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Complex	(Social)	Networks	
•  Textbooks	

–  Albert-Laszlo	Barabasi.	Network	Science	(2016)			
–  hGp://barabasi.com/book/network-science		
–  Easley,	Kleinberg:	Networks,	Crowds,	and	Markets	(2010)	
–  hGp://www.cs.cornell.edu/home/kleinber/networks-book/�				

•  Network	AnalyUcs	SoVware:	
–  Cytoscape:	hGp://www.cytoscape.org/		
–  Gephi:	hGp://gephi.github.io/	

•  Network	dynamics	simulaUon	:		
–  NetLogo:		hGps://ccl.northwestern.edu/netlogo/		

•  Network	Data	Repository	
–  hGp://networkrepository.com/		



Wiki	of	the	course	

•  hGp://didawiki.di.unipi.it/doku.php/wma/
acm-athens-july2017		

•  Special	thanks	to		
– Fosca	Gianno^,	ISTI-CNR	Pisa		
– Albert-Laszlo	Barabasi,	Northeastern	Univ.	Boston	
– Giulio	Rosse^,	University	of	Pisa	
–  Jure	Leskovec,	Stanford	Univ.	



The	power	of	complex	networks	

Lecture	2	



Part	2	

•  Measuring	small-worlds	with	big	data	
•  Strength	of	weak	Ues	
•  Centrality	measures	
•  Community	structure	
•  Link	predicUon	
•  Robustness	
•  Cascades	
•  Epidemic	spreading	



Measuring the small-world property 
!

     
 
!



SIX DEGREES       small worlds!

Frigyes Karinthy, 1929!
Stanley Milgram, 1967!

Peter!

Jane!

Sarah"

Ralph!



Stanley	Milgram	

160	people	

1	person	

Analisi di reti sociali - Aprile 2011	





Planetary-Scale	Views	on	an	Instant-
Messaging	Network	

	Jure	Leskovec	&	Eric	Horvitz	
MicrosoV	Research	Technical	Report	MSR-TR-2006-186	June	2007	

Analisi di reti sociali - Aprile 
2011 



Messaging	as	a	network	



IM	communicaUon	network	



Il	grafo	di	Instant	Messenger	



The	giant	connected	component	

Analisi di reti sociali - Aprile 2011 



The strength of weak ties 
!

     
 
!



The	strength	of	weak	3es	
•  Mark	S.	Granove-er,	1973	
•  His	PhD	thesis:	how	people	get	to	know	about	new	jobs?	
•  Through	personal	contacts	
•  Surprise:	oVen	acquaintances,	not	close	friends	
•  Why?		
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Country-wide	mobile	phone	data	



Social	proximity	and	3e	strength	

•  How	connected	are	u	and	v	in	the	social	network.		
–  Various	well-established	measures	of	network	proximity,	based	on	

the	common	neighbors	(Jaccard,	Adamic-Adar)	or	the	structure	of	
the	paths	(Katz)	connecUng	u	and	v	in	the	who-calls-whom	network.	

	

•  How	intense	is	the	interacUon	between	u	and	v.		
–  Number	of	calls	as	strength	of	3e	



Strength	of	weak	Ues	

•  Large	scale	empirical	validaUon	of	
GranoveGer’s	theory	
– Social	proximity	increases	with	Ue	strength	
– Weak	Ues	span	across	different	communiUes	

•  J.-P.	Onnela,	J.	Saramaki,	J.	Hyvonen,	G.	Szabo,	D.	Lazer,	K.	Kaski,	J.	Kertesz,	
A.-L.	Barabási.	Structure	and	3e	strengths	in	mobile	communica3on	
networks.	PNAS	104	(18),	7332-7336	(2007).	
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Centrality	

How	important	is	a	node	in	a	network?	

Analisi di reti sociali - Aprile 
2011 
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Back	to	GranoveGer	



Human	mobility,	social	3es		
and	link	predic3on	

Dashun	Wang,	Dino	Pedreschi,	Chaoming	Song,	Fosca	GiannoL,	
Albert-Lászlo	Barabási	

	
SIGKDD	Int.	Conf.	on	Knowledge	Discovery	and	Data	Mining	–	KDD	

2011	



Coloca3on,	social	proximity,	3e	strength	

•  How	similar	is	the	movement	of	users	u	and	v	
–  Various	co-loca3on	measures,	quanUfying	the	similarity	between	

the	movement	rouUnes	of	u	and	v	(mobile	homophily)	

•  How	connected	are	u	and	v	in	the	social	network.		
–  Various	well-established	measures	of	network	proximity,	based	on	

the	common	neighbors	(Jaccard,	Adamic-Adar)	or	the	structure	of	
the	paths	(Katz)	connecUng	u	and	v	in	the	who-calls-whom	network.	

