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A-rac3veness	of	Galilei	vs.	Vespucci	



Modeling	Investments	and	A-rac3veness	on	Tuscan	
Airports	
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Structural	investments	(e=0.05)	

Simple	case:	non	spaCal	model	 SpaCal	model:	two	airports,	two	populaCons	
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The	two	airports	reach	an	equilibrium:	neither	of	the	two	is	
overwhelming	the	other		
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CITTÀ  
	POLICENTRICA	





Big	Data	for	Societal	Debates	

PolarizaCon,	controversy	and	topic		trends	on	societal	debates	through	social	media	

Exploratory:	





hBps://www.buzzfeed.com/jamesball/3-million-brexit-tweets-reveal-leave-voters-talked-about-imm?utm_term=.jmDQE9JNR#.fuOOrb145	





	
	

Big	Data	for	Well	Being	and	Economic	Performance	

DeprivaCon	Index	(in	France)	predicted	with	Mobile	Phone	traces	

Exploratory:	



Big	Data	for	Migra3on	Studies	

Human	MigraCon	Flows	

Next	Exploratory:	







hBp://www3.weforum.org/docs/WEF_Future_of_Jobs.pdf	



h-ps://www.di.unipi.it/it/didaUca/wds-lm											Founded	2002		
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Ph.D.	in	Data	Science	
Start:	academic	year	2017-2018	
hBp://phd.sns.it/data-science/		



www.sobigdata.eu		
H2020	excellent	science	
research	infrastructure	

	
	
	



Shopping	paBerns	&	lyfestyle	

DESIRES,	OPINIONS,	SENTIMENts	

RELATIONSHIPS	&	SOCIAL	TIES	

MOVEMENTS	

Big	data	proxies	of	social	life	
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Complex	(Social)	Networks	

•  Big	graph	data	and	social,	informaCon,	biological	and	
technological	networks	

•  The	architecture	of	complexity	and	how	real	
networks	differ	from	random	networks:		
–  node	degree	and	long	tails,		
–  social	distance	and	small	worlds,		
–  clustering	and	triadic	closure.		

•  Comparing	real	networks	and	random	graphs.	
•  The	main	models	of	network	science:	small	world	
and	preferenCal	aBachment.	



Complex	(Social)	Networks	

•  Strong	and	weak	Ces,	community	structure	and	long-
range	bridges.		

•  Robustness	of	networks	to	failures	and	aBacks.		
•  Cascades	and	spreading.	Network	models	for	
diffusion	and	epidemics.	The	strength	of	weak	Ces	
for	the	diffusion	of	informaCon.	The	strength	of	
strong	Ces	for	the	diffusion	of	innovaCon.	



Complex	(Social)	Networks	
•  Textbooks	

–  Albert-Laszlo	Barabasi.	Network	Science	(2016)			
–  hBp://barabasi.com/book/network-science		
–  Easley,	Kleinberg:	Networks,	Crowds,	and	Markets	(2010)	
–  hBp://www.cs.cornell.edu/home/kleinber/networks-book/�				

•  Network	AnalyCcs	Sooware:	
–  Cytoscape:	hBp://www.cytoscape.org/		
–  Gephi:	hBp://gephi.github.io/	

•  Network	dynamics	simulaCon	:		
–  NetLogo:		hBps://ccl.northwestern.edu/netlogo/		

•  Network	Data	Repository	
–  hBp://networkrepository.com/		



Wiki	of	the	course	

•  hBp://didawiki.di.unipi.it/doku.php/wma/
acm-athens-july2017		

•  Special	thanks	to		
– Fosca	Giannoq,	ISTI-CNR	Pisa		
– Albert-Laszlo	Barabasi,	Northeastern	Univ.	Boston	
– Giulio	Rosseq,	University	of	Pisa	
–  Jure	Leskovec,	Stanford	Univ.	



The	architecture	of	complexity	

Lecture	1	



!
[adj., v. kuh m-pleks, kom-pleks; n. kom-
pleks] "
–adjective "
1. "
composed of many interconnected parts; 
compound; composite: a complex highway 
system. "
2. "
characterized by a very complicated or 
involved arrangement of parts, units, etc.: 
complex machinery. "
3. "
so complicated or intricate as to be hard to 
understand or deal with: a complex 
problem. "

!! ! !Source: Dictionary.com!

Complexity, a scientific theory which 
asserts that some systems display 
behavioral phenomena that are 
completely inexplicable by any 
conventional analysis of the systems’ 
constituent parts. These phenomena, 
commonly referred to as emergent 
behaviour, seem to occur in many 
complex systems involving living 
organisms, such as a stock market or 
the human brain."
 !

Source: John L. Casti, Encyclopædia Britannica!

 !



Emergent	behavior:	segregaCon	



Behind each complex 
system there is a network, 
that defines the interactions 
between the components. "



Social,	informaConal,	
technological,	biological	networks	



The "Day of 7 Billion“ has been in October 2011"



Keith Shepherd's "Sunday Best”. http://baseballart.com/2010/07/shades-of-greatness-a-story-that-needed-to-be-told/!

