10®
Best prediction accuracy using only social features:

10%

Best prediction accuracy using social + mobility features:

75%



Multi-dimensional network
analysis

M Berlingerio, M Coscia, F Giannotti, A Monreale, D Pedreschi.
Multidimensional networks: foundations of structural analysis. World Wide
Web 16 (5-6), 567-593 (2013)

Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Monreale, Dino
Pedreschi: The pursuit of hubbiness: Analysis of hubs in large multidimensional
networks. Journal of Computational Science 2(3): 223-237 (2011)



Classical Network Representation

Only one kind of
relation

Different connections
Indistinguishable

E ar Hioc ool



Multigraphs as multidimensional networks

dte
Friendship

Financial

Financial

Friendship