•  How	intense	is	the	interacUon	between	u	and	v.		
–  Number	of	calls	as	strength	of	3e	



Network	proximity	vs.	mobile	homophily	



mobility	dimension	of	the	“strength	of	weak	3es”	

•  co-locaUon,	network	proximity	and	Ue	strength	
strongly	correlate	with	each	other	

•  measured	on	3	months	of	calls,	6	Million	users,	
naUon-wide	(large	European	country)	





Community	discovery	

How	to	highlight	the	modular	
structure	of	a	network?	



Community	structure	



CommuniUes	







? 



Are	these	two	different	networks?	



No!	



DEMON 
A Local-first Discovery Method For 

Overlapping Communities 

Giulio	Rosse^1,2	,Michele	Coscia3,	Fosca	Gianno^2,	Dino	Pedreschi1,2	
	

1	Computer	Science	Dep.,	University	of	Pisa,	Italy		
2	ISTI	-	CNR	KDDLab,	Pisa,	Italy		

3	Harvard	Kennedy	School,	Cambridge,	MA,	US	
	

Michele	Coscia,	Giulio	Rosse^,	Fosca	Gianno^,	Dino	Pedreschi:	
DEMON:	a	local-first	discovery	method	for	overlapping	communiUes.		
The	18th	ACM	SIGKDD	Interna<onal	Conference	on	Knowledge	Discovery	and	Data	
Mining,	KDD		2012:	615-623	
	
Michele	Coscia,	Giulio	Rosse^,	Fosca	Gianno^,	Dino	Pedreschi:	
Uncovering	Hierarchical	and	Overlapping	CommuniUes	with	a	Local-First	
Approach.		ACM	Trans.	on	Knowledge	Discovery	from	Data	TKDD	9(1):	6	(2014)	
	
	
	



Communities in (Social) Networks 

•  CommuniUes	can	be	seen	as	the	
basic	bricks	of	a	(social)	network	

•  In	simple,	small,	networks	it	is	easy	
idenUfy	them	by	looking	at	the	
structure.		



Reducing the complexity 

Real	Networks	are	Complex	
Objects	

Can	we	make	them	“simpler”?	

Ego-Networks	
	

networks	built	upon	a	focal	node	,	the	
"ego”,	and	the	nodes	to	whom	ego	is	
directly	connected	to,	including	the	

Ues	among	the	alters	



DEMON Algorithm 

•  For	each	node	n:	
1.  Extract	the	Ego	Network	of	n	
2.  Remove	n	from	the	Ego	Network	
3.  Perform	a	Label	PropagaUon1		
4.  Insert	n	in	each	community	found	
5.  Update	the	raw	community	set	C	

•  For	each	raw	community	c	in	C	
1.  Merge	with	“similar”	ones	in	the	set	(given	a	threshold)	

(i.e.	merge	iff	at	most	the	ε%	of	the	smaller	one	is	not	included	in	the	bigger	one)		
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1 Usha N. Raghavan, R ́eka Albert, and Soundar Kumara. Near linear time algorithm to detect community structures 
in large-scale networks. Physical Review E  
 



•  Each	node	has	an	unique	label	(i.e.	its	
id)	

•  In	the	first	(setup)	iteraUon	each	node,	
with	probability	α,	change	its	label		to	
one	of	the	labels	of	its	neighbors;		

•  At	each	subsequent	iteraUon	each	node	
adopt	as	label	the	one	shared	(at	the	
end	of	the	previous	itera<on)	by	the	
majority	of	its	neighbors;	

		
•  We	iterate	unUll	consensus	is	reached.	

Label	PropagaUon	–	The	idea	



DEMON @ Work 

DEMON	was	successfully	applied	to	different	networks	and	its	communiUes	were	
validated	against	their	semanUcs		

Social	Networks	
–  Skype,	Facebook,	TwiGer,	Last.fm,	20lines	

ColocaUon	Networks	
–  Foursquare	

CollaboraUon	Networks	
–  DBLP,	IMDb,	US	Congress	

Product	Networks	
–  Amazon	



BoGom-up	(local)	vs	top-down	
(global)	community	detecUon	









Hierarchical	decomposiUon	

•  How	to	select	the	number	of	clusters/communiUes?	



