
Foundations and Trends R© in

sample

Vol. xx, No xx (xxxx) 1–119

c© xxxx xxxxxxxxx

DOI: xxxxxx

Mining Query Logs: Turning Search Usage Data into Knowledge

Fabrizio Silvestri1

1 ISTI - CNR, via G. Moruzzi, 1 – 56124 Pisa, Italy – fabrizio.silvestri@isti.cnr.it

Abstract

Web search engines have stored in their logs information about users since they started to operate.

This information often serves many purposes. The primary focus of this survey is on introducing

to the discipline of query mining by showing its foundations and by analyzing the basic algorithms

and techniques that are used to extract useful knowledge from this (potentially) infinite source of

information. We show how search applications may benefit from this kind of analysis by analyzing

popular applications of query log mining and their influence on user experience. We conclude the

paper by, briefly, presenting some of the most challenging current open problems in this field.

Contents

1 Introduction 1

1.1 Web Search Engines 1

1.2 Sketching the Architecture of a Web Search Engine 3

1.3 Fun Facts about Queries 7

1.4 Privacy Issues in Query Log Mining 9

2 The Nature of Queries 11

2.1 Basic Statistics 12

2.2 Trends and Historical Changes in Queries 17

2.3 Summary 21

3 User Interactions 23

3.1 Search Sessions 24

3.2 Social Networks from Query-Click relations 28

3.3 Summary 30

4 Enhancing Effectiveness of Search Systems 31

4.1 Historical Notes and Preliminaries 33

4.2 Query Expansion 35

4.3 Query Suggestion 39

4.4 Personalized Query Results 44

4.5 Learning to Rank 55

4.6 Query Spelling Correction 66

4.7 Summary 70

i

5 Enhancing Efficiency of Search Systems 72

5.1 Caching 72

5.2 Index Partitioning and Querying in Distributed Web search Systems 85

5.3 Summary 101

6 New Directions 102

6.1 Eye Tracking 102

6.2 Web Search Advertisement 103

6.3 Time-series Analysis of Queries 104

6.4 Summary 106

Conclusions 107

Acknowledgements 108

References 109

ii

1

Introduction

“History teaches everything, even the future.”

– Alphonse de Lamartine, speech at Macon 1847.

Think about it, for a moment: after checking e-mails, and checking your favorite on-line news-

paper and comic strip, what is the first thing you do when connected to the web? You probably

open a search engine and start looking for some information you might need either for work or for

leisure: news about your favorite actor, news about presidential candidates, and so on.

Even though they are quite rooted in our lives, web search engines are quite new on the scene.

Query Log Mining is a branch of the more general Web Analytics [113] scientific discipline.

Indeed, it can be considered a special type of web usage mining [214] According to the Web Analytics

Association, “Web Analytics is the measurement, collection, analysis and reporting of Internet data

for the purposes of understanding and optimizing Web usage. [11]”

In particular, query log mining is concerned with all those techniques aimed at discovering

interesting patterns from query logs of web search engine with the purpose of enhancing either

effectiveness or efficiency of an online service provided through the web.

Keep into account that query log mining is not only concerned with the search service (from

which queries usually come from) but also with more general services like, for instance, search-based

advertisement, or web marketing in general [108].

1.1 Web Search Engines

Systems that can be considered similar to modern web search engines started to operate around

1994. The now-defunct World Wide Web Worm (WWWW) [148] created by Oliver McBryan at

the University of Colorado, and the AliWeb search engine [127] created by Martijn Koster in 1994,

are the two most famous examples. Since then many examples of such systems have been around

the web: AltaVista, Excite, Lycos, Yahoo!, Google, ASK, MSN (just to name a few). Nowadays,

searching is considered one of the most useful application on the web. As reported in 2005 by Pew

Research Center for The People & The Press [163]:

1

“search engines have become an increasingly important part of the online experience

of American internet users. The most recent findings from Pew Internet & American

Life tracking surveys and consumer behavior trends from the comScore Media Metrix

consumer panel show that about 60 million American adults are using search engines

on a typical day” [190].

Even if this quote dates back to 2005, it is very likely that those survey results are still valid (if

not still more positives for search engines). On the other side of the coin, search engines’ users are

satisfied by their search experience [191].

In a paper overviewing the challenges in modern web search engines’ design, Baeza-Yates et

al. [14] state:

The main challenge is hence to design large-scale distributed systems that satisfy

the user expectations, in which queries use resources efficiently, thereby

reducing the cost per query.

Therefore, the two key performance indicators in this kind of application, in order, are: (i) the

quality of returned results (e.g. handle quality diversity and fight spam), and (ii) the speed with

which results are returned.

Web search engines are part of a broader class of software systems, namely Information Retrieval

(IR) Systems. Basically, IR systems were born in the early 1960s due to two major application needs.

Firstly, allowing searching through digital libraries. Secondly, the need for computer users to search

through the data they were collecting in their own digital repositories.

Intuitively, an IR system is a piece of software whose main purpose is to return a list of documents

in response to a user query. Thus far, this description makes IR systems similar to what a DB system

is. Indeed, the most important difference between DB and IR systems is that DB systems return

objects that exactly match the user query, whereas IR systems have to cope with natural language

that makes it simply impossible for an IR system to return perfect matches. Just to make a very

simple example: what does meta refer to? A meta character? The meta key in computer keyboards?

Every single query may mean different things to different users. Even worse, polysemy also happens.

In Spanish the word meta means goal.

To this extent, a web search engine is in all respects an IR system [221] only on a very large

scale. The uncertainty in users’ intent is also present in web search engines. Differently from smaller

scale IR systems, though, web IR systems can rely on the availability of a huge amount of usage

information stored in query logs.

One of the most used ways of enhancing the users’ search experience, in fact, is the exploitation

of the knowledge contained within past queries. A query log, typically, contains information about

users, issued queries, clicked results, etc. From this information knowledge can be extracted to

improve the quality (both in terms of effectiveness and efficiency) of their system. Figure 1.1 shows

a fragment of the AOL query log. The format of this query log represents a record using five features:

user id, query, timestamp, rank of the clicked result, host string of the clicked URL.

How query logs interact with search engines has been studied in many papers. For a general

overview, [12, 20] are good starting point references.

2

507 kbb.com 2006-03-01 16:45:19 1 http://www.kbb.com

507 kbb.com 2006-03-01 16:55:46 1 http://www.kbb.com

507 autotrader 2006-03-02 14:48:05
507 ebay 2006-03-05 10:50:35

507 ebay 2006-03-05 10:50:52

507 ebay 2006-03-05 10:51:24

507 ebay 2006-03-05 10:52:04

507 ebay 2006-03-05 10:52:36 69 http://antiques.ebay.com
507 ebay 2006-03-05 10:58:00

507 ebay 2006-03-05 10:58:21

507 ebay electronics 2006-03-05 10:59:26 5 http://www.internetretailer.com

507 ! ebay electronics 2006-03-05 11:00:21 20 http://www.amazon.com

507 ebay electronics 2006-03-05 11:00:21 22 http://gizmodo.com
507 ebay electronics 2006-03-05 11:00:21 22 http://gizmodo.com

507 ebay electronics 2006-03-05 11:18:56

507 ebay electronics 2006-03-05 11:20:59

507 ebay electronics 2006-03-05 11:21:53 66 http://portals.ebay.com

507 ebay electronics 2006-03-05 11:25:35

Fig. 1.1: A fragment of the AOL query log [162].

In this paper we review some of the most recent techniques dealing with query logs and how

they can be used to enhance web search engine operations. We are going to summarize the basic

results concerning query logs: analyses, techniques used to extract knowledge, most remarkable

results, most useful applications, and open issues and possibilities that remain to be studied.

The purpose is, thus, to present ideas and results in the most comprehensive way. We review

fundamental, and state-of-the-art techniques. In each section, even if not directly specified, we

review and analyze the algorithms used, not only their results. This paper is intended for an

audience of people with basic knowledge of computer science. We also expect readers to have a

basic knowledge of Information Retrieval. Everything not at a basic level is analyzed and detailed.

Before going on, it is important to make clear that all the analyses and results reported were

not reproduced by the author. We only report results as stated in the papers referenced. In some

cases we slightly adapted them to make concepts clearer.

1.2 Sketching the Architecture of a Web Search Engine

A search engines is one of the most complicated pieces of software a company may develop. Con-

sisting of tens of interdependent modules, it represents one of the toughest challenge in today’s

computer engineering world.

Many papers and books sketch the architecture of web search engines. For example Barroso et

al. [33] present the architecture of Google as it was in 2003. Other search engines are believed to

have similar architectures. When a user enters a query, the user’s browser builds a URL (for example

http://www.google.com/search?q=foundations+trends+IR). The browser, then, looks up on a

3

DNS directory for mapping the URL main site address (i.e. www.google.com) into a particular

IP address corresponding to a particular data-center hosting a replica of the entire search system.

The mapping strategy is done accordingly to different objectives such as: availability, geographical

proximity, load and capacity. The browser, then, sends a HTTP request to the selected data-center,

and thereafter, the query processing is entirely local to that center. After the query is answered by

the local data-center, the result is returned in the form of a HTML page, to the originating client.

Figure 1.2 shows they way the main modules of a web search engine are connected.

Fig. 1.2: The typical structure of a web search engine. Note that throughout the text IR core, and

query server will be used interchangeably.

Web search engines get their data from different sources: the web (primarily), Image and video

repositories (e.g. Flickr, or YouTube), etc. In particular, in the case of web content, a crawler

scours through hypertext pages searching for new documents, and detecting stale, or updated

content. Crawlers store the data into a repository of content (also known as web document cache),

and structure (the graph representing how web pages are interconnected). The latter being used,

mainly, as a feature for computing static document rank scores (e.g. PageRank [159], or HITS [125]).

In modern web retrieval systems, crawlers continuously run and download pages from the web

updating incrementally the content of the document cache. For more information on crawling,

interested readers can refer to Castillo’s Ph.D. thesis on web Crawling [57].

The textual (i.e. hypertextual) content is indexed to allow fast retrieval operations (i.e. query

requests). The index (built by the Indexer) usually comprises of several different archives storing

different facets of the index. The format of each archive is designed for enabling a fast retrieval of

4

information needed to resolve queries. The format of the index is the subject of Chapter 5 where

we review some of the most used techniques for optimizing index allocation policies.

Usually in real systems the design is tailored to favor aggregate request throughput not peak

server response time [33].

In real-world search engines, the index is distributed among a set of query servers coordinated

by a broker. The broker, accepts a query from the user and distributes it to the set of query servers.

The index servers retrieve relevant documents, compute scores, rank results and return them back to

the broker which renders the result page and sends it to the user. Figure 1.3 shows the interactions

taking place among query servers and the broker.

Fig. 1.3: The typical structure of a distributed web search engine.

The Broker is usually the place where queries are grabbed and stored in the query logs. A module

dedicated to analyze past queries is also usually available within the architecture components.

1.2.1 The index

An Inverted File index on a collection of web pages consists of several interlinked components. The

principal ones are: the lexicon, i.e. the list of all the index terms appearing in the collection, and

the corresponding set of inverted lists, where each list is associated with a distinct term of the

lexicon. Each inverted list contains, in turn, a set of postings. Each posting collects information

about the occurrences of the corresponding term in the collection’s documents. For the sake of

simplicity, in the following discussion we consider that each posting only includes the identifier of

5

the document (DocID) where the term appears, even if postings actually store other information

used for document ranking purposes (e.g. in the implementation [204] each posting also includes

the positions and the frequency of the term within the document, and context information like the

appearance of the term within specific html tags).

Several sequential algorithms have been proposed in the past, which try to balance the use of

memory hierarchy in order to deal with the large amount of input/output data involved in query

processing. The inverted file index [221] is the data structure typically adopted for indexing the web.

This occurs for three reasons. First, an inverted file index allows the efficient resolution of queries

on huge collections of web data [246]. In fact, it works very well for common web queries, where

the conjunction of a few terms is to be searched for. Second, an inverted file index can be easily

compressed to reduce the space occupancy in order to better exploit the memory hierarchy [204].

Third, an inverted file can be easily built using a sort-based algorithm in time complexity that is

the same order of a sorting algorithm [246].

Query answering using inverted file is a very straightforward task. We illustrate the basic AND

operation and refer to other papers for a thorough analysis of the remaining operations. Given a

query as a conjunction of two terms (t1 ∧ t2), the query resolution proceeds by firstly looking up t1
and t2 in the lexicon to retrieve the corresponding inverted lists l1, and l2. The result set is then built

by intersecting the two lists, thus, returning those documents having the two terms in common.

During the intersection step a scoring function is also computed to evaluate the likeliness of a

document to be relevant for the query. The top r results are then selected (in typical web search

engines r is usually set to 10 results) and successively returned to the users who originated the

query. Query processing can be done in two different ways: Document-At-A-Time (DAAT), when

document lists for terms are scanned contemporary, as opposed to the Term-At-A-Time (TAAT)

strategy, where each term is considered separately [219].

Another important feature of inverted file indexes is that they can be easily partitioned. Let us

consider a typical distributed web search engine: the index can be distributed across the different

nodes of the underlying architecture in order to enhance the overall system’s throughput (i.e. the

number of queries answered per each second). For this purpose, two different partitioning strategies

can be devised.

The first approach requires to horizontally partition the whole inverted index with respect to

the lexicon, so that each index server stores the inverted lists associated with only a subset of the

index terms. This method is also known as term partitioning or global inverted files. The other

approach, known as document partitioning or local inverted files, requires that each index server

becomes responsible for a disjoint subset of the whole document collection (vertical partitioning of

the inverted index). Figure 1.5 graphically depicts such partitioning schemes.

The construction of a document-partitioned inverted index is a two-staged process. In the first

stage each index partition is built locally and independently from a partition of the whole collection.

The second phase collects global statistics computed over the whole inverted index. One of the most

valuable advantages of document partitioning is the possibility of easily performing updates. In fact,

new documents may simply be inserted into a new partition to independently index separately from

the others [171].

Since the advent of web search engines, a large number of papers have been published describing

different architectures for search engines, and search engine components [47, 25, 10, 155, 33, 98, 99,

6

!"#

$#

!"

!%#

!#

!#

$"# $%#

Fig. 1.4: The two different ways of partitioning an inverted index. Rows of the whole T ×D matrix

are the lexicon entries, Columns represent the posting lists.

149, 205, 152]. Many other papers [103, 102, 13, 14] enumerate the major challenges search engine

developers must address in order to improve their ability to help users in finding information they

need. Interested readers shall find in the above referenced papers many interesting insights. Needless

to say, you shall not find any particular details, in this survey, about the real structure of a search

engine. Usually, this kind of information is highly confidential and it is very unlikely that search

companies will ever disclose them.

1.3 Fun Facts about Queries

Due to their “commercial importance”, finding query logs has always been a difficult task. The very

first publicly available query log dates back to 1997. Doug Cutting, representing Excite, a major

search service to that date, made available for research a set of user queries as submitted to Excite.

Since then, the other query logs made publicly available were the AltaVista log, the TodoBR query

log, and the AOL log.

AOL eventually fired employees involved in the public release of their log. This confirms, even

more strongly, the particular level of privacy characterizing such data. Obviously, this may sound

worse than it is. Search Engine companies are still releasing their data, only that they adopt more

conservative policies and release data under research licenses preventing broad distribution.

Figure ?? shows a cloud of the 250 most frequent queried terms in the AOL query log.

Queries posed by users are somewhat entertaining. To have an idea of what every day users search

through search engines, consider these queries that were actually extracted from the (in)famous

7

Fig. 1.5: A cloud of the 250 most frequent queried terms in the AOL query log [162]. Picture has

been generated using http://www.wordle.net.

AOL Query Log1.