The “Social Graph” behind Facebook!





Barabasi Lab!

Mapping Organizations 



 !

Barabasi Lab!



 !

Barabasi Lab!





Nodes: actors    "
 Links: cast jointly"

N = 212,250 actors    〈k〉 =28.78"

Days of Thunder (1990)  
Far and Away     (1992)  
Eyes Wide Shut  (1999) 

Actors	

COLLABORATION NETWORKS: ACTOR NETWORK!



54 

Nodes: scientist (authors) 
Links: write paper together 

COLLABORATION NETWORKS: SCIENCE CO-AUTHORSHIP!



: departments"
"

: consultants"
"

: external experts"

www.orgnet.com!

STRUCTURE OF AN ORGANIZATION!



Nodes:!

Links: !
http://ecclectic.ss.uci.edu/~drwhite/Movie!

BUSINESS TIES IN US BIOTECH-INDUSTRY!

Companies"
"

Investment"
"

Pharma"
"

Research Labs"
"

Public"
"

Biotechnology"

Collaborations"
"

Financial"
"

R&D"
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(γ = 3) 

Nodes: papers 
Links: citations 

(S. Redner, 1998) 

P(k) ~k-γ 

2212 

      25 

1736 PRL papers (1988) 
Witten-Sander 

PRL 1981 

Nodes: web pages 
Links: ditto ;-) 

Information networks: the Web and Science Citation Indexes!



INTERNET!

domain2!

domain1!

domain3!

router!
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Internet-Map	



Complex systems!
Made of many non-identical elements connected by 
diverse interactions."
"
"

NETWORK!
  !

HUMANS GENES!

Drosophila!
Melanogaster!

Homo!
Sapiens!



HUMAN DISEASE NETWORK!



62 

Biological networks: Food Web 

Nodes: species      
Links: trophic interactions 

R.J. Williams, N.D. Martinez Nature (2000) R. Sole (cond-mat/0011195) 



THE LIFE OF NETWORKS!

Network Science: Introduction January 10, 2011!



Data Availability:"
!

Universality: !

The (urgent) need to 
understand complexity:!

Network Science: Introduction January 10, 2011!

THE EMERGENCE OF NETWORK SCIENCE!

Movie Actor Network,  1998;"
World Wide Web,  1999."
C elegans neural wiring diagram 1990"
Citation Network,  1998"
Metabolic Network, 2000; "
PPI network, 2001"

!
The architecture of networks emerging in various 
domains of science, nature, and technology are 
more similar to each other than one would have 
expected. "

Despite the challenges complex systems offer us, we 
cannot afford to not address their behavior, a view 
increasingly shared both by scientists and policy 
makers. Networks are not only essential for this 
journey, but during the past decade some of the most 
important advances towards understanding complexity 
were provided in context of network theory."



Networks and graphs 
!

     
 
!



COMPONENTS OF A COMPLEX SYSTEM!

Network Science: Graph Theory January 24, 2011!

 
§  components: nodes, vertices " "  N"
 
§  interactions:  links, edges " " "   L"

 
§  system:  "  network, graph " "(N,L)"



network often refers to real systems"
• www, "
• social network"
• metabolic network. "
"
Language: (Network, node, link)"
"
graph: mathematical representation of a network"
• web graph, "
• social graph (a Facebook term)"
 "
Language: (Graph, vertex, edge)"
"
We will try to make this distinction whenever it is appropriate, 
but in most cases we will use the two terms interchangeably."
"

NETWORKS OR GRAPHS?!

Network Science: Graph Theory January 24, 2011!



A COMMON LANGUAGE!

Network Science: Graph Theory January 24, 2011!

N=4"
L=4"



Links: undirected (symmetrical) ""
"
Graph:"

        

Directed links :!
URLs on the www"
phone calls "
metabolic reactions"
 

Network Science: Graph Theory January 24, 2011!

UNDIRECTED VS. DIRECTED NETWORKS!

Undirected" Directed"

A!

B!

D!

C!

L!

M!F!

G!

H!

I!

Links:  directed (arcs). "
"
Digraph = directed graph:"

Undirected links :!
coauthorship links"
Actor network"
protein interactions 

An undirected 
link is the 
superposition of 
two opposite 
directed links. 

A!
G!

F!

B!
C!

D!

E!



    Reference Networks 
 
!

NETWORK NODES LINKS N L kDIRECTED
UNDIRECTED

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Protein Interactions

Webpages

Power plants, transformers

Subscribers

Email addresses

Scientists

Actors

Paper

Metabolites

Proteins

Links

Cables

Calls

Emails

Co-authorship

Co-acting

Citations

Chemical reactions

Binding interactions

Directed

Undirected

Directed

Directed

Undirected

Undirected

Directed

Directed

Undirected

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

1,497,134

6,594

91,826

103,731

93,439

29,397,908

4,689,479

5,802

2,930

Internet Routers Internet connections Undirected 192,244 609,066 6.33

4.60 

2.67

2.51

1.81

8.08

83.71

10.43

5.58

2.90



Degree, Average Degree and 
Degree Distribution 

!