How	to	evaluate	the	quality	of	a	
network	parUUon	into	

communiUes?	



Modularity	



Modularity	





Community	discovery	

•  Challenging	task	
•  Many	compeUng	approaches	
•  Huge	literature	
•  Recent	surveys:	

– Michele	Coscia,	Fosca	Gianno^,	Dino	Pedreschi:	A	
classificaUon	for	community	discovery	methods	in	complex	
networks.	Sta<s<cal	Analysis	and	Data	Mining	4(5):	
512-546	(2011)	

–  Santo	Fortunato:	Community	detecUon	in	graphs	
Physics	Reports	486	(3),	75-174	(2010)	



Demon	communiUes	

•  Overlapping	
•  Microscopic	
•  High	homophily	

•  ApplicaUon:	classificaUon		
•  E.g.	user	engagement	

People belonging to the same 
e social context often show some degree of homopily: 

(i.e. same age, level of education) 



Skype	Network	Data	
SemanUc	rich	dataset:	

–  Social Graph		
(built	upon	users	contact	lists	
~billions	of	nodes)	

–  Users Geographic 
presence	
(city,	naUon…)	

–  Users Monthly 
Activity		
(individual’s	days	of	Audio\Video\Chat	
products	usage)	



Problem:	Service	Usage	
Given	an	online	pla{orm	we	oVen	we	need	to	es<mate	
how	its	services	(i.e.,	Skype	Audio\Video	call)	are	used	by	
the	registered	users.		
In	parUcular	we	can	be	asked	to	answer	the	following	
quesUons:	
	
Q1:	Can	Service	Usage	be	described	as	a	funcUon	of	the	
Network	Data?	
	
Q2:	If	so,	at	which	scale	should	we	analyze	the	network	in	
order	to	perform	a	descripUve	analysis?	



Classifier	features	

For	each	network	
parUUon	obtained,	
we	built	classifier	
and	trained	it	to	
discriminate	
between	High	and	
Low	acUve	
communiUes.	



Target	Class	(for	each	service)	

The	target	class	idenUfy	the	Service	
AcUvity	Level	(High/Low)	

Two	scenarios:	

1.  Low/High	acUvity	is	idenUfied	by	
the	median	of	the	distribuUon		
(i.e.,	an	highly	acUve	community	have	and	avg	
acUvity	>	than	the	median	of	the	overall	
acUvity	distribuUon)	

2.  High	acUvity	
communiUes	are	the	
one	above	the	75th	
percenUle	



“Social	Engagement”	:	Skype	social	graph	

•  Problem:	
Given	the	Skype	social	graph	and	its	user	
informaUon	(i.e.,	locaUon…)	predict	average	
level	of	community	acUvity	for	the	Audio
\Video	services.	

•  Ques3on:	
The	CD	method	chosen	will	affect	the	
classificaUon	results?	

•  Main	Results:	

•  The	smaller	and	denser	communiUes	
are	the	beGer	

•  Demon	outperforms	Louvain,		
Ego-Nets	and	BFS	

•  Topological,	Temporal	and	
Geographical	features	of	communiUes	
are	valuable	acUvity	level	predictors	

G. Rossetti, L. Pappalardo, R. Kikas, F. Giannotti, D. Pedreschi, M. Dumas �
Community-centric analysis of service en- gagement in Skype social networks.�
IEEE ASONAM 2015, France (Accepted)	



Discover	the	borders	of	mobility	

Salvatore Rinzivillo, Mainardi, Pezzoni, Michele Coscia, Dino Pedreschi, Fosca Giannotti:  
Discovering the Geographical Borders of Human Mobility. KI 26(3): 253-260 (2012) 

























The frontier:  
evolutionary community discovery 

 
G	Rosse^,	L	Pappalardo,	D	Pedreschi,	F	Gianno 	̂

Tiles:	an	online	algorithm	for	community	discovery	in	dynamic	social	networks	
Machine	Learning,	1-29,	2016	



Group	formaUon	dynamics	



Group	formaUon	in	networks	







Connectedness	of	friends	and	group	
membership	



…	and	the	winner	is	…	



[Backstrom	et	al.,	KDD	2006]	



The	strength	of	strong	Ues		



Link	predicUon	

Which	new	links	will	appear	in	the	
social	network?	