In today’s hectic world, people often get very stressed. Stress produces distraction and user

#427326 probably was a little more stressed than the average. At 2006-04-21 21:16:51, in fact,

he was looking for the following sentence “where is my computer”. Well, probably is closer than

what you were suspecting. Actually, searching for this sentence on popular search engines result in

around 200,000 results. Gosh! Many stressed people out there!2

Again, people gets stressed easily today. I dare you to guess what was user #582088 looking for

by entering the following keywords “can you hear me out there i can hear you i got you i can hear you

over i really feel strange i wanna wish for something new this is the scariest thing ive ever done in my

life who do we think we are angels and airwaves im gonna count down till 10 52 i can”. Hint: try by

yourself and enter the above sentence. What is the result? In your opinion, what was user doing

while typing the query?

Search engines publish some of the most interesting submitted queries. Interestingness, here, is

a relative concept. Depending on the search engine company, interesting may mean different things.

At Google, for instance, Zeitgeist3 is a

“cumulative snapshot of interesting queries people are asking – over time, within

country domains, and some on Google.com – that perhaps reveal a bit of the human

condition.”

Zeitgeist does not reveal the most searched queries, but only those having had a “sudden”,

and “unexpected” raise in popularity. For instance, late in 2007 Italian Zeitgeist ranked “federico

calzolari”4 as the most “inflated” query was. Many (mainly Italian) newspapers, and blogs started

1 http://www.techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/
2 Indeed, many results are on people asking where is “My Computer” icon on their desktop.
3 http://www.google.com/press/zeitgeist.html
4 http://googleitalia.blogspot.com/2007/12/zeitgeist-di-novembre.html (in Italian)

8

to ask who is the person referred to in the query. The name was that of a Ph.D. student in Pisa

that periodically queried Google for his name. This resulted in an unexpected raise in popularity

for the query term thus ending up in the Zeitgeist. Many people, mainly journalists, started to

discuss whether or not Federico Calzolari has hacked the Google ranking algorithm.

It is important to point out that the discussion above seems to imply that one could guess the

intent of the users by looking at query session. This is far from being true. As it is shown later on,

the identification of users’ tasks is a very challenging activity. The main goal of this paragraph is

to make readers aware of: (i) the variety of information in query logs, and (ii) the detail that, in

principle, can be obtained about a single user.

An interesting recent paper dealing in a scientific way with discovering information about search

engine index content by carefully probing it using queries out of a query log is Bar-Yossef and

Gurevich [28].

1.4 Privacy Issues in Query Log Mining

The most recent scandal concerning privacy and query logs happened in 2006 at AOL. AOL com-

piled a statistical sampling of more than twenty million queries entered by more than 650,000 of

their customers, and then made this DB available to the public for research purposes. While user

names were replaced by numbers, these numbers provide a “thread” by which queries by a given

user could be identified so that if, for example, a user entered some piece of information which

permits their identity to be discerned, all the other queries they made during the sampling period

could be identified as theirs. AOL received so much criticism for releasing this data that it eventu-

ally fired two employees. The real problem was that they released ALL off the data to EVERYONE.

A Non-Disclosure-Agreement form for researchers to sign, would have saved a lot of pain to AOL

people that were fired after the mishap.

Many commercial search engines overcome to this problem by simply not publishing their logs.

Is this approach good? Yes for some reasons, no for others. Roughly speaking, it is good that people

(in general) cannot access query log data. As already said above they might be used to infer users’

preferences, tastes, and other personal information that might be used against their will. On the

other hand, as pointed also out by Judit Bar-Ilan in [27]

“[...] interesting results can be obtained from query logs without jeopardizing the

privacy of the users.”

While Bar-Ilan showed that it is possible to sanitize a query log in order to prevent private in-

formation to be disclosed, Jones et al. in [120] showed that even heavily scrubbed query logs, still

containing session information, have significant privacy risks.

This paper does not deal with this (extremely important) issue, but we would not have been

comfortable without making the reader aware of this issues. More important, we think this would

clarify why many studies reported here are made on (sometimes) old and outdated logs, or logs

privately held by companies not sharing them.

The interested reader shall find an introduction and some thoughts about privacy and log

publishing in recently published papers [166, 230, 1, 129]. Recently, Cooper published a very detailed

survey on query log privacy-enhancing techniques [64], readers interested in this topic shall find a

very thorough analysis of the most recent techniques dealing with privacy preserving analysis of

9

query logs.

Recently ASK5 has given the possibility to users to explicitly deny the storing of their usage

data. On the other hand, Google, Yahoo, and Microsoft, continuously ask users for the permission

to store their preferences, behaviors, and data in general. What is the most correct behavior? It

depends on search engines’ policies, thus we do not enter into details on how these are managed.

The remainder of this work presents the most recent results and advances that have used query

logs as (the main) source of information. It is worth mentioning here that not always the exper-

iments presented might be reproduced. This is something that in science should be avoided [88].

Unfortunately, as already said above, the main source of knowledge (the query logs) are mainly

kept by search engine companies that for many reasons (not last, privacy issues) are very reluc-

tant of give them away, even to scientists. Therefore, many times in this article, the experimental

evaluation is based on results obtained by others and presented in the literature. We apologize in

advance to both authors of the mentioned papers, and to readers.

Before entering into the details of our survey, it is important to remark that query log mining

is a very hot topic nowadays. The material covered by this survey is to be considered as a valid

starting point for those interested in knowing something more on the topic. Proceedings of the

major conference series (e.g. SIGIR, WWW, SIGMOD, VLDB, SIGKDD, CIKM, etc. Just to name

a few) and top journals (e.g. ACM TOIS, ACM TWEB, ACM TKDD, ACM TOIT, Information

Processing & Management, JASIST, IEEE TKDE, etc.) are the best source for the state-of-the-art

works on this field. Furthermore, we use the same notation used by the authors of the surveyed

papers. This, in our opinion, makes each (sub)section of the survey more independent and leave to

the reader the possibility of selecting the techniques he is interested on.

That said, let the journey into the marvelous world of queries begin...

5 http://www.ask.com

10

2

The Nature of Queries

This chapter presents the characterization of query logs by showing how are query distributed over

time. In particular, we analyze topic-popularity, term-popularity, differences with respect to the

past, variations of topics during day hours, etc.

In the past, there have been studies showing how people interacted with small scale IR sys-

tems1 [105, 77, 199, 212]. Query logs of large scale web search engines and small scale IR systems

are fundamentally different. For example, it is well known that queries to web search engines are

unlikely to contain more than three terms whereas in IR systems’ that are usually used in digital

libraries or legal document retrieval receive queries with a number of query terms ranging from 7 to

15 depending on the experience of the user. Search operators (like quotes, ‘+’, ‘-’, etc.) are rarely

used on the web.

This chapter presents a variety of statistics, along with an analysis of how data are computed.

In fact, to deal with a huge number of queries it is also important to design efficient techniques for

quickly analyzing such data.

A number of papers have been published describing characteristics of query logs coming from

some of the most popular search engines. In these papers [111, 231, 209, 156, 158, 35, 211, 109, 147,

162, 126, 110, 112, 34], many interesting statistics are shown. Some of them are reviewed throughout

the chapter. Indeed, results from the query logs are reviewed and presented throughout the whole

survey, thus, to make the presentation more clear their main characteristics are summarized in

Table 2.1. Analyses on other different logs have been performed by other authors. We present their

characteristics when it is required for the sake of clarity in the description of the results or technique

presented.

1 In particular those studies were referring to IR systems not directly dealing with web users. Simply put, when referring to

small scale IR systems we are not referring to web search engines like Google or Yahoo!

11

Query log name Public Period # Queries # Sessions # Users

Excite ‘97 Y Sep ‘97 1,025,908 211,063 ∼ 410, 360
Excite ‘97 (small) Y Sep ‘97 51,473 - ∼ 18, 113

Altavista N Aug 2nd - Sep 13th ‘98 993,208,159 285,474,117 -
Excite ‘99 Y Dec ‘99 1,025,910 325,711 ∼ 540, 000
Excite ‘01 Y May ‘01 1,025,910 262,025 ∼ 446, 000
Altavista (public) Y Sep ‘01 7,175,648 - -
Tiscali N Apr ‘02 3,278,211 - -
TodoBR Y Jan - Oct ‘03 22,589,568 - -
TodoCL N May – Nov ‘03 - - -

AOL (big) N Dec 26th ‘03 – Jan 1st ‘04 ∼ 100, 000, 000 - ∼ 50, 000, 000
Yahoo! N Nov ‘05 – Nov ‘06 - - -
AOL (small) Y Mar 1st - May 31st ‘06 36,389,567 - -

Table 2.1: The main query logs that have been used by the analyses reviewed in this survey. The

dash sign (-) means that the feature in the relative column was non disclosed. Figures are obtained

by the papers using them, no analyses has been done for the purpose of this survey.

2.1 Basic Statistics

Typical simple statistics that can be drawn from query logs are: query popularity, term popularity,

average query length, and distance between repetitions of queries or terms.

Silverstein et al. [200, 201] are the first to analyze a large query log of the Altavista search

engine containing about a billion queries submitted in a period of 42 days. The exhaustive analysis

presented by the authors point out some interesting results. Tests conducted included the analysis

of the query sessions for each user, and of the correlations among the terms of the queries. Similarly

to other work, their results show that the majority of the users (in this case about 85%) visit the

first page of results only. They also showed that 77% of the users’ sessions end up just after the first

query. The log contains a huge number of queries and account to 285 million users. As the authors

state, a smaller log could be influenced by ephemeral trends in querying (such as searches related

to news just released, or to a new record released by a popular singer). For this reason results are

considered by Silverstein et al. precise and general.

Jansen et al. [111] analyzes a log made up of 51, 473 queries posed by 18, 113 users of Excite.

In the log users are anonymous. Therefore, the information is completely decontextualized. That

is, no user profiling is available. The log from which the experiments are carried out is publicly

available to scholars.

Lempel and Moran [132], and Fagni et al. [76] surveyed the content of a publicly available

Altavista log. They present a log made up of 7, 175, 648 queries issued to AltaVista during Summer

of 2001. No information is disclosed about the number of users they logged. This second AltaVista

log covers a time period almost three years after the first studies presented by Jansen et al. and

Silverstein et al. The log is not as large as the first Altavista log, yet it represent a very nice picture

of search engine users.

On average web search queries are quite short. In the case of the 1998 Excite Log, on average a

query contained 2.35 terms with less than 4% of the queries having more than 6 terms. In the case

of the “private” AltaVista log, the average query length is, again, 2.35 with a standard deviation of

1.74. For the second AltaVista log, instead, the average query length is slightly above 2.55. One of

12

the possible reason is that, for instance, The web is a general medium, used by different people from

different part of the world looking for disparate information. IR systems, in the past, were instead

mainly used by professionals and librarian looking for a precise information, thus, they spent more

effort in formulating a more elaborate query. In general that study highlights that users querying

search engines, i.e. web IR systems, are fundamentally different from people that used vertical (and

smaller scale) IR systems.

The distribution of query popularity, and of term popularity, have been shown to follow a power-

law. That is the number of occurrences y of a query or a term is proportional to x−α where x is the

popularity rank, and α is a real parameter measuring how popularity decreases against the rank.

Putting it into formula, y = Kx−α, where K is a real positive constant corresponding to the query

with the highest popularity. Since log (y) = −α log (x) + log (K), by substituting X = log (x), and

Y = log (y), power-law distributions have the form of a straight line when plotted on a log-log scale.

Figure 2.1 shows a plot graphically representing power-laws for various values of the parameter α.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

y

x

Power Law curves for three different values of parameter alpha

alpha = 0.7
alpha = 1 -- Zipf’s Law

alpha = 2.5

Fig. 2.1: Three examples of power-law curves for different values of the parameter α. The curve

corresponding to α = 1 is usually said to identify the Zip’s law [245].

Markatos [75] was the first to show that query popularity follows a power-law with an exponent

α ∼ 2.4. He analyzes the Excite log and plots the occurrence of the first 1, 000 most popular queries.

Markatos reports in a graph like the one shown in Figure 2.2a that the popularity follows the usual

linear trend in a log-log scale. We can see from the plot that the most popular query is submitted

2, 219 times, while the 1, 000-th most popular query is submitted 27 times [75]. A power-law trend

is confirmed also in other studies and other query logs, such as the AltaVista [132] (Figure 2.2b),

and Yahoo! [15] (Figure 2.2c) logs.

Tables 2.3a, and 2.3b detail the 20 top queries for the Excite and Altavista logs, respectively2.

As one would probably have guessed, many queries in both logs refer to sex and sexually explicit

topics (“XXX”). While, unsurprisingly, many others can be somewhat related to XXX as well. As

often happens, there are some unexpected outcomes in query logs. For instance, rather surprisingly

2Provisioning of the same information for the Yahoo! log is not possible due to privacy and restriction policies.

13

(a) The 1, 000 most popular queries in the Excite Log [75]. (b) Query popularity of Altavista queries [132].

(c) Query popularity of Yahoo! queries [15].

Fig. 2.2: Plots displaying query popularity for various query logs.

the most frequent query in the case of the Excite log is the empty query! They account for more

than 5% of the queries. Authors of [111] try to explain this strange fact. Probably, the most obvious

reason is that users often wrongly type queries in the search box. This phenomenon could also be

due to how search engines react to user actions. For instance, Excite had a link pointing to a “More

Like This” function that, if clicked, returned pages related to the one selected. Excited counted

that as an empty query thus raising the empty query count. Therefore, the frequency of empty

query in this logs, could, more likely, identify the usage of the “More Like This” feature of Excite.

As it can be seen from Tables in 2.3 many different topics are represented in query logs. Ta-

ble 2.4a, from [209], shows the percentage of queries submitted for each topic to the Excite search

engine in 1997. Categorizing queries into topics is not a simple task. There are papers showing

techniques for assigning labels to each query. Recent papers on the topic [94, 193, 224, 36, 37, 49]

adopts a set of multiple classifiers subsequently refining the classification phase. Due to space lim-

itations we cannot provide here a complete and detailed analysis of query classification literature.

Interested readers can refer to the literature for a thorough analysis of this subject.

Classification of the Excite queries made by Spink et al. in [209] shows that in no way is

pornography a major topic of web queries, even though the top ranked query terms may indicate

14

query freq.

Empty Query 2,586
sex 229
chat 58
lucky number generator 56
p**** 55
porno 55
b****y 55
nude beaches 52
playboy 46
bondage 46
porn 45
rain forest restaurant 40
f****ing 40
crossdressing 39
crystal methamphetamine 36
consumer reports 35
xxx 34
nude tanya harding 33
music 33
sneaker stories 32

(a) Excite.

query freq.

christmas photos 31,554
lyrics 15,818
cracks 12,670
google 12,210
gay 10,945
harry potter 7,933
wallpapers 7,848
pornografia 6,893
“yahoo com” 6,753
juegos 6,559
lingerie 6,078
symbios logic 53c400a 5,701
letras de canciones 5,518
humor 5,400
pictures 5,293
preteen 5,137
hypnosis 4,556
cpc view registration key 4,553
sex stories 4,521
cd cover 4,267

(b) Altavista.

Fig. 2.3: The most popular queries out of the Excite and publicly available Altavista Logs. Poten-

tially offending terms have been replaced by similar terms containing asterisks (‘*’). Query have

not previously filtered to remove stop-words and terms in queries have not been reordered.

this. Only one in about six web queries have been classified as about sex. Web users look interested

on a wide range of different topics. Commerce, including travel, employment, and a number of

economic matters are also high on the list. Close to 10% of queries are about health and the

sciences.

Authors of [36], and [34] show similar results on a different query log. The log is made up of

billions of web queries constituting the total query traffic for a 6-month period of AOL, a general-

purpose commercial web search service. Categories are different, and results (in terms of category

percentages breakdown) are slightly different. This difference is very likely due to the different

period of time in which the analysis was conducted. While the Excite log is of 1997, the AOL log is

of 2003, which is more than 6 years after. In particular, as noticed in other works, porn queries fell

considerably (unless queries pertaining to “Other” category can be associated with XXX interests).

Terms (as atomic constituents of queries) are distributed according to a power-law as well (in

particular a double-pareto log-normal distribution). In fact, the curve of term distribution is steeper,

denoting that the most frequent terms are much more frequent than the rest of terms. Just as an

example, Figure 2.5 shows log-log plots of the term popularity distribution in the case of the same

three query logs, namely: Excite, Altavista, and Yahoo!.