    
 
!



Node degree: the number of links connected to the node."

"

� 

kB = 4

NODE DEGREES!
U

nd
ire

ct
ed
"

In directed networks we can define an in-degree and out-degree. 

The (total) degree is the sum of in- and out-degree."

"

"

"

Source: a node with kin= 0; Sink: a node with kout= 0."

2k inC = 1koutC = 3=Ck

D
ire

ct
ed
"

A!
G!

F!

B!
C!

D!

E!

A 

B 
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kA =1
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A BIT OF STATISTICS!

8

DEGREE, AVERAGE DEGREE,
AND DEGREE DISTRIBUTION

SECTION 2.3

A key property of each node is its degree, representing the number of 
links it has to other nodes. The degree can represent the number of mobile 
phone contacts an individual has in the call graph (i.e. the number of dif-
ferent individuals the person has talked to), or the number of citations a 
research paper gets in the citation network. 

Degree

We denote with ki the degree of the ith node in the network. For exam-
ple, for the undirected networks shown in Figure 2.2 we have k1=2, k2=3, 
k3=2, k4=1. In an undirected network the total number of links, L, can be 
expressed as the sum of the node degrees: 

         
      .

Here the 1/2 factor corrects for the fact that in the sum (2.1) each link is 
counted twice. For example, the link connecting the nodes 2 and 4 in Figure 
2.2 will be counted once in the degree of node 1 and once in the degree of 
node 4. 

Average Degree

An important property of a network is its average degree (BOX 2.2), which 
for an undirected network is

         
    

In directed networks we distinguish between incoming degree, ki
in, rep-

resenting the number of links that point to node i, and outgoing degree,        
ki

out, representing the number of links that point from node i to other 
nodes. Finally, a node’s total degree, ki, is given by

         
    

For example, on the WWW the number of pages a given document 
points to represents its outgoing degree, kout, and the number of docu-
ments that point to it represents its incoming degree, kin. The total number 

GRAPH THEORY

(2.1)

(2.2)

(2.3)

BOX 2.2
BRIEF STATISTICS REVIEW

Four key quantities characterize 
a sample of N values x1, ... , xN : 

Average (mean):

The nth moment:

   
 

Standard deviation:

∑=
=

L k1
2 i

i

N

1

… ∑= + + + =
=

x x x x
N N x1N

i
i

N
1 2

1

∑σ ( )= −
=N x x1

x i
i

N 2

1

∑≡ =
=

k N k L
N

1 2
i

i

N

1

= +k k ki i
in

i
out.

.

.

Distribution of x:
     

where px follows 

∑δ=p N
1

x xx
i

, i

… ∑= + + + =
=

xn x x x
N N x1n n n

N n
i

i

N
1 2

1

8

DEGREE, AVERAGE DEGREE,
AND DEGREE DISTRIBUTION
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for an undirected network is

         
    

In directed networks we distinguish between incoming degree, ki
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resenting the number of links that point to node i, and outgoing degree,        
ki

out, representing the number of links that point from node i to other 
nodes. Finally, a node’s total degree, ki, is given by

         
    

For example, on the WWW the number of pages a given document 
points to represents its outgoing degree, kout, and the number of docu-
ments that point to it represents its incoming degree, kin. The total number 
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N – the number of nodes in the graph"
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AVERAGE DEGREE!
U
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"
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A!

F!

B!
C!

D!

E!

j!

i!
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Average Degree!

NETWORK NODES LINKS N L kDIRECTED
UNDIRECTED

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Protein Interactions

Webpages

Power plants, transformers

Subscribers

Email addresses

Scientists

Actors

Paper

Metabolites

Proteins

Links

Cables

Calls

Emails

Co-authorship

Co-acting

Citations

Chemical reactions

Binding interactions

Directed

Undirected

Directed

Directed

Undirected

Undirected

Directed

Directed

Undirected

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

1,497,134

6,594

91,826

103,731

93,439

29,397,908

4,689,479

5,802

2,930

Internet Routers Internet connections Undirected 192,244 609,066 6.33

4.60 

2.67

2.51

1.81

8.08

83.71

10.43

5.58

2.90



Degree distribution "
P(k): probability that a"
 randomly chosen node "
has degree k!
!
!
!
!
Nk = # nodes with degree k!
!
P(k) = Nk / N     ➔   plot!

"
"
"
"
"
"

DEGREE DISTRIBUTION!



DEGREE DISTRIBUTION!

The degree distribution has taken a central role in net-
work theory following the discovery of scale-free networks 
(Barabási & Albert, 1999). Another reason for its impor-
tance is that the calculation of most network properties re-
quires us to know pk. For example, the average degree of a 
network can be written as

      

We will see in the coming chapters that the precise func-
tional form of pk determines many network phenomena, 
from network robustness to the spread of viruses.