Link	predicUon	in	social	networks	

•  Can	new	social	links	be	predicted?	

101	



Link	predicUon	in	social	networks	

•  Social	networks	are	very	sparse		
•  DisproporUon	between	possible	links	and	
links	that	actually	form	in	the	network.		

•  From	a	machine	learning	perspecUve,	link	
predicUon	is	a	binary	classificaUon	problem	
over	an	extremely	unbalanced	dataset,	where	
posiUve	cases	are	overwhelmed	by	negaUve	
cases.		

102	



The	link	predicUon	challenge	

•  In	a	phone	call	graph	with	106	users,	the	average	
degree	is	around	4,	so	we	have	4*106	links,	vs.	
the	number	of	potenUal	links	in	the	order	of	1012	
– One	new	link	every	one	million	possibiliUes!	

•  Therefore,	the	trivial	“no-link”	classifier	that	
always	predicts	the	absence	of	any	links	has	an	
extremely	low	classificaUon	error	around	10-6,	
i.e.	an	amazing	accuracy	of	99.999999	%!		

•  The	challenge	is	in	improving	the	classifica3on	
accuracy	on	the	posi3ve	cases	(precision).	

103	



•  Previous	results	seem	to	imply	that	new	links	
form	more	likely	WITHIN	communUtes	rather	
than	ACROSS	communiUes	



Unsupervised	vs.	Supervised	methods	

•  Unsupervised	link	predicUon,	based	on	scores	of	
topology	measures	such	as	common	neighbors,	
Jaccard	coefficient,	Adamic/Adar	measure,	Katz	

•  D.	Liben-Nowell,	J.	Kleinberg.	The	link	predicUon	problem	for	social	networks.	J.	
of	Am.	Soc.	for	Informa<on	Science	and	Technology,	58(7):1019-1031,	2007.		

•  Supervised	classifica3on,	based	on	techniques	for	
handling	the	disproporUon	of	the	negaUve	cases	
of	various	machine	learning/data	mining	methods	

•  R.	N.	Lichtenwalter,	J.	T.	Lussier,	N.	V.	Chawla.	New	perspecUves	and	methods	in	
link	predicUon.	ACM	SIGKDD	–	Int.	Conf	on	Knowledge	Discovery	in	Databases.	
2010.	

105	



How	likely	two	nodes	x	and	y	belong	
to	the	same	community?	

•  [Liben-Nowell	and	Kleinberg	2006]	



Performance	of	predictors	(wrt	random)	



Country-wide	tele-communica3on	data	



Link	predicUon	in	mobile	social	networks	

•  In	mobile	call	records	we	have	also	locaUon/
mobility	in	space	and	Ume	as	a	further	
dimension,	besides	topology	

•  Is	mobility	a	good	predictor	for	future	links?	

•  Can	we	build	high-precision	link	predictors	
using	combined	topology/mobility	features?	

109	



Link	predic3on	in	geo-social	networks	



CorrelaUon:	ColocaUon,	social	proximity,	Ue	strength	



Human	mobility	and	social	3es	

•  co-locaUon,	network	proximity	and	Ue	strength	
strongly	correlate	with	each	other	

•  measured	on	3	months	of	calls,	6	Million	users,	
naUon-wide	(large	European	country)	

•  mobility	dimension	of	the	“strength	of	weak	
3es”	



Unsupervised	link	predicUon	



Supervised	link	predicUon	





People	is	predictable!	

•  Probability	of	a	new	link	between	two	(disconnected)	random	
users:		
10-6	

•  Best	predicUon	accuracy	using	only	social	features:		

10%	
•  Best	predicUon	accuracy	using	social	+	mobility	features:	

75%		

	



MulU-dimensional	network	
analysis	

M	Berlingerio,	M	Coscia,	F	Gianno^,	A	Monreale,	D	Pedreschi.	
MulUdimensional	networks:	foundaUons	of	structural	analysis.	World	Wide	
Web	16	(5-6),	567-593	(2013)	
	
Michele	Berlingerio,	Michele	Coscia,	Fosca	Gianno^,	Anna	Monreale,	Dino	
Pedreschi:	The	pursuit	of	hubbiness:	Analysis	of	hubs	in	large	mulUdimensional	
networks.	Journal	of	Computa<onal	Science	2(3):	223-237	(2011)	



Classical Network Representation 

Only one kind of 
relation 
 
Different connections 
indistinguishable 



Multigraphs as multidimensional networks 



Network	robustness	



Thex 

Network Science: Introduction January 10, 2011!

