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@ab Complex (Social) Networks

* Textbooks
— Albert-Laszlo Barabasi. Network Science (2016)
— http://barabasi.com/book/network-science

— Easley, Kleinberg: Networks, Crowds, and Markets (2010)

— http://www.cs.cornell.edu/home/kleinber/networks-book/
* Network Analytics Software:

— Cytoscape: http://www.cytoscape.org/

— Gephi: http://gephi.github.io/

 Network dynamics simulation :
— NetlLogo: https://ccl.northwestern.edu/netlogo/

 Network Data Repository
— http://networkrepository.com/




Wiki of the course

e http://didawiki.di.unipi.it/doku.php/wma/
acm-athens-july2017

e Special thanks to
— Fosca Giannotti, ISTI-CNR Pisa
— Albert-Laszlo Barabasi, Northeastern Univ. Boston
— Giulio Rossetti, University of Pisa
— Jure Leskovec, Stanford Univ.



The power of complex networks

Lecture 2



Part 2

Measuring small-worlds with big data
Strength of weak ties

Centrality measures

Community structure

Link prediction

Robustness

Cascades

Epidemic spreading



Measuring the small-world property
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The Small-world experiment

6.2 on the average, thus
“6 degrees of separation”

il 4 1 | | 1 | i 1 —?
| 2 3 4 5 6 7 B g 10 1l I

People what owned stock sER or e s
had shortest paths to the stockbroker than
random people: 5.4 vs. 5.7

People from the Boston area have even closer
paths: 4.4



Planetary-Scale Views on an Instant-
Messaging Network

Jure Leskovec & Eric Horvitz
Microsoft Research Technical Report MSR-TR-2006-186 June 2007



Messaging as a network

— Buddy — Conversation



IM communication network

240 million people (people that login in June '06)
9.1 billion buddy edges (friendship links)
mmunicat raph (take only 2-user

conversations)

Edge if the users exchanged at least 1 message

180 million people

1.3 billion edges

30 billion conversations



MSN Network: Small world
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The giant connected component
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The strength of weak ties



The strength of weak ties

* MarkS. Granovetter, 1973
* His PhD thesis: how people get to know about new jobs?

* Through personal contacts
e Surprise: often acquaintances, not close friends

e Why?

T
2f
B 22

The Strength of Weak Ties —
STOR

Mark S. Granovelter

American Journal of Sociology, Volume 78, Issue 6 (May, 1973), 13601380,
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Triadic closure

ctablty g,lh)

If two people in a network have a .
friend in common there is an increased likelihood RIS TIRR P 2
they will become friends themselves U et

Ecg
o



Triadic closure

Triadic closure == High

If Band C have a friend A in common, then:
Bis C
(since they both spend time with A)

BandC each other
(since they have a friend in common)

A has to bring B and C together

(as it is hard for A to maintain two disjoint relationships)



Strong Triadic Closure

Friendship
Communication

We characterize links as either
(friends) or
(acquaintances)

Def:

If A has links to B and C,
then there must be a link (B,C)
(that can be strong or weak)



Bridges and Local Bridges

Edge (A,B) is a if deleting it would
make A and B in be in two separate connected

components.

|




Bridges and Local Bridges

Edge (A,B) is a A and B have no
friends in common

of a local bridge is the distance of the edge
endpoints if the edge is deleted




Local Bridges and Weak ties

Claim: If node A satisfies Strong Triadic Closure and is
involved in at least two ties, then any
adjacent to A must be a weak tie.

Proof by contradiction:

A satisfies Strong
Triadic Closure

Let A-B be local bridge
and a tie

Then B-C must exist
because of Strong
Triadic Closure

But then (A,B) is n



Tie strenqgth in real data

But, today we have large who-talks-to-whom
graphs:
Email, Messenger, Cell phones, Facebook

Cell-phone network of 20% of country’s
population



Country-wide mobile phone data

when
you
call

where
you
~ call

Number of events

who
you
call

~ Service area delimit ™o Recorded path
» Mobile phone tower « Preferred position 7 g ~4 km



Social proximity and tie strength

e How connected are u and v in the social network.

— Various well-established measures of network proximity, based on
the common neighbors (Jaccard, Adamic-Adar) or the structure of
the paths (Katz) connecting u and v in the who-calls-whom network.

e How intense is the interaction between u and v.
— Number of calls as strength of tie



Strength of weak ties

* Large scale empirical validation of
Granovetter’ s theory
— Social proximity increases with tie strength
— Weak ties span across different communities

 J.-P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz,
A.-L. Barabasi. Structure and tie strengths in mobile communication
networks. PNAS 104 (18), 7332-7336 (2007).



Neighborhood Overlap
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Neighborhood overlap
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Size of largest component

Removing links based on overlap
* Low to high
- ngh to |OW Analisi di reti sociali — Aprile 2011




Centrality

How important is a node in a network?
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DEGREE CENTRALITY

K= number of links




Most Connected Actors in Hollywood

(measured in the late 90’s)

MEL BLANC
Al i VAN OF 1000 WOICss

i SELOVIT HESEAND anl PATHER N
i M08 . — jas9

——

A-L Barabasi, “Linked”, 2002



C(G)=1/10(1+2*3+2*3+4+3*5)
C(G)=3.2 CLOSENESS CENTRALITY

C(A)=1/10(4+2*3+3*3) C= Average Distance

to neighbors

| B)=1/10(2+2*6+2*3)
' C(B)=2




Hollywood Revolves Around

Click on a name to see that person's table.
Steiger, Rod (2.678695)

Lee, Christopher (I) (2.684104)

Hopper, Dennis (2.698471)

Sutherland, Donald (1) (2.701850)

Keitel, Harvey (2.705573)

Pleasence, Donald (2.707490)

von Sydow, Max (2.708420)

Caine, Michael (1) (2.720621)

Sheen, Martin (2.721361) (‘
Quinn, Anthony (2.722720)

Heston, Charlton (2.722904)
Hackman, Gene (2.725215)
Connery, Sean (2.730801)

Stanton, Harry Dean (2.737575)
Welles, Orson (2.744593)

Mitchum, Robert (2.745206)

Gould, Elliott (2.746082)

Plummer, Christopher () (2.746427)
Coburn, James (2.746822)
Borgnine, Ernest (2.747229)

Rod Steiger




BETWENNESS CENTRALITY

, BC= number of shortest
* Paths that go through a

R
3 .