An interesting statistic to draw from query logs is how terms co-occur. In [213], a follow-up of

the work presented in [111], Spink et al. present a table of the fifty most frequently co-occurrent

terms. We report here, for the sake of completeness, their results in Table 2.2.

15

Topic Percentage

Entertainment or recreation 19.9%
Sex and pornography 16.8%
Commerce, travel, employment, or economy 13.3%
Computers or Internet 12.5%
Health or sciences 9.5%
People, places, or things 6.7%
Society, culture, ethnicity, or religion 5.7%
Education or humanities 5.6%
Performing or fine arts 5.4%
Non-English or unknown 4.1%
Government 3.4%

(a) Excite [209].

Topic Percentage

Entertainment 13%
Shopping 13%
Porn 10%
Research & learn 9%
Computing 9%
Health 5%
Home 5%
Travel 5%
Games 5%
Personal & Finance 3%
Sports 3%
US Sites 3%
Holidays 1%
Other 16%

(b) AOL [34].

Fig. 2.4: Distribution of query samples across general topic categories for two different query logs.

Excite 2.4a, and AOL 2.4b.

and-and 6,116 of-and 690 or-or 501 women-nude 382 sex-pics 295
of-the 1,901 pictures-of 637 sex-pictures 496 pics-nude 380 north-carolina 295
pics-free 1,098 how-to 627 nude-pictures 486 of-department 365 free-teen 293
university-of 1.018 and-the 614 for-sale 467 united-states 361 free-porn 290
new-york 903 free-pictures 637 and-not 456 of-history 332 and-nude 289
sex-free 886 high-school 571 and-sex 449 adult-free 331 and-pictures 286
the-in 809 xxx-free 569 the-to 446 of-in 327 for-the 284
real-estate 787 and-free 545 the-the 419 university-state 324 new-jersey 280
home-page 752 adult-sex 508 princess-diana 410 sex-nudes 312 of-free 273
free-nude 720 and-or 505 the-on 406 a-to 304 chat-rooms 267

Table 2.2: List of the fifty most co-occurring terms in the Excite log (term1 - term2 frequency) [213].

The above mentioned table only shows how terms co-occur in queries without reflecting topic

popularity. In fact, the majority of term pairs are about non-XXX topics while in the same analysis

they found that XXX queries were highly represented. This could, for instance, indicate that for

some topics people use more terms to search for precise information, for other topics the same user

need can be satisfied by short queries.

As it has been seen, queries repeat themselves. Since many queries are seen only a few times,

one would expect that in the majority of the cases the distance between subsequent submissions

of the same query would be very large. The distance, in terms of queries, with which queries are

submitted again is shown in Figure 2.6.

Differently from what is expected, the majority of queries have distances that are less than

1, 000 queries. A possible reason is the inherent bursty [124] nature of query logs: a large number

of people start looking for a topic almost at the same time. This observation is very important, as

we show in the rest of the survey that the bursty nature of queries is a feature that is extensively

used in many techniques for enhancing both effectiveness and efficiency of web search engines.

16

(a) Excite. (b) Altavista.

(c) Yahoo! (from [15]).

Fig. 2.5: Plots displaying the number of requests for terms in various query logs.

2.2 Trends and Historical Changes in Queries

Queries are issued on several different topics [162] depending also on the historical period [209].

Going at a daily granularity level of analysis, some of the topics are more popular in an hour than

in another [35, 34].

During the daytime frequency of querying varies considerably. Ozmutly et al. [158] analyze

query frequency against arrival time for the Excite query log in a time period ranging from 9AM

to 5PM. Table 2.3 shows how frequencies are distributed within hours of the day.

Querying activity is higher during the first hours of the day than the afternoon. There is a sharp

decrease in the number of queries submitted going down from 679 at 9AM to 224 at 4PM. That

is 30% of the queries that are usually submitted at 9AM. These numbers are small if compared to

the number of queries submitted to today search engines. When compared to the same statistics in

2006 [162], results are completely turned upside-down. At 9AM queries submitted are almost half

of those submitted at 5PM (Figure 2.7).

Spink et al. [209] showed how time periods affects querying behavior of users. In Table 2.4,

17

Fig. 2.6: Distances (in number of queries) between subsequent submissions of the same query for

the Altavista and Excite log.

Fig. 2.7: Frequency of query submitted to the AOL search engine during the day [162].

extracted from the above mentioned paper, it is possible to observe that querying behavior is not

changed from a statistical point of view, in a period of 4 years. The mean number of terms per

query is only slightly raised in 2001, while the number of terms per query, the main queries per

user, are basically, unchanged in four years. Even if this study dates back to 2001, it is very likely

that the results are still valid today. Users mostly tend to look for places to buy goods, or to look

for particular sites they already know. For this reason, the number of keyword is usually low.

As it has been shown above, users have changed their preferences and inclinations during time.

Obviously, the more penetrated a new technology is the more users become skilled and acquainted

with using it. Probably users’ understanding of the potentiality of this new medium, the web, has

18

Hour of the Day frequency

9:00 – 10:00 679
10:00 – 11:00 486
11:00 – 12:00 437
12:00 – 13:00 367
13:00 – 14:00 358
14:00 – 15:00 333
15:00 – 16:00 304
16:00 – 17:00 224

Table 2.3: Number of query arrivals with respect to hours of the day –– Excite query set [158].

Characteristic 1997 1999 2001

Mean terms per query 2.4 2.4 2.6
Terms per query

1 term 26.3% 29.8% 26.9%
2 term 31.5% 33.8% 30.5%
3+ term 43.1% 36.4% 42.6%

Mean queries per user 2.5 1.9 2.3

Table 2.4: Comparative statistics for Excite web queries [209].

Category 1997 1999 2001 2002

People, places, or things 6.7 20.3 19.7 49.3
Commerce, travel, employment, or economy 13.3 24.5 24.7 12.5
Computers or Internet 12.5 10.9 9.7 12.4
Health or sciences 9.5 7.8 7.5 7.5
Education or humanities 5.6 5.3 4.6 5.0
Entertainment or recreation 19.9 7.5 6.7 4.6
Sex and pornography 16.8 7.5 8.6 3.3
Society, culture, ethnicity, or religion 5.7 4.2 3.9 3.1
Government 3.4 1.6 2.0 1.6
Performing or fine arts 5.4 1.1 1.2 0.7
Non-English or unknown 4.1 9.3 11.4 0.0

Table 2.5: Comparison of categories breakdown (in %) for Excite web queries (from 1997 to 2001),

and Altavista (2002) [110].

made them prone to use it as a way of conducting business.

From the data in Table 2.5 it is evident that users (at least those of US-based search engines)

querying for People, Place or Things was accounting for nearly 50% in 2002. Moreover, there is a

clear rise in interest from users for this category: back in 1997 queries referring to People, Place

or Things accounted for less than 7%. The 25% of users in 2002 queries for Commerce, Travel,

Employment or Economy and Computers, Internet or Technology. This percentage has seen an

“up-and-down” trend3, varying from a minimum of about 25% and to a maximum of 35%. A

steady falling trend, instead, is that of sex and pornography: it was accounting for almost the 17%

of queries back in 1997, whereas in 2002 the percentage of users looking for Sex related information

3Unless due to the use of different classification algorithms for the different query logs.

19

felt down to 3.3%.

Going to a finer detail level, in [34] Beitzel et al. measure the relative popularity of different

categories over the hours in a day. The percentage of total query volume broken-down to a selected

group of category can be seen in Figure 2.8. Clearly different topical categories are more and less

popular at different times of the day. For instance, Personal and Finance popularity raises during

the first hours of the morning, between 7 and 10 a.m.; whereas Porn is a category whose popularity

raises during late-night until 6 a.m.

Fig. 2.8: Percentage of the total query stream covered by selected categories over hours in a day [34].

Although evidently some categories change more than others during the day, the comparison

of the relative level of popularity shift is difficult due to the differences in scale of each of their

percentages of the query stream. To overcome this issue, Beitzel et al. [34] compute the Kullback-

Leibler (KL) divergence [128] (Equation 2.1) between the likelihood of receiving a query on any

topic at a particular time and the likelihood of receiving a query in a particular category.

D (p (q|t) ‖p (q|c, t)) =
∑
q

p (q|t) log
p (q|t)
p (q|c, t)

(2.1)

Using the KL-divergence, it is possible to measure a sort of “most surprising” category for

a particular time of day. Instead of measuring the popularity as the most numerous topic, the

KL-divergence measures how popular is a query in terms of not being expected. The histogram in

Figure 2.9 shows the result of the KL-divergence computation over the same categories as Figure 2.8.

20

Fig. 2.9: Average percentage of query stream coverage & KL-divergence for each category over

hours in a day. [34].

A more recent paper shows similar results on a MSN web search engine query log [241]. Results

are not detailed with respect to topics, as in the case of the previous paper, yet they do not disagree

with the overall results shown in [34].

Surprisingly, this analysis revealed that the top three categories in terms of popularity are

pornography, entertainment, and music. Furthermore, it is worth being noticed that the KL-

divergence is not directly correlated with the number of queries placed in each category. Also

shown in Figure 2.9 is the average percentage of the entire query volume and distinct queries that

match each category. Although the categories that cover the largest portions of the query stream

also have the most relative popularity fluctuation, this correlation does not continue throughout all

categories. Beitzel et al. [34] reach the same conclusion by thoroughly discussing a more through

analysis on weekly and monthly basis.

2.3 Summary

In this chapter we presented an overview of the papers presenting statistics computed over different

search engine query logs sampled over different periods of time. Some of the conclusions that can

be drawn are common to all of the logs considered:

• Queries contains very few terms, on average ranging between 2 and 3 terms. This means

that devising good results for a query is a very difficult task given that this very low

number of terms often contains also ambiguous terms.
• The distribution of query popularity follows a power law. The most popular queries

account for a very small fraction of the total number of unique queries. This phenomenon,

also knows as the Long Tail [9], is pretty well known today and seems to arise whenever

we deal with social and economical aspects of the new (internet) economy.
• Two conflicting claims have been presented. Following Spink et al. [209] it seems that

X-rated query popularity is declining. Beitzel et al. [35], instead, claim that XXX queries

are more surprising than others on certain time periods. On the other hand, non-XXX

21

queries do not show any particular peaks in submission frequency. This is the reason why

they define XXX queries more frequent than others.

22

3

User Interactions

The previous chapter has shown how users query a search engine. It has been shown how users

build queries and how queries repeat during time. This chapter is devoted to the study of how

users interact with search engine Systems. What happen when a user has submitted a query and

results are shown? For instance, how can be decided if a query has been correctly answered, if a user

is satisfied by the search results? Another interesting aspect to investigate is how people change

queries if those have not produced satisfying results. In fact, in search engines it is important to

support such an activity also in addition to every efforts that could be made to enhance the search

engine precision.

Back in 1994 when Yahoo! was first founded the two Stanford’s grad students Jerry Yang, and

David Filo were looking for a way to organize their bookmarks. They wanted to make people’s

life easier when they looked for some URLs they knew about. Actually, due to the overwhelming

quantity of URLs present in the web nowadays, maintaining such a list manually (as it was done

by Yahoo!’s founders back then) is unacceptable. Still, people want to find the a site’s URL as fast

as they can. For instance, it has been shown in the previous section that one of the most frequent

queries in the public AltaVista log was “Yahoo”. That means the people was looking for the Yahoo’s

URL.

Studies investigate the goals users have when using a web search engine. As it has been shown

in the previous section, web IR and “traditional” IR users are very different. Usually they tend to

type less, but still they want highly precise results.

In one of the first paper devoted to discovery user intent behind queries Andrei Broder [48]

studies the goal a user wants to reach when submitting a query to a search engine. Following

Broder’s formulation a query can be either a Navigational query – where the immediate intent

is to reach a particular site (e.g. Greyhound Bus, american airlines home, or Don Knuth); an

Informational query – where the intent is to acquire some information assumed to be present on

one or more web pages (e.g. San Francisco or normocytic anemia); a Transactional queries – where

the intent is to perform some web-mediated activity (e.g. online music, or online flower delivery

service).

23

Table 3.1 shows the result of a survey presented to Altavista users to try to determine their

intent.

Type Surveyed Estimated (from Query Log)

Navigational 24.5% 20%

Informational ∼ 39% 48%

Transactional ∼ 36% 30%

Table 3.1: Query classification on the basis of user survey. Adapted from [48].

The results shown in the table have been obtained by means of a series of questions presented

to users through a “pop-up” windows opening for some randomly chosen result pages. The survey

obtained a response ratio of about 10% consisting of about 3, 190 valid returns. The query log

analysis column in table 3.1 corresponds to a manual analysis of query entries. They firstly selected

at random a set of 1, 000 queries and removed both non-English queries, and sexually oriented

queries. From the remaining set the first 400 queries were inspected. Queries that were neither

transactional, nor navigational, were assumed to be informational in intent.

Results from both the survey, and manual inspection confirmed what we were arguing in the

previous chapter: in the majority of the cases users surf the web looking for places where to buy

goods, or looking for particular sites they already know.

In order to evaluate the quality of search results it is interesting to look at how users interact

with the web through a search engine. For instance, it is interesting to extract and analyze user

search sessions from query logs, and to derive Implicit Measures of quality explicitly tailored on

search engine users.

Queries themselves are not always enough to determine users intent. Furthermore, one of the

key objectives of a search engine is to evaluate the quality of their results. Implicit measures that

ares available to log analysts are: the click-through rate – the number of clicks a query attract,

time-on-page – the time spent on the result page, and scrolling behavior – how users interact with

the page in terms of scrolling up and down; are all performance indicators search engines can use

to evaluate their quality. How are the data recorded? Toolbars, and user profiles surveyed directly

from users are the main mean through which search engine Companies record usage data diverse

from those obtained by query logs.

3.1 Search Sessions

A series of queries can be part of a single, information seeking activity. There are some studies

on the effect of request chains on the search engine side. The main goal of this kind of analysis

is showing how users interact with the search engine and how they modify queries depending on

results obtained by the search system and also how users use multitasking and task switching on

search sessions1 [210, 23].

The first interesting thing to observe is how users interact with the search engine from a page

request point of view. As shown in many studies users rarely visit result pages beyond the first one.

1Roughly, a search session is a succession of queries submitted by the same user looking for an information.

24

In [213], the Excite query log is analyzed and it has been shown that about the 78% of users do

not go beyond the first page of results. Different query logs are analyzed yielding to similar results

by Lempel and Moran [132], and Fagni et al. [76]. Table 3.2 shows the results as reported by Fagni

et al. [76] for three different query logs. In all the three cases, the probability that a user will go

after the fifth page of results is under 0.02.

Query Log 1 2 3 4 5 6 7 8 9 10

Excite 77.59 8.92 3.98 2.37 1.54 1.09 0.78 0.60 0.45 0.37
Tiscali 83.20 5.50 2.86 1.74 1.23 0.74 0.54 0.41 0.32 0.26
Altavista 64.76 10.25 5.68 3.41 2.54 1.83 1.42 1.16 0.94 0.88

Table 3.2: Percentage of Queries in the Logs as a Function of the Index of the Page Requested [76].

The figures shown above seem to persist throughout all the studies presented so far.

Fig. 3.1: Percentage of single query sessions. From [110].

Jansen and Spink [110] show, Figure 3.1, the percentage of single-query sessions in different

query logs. In US web search engines2, it does not appear that the complexity of interactions

is increasing as indicated by longer sessions (i.e., users submitting more web queries). In 2002,

approximately 47% of searchers on AltaVista submitted only one query, down from 77% in 1998.

A deeper analysis is conducted by Fagni et al. [76] where the probability of clicking the “Next”

button of the search engine result page is estimated

Figure 3.2 shows that the probability of clicking the “Next” button increases as the number of

result page increases. This may suggest that users issuing informational queries usually go through

a higher number of pages. In particular, half the users on page two go to page three, and around

60-70% of users on page three go to page four.