∑=
=

∞

k kpk
k 0

Image 2.4a
Degree distribution.

The degree distribution is defined as the pk = Nk /N ratio, where Nk denotes 
the number of k-degree nodes in a network. For the network in (a) we 
have N = 4 and p1 = 1/4 (one of the four nodes has degree k1 = 1), p2 = 
1/2 (two nodes have k3 = k4 = 2), and p3 = 1/4 (as k2 = 3). As we lack nodes 
with degree k > 3, pk = 0 for any k > 3. Panel (b) shows the degree distri-
bution of a one dimensional lattice. As each node has the same degree k = 
2, the degree distribution is a Kronecker’s delta function pk = H(k - 2).

Image 2.4b
  

In many real networks, the node degree can vary considerably. For exam-
ple, as the degree distribution (a) indicates, the degrees of the proteins in 
the protein interaction network shown in (b) vary between k=0 (isolated 
nodes) and k=92, which is the degree of the largest node, called a hub. 
There are also wide differences in the number of nodes with different 
degrees: as (a) shows, almost half of the nodes have degree one (i.e. 
p1=0.48), while there is only one copy of the biggest node, hence p92 = 1/
N=0.0005.  (c) The degree distribution is often shown on a so-called log-
log plot, in which we either plot log pk in function of log k, or, as we did in 
(c), we use logarithmic axes. 
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Real networks are sparse 
!

    
 
!



The maximum number of links a network "
of N nodes can have is:"

	
	

� 

Lmax =
N
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = N(N −1)

2

A graph with degree L=Lmax is called a complete graph, "
and its average degree is <k>=N-1!
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COMPLETE GRAPH!



Most networks observed in real systems are sparse: !
!

L <<  Lmax !
or !

<k> <<N-1.  !
!

"
"WWW (ND Sample): "N=325,729; "L=1.4 106" "Lmax=1012" "<k>=4.51"
"Protein (S. Cerevisiae): "N=    1,870; "L=4,470 " "Lmax=107 " "<k>=2.39 "
"Coauthorship (Math): "N=  70,975; "L=2 105 " "Lmax=3 1010 "<k>=3.9 ""
"Movie Actors: " " "N=212,250; "L=6 106 " "Lmax=1.8 1013 "<k>=28.78"
""
! ! ! ! ! ! ! ! ! ! ! ! !(Source: Albert, Barabasi, RMP2002)!

"
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REAL NETWORKS ARE SPARSE!



ADJACENCY MATRICES ARE SPARSE!
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BIPARTITE NETWORKS  
!

     
 
!



bipartite graph (or bigraph) is a graph whose nodes can be divided 
into two disjoint sets U and V such that every link connects a node in U to 
one in V; that is, U and V are independent sets. "

 
 
 

Examples: 
!
Hollywood actor network"
Collaboration networks"
Disease network (diseasome)"

BIPARTITE GRAPHS!
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Gene network!

GENOME"

PHENOME"DISEASOME  !

Disease network!

Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)!

GENE NETWORK – DISEASE NETWORK!
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HUMAN DISEASE NETWORK!



Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, A.-L. Barabási  
Flavor network and the principles of food pairing , Scientific Reports 196, (2011).!

Ingredient-Flavor Bipartite Network!
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Basic	network	measures	

Degree	of	a	node	
Distance	between	two	nodes	
Clustering		among	three	nodes	



Degree distribution P(k): probability that  
a randomly chosen vertex has degree k"

"
Nk = # nodes with degree k!
P(k) = Nk / N     ➔   plot!

"
"
"
"
"
" k!

P(k) 

1! 2! 3! 4!

0.1!
0.2!
0.3!
0.4!
0.5!
0.6!

DEGREE DISTRIBUTION!



 
 

A path is a sequence of nodes in which  each node is adjacent to the next one"
"
Pi0,in  of length n between nodes i0 and in is an ordered collection of n+1 nodes and n links "
 "

� 

Pn = {i0,i1,i2,...,in}

� 

Pn = {(i0 ,i1),(i1,i2 ),( i2 ,i3 ),...,( in−1,in )}

"
!
•  In a directed network, the path can follow only the direction of an arrow. "
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PATHS!



The distance (shortest path, geodesic path) between two 
nodes is defined as the number of edges along the shortest 
path connecting them."
"
*If the two nodes are disconnected, the distance is infinity."
"
"
In directed graphs each path needs to follow the direction of 
the arrows."
Thus in a digraph the distance from node A to B (on an AB 
path) is generally different from the distance from node B to A 
(on a BCA path)."
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DISTANCE IN A GRAPH        Shortest Path, Geodesic Path!

D!
C!

A!

B!

D!
C!

A!

B!



Diameter: dmax   the maximum distance between any pair of nodes in the 

graph.  