B BC(A)=5*5+4=29 &
& 'ng__'r-__ n —

BC(B)=4*6=24

A set of measures of centrality base"d on
betweenness




PAGE RANK

PR=Probability that a random
walker with interspersed
Jumps would visit that node.
PR=Each page votes for

its neighbors.
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PR=Probability that a random
Walker would visit that node.
PR=Each page votes for
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Neighborhood overlap
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Human mobility, social ties
and link prediction

Dashun Wang, Dino Pedreschi, Chaoming Song, Fosca Giannotti,
Albert-Laszlo Barabasi

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining — KDD
2011



Colocation, social proximity, tie strength

e How similar is the movement of users u and v

— Various co-location measures, quantifying the similarity between
the movement routines of u and v (mobile homophily)

e How connected are u and v in the social network.

— Various well-established measures of network proximity, based on
the common neighbors (Jaccard, Adamic-Adar) or the structure of
the paths (Katz) connecting u and v in the who-calls-whom network.

e How intense is the interaction between u and v.
— Number of calls as strength of tie



Network proximity vs. mobile homophily
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mobility dimension of the “strength of weak ties”
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co-location, network proximity and tie strength
strongly correlate with each other

measured on 3 months of calls, 6 Million users,
nation-wide (large European country)
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Community discovery

How to highlight the modular
structure of a network?



Community structure




Communities













Are these two different networks?
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DEMON
A Local-first Discovery Method For
Overlapping Communities

Giulio Rossetti*“ ,Michele Coscia®, Fosca Giannotti4, Dino Pedreschi

L Computer Science Dep., University of Pisa, Italy
2 |ISTI - CNR KDDLab, Pisa, Italy
3 Harvard Kennedy School, Cambridge, MA, US

Michele Coscia, Giulio Rossetti, Fosca Giannotti, Dino Pedreschi:
DEMON: a local-first discovery method for overlapping communities.
The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD 2012: 615-623 ‘»
DEMON

Michele Coscia, Giulio Rossetti, Fosca Giannotti, Dino Pedreschi:
Uncovering Hierarchical and Overlapping Communities with a Local-First
Approach. ACM Trans. on Knowledge Discovery from Data TKDD 9(1): 6 (2014)

Demacratic Estimate of the Modular Organization of a Metwork



Communities 1n (Social) Networks

e  Communities can be seen as the
basic bricks of a (social) network

* In simple, small, networks it is easy
identify them by looking at the
structure.




Reducing the complexity

Real Networks are Complex
Objects

Can we make them “simpler”?

Ego-Networks

networks built upon a focal node, the
"ego”, and the nodes to whom ego is
directly connected to, including the
ties among the alters




DEMON Algorithm

* For each node n:

Extract the Ego Network of n
Remove n from the Ego Network
Perform a Label Propagation
Insert n in each community found

ok W E

Update the raw community set C

* For each raw community cin C

1. Merge with “similar” ones in the set (given a threshold)

(i.e. merge iff at most the €% of the smaller one is not included in the bigger one)

1Usha N. Raghavan, R eka Albert, and Soundar Kumara. Near linear time algorithm to detect community structures
in large-scale networks. Physical Review E



Label Propagation — theidea

Each node has an unique label (i.e. its
id)

In the first (setup) iteration each node,
with probability a, change its label to
one of the labels of its neighbors;

At each subsequent iteration each node
adopt as label the one shared (at the
end of the previous iteration) by the
majority of its neighbors;

We iterate untill consensus is reached.




DEMON (@ Work

DEMON was successfully applied to different networks and its communities were
validated against their semantics

Social Networks
— Skype, Facebook, Twitter, Last.fm, 20lines

Colocation Networks
— Foursquare

Collaboration Networks
— DBLP, IMDb, US Congress

Product Networks
— Amazon



Bottom-up (local) vs top-down
(global) community detection



[Girvan-Newman PNAS ‘02]

Method 1: Girvan-Newman

Divisive hierarchical clustering based on the
notion of edge

Remove edges in decreasing betweenness







100 cuts

500 cuts

120 cuts



Hierarchical decomposition

* How to select the number of clusters/communities?




How to evaluate the quality of a
network partition into
communities?



Modularity

() = (number of edges within groups) —
(expected number within groups)

Actual number of edges betweeniand jis

A 1 if there is an edge (i, j),
Y1 0 otherwise.

Expected number of edges betweeniand jis

ik,
Expected number = —~.
2m



Modularity

() = (number of edges within groups) —
(expected number within groups)

Then:

m ... number of edges
ij -
i .