During a search session a user often try to refine (or slightly modify) queries in order to get

to the result he wants. This behavior is studied by Lau and Horvitz [130] by categorizing queries

2ATW – AlltheWeb.com, AV – AltaVista, EX – Excite

25

Fig. 3.2: Probability of pushing the next button for three different query logs. From [76].

according to seven categories. New : A query for a topic not previously searched for by this user

within the scope of the dataset (twenty-four hours); Generalization: A query on the same topic as

the previous one, but seeking more general information than the previous one. Specialization: A

query on the same topic as the previous one, but seeking more specific information than the previous

one. Reformulation: A query on the same topic that can be viewed as neither a generalization nor

a specialization, but a reformulation of the prior query. Interruption: A query on a topic searched

on earlier by a user that has been interrupted by a search on another topic. Request for Additional

Results: A request for another set of results on the same query from the search service. Blank

queries: Log entries containing no query.

Figure 3.3, shows how queries are categorized within the Excite query log. As it is evident, in

the majority of the cases most actions were either new queries or requests for additional informa-

tion. Even though, a large percentage of users (around 30%) were issuing a modification (either a

refinement, or a specification, or a reformulation) of a previously submitted query.

Previous results can be seen as a quantitative analysis of how users interact with the search

system. A different point of view is represented by the analysis of Multitasking and Task Switching

in query sessions. Multitasking sessions are those of users seeking information on multiple topics at

the same time. Studies recently presented, show that users have an inclination to carry on multi-

tasking queries. For instance, Ozmutlu et al. [157] show that in the 11.4% of the cases users are

pursuing multitasking sessions. This percentage raises up to 31.8% in the case of users of another

popular (at that time) search engine, AllTheWeb.com. In the same paper, the mean number of

topic changes per session has been estimated to be around 2.2 that raises to 3.2 when considering

only multi-topic sessions.

An interesting event to detect is the query re-submission, or information re-retrieval [216]. The

behavior analyzed with this kind of technique is how often users search for the same information he

searched before. It is a quite common trend, nowadays, that users search instead of bookmarking. A

26

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

New Generalization Specification Reformulation Interruption Additional Info Blank

Refinement Class

Fig. 3.3: Breakdown of the 4,960 queries analyzed in [130] into the different query modification

categories defined.

possible example is a user that reaches the home page of a conference by issuing a query to a search

engine. The user may be interested in looking for news about that conference again in two months

(for instance to read the call for paper, to check submission deadline, to check paper format, to

check the list of accepted papers, to register and book hotels).

Fig. 3.4: Percentage of the different query types. From [216].

Figure 3.4 shows the results of an analysis conducted on a small sample taken from search traces

of queries issued to the Yahoo! search engine over a period of an entire year (August 1, 2004 to July

31, 2005) by 114 users. The average trace was 97 days long and search traces were considered for

inclusion only if they included queries issued during at least four of the last ten days of the sample

period.

27

The study was thorough and complete, queries for re-retrieval intentions were considered not

only for their syntactic form (equal query strings) but also for the set of clicked result URLs. From

the total 5,072 queries, 39% of the queries had some overlapping in the clicked set of URLs, of

them 24% had equal query string, and equal clicked URL. Therefore, repeat searches and repeat

clicks are very common. Almost contemporary to Teevan et al. [216] Sanderson and Dumais [187]

evaluate the re-finding behavior in web search engines. The dataset they used covers a shorter

period of time, three months from April to June, 2006, and contains approximately 3.3 million

queries and 7.7 million search result clicks gathered from 324,000 unique users. The first noticeable

thing they discovered, is that repeated queries by the same user are almost the 50% of the total

number of queries (1.68 million against 1.62 million unique queries). This result is greater than the

one presented by the previous study by Teevan et al. [216] (and also different from another previous

result, again, of Teevan et al. [215]). This could be done by the particular search engine, and the

period of time covered by queries in the log. The conclusion, anyway, are the same in all the cases:

users do re-submit the same queries over and over and for this reason search engine designers should

be think of solutions to take advantage of this phenomenon, for example, by designing interfaces

able to present users resubmitting again the same query with a list of changes in the rank of the

results with respect to those returned in answer to the same query but previously submitted.

3.2 Social Networks from Query-Click relations

Queries recorded in query logs can be used to build social networks. Some recent studies, have

shown some interesting insights and views on such data. Differently from what have been done in

the analysis of multitasking in search sessions, Baeza-Yates and Tiberi [19] and Baeza-Yates [21]

consider queries as a whole, and study how queries and clicks combined can help in determining

relations between queries. They base their analyses on a query log consisting of a not very large

number of queries, around fifty million queries, having in mind the objective of capturing some

semantic meaning behind user actions (i.e. clicks).

To catch the relations between queries, a graph is built out of a vectorial representation for

queries. In such a vector-space queries are points in a very high-dimensional space where each

dimension corresponds to a unique URL u that have been at some point clicked by some user. Each

component of the vector is weighted according to the number of times the corresponding URL has

been clicked when returned for that query. For instance, suppose we have five different URLs – i.e.

u1, u2, . . . , u5, suppose also that for query q users have clicked three times URL u2 and four times

URL u4, the corresponding vector is (0, 3, 0, 4, 0). Queries are then arranged as a graph with two

queries being connected by an edge if and only if the two queries share a non-zero entry, that is if

for two different queries the same URL received at least one click. Furthermore, edges are weighted

according to the cosine similarity of the queries they connect. More formally, the weight of an edge

e = (q, q′) is computed according to Equation 3.1. In the formula D is the number of dimensions,

i.e. the number of distinct clicked URLs, of the space.

W (e) =
q · q′

|q| · |q′|
=

∑
i≤D

qi · q′i√∑
i≤D

q2
i

√∑
i≤D

q′ 2i

(3.1)

Graph edges can be computed/discovered in a fast way by using a sort-based algorithm on the list

28

of URLs clicked by each query. Weights, instead, are simply computable by a linear (in the worst-

case) algorithm. Furthermore, for the sake of the analysis conducted, the log have been pruned

by removing queries not resulting in any click. After the graph have been built, to speed-up the

analysis phase, nodes corresponding to queries with very few clicks and edges with small weights

are filtered out. Edges are then classified according to three different type of relations:

• Identical cover (a.k.a. red edges or type I). The set of URLs clicked by the two queries

at both ends are identical. This is an indirect edge inferring that the two queries are

semantically equivalent.
• Strict complete cover (a.k.a. green edges or type II). The set of URLs clicked for the

query at one end is strictly included in the set of URLs of the query at the other end.

The edge is direct and semantically speaking the first query is more specific than the

second one.
• Partial cover (black edges or type III). None of the previous two conditions hold. No

semantical information can be extracted, one can argue, for instance, that the query is

multi-topical.

Query Sim Type of Equivalence

tcfu ↔ teachers federal credit union 1.0 acronym
fhb ↔ first hawaiian bank 1.0 acronym
wtvf ↔ new channel 5 1.0 synonyms (Nashville TV channel)
ccap ↔ wcca 1.0 synonyms (Wisconsin court Internet access)
free hispanic chat↔ latinopeoplemeet 1.0 synonym for domain name
lj ↔ www.livejournal.com 1.0 acronym for URL
babel fish ↔ altavista babel fish 1.0 synonyms
aj ↔ askgeeves 1.0 synonyms with misspell
yahoo for kids ↔ yahooligains 0.9 synonym for misspelled domain name
unit conversion ↔ online conversion 0.85 synonym
merriam↔m-w.com 0.84 name for domain name
yahoo directions↔maps.yahoo.com 0.48 synonym for URL

Table 3.3: Equivalent queries

how to learn guitar → online guitar lessons → berklee college of music
latest nokia mobiles → mobile phones
toyota auto parts → wholesale car parts → used auto parts → auto parts
wire window boxes → window box → decorative iron → wrought iron fence
www.mysiemens.com → siemens phone

Table 3.4: Example of query refinement (→ means from more to less specific)

In the above two Tables (Table 3.3 and Table 3.4), an example of such a classification from [19]

is shown. Looking at Table 3.3 it is possible to notice how the technique is effective in discovering

relations not easily found in other ways. In particular the aj synonym for the askjeeves search

engine, or the synonym for the free hispanic chat and the latinopeoplemeet website. Also results

shown in Table 3.4 are worth of being looked at. The first row of the Table, in particular, shows

29

a possible path to help people seeking for guitar lessons to find a college where guitar is taught to

play (how to learn guitar → online guitar lessons → berklee college of music).

Another interesting results of Baeza-Yates and Tiberi [19] is a graph mining methodology able to

automatically classify query relations using a novel metric exploiting the Open Directory Project for

computing similarity between queries. Due to lack of space, we do not enter into details of how the

similarity was computed. Authors conclude the paper by observing that the query log was actually

small, if compared to real, multi-day, query logs, yet results were really nice and encouraging. In

fact, even considering that the method is not 100% precise, the number of queries submitted every

day is so high that it would allow the discovery of more than 300 million potentially interesting

relations per day!

3.3 Summary

This chapter showed how query log data is used to detect search engine user behavior. The most

noticeable results are:

• Users, in the vast majority of the cases (∼ 78%) look at the first page of results only. In

case they go through the second result page, the likelihood that they move on the third,

the fourth, and so on, is very high.
• Queries can be classified in Informational, Navigational, and Transactional. Informational

queries are those submitted by users looking for information on a particular topic (e.g.

San Francisco or normocytic anemia). Navigational queries are those submitted by users

looking, mostly, for the URL of a particular page they are looking for (e.g. Greyhound

Bus, american airlines home, or Don Knuth). Transactional queries are those submitted

by users looking for websites enable the buying of goods on the Internet (e.g. online

music, or online flower delivery service). Queries are almost evenly distributed on the

three categories.
• Users re-submit the same queries over and over, for this reason search engine designers

should be aware of this and think of solutions to take advantage of this phenomenon
• Query sessions can be used to devise refinement (i.e. generalization or specialization) of

queries. An analysis of a social network formed over queries out of a search engine query

log, for instance, can help in devising surprising relations. A remarkable example is the

query generalization path ‘how to learn guitar → online guitar lessons → berklee college

of music’ that relates the query “how to learn guitar” with a popular music college.

30

4

Enhancing Effectiveness of Search Systems

Previously submitted queries represent a very important mean for enhancing effectiveness of search

systems. As already said, query logs keep track of information regarding interaction between users

and the search engine. Sessions, i.e. the sequences of queries submitted by the same user in the same

period of time. This data can be used to devise typical query patterns, used to enable advanced

query processing techniques. Click-through data (representing a sort of implicit relevance feedback

information) is another piece of information that is generally mined by search engines. All in all,

every single kind of user action (also, for instance, the action of not clicking on a query result)

can be exploited to derive aggregate statistics which are very useful for the optimization of search

engine effectiveness.

Differently from what is presented in the chapter about enhancing efficiency, all the techniques

presented in this part impact on the user experience starting from the interface presented by the

search engine. Just to set the ground, and let our discussion be not only abstract, consider, the

screenshot shown in Figure 4.1. For the query “Britney Spears” the search engine has prepared a

31

Fig. 4.1: A view on Yahoo! query suggestion system in action. In this screenshot it is shown how

queries related to “Britney Spears” are proposed to users by the search engine. It is very likely that

suggestions are obtained by mining query logs in order to infer query relations.

list of suggestions that most likely derives from an analysis of previously and frequently submitted

queries (for example, “britney spears blackout” is a typical example of “time-dependent” query

suggestion.)

Next in this part, we shall show that the analysis of past queries presents many pitfalls. In

particular, it has been shown that users clicks are biased towards results that are ranked high in

the result list [118]. This observation is at the basis of a number of studies aimed at “un-biasing”

clicks in order to better understand users’ goals.

Furthermore, remember also from the introduction we have stated that data collection can be

done at different levels. One is usually more familiar with the server side logging. There exist,

anyway, techniques to collect data client side. Toolbars, for instance, are an example of such a

technique.

In the rest of this chapter, we analyze the possibilities offered by web mining techniques on

query logs for the enhancement of search effectiveness by reviewing the current state of the art in

this sector and by presenting the most relevant and useful results.

We start by providing some historical notes that helps readers in understanding how users’ feed-

back has been used before the advent of search engines. In particular we will show some preliminary

studies motivating the use of query logs for enhancing effectiveness of search.

The first technique we present is “Query Expansion”. Expanding a query consists of adding

terms to the original queries to increase the precision of the engine on the top-k results presented.

It is a technique that has been studied, originally, out of the context of query log analysis. The

inclusion of query log information has boosted considerably the effectiveness of the technique.

Relative to query expansion, “Query Suggestion” is a technique that is shown in this chapter.

Suggesting queries is mainly a way to provide not experienced users with a list of queries that have

been proven to be effective for expert users.

Instead of suggesting queries to users, search engine may act differently depending on the user

itself. For instance a mathematician issuing the query “game theory” is more interested in knowing

the mathematical foundations of the field. An economist issuing the same query, “game theory”, is

likely to be more interested in knowing about applications to economics of game theory. “Personal-

ization” is the technique that adapt results to a given user. Using query logs to personalize results

32

has been proven to be effective and the chapter shows some interesting results. Personalization

is concerned with adapting query results to a particular user. Similarly, one can use information

about past user interactions to statically weight web pages. As PageRank [47] computes a static

importance score using only structural information, techniques presented in this part “Learn to

Rank” a page depending on the clicks it receives when returned as a result.

Finally, we present techniques to “Spell-check and Correct” queries users input.

4.1 Historical Notes and Preliminaries

Worth to point out is that the idea of analyzing user behavior is not new. This is in fact the rationale

behind the well-known concept of relevance feedback is that a user might not know in advance what

he was looking for, but for sure he knows as soon as he sees it. In fact, exploiting user’s feedback

has been proven to be en effective technique for enhancing IR systems’ precision [185]. Probably

the most important of this kind of algorithm is Rocchio’s formula [183], which was developed as

part of the the SMART project. Basically, it is a three staged technique. The first stage consists

of finding a given number of documents considered relevant for a given query. The second stage

consists of letting users interactively select what they retain to be the most relevant documents,

and then it goes on with the third stage consisting in re-ranking all the documents according to a

sort of Nearest Neighbor criterion. This last stage is performed by modifying the query according

to Rocchio’s formula given in Equation4.1

qm = αq0 + β
1

|Dr|
∑
dj∈Dr

dj − γ
1

|Dnr|
∑

dj∈Dnr

dj (4.1)

In the formula: qm is the modified query; qo is the original query; Dr, Dnr are the set of relevant

and non-relevant documents respectively; α, β, γ are real-valued parameters used to weight the

contribution of each element in the formula. Basically, the new query is obtained by the old one by

reducing the weights of terms leading to the retrieval of irrelevant documents, and by increasing the

weights of terms leading to the retrieval of relevant documents. As it is evident from the formula,

there is the need for identify the relevant documents. In small scale IR systems an iterative process

was employed where users were asked to mark relevant documents. In the case of web search engines,

the relevance feedback information is obtained by the analysis of past queries and their relative

clicked results. Getting back to web search engines. Can a Rocchio-like approach be used?

In a nice study performed by Joachims and Radlinski [118] it appears evident that “the top

position lends credibility to a result, strongly influencing user behavior beyond the information

contained in the abstract” (i.e. the snippet). They registered the number of clicks a given position

obtained in two different conditions: normal and swapped rank. In the swapped rank setting, the

position of the top ranked result was swapped with the result occupying originally the second

position. Results are shown in Figure 4.2 and shows that there is only a slight dropping in the

percentage of clicks the first result obtains, whereas the number of clicks the second result is, more

or less, stable.

More recently, Craswell et al. [66] have presented a more thorough elaboration bias due to

presentation order. They present a model of click probability trying to capture the dependency on

position. As Joachims and Radlinski [118] they present results from a user study. Differently from

them, though, the scale of the experiment is larger. They gather their data, in fact, from results

33

clicked on answers returned by a major search engine.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Normal
Swapped

Pe
rc

en
ta

ge
 o

f
q
u
er

ie
s

Results

Fig. 4.2: Percentage of queries where a user clicked the result presented at a given rank, both in

the normal and swapped conditions [118].