A SIMPLE STORY (3):!

Network Science: Introduction 2012!



Complex systems maintain their basic functions even under errors and failures                                                             

cell → mutations 
There are uncountable number of mutations and other errors in our cells, yet, we do not notice their 
consequences. 

Internet → router breakdowns 
At any moment hundreds of routers on the internet are broken, yet, the internet as a whole does not 
loose its functionality. 

Where does robustness come from? 

There are feedback loops in most complex systems that keep tab on the 
component’s and the system’s ‘health’. 

Could the network structure affect a system’s robustness? 
Network Science: Robustness Cascades March 23, 2011!

ROBUSTNESS IN COMPLEX SYSTEMS!



node failure 

Could the network structure affect a system’s robustness? 

How do we describe in quantitave terms the breakdown of a 
network under node or link removal? 

~percolation theory~ 

ROBUSTNESS!

Network Science: Robustness Cascades March 23, 2011!



I:  
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(Inverse Percolation phase transition) 

f= fraction of removed nodes 

S 

Network Science: Robustness Cascades March 23, 2011!

Damage is modeled as an inverse percolation process!
!



The interest in the robustness problem has three origins: 
 
à Robustness of complex systems is an important problem in many areas 

à Many real networks are not regular, but have a scale-free topology 

à In scale-free networks the scenario described above is not valid 

    Albert, Jeong, Barabási, Nature 406 378 (2000) 
Network Science: Robustness Cascades March 23, 2011!

ROBUSTNESS: OF SCALE-FREE NETWORKS!



1 

S 

0 1 f 
Albert, Jeong, Barabási, Nature 406 378 (2000) 

Scale-free networks do not appear to 
break apart under random failures.  
Reason: the hubs.  
The likelihood of removing a hub is small.  

Network Science: Robustness Cascades March 23, 2011!

ROBUSTNESS OF SCALE-FREE NETWORKS!



Internet 

failure 
attack 

R. Albert, H. Jeong, A.L. Barabasi, Nature 406 378 (2000) 

Internet: Router level map, N=228,263; γ=2.1±0.1;    κ=28   à   fc=0.962 
  
       AS  level map, N=  11,164; γ=2.1±0.1;    κ=264  à   fc=0.996 

€ 

fc =1− 1
κ −1

Internet parameters: Pastor-Satorras & Vespignani, Evolution and Structure of the Internet: Table 4.1 & 4.4 
Network Science: Robustness Cascades March 23, 2011!

INTERNET’S ROBUSTNESS TO RANDOM FAILURES!



1 

S 

0 1 f 
fc 

Attacks 

γ ≤ 3 : fc=1 
(R. Cohen et al PRL, 2000) 

Failures 

Robust-SF	

Albert, Jeong, Barabási, Nature 406 378 (2000) 

Achilles’ Heel of scale-free networks 

Network Science: Robustness Cascades March 23, 2011!



Historical Detour: Paul Baran and Internet 

Achilles	Heel	

DECENTRALIZED DISTRIBUTEDCENTRALIZED
(A) (B) (C)

Station

Link

1958 
Network Science: Robustness Cascades March 23, 2011!



Cascades	



Cascades"

•  Informa3on	cascades	
					social	and	economic	

systems	
					diffusion	of	innovaUons	
•  Cascading	failures	
					infrastructural	networks	
					complex	organizaUons	

PotenUally	large	events	triggered	by	small	iniUal	shocks	

Network Science: Robustness Cascades March 23, 2011!



Cascading Failures in Nature and 
Technology"

Cascades	depend	on	
•  Structure	of		the	network		
•  ProperUes	of	the	flow	
•  ProperUes	of	the	net	elements	
•  Breakdown	mechanism	

Blackout	

Flows	of	physical	quan33es		
•  congesUons	
•  instabiliUes	
•  Overloads	

Earthquake	 Avalanche	

Network Science: Robustness Cascades March 23, 2011!



Northeast Blackout of 2003"

Consequences	
More	than	508	generaUng	units	at	265	
power	plants	shut	down	during	the	
outage.	In	the	minutes	before	the	
event,	the	NYISO-managed	power	
system	was	carrying	28,700	MW	of	
load.	At	the	height	of	the	outage,	the	
load	had	dropped	to	5,716	MW,	a	loss	
of	80%.	