1 kikj A ... 1if (ij) is edge, else 0
Q:— Z Agj_ 5(05901) l;l .. degree of node i

i 2m .. group id of node i
L 5 3(a, b) ... 1if a=b, else 0




= Modularity is useful for selecting the
number of clusters:




Community discovery

Challenging task
Many competing approaches
Huge literature

Recent surveys:

— Michele Coscia, Fosca Giannotti, Dino Pedreschi: A
classification for community discovery methods in complex
networks. Statistical Analysis and Data Mining 4(5):
512-546 (2011)

— Santo Fortunato: Community detection in graphs
Physics Reports 486 (3), 75-174 (2010)



Demon communities

Overlapping
Microscopic
High homophily

People belonging to the same

e social context often show some degree of homopily:
(i.e. same age, level of education)

Application: classification
E.g. user engagement




Skype Network Data

Semantic rich dataset:

— Social Graph

(built upon users contact lists
~billions of nodes)

— Users Geographic
presence

(city, nation...)

— Users Monthly
Activity

(individual’s days of Audio\Video\Chat
products usage)




Problem: Service Usage

Given an online platform we often we need to estimate
how its services (i.e., Skype Audio\Video call) are used by
the registered users.

In particular we can be asked to answer the following
guestions:

Q1: Can Service Usage be described as a function of the
?

Q2: If so, at which scale should we analyze the network in
order to perform a descriptive analysis?



Classifier features

For each network
partition obtained,
we built classifier
and trained it to
discriminate
between High and
Low active
communities.

COMMUNITY FORMATION FEATURES

STRUCTURAL FEATURES fé: first usex arrival time l
N number of nodes avg fi‘rlge HACE  EEREr-SITIva
M numl.)er of edges ITg .4 std of user inter-arrival
D density S fime
cC global clustenng IT; ¢ last-first  inter-arrival
CCauvg average clustering ’ fime
Adeg degree assortativity
degrnay | max degree (commu- GEOGRAPHIC FEATURES
nity links) N number of countries
de gfv g avg degree (community Eg country entropy
links) Smax percentage of most rep-
de gfrfé o max degree (all links) resented country
de ggilq avg degree (all links) Ny number of cities
T closed triads Et City entropy i
Topen open triads distavg ?a‘.,ng geographic  dis-
Oy neighborhood nodes ce _ i
0. outgoing edges distmazx max geographic dis-
Egist num. edges with dis- tance
ta
4 A ACTIVITY FEATURES
approx. diameter y
- Video mean number of days of
T approx. radius video
g conductance Chat mean number of days of

chat




Target Class (for each service)

The target class identify the Service
Activity Level (High/Low)

. 0.10 1 T
Two scenarios: Median: 7.00
Mean: 7.75
) e . 0.08} ==Std: 4.62
1. Low/High activity is identified by 75p: 10.55

the median of the distribution

(i.e., an highly active community have and avg osl - FIBIBEIINSE R

activity > than the median o
activity distribution)

2. High activity
communities are the
one above the 75th

25 30

percentile

35



“Social Engagement’ : Skype social graph

*  Problem:
Given the Skype social graph and its user

information (i_e_' |0caﬁ0n...) predict average 010 HDemon25: Audio engagement distribution Audio: HDemon25
H LA H Median: 7.00 '
level of community activity for the Audio __ Mean: 7.75 EII
. . 0.08 Std: 4.62
\Video services. e T0as . I.
k=
(]
: 7T
*  Question: £ o5
The CD method chosen will affect the 3
classification results? 10
H Days » D N; N CCSmu.pCmﬂmy E, ITy,; N, T/
. Main Results:
* The smaller and denser communities . .
0.90 Audio 0.90 Audio
are the better B EgoNetwork B Ego-Network
0.85f| « BFS 0.85 # BFS
. A Louvain0 A Louvain0
* Demon outperforms Louvain, 0.80f 4 Louvainé , 0.80 A Louvainé
ego-Nets and BFS ors| o oo | o7 : o
. §0.70 §O.70
* Topological, Temporal and o.65™ 0.65 u
Geographical features of communities 0.60 * L o6ol A *
are valuable activity level predictors 0.55 - 0.55
058503 04 05 06 07 08 09 10 0.505 20 40 60 80 100
Avaq. Density Avaq. Size

G. Rossetti, L. Pappalardo, R. Kikas, F. Giannotti, D. Pedreschi, M. Dumas
Community-centric analysis of service en- gagement in Skype social networks.
IEEE ASONAM 2015, France (Accepted)



Discover the borders of mobility

Salvatore Rinzivillo, Mainardi, Pezzoni, ibhele Coscia, Dino dresc, Fosca Giannotti:
Discovering the Geographical Borders of Human Mobility. KI 26(3): 253-260 (2012)
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The frontier:
evolutionary community discovery

|

|

|

i G Rossetti, L Pappalardo, D Pedreschi, F Giannotti

! Tiles: an online algorithm for community discovery in dynamic social networks
E Machine Learning, 1-29, 2016

|
|
|




Group formation dynamics



Group formation in networks

= In a social network nodes explicitly N\ .
declare group membership: A b\
. X7
" Facebook groups, Publication venue \,\({\vx\?///;
o [ ) \ \>/'/ |
N TR N\
. \ / \ \ \
= Can think of groups as node colors " o= s
||//'/ /
. . . . . . e
= Gives insights into social dynamics: ”
O
= Recruits friends? Memberships spread AN
Re
along edges VA \
AN
= Doesn’t recruit? Spread randomly vau ¢4
SR A
= What factors influence a person’s L G (N
|| / /

decision to join a group? o



Group memberships

spread over the network:

Red circles represent
existing group members

squares may join

How does prob. of joining
a group depend on the
number of friends already
in the group?