As said in the introduction, one of the main challenges in doing research with query logs is that

query logs, themselves, are very difficult to obtain. In the case of effectiveness enhancing methods

another big issue is also the quest for proving that a techniques is, actually, effective. The lack of

datasets and well-defined metrics makes the discussion more faith-oriented than scientific-oriented.

Furthermore, most of the techniques we review are either tested on a small group of (in most

cases) homogeneous people, or metrics are tested on some sort of human-annotated testbeds. For

this reason, we put more focus on the description of the techniques more than on the showing of

their effectiveness. Indeed, comparing techniques is also, in most cases, impossible due to the very

diversity of the datasets used.

Furthermore, query mining for effectiveness enhancement does not come for free. It brings with

it some important issues that need to be considered. One of the most important and urgent is

privacy, as already said in the introduction, is a very big concern for search engines. They, in fact

may risk to raise a lot of arguments by people whose searches have been mined to build a profile.

Therefore, unless handled in the strictest confidence possible, many people could get nervous for

having the feeling of being spied.

Furthermore, profile-based (i.e. context-based) search is computationally expensive. If we com-

pute results depending on who is submitting a query, many efficiency enhancement techniques (like

caching, collection selection, and so on, see the next chapter for an analysis of these techniques)

34

soon become not exploitable anymore.

As a final remarkable point, all the techniques that are presented in the following can be used

at different levels of the chain user-“search engine”. Queries, in fact, can be stored server-side

(the search engine, in this case, is the server) to build knowledge over global statistics. Historical

information can be stored to client-side (user’s browser, in this case, is the client) to build knowledge

only on the basis of the local information available on the user’s desktop. An intermediate solution

is represented by the use of proxies storing information about a group of (possible) homogenous

users. In all the cases, the same techniques can be applied to enhance the search experience of users.

4.2 Query Expansion

The statistics presented in “The Nature of Queries” chapter showed that web queries are very likely

to be short, poorly built, and sometimes mistyped. For these reasons, the recalling power of queries

is too much strong resulting in overwhelming the user with a lot of (sometimes) useless results. One

of the main means with which a search engine precision might be enhanced are query expansion

and query suggestion.

To confirm that these two mechanisms are rather important also in the real-world, it is worth

noticing that quite recently web search engines have started to insert within their results both

suggestions, and refinements to queries submitted by users. For instance, ASK within its result

page inserts two boxes: “Narrow your search” (query expansion), and “Expand your search” (query

suggestion), both containing related, and potentially useful, queries.

The first question we want to answer is: can query expansion be of help? The main advantage

of query expansion is that users tune interactively the expansions and that when based on query

log analysis, expansion is more effective due to the fact that queries are expanded with terms that

previous users have specified to improve the query. The main drawback is that the search (and also

the interactive search process) can take slightly longer.

It has been highlighted by Cui et al. [69] that queries and documents are rather poorly

correlated. Using a two-month query logs (about 22 GB) from the Encarta search engine

(http://encarta.msn.com), and 41,942 documents from the Encarta website, they measure the gap

between the document space (all the terms contained in documents) and the query space (all the

terms contained in queries). For each document in the document space they construct a corre-

sponding virtual document in the query space by collecting all queries for which the document has

been clicked on. A virtual document is represented as a vector, where the weight of each term is

defined by the tf × idf measure. The similarity between a query and the relative clicked documents

is in turn measured by computing the cosine similarity between the two corresponding vectors.

Actually, since many terms in document vectors appeared with zero weights in its corresponding

query vector, to obtain a fairer measure, they only used the most important words in the document

vectors as resulting from a simple tf × idf term ranking schema. Results confirm what expected: in

most cases, the similarity values of term usages between user queries and documents are between

0.1 and 0.4 with only a small percentage of documents having similarity above 0.8. The average

similarity value across the whole document collection is 0.28, which means the average internal

angle between the query vector and the document vector is 73.68 degrees confirming that there is

a quite large gap between the query space and the document space. Expanding a query might be

of great help to bridge this gap as much as possible.

35

Query expansion is a technique dating back to seventies. Actually, one of the first works making

explicit use of past queries to improve the effectiveness of query expansion techniques in traditional

IR systems is Fitzpatrick and Dent [79]. It was proposed just a few years before the actual boom of

search engines. The method, called past-query feedback, tests its effectiveness against the TREC-5

dataset. It uses a query DB made upon a combination of 50 ad hoc TREC-5 queries, 50 ad hoc

TREC-3 queries, and 10 ad hoc TREC-4 queries. Basically, they build off-line an affinity pool made

up of documents retrieved by similar past queries. When a query is submitted it is firstly checked

against the affinity pool (which represent a sort of “high-quality” document repository for the

purpose of expansion) and from the resulting top scoring documents, a set of “important” terms

is automatically extracted to enrich the past query. Term relevance (i.e. importance) is computed

using a straightforward tf × idf scoring function. Past-queries feedback showed an improvement of

38.3% in mean average precision if compared to the non query expansion case. We do not enter into

the details of this method since it does not refer only to the case of web search engines. Besides,

the method shows the in-embryo idea underlying most of the methods proposed thus far in the

literature.

One of the first works exploiting past usage information to expand web queries is the one

presented by Cui et al. [69]. Their method works by exploiting correlations among terms in clicked

documents and user queries. Indeed, the exploitation of click-through data is due to the general

assumption that usually is made in these kind of studies: clicked documents are relevant to a query.

The method starts by extracting a set of query sessions from the query log. A query session,

for a given user, consists of a query and a list of clicked results. For example the query session

“Britney Spears”—4,982—2,212—8,412 represents a user submitting the query “Britney Spears”

and successively clicking on documents 4,982, 2,212, and 8,412 respectively. For each one of the

clicked documents, in each query session, a list of terms is extracted. The set of all terms contained

within each clicked documents makes up the Document Terms set. The set of all the terms contained

within all the queries, instead, forms the Query Terms set. Given a term in the Document Terms

set td and a term in the Query Terms set tq, a link is created between td, and tq if and only if for at

least one query containing tq there exists a clicked document containing the term td. Each link is

then weighted by the degree of term correlation between its endpoints. The correlation is given by

the conditional probability that term td appears given that term tq already appeared, i.e. P (td|tq).
By an algebra argument1, this probability can be computed as:

P (td|tq) =
∑
Di∈Sq

P (td|Di)
freq (tq, Di)

freq (tq)

where:

• Sq is the set of clicked documents for queries containing the term tq.
• P (td|Di) is the normalized weight of the term td in the document Di divided by the

maximum value of term weights in the same document Di.
• freq (tq, Di) is the number of the query sessions in which the query word tq and the

document Di appear together.
• freq (tq) is the number of queries containing term tq.

1For more information on the details of this formula derivation, see Cui et al. [69]

36

The term correlation measure is then used to devise a query expansion method relying on a

function measuring the cohesion between a query Q and a document term td. The formula of the

cohesion weight (CoWeight) is given by:

CoWeight (Q, td) = log

∏
tq∈Q

P (td|tq) + 1

 (4.2)

It is worth remarking that we are assuming that terms within a query are independent (this justifies

the productory in the formula). The cohesion weight is used to build a list of weighted candidate

expansion terms. Finally, the top-k ranked terms (those with the highest weights) are actually

selected as expansion terms for Q.

Pseudo-Relevance Feedback [234] is one of the most famous techniques used to expand queries.

Some techniques build upon Pseudo-Relevance Feedback to provide better expansions.

In the previously presented paper, the query log used is from the Encarta search engine

(http://encarta.msn.com), and the relative 41,942 documents are from the Encarta website. To

assess the improvement in effectiveness, a total of 30 queries are extracted randomly from a combi-

nation of the Encarta query logs, from the TREC query set, and from a small subset of hand-crafted

queries. The query-log-based method was compared against the baseline of not using query expan-

sion, and the local context analysis method (that does not make use of query log information)

proposed by Xu and Croft [234]. For the local context method the number of expanded terms for

each query was set to 30, whereas for the log-based it was set to 40. The mean average precision

for the baseline on the test collection was 17.46%, whereas the local context method scored a mean

average precision of 22.04%, an improvement of around the 26.24% on the baseline. The log-based

method scored a mean average precision of 30.63% corresponding to an improvement of around

75.42% on the baseline. The number of terms used in the expansion has an impact on the results,

actually another experiments showed that when more than 60 terms are considered in the expansion

the mean average precision of the log-based method starts to decrease.

The technique of Xu and Croft [234] is quite obsolete if compared to today’s search engine

technology. In particular, expanding a query to be longer than 30 terms is definitely not viable due

to the overhead it causes in the corresponding query processing phase.

Indeed, Query/Documents terms co-occurrence is just a possible way of associating document

terms to query terms.

Billerbeck et al. [42] use the concept of Query Association. User queries become associated

with a document if they are “similar” that document. Queries, thus, enrich documents with an

associated Surrogate Document. Surrogate documents are used as a source of terms for query

expansion. Obviously not all of the queries concur to form query associations. First of all, whenever

a query is submitted it is associated with the top K documents returned. Furthermore, to make

the system more scalable, instead of keeping all of the queries associated with the documents only

the M closest queries are kept. Similarity, then, is computed using a standard scoring function. In

the experiments performed by the authors they used the Okapi BM25 [119] scoring function. In

case a document reached its full capacity of associated queries, the least similar query is replaced

by a newly submitted one only in case it has a similarity higher than the least similar associated

query. Depending on two parameters, the method has to be fine tuned with respect to the different

values of K, and M . In a recent paper, Scholer et al. [189] empirically set K = 5, and M = 3.

37

Summaries, thus, tend to be small but composed of high quality surrogate documents.

Billerbeck et al. [42] use the Robertson and Walker’s term selection value formula [181] (Equa-

tion 4.3) to select the e expanding terms.

weight (t) =
1

3
log

(RetDocs (t) + 0.5) / (ft − RetDocs (t) + 0.5)

(|T | − RetDocs (t) + 0.5) / (NDocuments− ft − |T |+ RetDocs (t) + 0.5)
(4.3)

where:

• RetDocs (t) is the number of returned documents containing term t.
• ft is the number of documents in the collection containing t.
• NDocuments is the total number of documents in the collection.

How the above equations are used? First of all, we shall present a generalization of a query

expansion algorithm:

(1) For a newly submitted query q, an initial set T of top ranked documents is built.

(2) From T , a list of e expanding terms is selected using a term selection value formula.

(3) A new query made up of the previous one with appended the top most scoring terms

from the collection is submitted again to the search engine to obtain a new list of results.

In standard query expansion, steps (1), and (2) of the above generalized expansion algorithm

are performed within the full-text of the entire collection. Billerbeck et al. [42] refer to this as the

FULL-FULL method. Considering a surrogate documents in either step (1), or (2), or both we may

have the following three combinations:

• FULL-ASSOC, where the original query ranks documents of the full text collection, and

expansion terms are selected from the surrogate document. Therefore, step (1) of expan-

sion is on the full text of documents in the collection, while step (2) is based on query

associations.
• ASSOC-FULL, where surrogates have been built and retrieved instead of the full-text, but

the query expansion is computed selecting highly scoring terms from the full-text.
• ASSOC-ASSOC, where both retrieval, and expansion are computed on surrogate docu-

ments.

In addition they also experiment with an expansion schema called QUERY-QUERY where steps

(1), and (2) are performed directly on previously submitted queries, instead of considering query

associations. The QUERY-QUERY schema captures the idea of expanding queries with terms used

by past users in queries considered better specified (e.g. expanding the query Ratatouille Movie

into Ratatouille Movie Pixar).

Experiments conducted on a TREC collection showed the superiority of the ASSOC-ASSOC

schema that outperformed the classical FULL-FULL by 18-20%. In this setting, the value for K,

and M were set to those empirically found by Scholer et al. [189] to perform better. It is worth

noticing how the combination of both past queries and full-text is superior to using either one of

the two independently.

Just to make the discussion more concrete, following an example of choice of terms for expansion.

For the query earthquake, the FULL-FULL method expanded the query with the terms: “earthquakes

38

tectonics earthquake geology geological”, whereas the ASSOC-ASSOC expanded earthquake with a

more descriptive “earthquakes earthquake recent nevada seismograph tectonic faults perpetual 1812

kobe magnitude california volcanic activity plates past motion seismological”.

The query expansion techniques shown so far, have been rarely applied by search engines. As

it is evident from the discussion so far, they suffer, mainly, of scalability issues. In many cases the

analysis done is very heavy and cannot scale very well. Another possibility is represented by query

suggestion. In the next part we present these techniques that have been proven to be effective and

scalable in search engines.

4.3 Query Suggestion

As it has been shown so far, in query expansion only a general view of queries/documents/snippets

associations are taken into account. That is, if two users having different tastes submit the same

query, this is expanded with the same terms. Therefore, it is very likely that one of the two results

unsatisfied.

As opposed to query expansion, query suggestion is the technique consisting of exploiting infor-

mation on past users’ queries to propose a particular user with a list of queries related to the one

(or the ones, considering past queries in the same session) submitted. Furthermore, the number of

suggestions can be kept as short as we want, usually it ranges from two to five queries suggested.

With query expansion, in fact, users can select the best similar query to refine their search, instead

of having the query automatically, and uncontrollably, stuffed with a lot of different terms. Obvi-

ously, this only partially overcomes the issue above, because if a topic is still underrepresented it is

very unlikely that it is suggested within a query suggestion list.

Roughly speaking, drawing suggestions from queries submitted in the past can be interpreted

as a way of “exploiting queries submitted by experts to help non-expert users [17].” Therefore, the

majority of query suggestion techniques detect related queries by selecting those that are mostly

similar to the ones submitted in the past by other users.

A näıve approach, as stated in [239], to find queries similar to another one consists of simply

looking for those queries sharing terms regardless of every other possible feature. So, for instance, the

query “George Bush” would be considered, to some extent, similar to the query “George Michaels”

given that, both share the term George. Obviously, this simple example shows that the näıve

approach might result misleading for users.

In literature there have been presented quite a lot of works on query recommendation. Ranging

from selecting queries to be suggested from those appearing frequently in query sessions [80], to

use clustering to devise similar queries on the basis of cluster membership [17, 18, 22], to use

click-through data information to devise query similarity [242, 68].

Query sessions (see the User Action chapter for more information) can be a precious source of

information for devising potentially related queries to be suggested to a user. The idea is that if a

lot of previous users when issuing the query q1 also issue query q2 afterwards, query q2 is suggested

for query q1. One choice for capturing this idea is association rule mining [7] and it is actually used

to generate query suggestions by Fonseca et al. [80].

Basically, the setting for a typical associations-mining algorithm consists of a set D of itemsets

(i.e. sets of items) A, each of which is drawn from a set I of all possible items. Each A is a member

of the power set 2I . The database considered is made up of transactions, each transaction is a set

39

of items. Given two non-overlapping itemsets A, and B, an association rule is a formula A ⇒ B

stating that the presence of A in a transaction implies the presence of B. The algorithm has two

parameters: the minimum support value σ – i.e. the minimum number of transactions containing

A ∪B, and the confidence γ – i.e. the minimum accepted probability of having B in a transaction

given that A is contained within the same transaction.

Computing association rules in very large DBs can be computationally expensive. In fact the

approach by Fonseca et al. [80] allows only rules of the form qi ⇒ qj . Therefore, the effort needed

to compute the frequent itemset mining phase2 is considerably reduced.

For each query qi, all the rules qi ⇒ q1, qi ⇒ q2, . . . , qi ⇒ qm are extracted and sorted by

confidence level. To experiment the technique it has been used a query log coming from a real

Brazilian search engine and consisting of 2.312.586 queries. The mining process is carried out by

setting the support σ = 3, and by extracting all the possible association rules. To assess the validity

of their approach they conducted a survey among a group of five members of their laboratory by

asking for the top 5 frequent queries whether the proposed suggestions were relevant or not. Results

were encouraging, even if the assessment phase is not convincing enough. For example, for the top

95 frequently submitted queries the system is able to achieve a 90.5% precision measured as the

number of suggestions retained relevant for the five laboratory members surveyed. Clearly, the

population of assessors is biased (they are all members of the same lab), thus potentially another

group of people might have found those results less meaningful.