Origin	
A	3,500	MW	power	surge	(towards	Ontario)	
affected	the	transmission	grid	at	4:10:39	p.m.	
EDT.	(Aug-14-2003)	

Before	the	blackout									Aher	the	blackout	

Network Science: Robustness Cascades March 23, 2011!



Cascades Size Distribution of Blackouts"

Probability	of	energy	
unserved	during	North	
American	blackouts	
1984	to	1998.	

Source	 Exponent	 Quan3ty	

North	America	 2.0	 Power	

Sweden	 1.6	 Energy	

Norway	 1.7	 Power	

New	Zealand	 1.6	 Energy	

China	 1.8	 Energy	

Unserved	energy/power	magnitude	(S)	distribu3on		

I.	Dobson,	B.	A.	Carreras,	V.	E.	Lynch,	D.	E.	Newman,	CHAOS	17,	026103	(2007)	

P(S) ~ S −α, 1< α < 2 
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Cascades Size Distribution of Earthquakes"

P(S) ~ S −α,α ≈ 1.67 

Earthquake	size	S	distribu3on		

Y.	Y.	Kagan,	Phys.	Earth	Planet.	Inter.		135	(2–3),	173–209	(2003)	

Earthquakes	during	1977–2000.	
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Short Summary of Models: Universality"
Models	 Networks	 Exponents	

Failure	ProrogaUon	Model	 ER	 1.5	

Overload	Model	 Complete	Graph	 1.5	

BTW	Sandpile	Model	 ER/SF	 1.5	(ER)		
γ/(γ - 1)(SF)	

Branching	Process	Model	 ER/SF	 1.5	(ER)	
γ/(γ - 1)(SF)	

P(S) ~ S −3/2 

Universal	for	homogenous	networks		

Same	exponent	for	percolaUon	too	
(random	failure,	aGacking,	etc.)	
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Epidemics	and	spreading	
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Epidemic spreading – Why?!

Why is the spreading process important? 



“Epidemic” !

Epi + demos 
upon               people 

Biological: 
Airborne diseases (flu, SARS, …) 
•  Venereal diseases (HIV, …)  
•  Other infectious diseases including 
some cancers (HPV, …) 
• Parasites (bedbugs, malaria, …) 

Digital: 
• Computer viruses, worms 
• Mobile phone viruses 

Conceptual/Intellectual: 
•  Diffusion of innovations 
•  Rumors 
•  Memes 
•  Business practices 

http://en.wikipedia.org/wiki/Epidemic 



The Great Plague SARS HIV 

Biological: Notable Epidemic Outbreaks!

1918 Spanish flu 

H1N1 flu 



Epidemic spreading – Why does it matter now?!

High population density High mobility 

à perfect conditions for epidemic spreading. 
Airline figure: L. Hufnagel et al. PNAS 101, 15124 (2004) 
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Separate, small population 
(hunter-gatherer society, wild animals) 

Connected, highly populated areas 
(cities) 

Large population can provide the “fuel”!

Human societies have “crowd diseases”, which are the consequences of large, 
interconnected populations (Measles, tuberculosis, smallpox, influenza, common 
cold, …) 



14th Century – The Great Plague!

4 years from France to Sweden 
 
Limited by the speed of human travel 

http://en.wikipedia.org/wiki/Black_Death 
http://de.wikipedia.org/wiki/Schwarzer_Tod 



21st Century – SARS !

Source: World Health Organization 



Hypponen M. Scientific American Nov. 70-77 (2006). 

Computer Viruses, Worms, Mobile Phone Viruses!

Code Red Worm paralyzed many countries’ Internet 

http://www.caida.org/publications/visualizations/ 



Early 
adopters"

Innovators"

Early 
majority"

Late 
majority"

Laggards"

Broadcast"

Contagion"

Diffusion of Innovation – The Adoption Curve!



Spreading of Influence Information Spreading!



How	to	model	diffusion?	



Empirical	studies	of	cascading	
behavior	



The	strength	of	weak	Ues	…	

•  For	informaUon	diffusion	(spreading	of	news	
and	rumors	on	a	social	network)	



The	weakness	of	weak	Ues	

•  Diffusion	of	innova3on	/	adop3on	



The	strength	of	the	strong	3es	for	the	











James H. Fowler, Nicholas A. Christakis.  
Dynamic Spread of Happiness in a Large Social Network:  
Longitudinal Analysis Over 20 Years in the Framingham Heart Study 
British Medical Journal 337 (4 December 2008) 



Social influence  
or  

homophily? 