\




probability

0.025

0.02 -

0015

001

0.005

FProbablity of joining a community when kinends are already members

P ;,;,x" ’ *- A
e o
e
vi’

' LiveJournal:

| 1 million users
250,000 groups

Jﬁ 11(1 115 210 25 310 ;5 ;0 ;5

Diminishing returns:

50

PIsuaony

01

0.08 -

0.06

004 |-

0.02 -

Frobabliity of joining a conference when k coauthors are already members’ of that conference

" Probability of joining increases with the
number of friends in the group

" But increases get smaller and smaller

."‘
.‘/ " '5
,"t" || |
| _ \
,‘k‘\ ,"‘ \
+ “/4. i .I. I\‘».\ \I ]
. I \ /I’ I 1
s DBLP: 400,000 papers
100,000 authors I
4 2,000 conferences
2 a 5 & 10 12 14 1 18
K



Connectedness of friends and group
membership

" x and y have three friends in the group
" x's friends are independent

" y’s friends are all connected

Who is more likely to join?



Competing sociological theories:
" |[nformation argument [Granovetter ‘73]

" Social capital argument [Coleman '88]

(o]
o) (o)

= [nformation argument:

" Unconnected friends give independent support
= Social capital argument:

= Safety/trust advantage in having friends
who know each other

... and the winneriis ...



[Backstrom et al., KDD 2006]

Probability of joining a community versus adjacent pairs of friends in the community

0.009 T T T T

3 friends

LiveJournal: 1 million users, 250,000 groups 4 friends

“‘é—:[pi».

0.008

Social capital argument wins!

0007 i [ - - ] -
Prob. of joining Increases with the
> 0006 | number of adjacent members.
‘19 0.005 F
0.004 | h |
0.003 + r
-~
0.002 L 1 L ]
0 0.2 0.4 0.6 08

Proportion of Pairs Adjacent



The strength of strong ties

A person is more likely to
join a group if
she has more friends who
are already in the group
friends have more \ "'
connections between \
themselves

;.-

/‘




Link prediction

Which new links will appear in the
social network?



Link prediction in social networks

* Can new social links be predicted?




Link prediction in social networks

* Social networks are very sparse

* Disproportion between possible links and
inks that actually form in the network.

* From a machine learning perspective, link
orediction is a binary classification problem
over an extremely unbalanced dataset, where
positive cases are overwhelmed by negative
cases.




The link prediction challenge

* |n a phone call graph with 10° users, the average
degree is around 4, so we have 4*10° links, vs.
the number of potential links in the order of 102

— One new link every one million possibilities!

 Therefore, the trivial “no-link” classifier that
always predicts the absence of any links has an
extremely low classification error around 107,
i.e. an amazing accuracy of 99.999999 %!

* The challenge is in improving the classification
accuracy on the positive cases (precision).



* Previous results seem to imply that new links
form more likely WITHIN communtites rather
than ACROSS communities



Unsupervised vs. Supervised methods

* Unsupervised link prediction, based on scores of
topology measures such as common neighbors,
Jaccard coefficient, Adamic/Adar measure, Katz

* D. Liben-Nowell, J. Kleinberg. The link prediction problem for social networks. J.
of Am. Soc. for Information Science and Technology, 58(7):1019-1031, 2007.

* Supervised classification, based on techniques for
handling the disproportion of the negative cases
of various machine learning/data mining methods

* R. N. Lichtenwalter, J. T. Lussier, N. V. Chawla. New perspectives and methods in
link prediction. ACM SIGKDD - Int. Conf on Knowledge Discovery in Databases.
2010.



How likely two nodes x and y belong
to the same community?

* [Liben-Nowell and Kleinberg 2006]

common neighbors IT(x) N T'(y)|
Jaccard’s coefficient T n o)l
Tixy U Iy
Adamic/Adar 2 & Mo T BT
preferential attachment INEIIRNINGD]
Katzg 1B - |pathst)|

where paths Ef)}, ‘= {paths of length exactly € from x to y}



Performance of predictors (wrt random)

random predictor
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Country-wide tele-communication data

when

where

Number of events

“. Service area delimit ™o Recorded path
» Mobile phone tower « Preferred position 7 g ~4 km



Link prediction in mobile social networks

* |In mobile call records we have also location/
mobility in space and time as a further
dimension, besides topology

* |s mobility a good predictor for future links?

* Can we build high-precision link predictors
using combined topology/mobility features?



Link prediction in geo-social networks




Correlation: Colocation, social proximity, tie strength
Table: Pearson Coefficients

CoL SCos w

-
,
L0 om0 | 0w oo
D RN
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<AA>

Human mobility and social ties

Col. }
SCos o
n?
|
o
.I
.l. .ln'
¥ :..! 'l..‘
§g*i"a
lin 107

mobility similarity

co-location, network proximity and tie strength

]l'l"

ji!
i

ALl

of 1, gt

i A A aaaaal
10” 107

mobility similarity

strongly correlate with each other

measured on 3 months of calls, 6 Million users,

nation-wide (large European country)
mobility dimension of the “strength of weak

14

ties




Unsupervised link prediction

Progressive sampling of missing links

A
Progressive Sampling -
1,0000 N som | 8
0,9000 AN 3
0,8000 \ "1 | Negative
= Cases
€ 0,7000 %
'E 0 ~ \ 5M links
,6000 1% [25%)| [50%| [75% [100%
& 0,5000 ‘\Q\Q\ _ Canes
Cases
0,4000 12484 links v
0,3000
0,2000
0,1000
0,0000 e ———
1% 25% 50% 75% 100%
e Adamic Adar 0,9841 0,2507 0,2441 0,1988 0,1602
== Common Neighbors 0,9829 0,2507 0,2507 0,0895 0,0715
«==Cosine Colocation 0,5794 0,1871 0,1325 0,1069 0,0906
== ST Colocation 0,5203 0,1817 0,1295 0,1049 0,0884
= |accard 0,9833 0,2507 0,2363 0,1777 0,1505
e Katz 0,6451 0,3014 0,2333 0,2047 0,1762
wRandom 0,0237 0,0010 0,0005 0,0003 0,0002