The number of queries suggested is also important. Obviously, in this case it is not true that the

more the better. Actually, increasing the number of queries causes a drop in the suggestion quality.

The 90.5% figure in precision was measured for the case of five query suggested. Precision drops to

89.5% when ten queries are suggested, down to 81.4% when 20 queries are suggested.

Actually, there is a trade off not highlighted by authors. Although 90.5% precision for five

queries corresponds to more than four queries relevant, 89.5% precision for 10 queries, instead,

consists of around nine queries out of 10. The list of potentially interesting queries is thus richer in

the case of more suggestion shown. On the other hand, users presented with a long list of queries

might experience a “swamping effect” resulting in users simply ignoring suggestions. Therefore, fine-

tuning the number of suggestions is of utmost importance for the success of the method. Indeed,

the need for fine tuning the number of suggestions is on a per-query basis: for frequently submitted

queries a long number of suggestion would be better, for rarely submitted ones the number of

suggestion should be, very likely, kept inherently small.

As opposed to association rule mining, Zäıane and Strilets [239] use a Query Memory to store

past queries and retrieve them according to the one submitted. In a sense, this method computes

associations on-the-fly at query resolution time.

A Query Memory is a set of queries represented by six different features: (i) BagTerms: the

bag-of-words representation of the query, i.e. the unordered set of terms contained within the

query string; (ii) Count : the frequency with which the query has been submitted; (iii) Ldate: the

timestamp recording the last time the query was submitted; (iv) Fdate: the timestamp recording

the first time the query was submitted; (v) QResults: the query result list stored as records made

up of Rurl – the URL, Rtitle – the title, and Rsnippet – bag-of-words representation of the snippet,

2 In association rule mining the computation is made in two steps. The first step is the frequent itemset mining and consists of

retrieving all the subsets of the DB’s transactions exceeding the minimum support σ threshold.

40

of each result page; (vi) Rdate: the timestamp recording the date at which results were obtained

(note that this timestamp not necessarily relates to Ldate and Fdate).

Let Q be the submitted query, ∆ be the Query Memory, Q.terms be the bag-of-words repre-

senting the query terms, and Q.results be the array storing the results. In particular, Q.results [i]

is the i-th entry of the result set for Q.

By using this representation we have seven different methods for returning a set of queries

similar to the submitted one.

(1) Näıve query-based method : returning queries having in common at least one term.

{q ∈ ∆ s.t. q.terms ∩Q.terms 6= ∅}
(2) Näıve simplified URL-based method : returning queries having in common at least one

URL in the result lists.

{q ∈ ∆ s.t. q.QResults.Rurl ∩Q.QResults.Rurl 6= ∅}
(3) Näıve URL-based method : returning queries having in common a large fraction of URLs in

the result list. In the formula below, θm, and θM are a minimum and maximum threshold

(both real numbers ranging from 0 to 1) used to tune the intersection cardinality.

{q ∈ ∆ s.t. θm ≤ |q.QResults.Rurl∩Q.QResults.Rurl|
|Q.QResults.Rurl| ≤ θM}

(4) Query-Title-based method : returning queries where terms in their result titles are con-

tained in the submitted query.

{q ∈ ∆ s.t. ∃i q.QResults [i] .RTitle ∩Q.terms 6= ∅ and q.QResults [i] /∈ Q.QResults}
(5) Query-Content-based method : it is the same as 4 only considering snippet terms instead

of title terms.

{q ∈ ∆ s.t. ∃i q.QResults [i] .RSnippet ∩Q.terms 6= ∅ and q.QResults [i] /∈ Q.QResults}
(6) Common query title method : returning queries whose results share title terms.

{q ∈ ∆ s.t. ∃i, j q.QResults [i] .RTitle ∩Q.QResults [j] .RTitle 6= ∅}
(7) Common query text method : it is the sam as 6 only considering snippet terms instead of

the title terms.

{q ∈ ∆ s.t. ∃i, j q.QResults [i] .RTitle ∩Q.QResults [j] .RTitle 6= ∅}

Experiments in the paper were, as in the previous case, conducted on a user study. They collected

more than half a million different queries from the Metacrawler search engine. From this set of

queries they extracted and harvested the results of a subset of 70,000 queries (which constitutes

the Query Memory). Submitting queries to the search engine and harvesting result is, indeed, very

computationally and network intensive. More realistically, since the query recommender is usually

on the search engine side, not only the query trace would be immediately available, but also the

inverted indexes of the search engine would also be available avoiding the submission of queries for

results harvesting.

The most interesting result claimed is that “it was difficult to find a winner (i.e. the similarity

measure with the best recommendation)” [239]. Indeed, from a general perspective, the main reason

for this to hold, could be the fact that the validation process is a very subjective one.

One of the most interesting observation made by Zäıane and Strilets [239] is on the scalability

of their approach to a real-world setting. Actually the query memory is a DB for queries from

which depends the effectiveness of a recommendation method. The richer the query memory, the

better the suggestions computed. Yet, the way query records are stored is a crucial point and the

paper does not discuss it as deep as it should. Searching for queries containing a given keyword,

41

or keywords, would require in real world systems an index per-se, making the methods paying a

double index access for each submitted query. Obviously, these two accesses can be done in parallel

using a distributed architecture.

Baeza-Yates et al. [17] use a clustering approach to query recommendation. The query recom-

mender algorithm operates using a two tiered approach. An offline process clusters past queries

using query text along with the text of clicked URLs. The online process follows a two-stage ap-

proach: (i) given an input query the most representative (i.e. similar) cluster is found; (ii) each

query in the cluster is ranked according to two criteria: the similarity and the attractiveness of

query answer, i.e. how much the answers of the query have attracted the attention of users (this is

called support in their paper and should not be misinterpreted as support of association rules [7]).

Interestingly this work as a lot of points in common to the one of Puppin and Silvestri [172] that

has another (quite different) purpose. Enhancing the effectiveness of collection representation in

collection selection functions. We shall talk about this topic in the Enhancing Efficiency of Search

Systems chapter.

The offline query clustering algorithm operates over queries enriched by a selection of terms

extracted from the documents pointed by the user clicked URLs. Clusters are, thus, computed

by using an implementation of the k-means algorithm [107] contained in the CLUTO software

package3. The similarity between queries is computed according to a vector-space approach. That

is, each query q is represented as a vector ~q whose i-th component qi is computed as

qi =
∑

u∈URLs

Clicks (q, u)× Tf (ti, u)

maxt Tf (t, u)

where:

• Clicks (q, u) is the percentage of clicks URL u receives when answered in response to the

query q.
• Tf (ti, u) is the number of occurrences of the term t in the document pointed to URL u.

The sum is computed by considering all the clicked URLs for the query q. The distance between

two queries is computed by the cosine similarity of their relative vectors.

The k-means algorithms is sensitive to the value of parameter k, i.e. the number of computed

clusters. To measure the optimal number of cluster an empirical evaluation measuring the com-

pactness of clusters have been performed. A run of a k-means algorithm is executed with different

values of k. Each clustering result is assigned to a function computing the total sum of the similar-

ities between the vectors and the centroids of the clusters that are assigned to. For the considered

dataset the number of query cluster has been set to k = 600. The query log (and the relative

collection) they use, comes from the TodoCL search engine and contains 6,042 unique queries along

with associated click-through information. 22,190 clicks are registered in the log spread over 18,527

different URLs.

The experimental evaluation of the algorithm is performed on ten different queries. Evaluation

is done again by a user study. The evaluation assesses that presenting query suggestions ranked by

support (that is the frequency with which the query occur in the log) yields to more precise and

high quality suggestions.

3 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

42

Recently, Jones et al. [121] have proposed a model for generating queries to be suggested

based the concept of query rewriting. A query is rewritten into a new one by means of query

or phrase substitutions (e.g. the query “leopard installation” can be rewritten into “mac os x 10.5

installation”). The rewriting process is based on a Log-Likelihood Ratio (LLR) measure to evaluate

interdependencies between terms of queries. The metric tests the hypothesis that the probability

of seeing a term q2 in a query is the same wether or not term q1 has been seen. Basically, the

hypothesis H1 : P (q2|q1) = p = P (q2|¬q1) is tested against the hypothesis H2 : P (q2|q1) = p1 6=
p2 = P (q2|¬q1). The log likelihood-ratio is a statistical test for making a decision between two

hypotheses based on the value of this ratio [145]. The log likelihood ratio is computed as

LLR = −2 log
L (H1)

L (H2)

and large values of the ratio means that the likelihood of the two words of being dependent is

higher. From observations, query pairs with high log likelihood ratio are identified as substitutables.

Furthermore given that the likelihood ratio, computed as λ = L(H1)
L(H2) , is distributed as a χ2, a score

of 3.84 for log likelihood ratio gives a 95% confidence in rejecting the null hypothesis (therefore, the

relation between the two terms (or phrases) is statistically significant). Indeed a 95% confidence

means 1 in 20 not correctly detected substitutable. For this reason in [121] they set the log likelihood

ratio threshold to a high level of 100 thus making the method highly selective and precise. Indeed,

since they are dealing with logs of millions of queries even with such a high threshold level the

number of candidates found is acceptable.

A noteworthy point of the paper is the systemization of possible suggestion into four classes

going from the most precise, down to the less precise class: precise rewriting, approximate rewriting,

possible rewriting, and clear mismatch. Precise rewriting (class 1) means that the query suggested

has exactly the same semantics of the one to be replaced (e.g. automotive insurance is a precise

rewriting of automobile insurance). In approximate rewriting (class 2) the scope of the initial queries

is narrowed or broadened (e.g. ipod shuffle is a more narrow of, but still related to apple music

player). Possible rewriting (class 3) is a still less precise query suggestion methodology: queries

are either in some categorical relationship (e.g. eye-glasses and contact lenses), or describes a

complementary object (e.g. orlando bloom vs. johnny depp). The last class (4), clear mismatch, is

the less precise and contains query pairs where no relationships can be found among them.

Using these four classes we can identify the two general tasks of query suggestions, namely

Specific Rewriting (or 1+2), and Broad Rewriting (or 1+2+3). The former consists in generating

suggestions of the first and second class, the latter consists in generating suggestions of the first,

second, and third class. Given these tasks, the problem of generating query suggestion can be

reformulated into a classification problem.

In the original paper many classifier have been tested. Among the others, a linear classifier is

used. Training is performed on a manually annotated set of substitutions extracted from queries of

a query log. The extraction is made on the basis of the log likelihood ratio defined above, and the

features considered are of three different types: characteristics of original and substituted query in

isolation (e.g. length, character encoding, etc.); syntactic substitution characteristics (edit distance,

number of tokens in common, etc.); substitution statistics (e.g. log likelihood ratio, P (q2|q1), etc.)

We omit the details on how the classifier has been trained and tested and on how data has been

prepared. We report, here, only the main results. Interested readers are encouraged to read the

43

whole paper by Jones et al. [121] to get the full picture of their technique.

The learned ranking function is given by

f (q1, q2) = 0.74 + 1.88 editDist (q1, q2)

+ 0.71 wordDist (q1, q2)

+ 0.36 numSubst (q1, q2) (4.4)

and it is computed for query pairs whose log likelihood ratio is above an empirical threshold set to

100 (i.e. LLR > 100).

One of the main advantage of the rewriting approach is that it is possible to experimentally

asses the quality of suggestions without recurring to user surveys. For the log used in [121], the

precision of the method has been measured to be 76% with a recall figure of 92%.

As in the case of query expansion, query suggestion might suffer of the same problem due to

different tastes of users. Next paragraph addresses exactly this aspect and shows how information

on past queries and more specifically on who submitted them can be used to create results tailored

on a particular user category.

As a final note, it is worth mentioning a body of literature that recently has started to consider

link recommendations instead of query suggestions to enhance the effectiveness of a web search

engine. Basically, the idea is as follows: use click-through information to infer what users are looking

for and instead of suggesting a possible query suitable for finding it, suggest immediately the site

they were potentially looking for. Typical mechanisms for achieving this are quite similar to those

shown above for query suggestion. The interested readers are encouraged to read [228, 227, 229, 41]

as a starting point.

A slightly different problem, yet related with query recommendation is the problem of finding

“Query Shortcuts” [31, 30, 29]. Authors define formally the Search Shortcut Problem (SSP) as a

problem related with the recommendation of queries in search engines and the potential reductions

obtained in the users session length. This new problem formulation allows a precise goal for query

suggestion to be devised: recommend queries that allowed in the past users that used a similar

search process, to successfully find the information they were looking for. The approach take so far

for the approximation of the solution of the SSP is based on the adoption of collaborative filtering

techniques. Authors point out to some limitations of traditional algorithms, mainly related with

the sparsity of query log data, so future work should develop new algorithms specially designed for

this new problem.

4.4 Personalized Query Results

When issuing a query from different places or in different moments, users may receives different

results. Why? This is likely due to personalization of search results. Personalization consists of

presenting different ranking depending on searcher tastes. For instance, if a mathematician issues

the query “game theory” it is very likely that he will be returned with many results on theory of

games and theoretical stuff. On the other hand, an economist would be rather more interested in

how game theory has been (or can be) applied to real-world economy problems. How the search

engine can be aware that the user is a mathematician rather than an economist? One possible

answer is, again: mining query logs.

As stated by Pitkow et al. [165]: “What’s needed is a way to take into account that different

44

people find different things relevant and that people’s interests and knowledge change over time.”

Personalization, consists of delivering query results ranked according to the particular tastes

of a precise user (or class of users). Personalization, usually, is enabled by means of “re-ranking”

search results according to a specific user’s profile built automatically4. Obviously, personalization

is not the “panacea” for search effectiveness: Teevan et al. [217] demonstrate that for queries which

showed less variations among individuals re-ranking results according to a personalization function

may be insufficient (or even dangerous).

One of the first work discussing personalization of search results is presented by Haveliwala [96]

that shows how to modify the PageRank algorithm [47] to bias score calculation toward pages

related to a given topical category. The work presented in the paper does not make use of query

logs to compute personalization functions, yet it shows an interesting method to statically re-

rank pages according to user’s preferences. Basically, the personalization vector of the PageRank

algorithm is set to weight more those pages belonging to the topical categories chosen. In light

of the random surfer point of view, the personalized PageRank models a topically-biased random

surfer that instead of jumping to page chosen uniformly at random jumps only to pages of the

category he belongs to.

Liu et al. [138] categorize users with a set of relevant categories. The categorization function is

automatically computed on the basis of the retrieval history of each user. The category set is fixed

and is considered to be the one also used by the search engine to categorize web pages5.

The two main concepts used are Search Histories for users, and Users Profile. Search History

for users is kept by means of a tree structure. For example, Apple → Food&Cooking →↗
page1.html

↘page2.html

represents a search history storing that the query Apple for this user belongs to the Food&Cooking

category, in answer to this search, user clicked on results page1.html and page2.html. For each user,

and for each query, more than one category may be associated. In practice, though, more than two

categories have rarely been associated with the same query by a single user. Users Profile stores the

set of categories hit by the corresponding user. Each category is associated with a set of weighted

keywords that are considered important for the description of that category. For each user, Search

History and User Profile are stored internally as a set of three matrices DT , DC, and M .

The m-by-n matrix DT stores the associations between the m Clicked documents or issued

queries, and the n distinct terms appearing in those documents or queries. DT [i, j] is greater than

zero if term j appears in document/query i. The entry is filled-in by computing the normalized

TF-IDF score.

The m-by-p matrix DC stores the associations between documents/queries, and the p possible

categories. Each entry DC[i, j] is either 1 or 0 wether document/query i is related to topic j or not.

The p-by-n matrix M is the user profile and is learnt by the previous two matrices DT , and

DC by means of a machine learning algorithm. Each row is a vector representing a category in the

term-space.