 

Average path length/distance, <d>,  for a connected graph: 

       where dij is the distance from node i to node j 

                                      

 

In an undirected graph dij =dji , so we only need to count them once: 

� 

d ≡
1

2Lmax
dij

i, j≠ i
∑

� 

d ≡
1
Lmax

dij
i, j> i
∑
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NETWORK DIAMETER AND AVERAGE DISTANCE!



"   Clustering coefficient: !
     what portion of your neighbors are connected?"
"

"   Node i with degree ki"

"
"   Ci in [0,1]"

CLUSTERING COEFFICIENT!



Degree distribution: ! !P(k)!
!
Path length: ! ! ! !l ! ! !!
!
Clustering coefficient:	

KEY MEASURES!



A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK!
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Undirected network 
N=2,018 proteins as nodes 
L=2,930 binding interactions as links.  
Average degree  <k>=2.90.  
 

Not connected:  185 components 
 the largest (giant component) 
1,647  nodes 
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A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK!
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pk is the probability that a 
node has degree k. "

Nk = # nodes with degree k!
!
pk = Nk / N    !



A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK!
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dmax=14 

<d>=5.61 



A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK!
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<C>=0.12 



Random	graphs	

What	are	the	expected	basic	
measures	emerging	from	random?	



RANDOM NETWORK MODEL!

Erdös-Rényi model (1960)!
!
!
Connect with probability p"

p=1/6  N=10 "
〈k〉 ~ 1.5"

Pául Erdös!
(1913-1996)"



RANDOM NETWORK MODEL!

Definition: A random graph is a 
graph of N labeled nodes where 
each pair of nodes is connected 
by a preset probability p."



RANDOM NETWORK MODEL!

N and p do not uniquely define the 
network– we can have many different 
realizations of it. How many?"

€ 

P(G(N,L)) = pL (1− p)
N (N−1)
2

−L

N=10 !
p=1/6!

The probability to form a particular  graph G(N,L) is" That is, each graph G(N,L) 
appears with probability"
 P(G(N,L))."



DEGREE DISTRIBUTION OF A RANDOM GRAPH!

As the network size increases, the distribution becomes increasingly narrow—we are 
increasingly confident that the degree of a node is in the vicinity of <k>."

Select k "
nodes from N-1" probability of "

having k edges"

probability of "
missing N-1-k"
edges"

€ 

P(k) =
N −1
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ pk(1− p)(N−1)−k

€ 

< k >= p(N −1)

€ 

σk
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< k >
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p
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Nodes: WWW documents 
Links:   URL links!
"
Over 3 billion documents"
"
ROBOT: collects all URL’s 
found in a document and 
follows them recursively"
"
"

Expected!

P(k)  ~ k-γ"

Found!

WORLD WIDE WEB!



Expected!

P(k)  ~ k-γ"

Found!

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999)."

Degree distribution of the WWW!



The difference between a power law and an exponential distribution!

20 40 60 80 100 

0.2 

0.6 

1 

1cx)x(f −=

xc)x(f −=

50.cx)x(f −=

Above a certain x value, the power law is always higher than the exponential. "



Over 3 billion 
documents ROBOT: collects all URL’s 
found in a document and 
follows them recursively 

Nodes: WWW documents 
Links:   URL links Expected!

P(k)  ~ k-γ 

Found!
Sc

al
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fr
ee

 
N

et
w

or
k!

Ex
po

ne
nt

ia
l 

N
et

w
or

k!

What does the difference mean? Visual representation.!

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).!



WORLD WIDE WEB!



PARETO DISTRIBUTION OF WEALTH!

Vilfredo Pareto (1848-1923) 



Size	of	CiCes	

N
um

be
r	o

f	C
iC
es
	

Tokyo	
∼30	million	

New	York,	
Mexico	City	
∼15	million	

4	x	8	million	
ciCes	

16	x	4	million	
ciCes	

P∼1/x 



NO OUTLIERS IN A RANDOM SOCIETY 

Network Science: Random Graphs January 31, 2011!

 
  
à The most connected individual has degree kmax~1,185 
à The least connected individual has degree kmin ~ 816 

 
The probability to find an individual with degree k>2,000 is 10-27.  Hence the chance of 
finding an individual with 2,000 acquaintances is so tiny that such nodes are virtually 
inexistent in a random society. 
 
à a random society would consist of mainly average individuals, with everyone with 
roughly the same number of friends.  
à It would lack outliers, individuals that are either highly popular or recluse. 

� 

P(k) = e−<k> < k >k

k!



∼	$100	billion	

A]er	Bill	enters	the	arena	the	average	wealth	of	the	public	∼ $1,000,000	

Analisi di reti sociali - Aprile 2011 

105 people, 105 $ average wealth per capita 



FACING REALITY: Degree distribution of real networks 

� 

P(k) = e−<k> < k >k

k!



Networks: "
The exponents vary from system to 
system."
Most are between 2 and 3"
 

Universality: "
the emergence of common features 
across different networks. Like the 
scale-free property."

UNIVERSALITY!



<k2> diverges" <k2> finite"

Behaves like a 
random network"

The scale-free behavior is 
relevant"

Regime full of anomalies…"
 

Why are most 
exponents in this 

regime?!