Supervised link prediction

1,0000
0,9000
£ 0,8000
%  0,7000
S 0,6000
0,5000
0,4000
0,3000
02000 |Supervised e ——
0,1000
0,0000 1%“—_‘25% 50% 75% 100%
e Katz (unsupervised) 0,6451 0,3014 0,2333 0,2047 0,1762
= Topology & Mobility 0,9746 0,6378 0,4654 0,3740 0,3076
~Topology 0,9741 0,6008 0,4294 0,3295 0,2668
e Mobility 0,9306 0,4214 0,2724 0,2036 0,1629
e RaNdoOM 0,0237 0,0010 0,0005 0,0003 0,0002




Potential links with common neighbors

Unsupervised precision

Katz 9.1%
Adamic-Adar 7.8%
SCos 5.6%

Weighted SCos 5.6%
Extra-role CoL 5.1%
Weighted CoL 5.1%
CN 5.1%

ColL 5.0%
Jaccard 3.0%

Classification
Pred. class=0 Pred. class=1
actual class=0 6,627 82
actual class=1 117 228

decision-tree: AA>05 and SCol>0.7
73.5% precision and 66.1% recall

Combining topology and mobility
measures Is the key to achieving
high precision and recall.



People is predictable!

Probability of a new link between two (disconnected) random
users:

10®

Best prediction accuracy using only social features:

10%

Best prediction accuracy using social + mobility features:

75%



Multi-dimensional network
analysis

M Berlingerio, M Coscia, F Giannotti, A Monreale, D Pedreschi.
Multidimensional networks: foundations of structural analysis. World Wide

Web 16 (5-6), 567-593 (2013)

Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Monreale, Dino
Pedreschi: The pursuit of hubbiness: Analysis of hubs in large multidimensional
networks. Journal of Computational Science 2(3): 223-237 (2011)



Classical Network Representation

Only one kind of
relation

Different connections
Indistinguishable

E ar Hioc ool



Multigraphs as multidimensional networks

dte
Friendship

Financial

Financial

Friendship



Network robustness



A SIMPLE STORY (3):




ROBUSTNESS IN COMPLEX SYSTEMS

Complex systems maintain their basic functions even under errors and failures

cell — mutations

There are uncountable number of mutations and other errors in our cells, yet, we do not notice their
consequences.

Internet — router breakdowns

At any moment hundreds of routers on the internet are broken, yet, the internet as a whole does not
loose its functionality.

Where does robustness come from?

There are feedback loops in most complex systems that keep tab on the
component’s and the system’s ‘health’.

Could the network structure affect a system’s robustness?

Network Science: Robustness Cascades



ROBUSTNESS

Could the network structure affect a system’s robustness?

node failure \

How do we describe in quantitave terms the breakdown of a
network under node or link removal?
~percolation theory~

Network Science: Robustness Cascades



0.8 -
0.6 - 1 IF 1 IV: =
Subcritical Critical Supercritical Connected
<k>< 1 <k>=1 <k>> 1 <k>> In N

N=100



Damage is modeled as an inverse percolation process

f= fraction of removed nodes

Component
structure

Graph

(Inverse Percolation phase transition)

Network Science: Robustness Cascades



ROBUSTNESS: OF SCALE-FREE NETWORKS

The interest in the robustness problem has three origins:
—~>Robustness of complex systems is an important problem in many areas
—>Many real networks are not regular, but have a scale-free topology

- In scale-free networks the scenario described above is not valid

Albert, Jeong, Barabasi, Nature 406 378 (2000)

Network Science: Robustness Cascades



ROBUSTNESS OF SCALE-FREE NETWORKS

Scale-free networks do not appear to
break apart under random failures.
Reason: the hubs.

The likelihood of removing a hub is small.

0 1
f
Albert, Jeong, Barabasi, Nature 406 378 (2000)

Network Science: Robustness Cascades



INTERNET’'S ROBUSTNESS TO RANDOM FAILURES

]'ZEF 1 1 1 1
Ngs | fail
N — ailure
08k y
“ﬁ ] 1—— attack
0.6 - .
S 0 :
0.4% L] . Int ¢
[ a i ] nterne
02L& U5 i
| A [] ]

Internet: Router level map, N=228,263; y=2.1£0.1; k=28 > £.=0.962

AS level map, N= 11,164; y=2.1+£0.1; k=264 > £.=0.996

Internet parameters: Pastor-Satorras & Vespignani, Evolution and Structure of the Internet. Table 4.1 & 4.4

Network Science: Robustness Cascades



Achilles’ Heel of scale-free networks

Failures

v=<3:f=1
(R. Cohen et al PRL, 2000)

1

Network Science: Robustness Cascades warch 23 2011

Albert, Jeong, Barabasi, Nature 406 378 (2000)



Historical Detour: Paul Baran and Internet

(©

1958



Cascades



Cascades

Potentially large events triggered by small initial shocks

Information cascades

social and economic
systems

diffusion of innovations
Cascading failures
infrastructural networks
complex organizations