To give an example consider a user submitting two queries frog, and screen. Suppose for the

query leopard the user is interested in a particular species of frog; suppose for the query screen the

user is interested in TV screens. The first and fourth rows of the DT matrix (Table 4.3a) store the

4 It is possible for search engines to collect explicitly this data, yet we are interested in presenting non-intrusive methods that

automatically collect user’s information and devise user’s profiles.
5For example http://www.google.com/dirhp, or http://dir.yahoo.com/

45

Doc/Term leopard medow grass screen tv

D1 1 0 0 0 0

D2 0.58 0.58 0 0 0

D3 1 0.7 0.5 0 0

D4 0 0 0 1 0

D5 1 0 0 0.6 0.4

(a) The matrix DT storing issued queries and clicked documents on
rows and terms in columns.

Doc/Categ NATURE HI-TECH

D1 1 0

D2 1 0

D3 1 0

D4 0 1

D5 0 1

(b) The matrix DC storing issued queries and
clicked documents on rows and categories in

columns.

Categ/Term leopard medow grass screen tv

NATURE 1 0.4 0.4 0 0

HI-TECH 0 0 0 1 0.4

(c) The matrix M with the learnt user profile: on the rows the Category

on the columns the category keywords.

Fig. 4.3: The matrix representation of user search history and profile.

queries, in fact all the entries are set to 0 except for the terms contained within the queries that are,

instead, set to 1. The remaining rows store representative terms of the clicked documents weighed

by their TF-IDF scores. The DC matrix (Table 4.3b) stores the associations between documents

and categories. In the example, the first three rows are for the Nature category, the remaining two

for the Hi-Tech category. The matrix M (Figure 4.3c) stores on each row the relative weight of the

terms for the given category.

In addition to the three matrices defined per each user, three additional general matrices are

generated independently from a particular user by the Open Directory Project6 (ODP) category

hierarchy. The three matrices are DTg, DCg, and Mg (where g stands for general). The label

associated with the first two levels categories are used as documents, while the third level labels

are used to extract labels.

The matrix M can be “deduced” using either user profiles only (DT , and DC), or using the gen-

eral profile only (DTm, and DCm), or using both profiles. The process of generating the matrix M

can be viewed as a multi-class text categorization task, therefore one can adopt different techniques

to learn M . In [138] authors use three classes of learners. Linear Least Squares Fit (LLSF)-based

methods [236], Rocchio-based methods[183], and a k Nearest Neighbor (kNN)-based method.

LLSF-based methods computes a p-by-n category matrix M such that DT ×MT approximates

DC with the least sum of square errors. To compute such M we first compute the Singular Value

Decomposition (SVD) of DT obtaining three matrices U , Σ, V such that U , and V are orthogonal

matrices, and Σ is a diagonal matrix. SVD is computed in order to be able to have DT = U×Σ×V T .

After the SVD M = DCT × U × Σ−1 × V T . A variant of LLSF is pseudo-LLSFT. It consists of

considering only the first k columns of U , and V of the SVD to reduce the effect of noisy entries.

Therefore, M = DCT ×Uk×Σ−1
k ×V

T
d . This method stems from another, and more popular, Latent

Semantic Indexing (LSI) [87] method used with big success in many different IR applications.

Rocchio-based methods assign each cell M [i, j] using the following equation

M [i, j] =
1

Ni

m∑
k=1

DT [k, j] ·DC[k, i]

6 http://www.dmoz.org/

46

where m is the number of documents in DT , Ni is the number of documents that are related to

the i-th category. A very nice variant of this method is the adaptive Rocchio. In adaptive Rocchio,

entries of the matrix M are updated as the data comes in. The formula of the basic Rocchio

algorithm, thus, is computed according to

M t[i, j] =
N t−1
i

N t
i

M t−1[i, j] +
1

N t
i

m∑
k=1

DT [k, j] ·DC[k, i]

where M t is the user profile at time t, N t
i is the number of documents related to the i-th category

that have been accumulated from time zero to time t.

The last method, kNN, does not compute the matrix M . Instead, it first finds the k most

similar documents among all document vectors in DT using the Cosine metric. Secondly, among

the k neighbors a set of documents S related to category c is extracted using DC, and the final

similarity between a user query q and c is computed as the sum of the similarities between q and

the documents in S. Therefore, the following formula is used to compute the similarity between a

query q and a category cj :

sim(q, cj) =
∑

di∈kNN

cos(q, di) ·DC[i, j]

where cos(q, di) is the cosine similarity between q and the descriptor of document j.

Apart from the case of the kNN-based method shown above, similarities between a query vector q

and a category vector cj , rows of M , is computed by the Cosine metric [186]. Therefore sim(q, cj) =
(q,cj)
|q|·|cj | , where (q, cj) is the scalar product between q, and cj .

By denoting with cu the user profile generated category, and with cg the general user profile

there are five possible ways of computing the similarity between a query vector q and a category c:

• Using only the user profile: sim(q, c) = sim(q, cu)
• Using only the general profile: sim(q, c) = sim(q, cg)
• Combo1: sim(q, c) = 1

2 · (sim(q, cu) + sim(q, cg))
• Combo2: sim(q, c) = 1− (1− sim(q, cu)) · (1− sim(q, cg))
• Combo3: sim(q, c) = max (sim(q, cu), sim(q, cg))

The accuracy is defined as:

Accuracy =
1

n

∑
cj∈topK

1

1 + rankci − ideal rankci

and it is computed in a user study to evaluate the effectiveness of the method.

In the formula above, topK are the K category vectors having the highest cosine similarity

measure with the query, rankci , is an integer ranging from 1 to K and is the rank of category ci
as computed by sim(q, cj), ideal rankci is the rank assigned by users in the human-generated rank.

Liu et al. [138] tested the methods by setting K = 3 (i.e. the top 3 scoring categories).

For instance, if categories c1, and c2 are ranked as first and second by the system, and first and

third by humans the Accuracy is given by

Accuracy =
1

2

(
1

1 + 1− 1
+

1

1 + 2− 3

)
= 0.5

47

The number of users surveyed in the original paper is seven, each one of them evaluating an

amount of queries ranging from 26 to 61.

As a first result in Table 4.4a it is shown the comparison of the average accuracy of the different

learning methods computed over the seven users when using only the user profile.

Method pLLSF LLSF bRocchio kNN

Avg Accuracy 0.8236 0.7843 0.8224 0.8207

(a) Average accuracy of the different learning methods using only the

user profile over the seven users surveyed.

Method User General Combo1 Combo2 Combo3

Avg Accuracy 0.8224 0.7048 0.8936 0.8917 0.8846

(b) Average accuracy of the different profile combination methods using non-adaptive

Rocchio learning algorithm.

Fig. 4.4: Average accuracy of the different profile combination methods [138].

In Table 4.4b the accuracy of the ranking computed is measured by considering all the possible

combinations and the Rocchio’s algorithm as the learning method.

A nice result is obtained from the analysis of the adaptive learning algorithm. The main obser-

vations reported by Liu et al. [138] are:

• When the dataset on which the model is computed is small, accuracy of using the user

search history derived profile is worse than the one learnt from the general profile. There-

fore, the accuracy of combining both profiles is better than those using a single profile

and the accuracy of using the user profile only is better than that using the general profile

only, provided that there is sufficient historical data.
• For all the datasets the accuracy of combining user and general profiles is better than

that using only one of them.
• As more and more data comes into the adaptive model, the user profile based model gets

better and better.
• The accuracy approaches to 1 as the dataset increases.

Actually, considering the extremely high variability of queries in search engines, the adaptive

learning method should be the one of choice because it is able to adapt promptly to this variations

without requiring any efforts from search engine maintainers7.

Another different approach followed by Boydell and Smith [45] is based on the use of snippets

of clicked results to build an index for personalization. First of all, personalization is done, through

re-ranking of the search results, at the proxy-side. Therefore, the technique described in the paper

does not require the storing of usage information at the server-side. Furthermore, not requiring

the storing of usage information at the server side makes this approach harmless with respect to

the problems of users’ privacy mentioned in Introduction. This approach, indeed, falls into the

7This is a similar observation made by Baraglia and Silvestri [32] in the context of online web recommender systems.

48

category of those collecting data proxy-side. Documents and queries collected for a subset of users

(a community) are used.

The method is quite straightforward, we use the notation adopted by the authors to keep the

discussion as similar as possible to that of the original paper. Let (C, u, qT) be a search for query

qT by user u in the community C. Let selected(C, qT , r) = true if a result r has been selected when

returned in response to a query qT . The snippet for r is s(r, qT) = t1, . . . , tn, and can be considered

as a surrogate for the real document r within the context of (C, u, qT). The document r is thus

indexed by the system only by considering s(r, qT). Since the same document r can be selected for

different queries submitted by users of community C, the surrogate is actually represented as the

union of all the s(r, qi) vectors.

SC(r) =
⋃

i s.t. selected(C,qi,r)

s(r, qi)

The rationale behind this representation is that it actually stores the relevant parts of a doc-

ument r for the community C. The snippets are indexed by the Lucene8 IR system. In addition

to this local index, a hit-matrix H is used. Each entry of the hit-matrix Hi,j stores the number of

times result rj has been selected in addition to query qi.

Given a query qT submitted within the community C, and a result rj for which

selected(C, qT , rj) = true, we firstly retrieve all the queries q1, . . . , qn that has been previously

submitted and that has caused the selection of document rj . The relevance of rj for query qT is

computed using the following equation

Relevance(rj , qT , q, . . . , qn) = TF− IDF(rj , qT) · (1 +
n∑
i=1

(Rel (rj , qj) ·QuerySim (qT , qi)))

where Rel (rj , qj) =
Hi,j∑
∀j Hi,j

; and QuerySim (qT , qi) = |qT∩qi|
|qT∪qi| (i.e. the Jaccard’s Distance [25] be-

tween qT , and qi).

Also this method has been assessed through a user study. The study monitored a group of users

for a period of 2 weeks recording a total of 430 search sessions. Results are recorded both at the

end of the first week, and at the end of the entire period.

Metric Week 1 Week 2

Total sessions 246 184
Overall Success Rate 41% 60%

Table 4.1: The success rate of the re-ranking algorithm as computed from the user study by Boydell

and Smith [45].

As it is shown in Table 4.1 many users found the re-ranking of search result useful, in particular

it is evident a raise in the second week denoting (in agreement with some of the conclusions drawn

by Liu et al. [138]) that a longer training period produces a beneficial effect in the quality of

personalization.

8 http://lucene.apache.org/

49

In a recently presented work by Dou et al. [73], a large-scale evaluation of personalization

strategies is shown. In particular, the study differs deeply from the previous ones since it does not

present any user studies, but instead exploits an evaluation function based on sessions extracted

from query logs. The MSN search engine, along with a query log coming from the same engine is

used for the testing framework.

Some conclusions in the paper by Dou et al. [73] are the following.

• Personalization may lack of effectiveness on some queries and there is no need for person-

alization on those queries. Typically navigational queries do not have many advantages

in using or not personalization. For example for the query “Digg”, users tend to not look

too much into the search results. The first result, usually showing the target’s home page,

is selected.
• Different strategies may have variant effects, and therefore variant effectiveness, on differ-

ent queries. For instance, for the query “free mp3 download” all the previous methods will

result ineffective, because those techniques are well-suited to queries on multiple topics

(e.g. “mouse”).
• Users that have submitted few queries in the past do not benefit too much from person-

alization, on the other hand users with a short-term user need are penalized by results

that are personalized on the basis of the stratified knowledge. Again, as an example, the

query “mouse” will likely produce a lot of results from the computer category for a user

having submitted the majority of his queries in that category. If, for some reasons, the

query was submitted to intentionally look for information on mice, the user experience

will not be improved.

Therefore,

the effectiveness of a specific personalized search strategy may show great im-

provement over that of non personalized search on some queries for some users,

and under some search contexts, but it can also be unnecessary and even harmful to

search under some situations. [73]

The evaluation framework for re-ranking that has been considered by Dou et al. [73], is made

up of four parts:

(1) Query results retrieval.

(2) Personalization.

(3) Ranked lists combination.

(4) Evaluation of personalization effectiveness.

In Query results retrieval the top 50 search results are obtained from the MSN search engine for

the query being tested. Furthermore, let U be the set of downloaded web pages, and let τ1 be the

ranking of pages in U as returned by the search engine. In Personalization phase, a personalization

algorithm (see below) is used to generate a new list τ2 from U by ranking its elements according

to the personalization score computed. The Ranked lists combination phase uses the Borda fusion

algorithm [220] to merge τ1, and τ2 into the final ranked list, τ , that is proposed to user. The Borda

fusion method is very straightforward, it is a voting system in which each voter ranks the list of

50

n candidates in order of preference. Within this list the first candidate scores n points, the second

scores n− 1, down to the last one who scores 1 point. The final score of each candidate is given as

the sum of each score in each voter’s ranked list. Considering our problem, suppose U is composed

of four pages U = {a, b, c, d}, suppose τ1 = (abcd), and τ2 = (acdb). According to the Borda fusion

method the final list τ = (acbd) with scores, 8, 5, 4, and 3 respectively. The Borda scoring system

is useful whenever the original ranking scores from the search engine are not available. Otherwise,

the ranking could have been computed using one of the three methods (i.e. Combo1, Combo2,

Combo3) shown above. In the Evaluation of personalization effectiveness step the personalization

is evaluated in a totally automatic manner. The assumption we make is that results are consistent

with those actually seen by the users who submitted the queries in their used query log. The log

was referring to queries submitted in August 2006, and the study was conducted in September 2006

therefore they were able to ignore the effect of the index updates. Personalization is analyzed under

two different perspectives. A person-level re-ranking strategy considers the history of a single user

to carry out personalization. A group-level re-ranking, instead, focuses on queries and results of a

community of (typically homogeneous) people.

Person level re-ranking strategies include P-Click, L-Profile S-Profile, and LS-Profile.

Group level re-ranking is computed using the G-Click score. Let q be a query submitted by

user u. The personalized score for the page p is computed by the different methods in the following

ways.

P-Click. The score SP−click(q, p, u) is computed using the count of clicks on p by u on query q,

namely |Clicks(q, p, u)|, and the total number of clicks made by the same user on the same query

q, i.e. |Clicks(q, •, u)|

SP−click(q, p, u) =
|Clicks(q, p, u)|
|Clicks(q, •, u)|+ β

where β is a smoothing factor (β = 0.5 in the paper by Dou et al. [73]) that together with

|Clicks(q, •, u)| is used to normalize the score. Actually, in fact, only |Clicks(q, p, u)| matters for the

purpose of scoring the triple (q, p, u). The main drawback of this approach is that whenever a user

submit a query not previously seen, personalization does not take place. As seen in User Action

chapter, two-thirds of queries are submitted only once, thus, the method does not impact too much

on personalized results.

L-Profile. The score SL−Profile(q, p, u) is, in this case, computed by using a user profile specified

as a vector cl(u) of 67 pre-defined topic categories defined by the 2005 KDD Cup [137]. Let U(p)

be the number of users that have ever clicked on p, and U the total number of users that have ever

clicked on some pages. Let w(p) be the weight of page p within the user’s history computed as

w(p) = log
|U|
U(p)

Furthermore, let |Clicks(•, •, u)| the total number of clicks of u, and let |Clicks(•, p, u)| be the

number of clicks made by user u on page p. The probability that user u clicks on page p, P (p|u) is

computed as

P (p|u) =
|Clicks(•, p, u)|
|Clicks(•, •, u)|

51

. The category vector of a web page p, namely c(p) is computed by means of a page classifier

developed by Shen et al. for the KDD-cup2005 [193]. Each component c(p)i is the classification

confidence returned by Q2C@UST that indicates the probability for a page p to be in the i-th

category. If category i is not returned by the tool then we set c(p)i = 0. Let P(u) be the collection

of pages visited by u, the user profile cl(u) is automatically learnt by past user’s clicked pages by

using the following formula

cl(u) =
∑

p∈P(u)

P (p|u)w(p)c(p)

and the final personalization score is computed as

SL−Profile(q, p, u) =
cl(u) · c(p)
‖cl(u)‖‖c(p)‖

S-Profile. The previous method has the characteristic of accumulating the stratified knowledge

about all the queries submitted in the past. Sometimes it is better, for personalization purposes,

to consider only the most recently seen pages by u: Ps(q) is the set of pages visited in the current

session with respect to query q. The vector cs(u) is a user short-term profile and is computed as

cs(u) =
1

|Ps(q)|
∑

p∈Ps(q)

c(p)

The personalization S-Profile is then computed as

SS−Profile(q, p, u) =
cs(u) · c(p)
‖cs(u)‖‖c(p)‖

where c(p) is computed as in the case of the L-Profile scoring formula described above.