VARIANCE DIVERGES!!

γ=1" γ=2" γ=3"

γw
in" γw

out"
γintern"

γactor"

γcollab"
γmetab"

γcita"

γsynonyms"

γsex"



The evolution of a random network 
!

Section 6       
 
!



<k> 

EVOLUTION OF A RANDOM NETWORK 

disconnected nodes " è  " " "NETWORK. "

How does this transition happen? !



I:  
Subcritical 

<k> < 1 

III:  
Supercritical  

<k> > 1 

IV:  
Connected  
<k> >  ln N 

II:  
Critical  
<k> = 1 

<k>=0.5 <k>=1 <k>=3 <k>=5 

N
=1

00
 

<k> 



Real networks are supercritical 
!

Section 7       
 
!



Section 7       
 
!

SECTION 7

REAL NETWORKS ARE SUPERCRITICAL

Two predictions of random network theory are of special 
importance for real networks:  

1. Once the average degree exceeds ‹k› = 1, a giant com-
ponent emerges that contains a finite fraction of all 
nodes. Hence only for ‹k› > 1 the nodes organize them-
selves into a recognizable network. 

2. For ‹k› > lnN all components are absorbed by the giant 
component, resulting in a single connected network.

But, do real networks satisfy the criteria for the existence 
of a giant component, i.e. ‹k› › 1? And will this giant com-
ponent contain all nodes, i.e. is ‹k› › lnN , or do we expect 
some nodes and components to remain disconnected? 
These questions can be answered by comparing the mea-
sured ‹k› with the theoretical thresholds uncovered above. 

The measurements indicate that real networks extrava-
gantly exceed the ‹k› = 1 threshold. Indeed, sociologists es-
timate that an average person has around 1,000 acquain-
tances; a typical neuron is connected to dozens of other 
neurons, some to thousands; in our cells, each molecule 
takes part in several chemical reactions, some, like water, 
in hundreds. This conclusion is supported by Table 3.1, 
listing the average degree of several undirected networks, 

in each case finding ‹k› > 1. Hence the average degree of 
real networks is well beyond the ‹k› = 1 threshold, implying 
that they all have a giant component.

Let us now inspect if we have single component (if ‹k› > 
lnN), or we expect the network to be fragmented into 
multiple components (if ‹k› < lnN ). For social networks 
this would mean that ‹k› ≥ ln(7 ×109) �22.7ݍ. That is, if the 
average individual has more than two dozens acquain-
tances, then a random society would have a single com-
ponent, leaving no node disconnected. With ‹k› ݍ� 1,000 
this is clearly satisfied. Yet, according to Table 3.1 most real 
networks do not satisfy this criteria, indicating that they 
should consist of several disconnected components. This 
is a disconcerting prediction for the Internet, as it suggests 
that we should have routers that, being disconnected from 
the giant component, are unable to communicate with 
other routers. This prediction is at odd with reality, as these 
routers would be of little utility. 

Table 3.1
Are real networks connected?
The number of nodes N and links L for several undirected networks, 
together with ‹k› and lnN.  A giant component is expected for ‹k› > 1 and 
all nodes should join the giant component for ‹k›  v lnN.  While for all 
networks ‹k› > 1, for most ‹k› is under the lnN threshold.

Image 3.8
Most real networks are supercritical.
The four regimes predicted by random network theory, marking with a 
cross the location of several real networks of Table 3.1. The diagram indi-
cates that most networks are in the supercritical regime, hence they are 
expected to be broken into numerous isolated components. Only the actor 
network is in the connected regime, meaning that all nodes are expected 
to be part of a single giant component. Note that while the boundary be-
tween the subcritical and the supercritical regime is always at ‹k› = 1, the 
boundary between the supercritical and the connected regimes is at lnN, 
hence varies from system to system. 

Network     N         L  <k>   ln N

Internet

Power Grid

Science Collaboration

Actor Network

Yeast Protein Interactions

192,244

4,941

23,133

212,250

2,018

609,066

6,594

186,936

3,054,278

2,930

6.34

2.67

8.08

28.78

2.90

12.17

8.51

10.04

12.27

7.61

Fully ConnectedSubcritical Supercritical

Internet

Power Grid

Science
Collaboration

Actor Network

Yeast Protein
Interactions

<k>1 10

60 | NETWORK SCIENCE



Small world property 
!

Section 8       
 
!



Frigyes Karinthy, 1929!
Stanley Milgram, 1967!

Peter!

Jane!

Sarah"Ralph!

SIX DEGREES       small worlds!



SIX DEGREES       1929: Frigyes Kartinthy!

Frigyes Karinthy (1887-1938)!
Hungarian Writer! Network Science: Random Graphs January 31, 2011!