Cascading Failures in Nature and
Technology

Blackout | % Earthquake

Flows of physical quantities Cascades depend on

° Congestions ° Structure Of the network

* instabilities * Properties of the flow

e Overloads * Properties of the net elements

e Breakdown mechanism



Northeast Blackout ~f 200,

Origin

A 3,500 MW power surge (towards Ontario)
affected the transmission grid at 4:10:39 p.m.
EDT. (Aug-14-2003)

the blackout the blackout

Consequences

More than 508 generating units at 265
power plants shut down during the
outage. In the minutes before the
event, the NYISO-managed power
system was carrying 28,700 MW of
load. At the height of the outage, the
load had dropped to 5,716 MW, a loss
of 80%.




probability

Cascades Size Distribution of Blackouts

Probability of energy =
unserved during North
American blackouts
1984 to 1998.

energy unserved (MWh)

Unserved energy/power magnitude (S) distribution

PlS)~S ™ 1<a<?2

Source Exponent
North America 2.0
Sweden 1.6
Norway 1.7
New Zealand 1.6
China 1.8

|. Dobson, B. A. Carreras, V. E. Lynch, D. E. Newman, CHAOS 17, 026103 (2007)

Quantity
Power
Energy
Power
Energy
Energy



Cascades Size Distribution of Earthquakes

Preliminary Determination of Epicenters
358,214 Events, 1963 - 1998

10 T T T Ll T

T Shallow (0 70 km) earthquakes ‘
o
£ 10° | : N W e A
z Intermediate (70 300 km) . & ~—=
';._-'i 10" f R
; 100 == Deep (300 700 km) 4
[+
g 10 'k E

ol Earthquake size S distribution

Earthquakes during 1977-2000.
3 L L 1 A

55 6 6.5 7 75 8 8.5 P(S) ~ S _OC,a ~ 1.67

Moment Magnitude

Y. Y. Kagan, Phys. Earth Planet. Inter. 135 (2-3), 173—209 (2003)



Short Summary of Models: Universality

Failure Prorogation Model ER 1.5
Overload Model Complete Graph 1.5
: 1.5 (ER)
BTW Sandpile Model ER/SF
g 4 y/(y - 1)(SF)
Branching Process Model ER/SF 1.5 (ER)

y/(y - 1)(SF)

Universal for homogenous networks

— Q -3/2 Same exponent for percolation too
P(S) S (random failure, attacking, etc.)




Epidemics and spreading



Epidemic spreading — Why?

Why is the spreading process important?

DIFFHFSION
INNOVATIONS N

FIFTH EDITION v

A L ! p An exception 06 has occured at 0028:C11B3ADC in VXD DiskTSD(03) +
00001660, This was called from 0028:C11B40C8 in VXD voltrack{04) +
00000000, It may be possible to continue normally,

* Press any key to attempt to continue,
* Pp STRLMALTHRESET to restart your computer, You will
lose any unsaved information in all applications,

Press any key to continue

EVERETT M.ROGERS




Biological:

Airborne diseases (flu, SARS, ...)

* Venereal diseases (HIV, ...)
 Other infectious diseases including

Epi + demos some cancers (HPV, ...)

upon people Parasites (bedbugs, malaria, ...)

Digital:
Computer viruses, worms
*Mobile phone viruses

Conceptual/intellectual:
* Diffusion of innovations
* Rumors

 Memes

» Business practices

http://en.wikipedia.org/wiki/Epidemic



Biological: Notable Epidemic Outbreaks

The Great Plague HIV SARS

Spread of Bubonic Plague
in Europe.

HIV prevalence in adults, end 2001

SARS:C ve Number of Reported Cases
Total number of cases: 2671 as of 8 April 2003, 14:30 GMT+2

! Cumulative number of Reported Cases
K/ . {From 1 November 02 to 8 April 03) Type of transmission

H1N1 flu

1918 Spanish flu



Epidemic spreading — Why does it matter now?

High population density High mobility

%W

ke - i A “of 3 W -3 s W o
S ) af 2 X - AT Yo §
p ? “‘\AA'\ X. -nr \ "%‘.*\ RS a a2 " < Y G
L 1 0 ‘J & 4 & AT ' A ”:\‘ $ 3 'y .~
dag : . A, N Sl 20 5%
P o PRV s \7‘\!‘ o ARE §E i
s N\ A Y
- 2 = oo o & 2 o\ “F) v % { ¢
re A - I i e 4
e o} A/ w

-

.
* -
e S __-h'-i”‘..-‘

—> perfect conditions for epidemic spreading.
Airline figure: L. Hufnagel et al. PNAS 101, 15124 (2004)



Large population can provide the “fuel”

Gii

Separate, small population Connected, highly populated areas
(hunter-gatherer society, wild animals) (cities)

Human societies have “crowd diseases”, which are the consequences of large,
interconnected populations (Measles, tuberculosis, smallpox, influenza, common
cold, ...)

Network Science: Robustness Cascades warch 23 2011



14t Century — The Great Plague

Spread of Bubonic Plague
in Europe

B 1347 1350

0 mid-1343 1351

[ early 1349 after 1351
late 1349 [0 mmor

scenter otupricings e city for orentation

4 years from France to Sweden

Limited by the speed of human travel

http://en.wikipedia.org/wiki/Black Death
http://de.wikipedia.org/wiki/Schwarzer_Tod



21st Century — SARS

SARS : Cumulative Number of Reported Cases
Total number of cases: 2671 as of 8 April 2003, 14:30 GMT+2

:!'