ProbabilisUc	models	of	diffusion	

Epidemic	modeling	
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Classical Models of Epidemics!

Epidemic Modeling  
(classical models) 



Classical Epidemic Models – Basic States!

Susceptible  
(healthy) 

Infected  
(sick) 

Removed 
(immune / dead) 

S I R 
Infection 

Recovery 

Recovery 

Removal 



SIS Model: Common Cold!

Susceptible  
(healthy) 

Infected  
(sick) 

Removed 
(immune / dead) 

S I R 
Infection 

Recovery 

Recovery 

Removal 



Example 2: Flu, SARS, Plague, …!
!

Susceptible  
(healthy) 

Infected  
(sick) 

Removed 
(immune / dead) 

S I R 
Infection 

Recovery 

Recovery 

Removal 



SIS Model: Common Cold!

Susceptible  
(healthy) 

Infected  
(sick) 

Removed 
(immune / dead) 

S I R 
Infection 

Recovery 

Recovery 

Removal 



SIS Model Dynamics!

� 

di
dt

= βi(1− i) − µi = 0

� 

di
dt

= βi(1− i) − µi = i(β − µ − βi)
S I IàS 

Stationary state: 

� 

ln(i) − ln(1− µ /β − i) = (β − µ)t + c

� 

i
1− µ /β − i

= Ce(β − µ )t

� 

∴i(t) = 1− µ
β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
Ce(β − µ )t

1+Ce(β − µ )t

“Epidemic threshold” 

� 

di
i

+
di

1− µ /β − i
= (β − µ)dt

� 

C = ec

Fr
ac

tio
n 

In
fe

ct
ed

 i(
t) 

Time (t) 

� 

t →∞,      i(t) →1− µ
β

SIS	model:	fracUon	infected	individuals	saturates	below	1.	



SIS Model: Epidemic Threshold and Basic Reproductive Number !

� 

di
dt

= βi(1− i) − µi
S I IàS 

� 

If µ ≈ β,    i→0
“Epidemic threshold” 

� 

βi

� 

µi

� 

I = I +1

� 

I = I −1� 

λ ≡
β
µ

“Basic reproductive 
number” 

On average, how many infected 
individuals will be infected by one 
infected individual? 

� 

λ > 1:  Outbreak, λ < 1:  Die out



reproductive number  λ: average # of infectious 
individuals generated by one infected in a fully susceptible 
population. 
 
 
 
e.g. λ =2 

λ=1.5 λ=1.9 λ =2.3 λ =2.7 

Vespignani 



Example 2: Flu, SARS, Plague, …!
!

Susceptible  
(healthy) 

Infected  
(sick) 

Removed 
(immune / dead) 

S I R 
Infection 

Recovery 

Recovery 

Removal 



•  SIR	model:	the	fracUon	infected	peaks	and	the	
fracUon	recovered	saturates.	

SIR Model!

9780521879507c09 CUP/RRT May 23, 2008 16:06 Page-185

9.1 Epidemic models 185

become infected, s(t) = 1−i(t), where s(t) = S(t)/N , and the number of infected
individuals in contact with any susceptible individual.

The susceptible–infected–susceptible (SIS) model is mainly used as a paradig-
matic model for the study of infectious diseases leading to an endemic state with
a stationary and constant value for the prevalence of infected individuals, i.e.
the degree to which the infection is widespread in the population as measured
by the density of infected. In the SIS model, individuals exist in the suscepti-
ble and infected classes only. The disease transmission is described as in the SI
model, but infected individuals may recover and become susceptible again with
probability µdt , where µ is the recovery rate. Individuals thus run stochastically
through the cycle susceptible → infected → susceptible, hence the name of the
model. The equation describing the evolution of the SIS model therefore contains
a spontaneous transition term and reads as

di(t)
dt

= −µi(t) + β⟨k⟩i(t) [1 − i(t)] . (9.6)