“Look, Selma Lagerlöf just won the Nobel Prize for Literature, 
thus she is bound to know King Gustav of Sweden, after all he is 
the one who handed her the Prize, as required by tradition. King 
Gustav, to be sure, is a passionate tennis player, who always 
participates in international tournaments. He is known to have 
played Mr. Kehrling, whom he must therefore know for sure, and 
as it happens I myself know Mr. Kehrling quite well.”  

"The worker knows the manager in the shop, who knows Ford; 
Ford is on friendly terms with the general director of Hearst 
Publications, who last year became good friends with Arpad 
Pasztor, someone I not only know, but to the best of my 
knowledge a good friend of mine. So I could easily ask him to 
send a telegram via the general director telling Ford that he 
should talk to the manager and have the worker in the shop 
quickly hammer together a car for me, as I happen to need one." 

1929:  Minden másképpen van (Everything is Different)  
  Láncszemek (Chains) 



SIX DEGREES       1967: Stanley Milgram!

Network Science: Random Graphs January 31, 2011!

HOW TO TAKE PART IN THIS STUDY 
 
1.  ADD YOUR NAME TO THE ROSTER AT THE BOTTOM OF THIS SHEET, so that 
the next person who receives this letter will know who it came from. 
 
2.  DETACH ONE POSTCARD. FILL IT AND RETURN IT TO HARVARD UNIVERSITY. 
No stamp is needed. The postcard is very important. It allows us to keep track of the 
progress of the folder as it moves toward the target person. 
 
3.  IF YOU KNOW THE TARGET PERSON ON A PERSONAL BASIS, MAIL THIS 
FOLDER DIRECTLY TO HIM (HER). Do this only if you have previously met the target 
person and know each other on a first name basis. 
 
4.  IF YOU DO NOT KNOW THE TARGET PERSON ON A PERSONAL BASIS, DO 
NOT TRY TO CONTACT HIM DIRECTLY. INSTEAD, MAIL THIS FOLDER (POST 
CARDS AND ALL) TO A PERSONAL ACQUAINTANCE WHO IS MORE LIKELY THAN 
YOU TO KNOW THE TARGET PERSON. You may send the folder to a friend, relative or 
acquaintance, but it must be someone you know on a first name basis. 



SIX DEGREES       1991: John Guare!

Network Science: Random Graphs January 31, 2011!

"Everybody on this planet is separated by only six other people. 
Six degrees of separation. Between us and everybody else on 
this planet. The president of the United States. A gondolier in 
Venice…. It's not just the big names. It's anyone. A native in a 
rain forest. A Tierra del Fuegan. An Eskimo. I am bound to 
everyone on this planet by a trail of six people. It's a profound 
thought.  How every person is a new door, opening up into other 
worlds." 



DISTANCES IN RANDOM GRAPHS!

Random graphs tend to have a tree-like topology with almost constant node degrees."

•  nr. of first neighbors:"

•  nr. of second neighbors:"

• nr. of neighbours at distance d: "

•  estimate maximum distance:"

lmax =
logN
log k1+ k i

= N
l=1

lmax

∑

N1 ≅ k

N2 ≅ k 2

€ 

Nd ≅ k d



lmax =
logN
log k

Given the huge differences in scope, size, and average degree, the agreement is excellent."

DISTANCES IN RANDOM GRAPHS        compare with real data!



Since edges are independent and have the same probability p, "

C ≅ p = < k >
N

ni ≅ p
ki (ki −1)
2

The clustering coefficient of random graphs is small."
 "
For fixed degree C decreases with the system size N."

€ 

Ci ≡
2ni

ki(ki −1)

CLUSTERING COEFFICIENT!

13.47 from Newman 2010 



CLUSTERING IN RANDOM GRAPHS        compare with real data!



• Degree distribution!
" "Binomial, Poisson (exponential tails)!

"
• Clustering coefficient!
" "Vanishing for large network sizes!

"
• Average distance among nodes!
" "Logarithmically small !

Erdös-Rényi MODEL (1960) !



Are real networks like 
random graphs?  

NO!!



€ 

P(k) ≈ k−γ

Prand (k) ≅CN−1
k pk (1− p)N−1−k

Prediction: !

Data:!

(a)  Internet;"
(b)   Movie Actors;"
(c)  Coauthorship, high energy physics;"
(d) Coauthorship, neuroscience "

THE DEGREE DISTRIBUTION!



lrand =
logN
log k

Real networks have short distances"
like random graphs. "

Prediction: ! Data:!

PATH LENGTHS IN REAL NETWORKS!



Crand =
k
N

Prediction: ! Data:!

Crand underestimates with orders of 
magnitudes the clustering coefficient of 
real networks. !

CLUSTERING COEFFICIENT!



The small-world model 
!

     
 
!



Real	networks	are	between	random	
networks	and	laqces		



WaBs-Strogatz	model	





Average	path	length	vs.	clustering	coefficient	

The Watts Strogatz Model: 
It takes a lot of randomness to 
ruin the clustering, but a very 
small amount to overcome 
locality  







     
 
!