,( .'1

= “":".. r.t*
e
A .

o ,zmm
%
¥ China, Hong Kong SAR: 928
2 gikeny
.0 v A P PR

Av'

Cumulative number of Reported Cases
(From 1 November 02 to 8 April 03) Type of transmission

* 1 . 101-1000 :’ no local transmission
[ ) 2-10 I oc:!transmission

N > 1000

\ ® 1w .

g
1
’ Data Source: World Health Organization
The presertation of material on the maps contained herein does not imply the expression of ary opinion whatsoever Map Production: Public Health Mapping Team
on the part of the World Health Organization conceming the legal status of any country, temitory, city or areas or of its Communicable Diseases (CDS)
authorties, or conceming the delimitation of ts frontiers or boundaries. @World Health Organization, April 2003

Source: World Health Organization



Computer Viruses, Worms, Mobile Phone Viruses

SMARTPHONES ON THE RISE

15

10

Code Red Worm paralyzed many countries’ Internet

Units Sold, Worldwide [millions)

0-
Quarter1 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04
1 T T T
2003 2004 2005 2006

GROWTH IN MOBILE MALWARE

g350

8300

2 250

z

< 200

g 150
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: o

E 3 ¥ =z B8 B8 8 B8 8 g g _
E ¢ 5 £ T & 3 & &t & ¢z http://www.caida.org/publications/visualizations/

Hypponen M. Scientific American Nov. 70-77 (2006).



Diffusion of Innovation — The Adoption Curve

Late
majority

Broédcast I

. Laggards

Early
majority

nnovators

Early
adopters




Information Spreading



How to model diffusion?

Probabilistic models:

" Models of influence or disease spreading

“ An infected node tries to “push”
the contagion to an uninfected node

* Example:

" You “catch” a disease with some prob.
from each active neighbor in the network

Decision based models:

" Models of product adoption, decision making

* A node observes decisions of its neighbors
and makes its own decision

* Example:

* You join demonstrations if k of your friends do so too



Empirical studies of cascading
behavior



The strength of weak ties ...

* For information diffusion (spreading of news
and rumors on a social network)

C 1 1070 B 35¢ y
0.9} e g 30} )
0.8f 7oA 2 el /

0.7} ¢ : 3 /

.go.s- ?:‘ \ 3 20 | L~
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0.4} / \ o ol |
0.3} 9 2 .'
4 =
0.2} g R S 5}/
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0.11-,..--""“& \\% 0 4 . . .
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e 102 1 10° Time ¢
Tie strength w (s)



The weakness of weak ties

Diffusion of innovation / adoption

I\
0

]

0O percent hearing
B percent accepting

w
wn

ol

r
Ul

0

PERCENT

i

0

Ut

Ob= ﬁ.ﬂJLL

19284 29 TS 27 28 9 30 31 32 33 34 D IS 3T 98 39 40 4| Never
accepted

Figure 19.10: The years of first awareness and first adoption for hybrid seed corn in the
Ryan-Gross study. (Image from [358].)



DIFFLSION
INNOVAIONS

The strength of the strong ties for the

{[1]

EVERETT M.ROGERS

Roger’s Diffusion of Innovations

A
'| B Introduction Growth Maturity
|
' broduct
' life cycle
Curve

(1-p)d
neighbors
use B

pd neighbors
use A

Early majority
Late majority

Early adopters

Innovators




[Backstrom et al. KD

Adoption Curve: LiveJournal

Group memberships spread over the
network:

circles represent
existing group members

squares may join

How does prob. of joining
a group depend on the
number of friends already
in the group?




[Backstromet al,, KDD ’d

Adoption Curve: LiveJournal
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[Leskovec et al., TWEB ‘o7]

Diffusion in Viral Marketing

Senders and followers of recommendations
receive discounts on products

10% credit E‘J‘B

€ ot
0 - N
10% off L \
N
pgn '~ 7 \g
)4\ \\\ it
=) @\
,/1:‘\, /, \l)‘.;'.[
i\ = /)|
"“ ) t"lyl/‘“/‘l:
i/
[ A 1
il /
‘e f p

Data: Incentivized Viral Marketing program
16 million recommendations

4 million people, 500k products



[Leskovec etal.,, TWEB '07]

Adoption Curve: Validation

Probability of purchasing

©
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HAPPINESS, HEALTH,
AND SOCIAL NETWORKS
20 ,s-‘;s«“f
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o
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|

James H. Fowler, Nicholas A. Christakis.

Dynamic Spread of Happiness in a Large Social Network:
Longitudinal Analysis Over 20 Years in the Framingham Heart Study
British Medical Journal 337 (4 December 2008)



20

16

12

Increase in probability of ego
happiness if alter is happy (%)

1

1 2 3 4

Social distance of alter

Fig 2| Social distance and happiness in the Framingham social
network. Percentage increase in likelihood an ego is happy if
friend or family member at certain social distance is happy
(instead of unhappy). The relationship is strongest between
individuals who are directly connected but remains
significantly »0 at social distances up to three degrees of
separation, meaning that a person’s happiness is associated
with happiness of people up to three degrees removed from
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HAPPINESS, HEALTH,
AND SOCIAL NETWORKS
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Probabilistic models of diffusion

Epidemic modeling



Classical Models of Epidemics

Epidemic Modeling
(classical models)



Classical Epidemic Models — Basic States

Infection
> Removal
——
Recovery
<€
Recovery
( e
Susceptible Infected Removed

(healthy) (sick) (immune / dead)



SIS Model: Common Cold

Susceptible Infected Removed
(healthy) (sick) (immune / dead)



Example 2: Flu, SARS, Plague, ...