The usual normalization condition s(t) = 1 − i(t) has to be valid at all times.
The SIS model does not take into account the possibility of an individ-

ual’s removal through death or acquired immunization, which would lead to the
so-called susceptible–infected–removed (SIR) model (Anderson and May, 1992;
Murray, 2005). The SIR model, in fact, assumes that infected individuals disap-
pear permanently from the network with rate µ and enter a new compartment R of
removed individuals, whose density in the population is r(t) = R(t)/N . The intro-
duction of a new compartment yields the following system of equations describing
the dynamics:

ds(t)
dt

= β⟨k⟩i(t) [1 − r(t) − i(t)]

di(t)
dt

= −µi(t) + β⟨k⟩i(t) [1 − r(t) − i(t)] (9.7)

dr(t)
dt

= µi(t). (9.8)

Through these dynamics, all infected individuals will sooner or later enter the
recovered compartment, so that it is clear that in the infinite time limit the epi-
demics must fade away. It is interesting to note that both the SIS and SIR models
introduce a time scale 1/µ governing the self-recovery of individuals. We can think
of two extreme cases. If 1/µ is smaller than the spreading time scale 1/β, then the
process is dominated by the natural recovery of infected to susceptible or removed
individuals. This situation is less interesting since it corresponds to a dynamical
process governed by the decay into a healthy state and the interaction with neigh-
bors plays a minor role. The other extreme case is in the regime 1/µ ≫ 1/β,
i.e. a spreading time scale much smaller than the recovery time scale. In this



Epidemic	modeling	on	networks	

[Vespignani	et	al.,	since	2002]	



Gleamviz	





Class of nodes with degree k=1 

Class of nodes with degree k=2 

SIS model on a network: Degree based representation!

(Vespignani) 

� 

ik =
Ik
Nk

,    i = P(k)ik
k
∑

Split nodes by their degrees 

SIS model: 

Density of infected 
neighbors of nodes with 

degree k  

Proportional to 
k 

I am susceptible with k 
neighbors, and Θk(t) 

of my neighbors are infected.   

� 

dik (t)
dt

= β(1− ik (t))kΘk (t) − µik (t)



M. Barthélemy et al., PRL 92, 178701 (2004) 

Early time behavior – SI model – the characteristic time vanishes!!

� 

k inf (t) =
k Ik (t) − Ik (t −1)( )

k
∑

I(t) − I(t −1)

� 

m = 4
� 

m =14
� 

τ =
k

β k 2 − k( )
The timescale it takes for an 
epidemics to grow. The smaller 
is τ, the faster it grows. 

ER network: 
<k2>=<k>(<k>-1) 

� 

τER =
1

β k
à The more connected the network is, 
the faster does the epidemic spread. 

SF network (γ<3): 
<k2>à ∞ for Nà ∞  è τà 0 

For scale-free networks, the characteristic time 
vanishes, which means that the epidemic 
becomes instantaneous. The reason: the hubs get 
infected first, which then rapidly reach most 
nodes. 

Numerical Test:  
The average degree of newly 
infected nodes at time t: 

BA model with m=4, 14 



Human sexual network 
Email network 

Lilijeros et al., Nature (2001),  
Schneeberger et al. STD (2004) 

Ebel et al. (2002) 

Air transportation network 

Colizza et al., PNAS 2006 

SIS Model – Absence of Epidemic Threshold!

Many	networks	will	have	small	or	vanishing	epidemic	threshold!	



Sport	data	analyUcs	

[Pappalardo,	CinUa	et	al.	@KDD	Lab,	
since	2013]	



Paolo Cintia 
Marco Malvaldi 

Luca Pappalardo 
con la partecipazione di  
Dino Pedreschi 
Fosca Giannotti 



Football	and	Big	Data	



Complex	data	from	a	complex	game	

... !
<tackle,15.4,41.1,112>!
<pass,25.0,67.1,113>!
<pass,65.0,87.1,115>!
<assist,82.1,35.8,120>!
<goal attempt,82.1,35.8,121>!
…… 

Complex Data from a complex game 



The	passes	network	among	players	

degree	=	number	of	neighbors	
2 

3 

2 

4 

2 

4 

2 

1 

3 

4 

Variance of degree:  
1.16 



Germany 

The	passes	network	among	zones	

Degree Variance:  
3.8 



Argentina 

The	passes	network	among	zones	
Argentina

 

Degree Variance:  
3.3 





A complex 
network 



Opponent 
goal 



Opponent 
goal 



We	computed	the	variance	for	
each	team	during	the	World	

Cup	2014	



World Cup 2014 
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