Hubs represent the most striking difference between a random and a scale-
free network. Their emergence in many real systems raises several 
fundamental questions:	
	
• Why does the random network model of Erdős and Rényi fail to reproduce 
the hubs and the power laws observed in many real networks? 	

•  Why do so different systems as the WWW or the cell converge to a similar 
scale-free architecture?  



Growth and preferential attachment 
!

      
 
!



networks expand through the addition 
of new nodes 

Barabási & Albert, Science 286, 509 (1999)"

BA MODEL: Growth !

BA	model:	Growth	
	

ER model:  
the number of nodes, N, is fixed (static models) 

6THE BARABÁSI-ALBERT MODEL

Nodes Prefer to Link to the More Connected Nodes
The random network model assumes that we randomly choose the in-
teraction partners of a node. Yet, most real networks new nodes prefer 
to link to the more connected nodes, a process called preferential attach-
ment (Figure 5.2). 

Consider a few examples:

• We are familiar with only a tiny fraction of the trillion or more docu-
ments available on the WWW. The nodes we know are not entirely ran-
dom: We all heard about Google and Facebook, but we rarely encoun-
ter the billions of less-prominent nodes that populate the Web. As our 
knowledge is biased towards the more popular Web documents, we 
are more likely to link to a high-degree node than to a node with only 
few links.

• No scientist can attempt to read the more than a million scientific pa-
pers published each year. Yet, the more cited is a paper, the more likely 
that we hear about it and eventually read it. As we cite what we read, 
our citations are biased towards the more cited publications, repre-
senting the high-degree nodes of the citation network.

• The more movies an actor has played in, the more familiar is a casting 
director with her skills. Hence, the higher the degree of an actor in the 
actor network, the higher are the chances that she will be considered 
for a new role.

In summary, the random network model differs from real networks in 
two important characteristics:

(A) Growth
Real networks are the result of a growth process that continuously 
increases N. In contrast the random network model assumes that the 
number of nodes, N, is fixed. 

(B) Preferential Attachment
In real networks new nodes tend to link to the more connected nodes. 
In contrast nodes in random networks randomly choose their inter-
action partners. 

There are many other differences between real and random networks, 
some of which will be discussed in the coming chapters. Yet, as we show 
next, these two, growth and preferential attachment, play a particularly im-
portant role in shaping a network’s degree distribution.

Networks are not static, but grow via the 
addition of new nodes:

(a) The evolution of the number of WWW 
hosts, documenting the Web’s rapid 
growth. After http://www.isc.org/solu-
tions/survey/history.

(b) The number of scientific papers published 
in Physical Review since the journal’s 
funding. The increasing number of papers 
drives the growth of both the science col-
laboration network as well as of the cita-
tion network shown in the figure. 

(c) Number of movies listed in IMDB.com, 
driving the growth of the actor network.

Figure 5.1

The Growth of Networks

(a)

(b)

(c)

WORLD WIDE WEB

ACTOR NETWORK

CITATION NETWORK

GROWTH AND PREFERENTIAL ATTACHMENT

YEARS
1880

50000

100000

150000

200000

250000

0
1900 1920 1940 1960 1980 2000 2020

N
U

M
B

ER
 O

F 
M

O
VI

ES

YEARS

YEARS

1880 1900 1920 1940 1960 1980 2000 2020

1982
0•100
1•108
2•108
3•108
4•108
5•108
6•108

8•108
9•108
1•109

7•108

1987 1992 1997 2002 2007 2012

N
U

M
B

ER
 O

F 
H

O
ST

S

0
50000

100000

150000

200000

250000

300000

400000
450000

350000

N
U

M
B

ER
 O

F 
P

A
P

ER
S



New nodes prefer to connect to  the more connected nodes 

Barabási & Albert, Science 286, 509 (1999)" Network Science: Evolving Network Models February 14, 2011!

BA MODEL: Preferential attachment!

BA	model:	Growth	
	

ER model: links are added randomly to the network 



Barabási & Albert, Science 286, 509 (1999)" Network Science: Evolving Network Models February 14, 2011!

Growth and Preferential Sttachment!

BA	model:	Growth	
	

The random network model differs from real networks in two important 
characteristics:  
 
Growth: While the random network model assumes that the number of 
nodes is fixed (time invariant), real networks are the result of a growth 
process that continuously increases. 
 
Preferential Attachment: While nodes in random networks randomly choose 
their interaction partner, in real networks new nodes prefer to link to the more 
connected nodes. 



The Barabási-Albert model 
!

      
 
!



Barabási & Albert, Science 286, 509 (1999)"

P(k) ~k-3!

(1) Networks continuously expand by the 
addition of new nodes"

WWW :  addition of new documents"

GROWTH:  !
add a new node with m links"

PREFERENTIAL ATTACHMENT: !
the probability that a node connects to a node 
with k links is proportional to k.!

(2) New nodes prefer to link to highly 
connected nodes."

WWW :  linking to well known sites!

Network Science: Evolving Network Models February 14, 2011!

Origin of SF networks: Growth and preferential attachment!
!
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