Infection

> Removal

Susceptible Infected Removed
(healthy) (sick) (immune / dead)



SIS Model: Common Cold

Susceptible Infected Removed
(healthy) (sick) (immune / dead)



SIS Model Dynamics

%:ﬁi(l—i)—uiﬂ(ﬁ—u—ﬁi)

1 I |
| S I>S _
di - di |
=y — (B w)ds ,
ST (B-w) - | _
In(i) ~In(1 - 1/ f—i) = (B )t +¢ £ 05}
i — (B ¢ s | |
1—uiB=i C=¢ g | |
LL i |
L R
Ce(ﬁ—u)t _
- i(f) = 1—5\ Time (1) =
ﬁ}1+Ce(ﬁ_”)t Stationary state:

ﬂ—/3:‘(1—:‘)—;u‘—0
SIS model: fraction infected individuals saturates below 1. dt




SIS Model: Epidemic Threshold and Basic Reproductive Number

A >1: Outbreak, A <1: Die out



reproductive number A: average # of infectious
individuals generated by one infected in a fully susceptible
population.

e.g. A =2 /‘“
/ /v'n‘

.lr~ ~>tnu

Choose
transmission B mild @ medium W h'gh @ very high
scenario A=1.5 1=1.9 1 =2.3 1 =2.7

Vespignani



Example 2: Flu, SARS, Plague, ...

Infection

> Removal

Susceptible Infected Removed
(healthy) (sick) (immune / dead)



SIR Model

1 . I - T
- Susceptible |
YO i 11 - r) - ico) et _
dt T ’3 : d l § _ \Recovered -
di (1) 2 [ —
—— = O+ BRION - rH—i®] 2
t § 04F |
dr (t) | : § - Infected
— = [). g
iy ji(t) 02 / i
0 e
0 5 10 15 20
Tume ¢

* SIR model: the fraction infected peaks and the
fraction recovered saturates.



Epidemic modeling on networks

[Vespignani et al., since 2002]
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SIS model on a network: Degree based representation

o mmm———————— -~ Split nodes by their degrees
.' — |
O :
L o 7 | i, = —", i = ZP(k)zk
| © |
| Q | l SIS model:
| O\ \ O I
N e e e e e e e e e R4 di (1)
Class of nodes with degree k=1 i = f1-i,(1)kO, Ql«”k(t)
————————————— ~ : Density of infected
’ \ Proportllonal 0 neighbors of nodes with
— degree k

| am susceptible with k
neighbors, and O,(t)

\ (K of my neighbors are infected.
/

Class of nodes with degree k=2

—_—_—_~
I

\
0
N
@)

(Vespignani)



Early time behavior — S| model — the characteristic time vanishes!

<k> Numerical Test:

The timescale it takes for an The average degree of newly
epidemics to grow. The smaller

ﬁ(<k2> - <k>) is 7, the faster it grows.

T= infected nodes at time t:

Y k(1,0 ~1,(t-1)
ER network: 1 k (t)=-

<ke>=<k>(<k>-1) T B

- The more connected the network is, 60% T T
the faster does the epidemic spread. . m = 14 a)
L n 1

40 n -
[ |
m=4

I(t)-1(t-1)

SF network (y<3):
<k?>> o forN> © = 12> 0

20F g ‘h -
For scale-free networks, the characteristic time
vanishes, which means that the epidemic I I
becomes instantaneous. The reason: the hubs get ol o I*

infected first, which then rapidly reach most 1 10
nodes. t/t BAmodel with m=4, 14

one®)

M. Barthélemy et al., PRL 92, 178701 (2004)



SIS Model — Absence of Epidemic Threshold

Frequency n(k)

Email network

100000 g

10000

1000

Degree k

Ebel et al. (2002)

1000

Human sexual network

-~ 1ir°

o Females a7
& Males

Cumulative distribution, P(k

10° 10 10° 10
Total number of partners, k.,

Lilijeros et al., Nature (2001),

Schneeberger et al. STD (2004)

Air transportation network

A w‘l
| ~
NS
N
~
2 S 18
10 ~ I .
~
= s
E’ .- N
a
P ]
10°'F "
"
[
"
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Colizza et al., PNAS 2006
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Sport data analytics

[Pappalardo, Cintia et al. @KDD Lab,
since 2013]



Oigms

F/ Paolo Cintia
Y ;. Marco Malvaldi
7/ Luca Pappalardo

Dino Pedreschi
B, FOsca Giannotti
i/ ..CONTINUA?




.| need a
Data Scientist...
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<tackle,15.4,41.1,112>
<pass,25.0,67.1,113>

<pass,65.0,87.1,115>
<assist,82.1,35.8,120>
<goal attempt,82.1,35.8,121>




The passes network among players

Variance of degree:
1.16




The passes network among zones

. Degree Variance:
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The passes network among zones

- AT
Argentin ‘






A complex
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We computed the variance for
each team during the World
Cup 2014



World Cup 2014

m' Big Data Tales ¥ Segui
~'Q\,;.: 4I @bigdatatales

According to our models the final will be Germany-
Argentina. Are our data-driven models correct ? Let's see

what happens!!! #WorldCup2014
21:00 - 8 Lug 2014 § Pisa, Italia
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simulated ranking

real ranking

Bayern
Leverkusen
Dortmund
Wolfsburg
Augsburg
Hoffenheim
Hertha

Mainz
Schalke
Frankfurt
Monchengladbach
Hannover
Hamburg
Stuttgart
Freiburg
Werder
Braunschweig
Niirnberg

91
72
68
59
58
49
49
48
47
46
42
41
38
35
31
24
22
17

Bayern
Dortmund
Schalke
Leverkusen
Wolfsburg
Monchengladbach
Mainz
Augsburg
Hoffenheim
Hannover
Hertha
Werder
Freiburg
Frankfurt
Stuttgart
Hamburg
Niirnberg
Braunschweig

90
71
64
61
60
55
53
52
44
42
41
39
36
36
32
27
26
25
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