LS-Profile. The score, in this case, is obtained by a linear combination of the previous two

methods and is given by

SLS−Profile(q, p, u) = θSL−Profile(q, p, u) + (1− θ)SS−Profile(q, p, u)

G-Click. To test group-based personalization a kNN approach is used. In this case the person-

alization is based on the k users having closest preferences with the current user. The similarity

between to users u and u′ is given by

Sim(u, u′) =
cl(u) · cl(u′)
‖cl(u)‖‖cl(u′)‖

and it is used to compute the k nearest neighbors of u as follows

Su(u) = {u′|rank(sim(u, u′)) ≤ k}

The final re-ranking score is, then, computed as

SG−Click(q, p, u) =

∑
u′∈Su(u)

Sim(u, u′)|Clicks(q, p, u′)|

β +
∑

u′∈Su(u)

|Clicks(q, •, u′)|

52

To test the performance of the various strategies, a MSN query logs collecting 12 days worth of

queries submitted in August 2006 was used. The main important difference between the evaluation

performed in this paper and those of previous papers is that authors do not make use of any

user study. Instead, they use information about past clicks done by users to evaluate the relevance

of the personalized ranking computed. In particular, evaluation is done through the use of two

measurements: Rank Scoring ; Average Rank.

Rank Scoring. The method has been proposed by Breese [46] to evaluate the performance of a

recommender system using collaborative filtering techniques to produce a ranked list of suggestions

to users. The method is aimed at approximating the expected utility of a ranked list of pages for

a particular user. Let j be the rank of a page in the evaluated re-ranking, let δ(s, j) be a boolean

function evaluating to 1 if and only if j is clicked when returned in answer to the query s, let α be

a normalizing factor: the expected utility for page s in the ranked list is given by

Rs =
∑
j

δ(s, j)

2(j−1)/(α−1)

The final rank scoring is the sum (normalized by the sum of maximum utilities Rmax
s) of the utilities

of all entries of the list

R = 100

∑
sRs∑

sR
max
s

Larger values of R mean better performance of the personalization algorithm.

Average Rank. The average rank has been used in other papers [176, 208] to evaluate the

effectiveness of the personalization strategy. The average rank for a ranked list of results is defined

in terms of the sum of its items. Let Ps be the set of clicked pages on test query s, let R(p) the

rank of page p, the average rank for a page s is defined as

AvgRanks =
1

|Ps|
∑
p∈Ps

R(p)

and the final average rank on the query set S is computed as:

AvgRank =
1

|S|
∑
s∈S

AvgRanks

Table 4.2 shows a comparison of the various methods seen thus far on the MSN query log. The

method defined as WEB represents the performance of the considered web search engine without

any personalization and, thus, it represents the baseline for comparisons.

Results under the column all, correspond to the entire query log, while the not-optimal column

corresponds to the performance of personalization on queries whose top result was not the one

selected by users. That is the queries on which the search engine performed poorly. Click-based

methods always outperform the baseline showing that, in general, click-through data can bring

benefits to personalization on the web.

The results shown in Table 4.2 are computed over the whole query log and represent the ag-

gregate, and final, effectiveness figure for the proposed methods. As it has been said many times,

53

method
all not-optimal

Rank Similarity Average Rank Rank Similarity Average Rank

WEB 69.4669 3.9240 47.2623 7.7879

P-Click 70.4350 3.7338 49.0051 7.3380

L-Profile 66.7378 4.5466 45.8485 8.3861

S-Profile 66.7822 4.4244 45.1679 8.3222

LS-Profile 68.5958 4.1322 46.6518 8.0445

G-Click 70.4168 3.7361 48.9728 7.3433

Table 4.2: Overall performance of personalization methods shown by Dou et al. [73]. For the method

G-Click K is set to 50, whereas for the method LS-Profile θ = 0.3.

personalization is only effective whenever the variance in results clicked for a query is high. This,

in fact, means that for a single query there are many topics associated with a single result. A

measurement that can be computed to evaluate the degree of result variance for a given query is

the Query Click Entropy.

Let q be a query, let p be a page, and let P(q) be the set of web pages clicked on query q. Let

P (p|q) be the percentage of clicks on page p when returned as an answer to query q, i.e.

P (p|q) =
|Clicks(q, p, •)|
|Clicks(q, •, •)|

The Query Click Entropy is defined as

ClickEntropy(q) =
∑

p∈P(q)

−P (p|q) log2 P (p|q)

Obviously ClickEntropy(q) = 0 if and only if log2 P (p|q) = 0, i.e. P (p|q) = 1. Therefore, the

minimum entropy is obtained when clicks are always on the same page. Personalization, in this

case, is of little (or no) utility. Personalization might help in the case of zero entropy, only if the

clicked page is not the top ranked one, but this is very unlikely to happen.

Figure 4.5 shows the distribution of the click entropy for the MSN query log. The majority of

the queries (about 70%) exhibits a very low entropy value (0 - 0.5) meaning that clicks, in this

case, were almost all referred to the same page. In terms of personalization this means that in,

almost, 70% of the cases personalization does not help. This fact is also confirmed in the overall

results appearing in Table 4.2 where the improvements of the various methods over the baseline

are sensitive.

Considering this low entropy in query clicks, remain important to evaluate the variation of the

accuracy measurements when entropy varies.

Figure 4.6a plots the variation in Ranking scoring, and Figure 4.6b plots the variation of the

Average rank when varying the entropy level.

The first observation is that the greater the query click entropy the better the performance.

Both Ranking scoring, and Average Rank perform better at higher entropy levels. Roughly speak-

ing, this means that whenever accuracy improvement is needed (on high variance query results)

personalization is of great help.

The second observation is that, as in the case of the overall results shown above, the click-

based methods sensibly outperformed the profile-based ones. This seems to be in contrast with

54

 0

 0.2

 0.4

 0.6

 0.8

 1

0-0.5 1-1.5 2-2.5 3-3.5 4-4.5 >5

P
er

ce
nt

ag
e

of
 q

ue
rie

s

Click entropy of queries

(a) All queries

 0

 0.2

 0.4

 0.6

 0.8

 1

0-0.5 1-1.5 2-2.5 3-3.5 4-4.5 >5

P
er

ce
nt

ag
e

of
 q

ue
rie

s

Click entropy of queries

(b) Queries with query times>5

 0

 0.2

 0.4

 0.6

 0.8

 1

0-0.5 1-1.5 2-2.5 3-3.5 4-4.5 >5

P
er

ce
nt

ag
e

of
 q

ue
rie

s

Click entropy of queries

(c) Queries with user number>2

Figure 4: Distribution of query click entropy.

queries lost the clicked web pages in downloaded search re-
sults. This is because MSN search engine has changed for
these queries. We excluded these queries when reporting
the experimental results in the following sections. Further-
more, we find for 57% (2,256/3,963) of the left queries, users
select only the top results. In other words, original search
method WEB has done the best on these queries and per-
sonalization does not provide improvements. We call the
other 1,707 queries, on which users select not only the top
results, not-optimal queries.

6.1 Overall Performance of Strategies
Table 2 shows the overall effectiveness of the personaliza-

tion strategies on the test queries. We find:
(1) Click-based personalization methods G-Click and P-

Click outperform method WEB on the whole. For instance,
on the not-optimal queries, method P-Click has a signifi-
cant (p < 0.01) 3.68% improvement over method WEB and
method G-Click have a significant (p < 0.01) 3.62% improve-
ment over WEB (using rank scoring metric). P-Click and
G-Click methods also have significant improvements (1.39%
and 1.37%) over WEB on all test queries including both
not-optimal and optimal queries. These results show that
click-based personalization methods can generally improve
web search performance.

(2) Methods P-Click and G-Click have no significant dif-
ferent performances on the whole. In our experiments, we
sample 10,000 users and select the 50 most similar users for
each test user in G-Click approach (we also try the meth-
ods to select 20 and 100 users, but they show no significant
difference). By reason of high user query sparsity, selected
similar users may have few search histories on the queries
submitted by test user. This makes group-level personaliza-
tion perform no significant improvement over person-level
personalization. If more days’ logs are given and more users
are selected, method G-Click may perform better.

(3) Profile-based methods L-Profile, S-Profile, and LS-
Profile perform less well on average. We compute rank scor-
ings of all the methods for each single test query and then
plot the distributions of rank scoring increment over WEB
method for each personalization strategy in Figure 5. We
find that though L-Profile, S-Profile, and LS-Profile meth-
ods improve the search accuracy on many queries, they also
harm the performance on more queries, which makes them
perform worse on average. This indicates that the straight-
forward implementation of profile-based strategies we em-
ploy in this paper do not work well, at least not as stable as
the click-based ones. We will give some analysis on why our
profile-based methods are unstable in Section 6.5.

Table 2: Overall performance of personalization
strategies. R.S. denotes the rank scoring metric and
A.R. denotes the average rank metric.

method
all not-optimal

R.S. A.R. R.S. A.R.
WEB 69.4669 3.9240 47.2623 7.7879

P-Click 70.4350 3.7338 49.0051 7.3380
L-Profile 66.7378 4.5466 45.8485 8.3861
S-Profile 66.7822 4.4244 45.1679 8.3222
LS-Profile 68.5958 4.1322 46.6518 8.0445
G-Click 70.4168 3.7361 48.9728 7.3433

6.2 Performance on Different Click Entropies
We give the average search accuracy improvements of dif-

ferent personalization strategies on the test queries with dif-
ferent click entropy in Figure 6. We use only the queries
asked by at least three users to make the click entropy more
reliable.

We see that the improvement of the personalized search
performance increases when the click entropy of query be-
comes larger, especially when click entropy ≥ 1.5. For the
click-based methods P-Click and G-Click, the improvement
of personalization is very limited on the queries with click
entropies between 0 and 0.5. The G-Click method, which
gets the best performance for these queries, has only a non-
significant 0.37% improvement over WEB methods in rank
scoring metric. This means users have small variance on
these queries, and the search engine has done well for these
queries, while on the queries with click entropy≥2.5, the re-
sult is disparate: both P-Click and G-Click methods make
exciting performance. In the rank scoring metric, method
G-Click has a significant (p < 0.01) 23.37% improvement
over method WEB and P-Click method have a significant
(p < 0.01) 23.68% improvement over method WEB. Profile-
based methods L-Profile, S-Profile and LS-Profile worsen
search performance when click entropy < 1.5, while L-Profile
and LS-Profile also achieve better performances on queries
with click entropy ≥ 1.5 (we wonder why method L-Profile
also worsens search accuracy when click entropy≥2.5 and
will provide additional analysis on this in future work).

All these results indicate that on the queries with small
click entropy (which means that these queries are less am-
biguous or more navigational), the personalization is insuf-
ficient and thus personalization is unnecessary.

WWW 2007 / Track: Search Session: Personalization

587

Fig. 4.5: Click entropy distribution for the MSN query log [73].

the results shown in literature so far. Dou et al. [73] state that this might have been due to a

“rough implementation” of their system. Actually, a deeper analysis have shown that profile based

strategies, especially the L-Profile, suffer of an inability to adapt to variation of users’ information

needs.

Figure 4.7 shows that: (i) profile-based methods perform better when the number of queries

submitted by users is around 70-80, this is due to the fact that such a number of queries forms a good

repository of knowledge that can be effectively exploited by the system; (ii) in all the other cases

click-based methods outperform profile-based methods and improve over the baseline; (iii) when

the number of queries submitted by each user increase and becomes greater than (approximately)

90 the profile methods collapse. This last phenomenon might be explained by the fact that the

higher the number of queries, the longer the period within which they have been submitted, the

higher the probability that user needs has been changed.

The literature on personalization is quite rich. We have not analyzed, in this work, relevant

papers such as [218, 78, 194, 144, 62, 225]. We trust in the keen reader and we leave them the

pleasure of reading them.

4.5 Learning to Rank

Using machine learning techniques [150] in text categorization (thus in search engine documents

characterization) has a long tradition [192]. Starting more than ten years ago [44], machine learning

techniques have been extensively studied to derive ranking functions in web search engines.

Differently from personalized ranking, the aim of “learning to rank” techniques [117] is to

compute a global (i.e. independent from user), model to compute relevance scores for each page.

Basically, it works by firstly selecting the best features to be used to identify the importance of a

page, and then by training a machine learning algorithm using these features on a subset (i.e. the

55

 1

 10

 100

 1000

-100 -50 0 50 100

N
um

be
r o

f t
es

t q
ue

rie
s

P-Click - WEB

(a) P-Click

 1

 10

 100

 1000

-100 -50 0 50 100

N
um

be
r o

f t
es

t q
ue

rie
s

L-Profile - WEB

(b) L-Profile

 1

 10

 100

 1000

-100 -50 0 50 100

N
um

be
r o

f t
es

t q
ue

rie
s

S-Profile - WEB

(c) S-Profile

 1

 10

 100

 1000

-100 -50 0 50 100

N
um

be
r o

f t
es

t q
ue

rie
s

LS-Profile - WEB

(d) LS-Profile

 1

 10

 100

 1000

-100 -50 0 50 100

N
um

be
r o

f t
es

t q
ue

rie
s

G-Click - WEB

(e) G-Click

Figure 5: Distributions of rank scoring increment over WEB method. The count of the test queries with the
same rank scoring increment range is plot in y-axis with log scale.

-10%

-5%

0%

5%

10%

15%

20%

25%

0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 >=2.5

R
an

k
S

co
rin

g
Im

pr
ov

em
en

t

Entropy

WEB
P-Click
L-Profile

S-Profile
LS-Profile
G-Click

(a) Ranking scoring

-60%

-40%

-20%

0%

20%

40%

60%

0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 >=2.5

A
ve

ra
ge

 R
an

k
Im

pr
ov

em
en

t

Entropy

WEB
P-Click
L-Profile

S-Profile
LS-Profile
G-Click

(b) Average rank

Figure 6: Search accuracy improvements over WEB method on the queries with variant click entropies. Only
the queries asked by at least three users are included. Notice that in figure (b), smaller average rank means
higher search accuracy.

6.3 Performance on Repeated queries
In Subsection 5.4, we find about 46% test queries are re-

peated by the same user or different users and 33% queries
are repeated by the same user. It means that users often re-
view the queries and results they ever referred. Teevan et al.
[33] have also observed that re-finding behavior is common,
and have shown that repeat clicks can often be predicted
based on a user’s previous queries and clicks. In this pa-
per, methods P-Click and G-Click are based on historical
clicks. The high repetition ratio in real world makes these
click-based personalization strategies work well.

Table 3(a) shows the personalization performance on the
repeated non-optimal queries repeated by either the same
user or different users and Table 3(b) gives the results on
the queries repeated by the same user. We find the per-
sonalization methods P-Click and G-Click have significant
improvements over WEB method on queries repeated by
same user. This means that when a user re-submit a query,
his/her selections are also highly consistent with the past
and the personalization based on his/her past clicks per-
forms well. These results tell us that we should record user
query and click histories and use them to improve future
search if no privacy problems exist. We also should provide
convenient ways for users to review their search histories,
just like those provided by some current search engines.

6.4 Performance on Variant Search Histories
Do users who frequently use search engine benefit more

from personalized search? Do profile-based personalized

search strategies perform better when the search history
grows? To answer these questions, we plot the improve-
ments of rank scorings on queries given by users with differ-
ent search frequencies in Figure 7. We find:

(1) Using click-based methods P-Click and G-Click, users
who have greater search activities in training days do not
consistently benefit more than users who do less searching.
This is because users who frequently use the search engine
may have more varied information needs. They may repeat
old queries, but they may also submit lots of fresh queries,
which makes our click-based methods P-Click and G-Click
perform similar averages for users with different search fre-
quencies (notice that the two series of methods P-Click and
G-Click are very close to each other).

(2) Method L-Profile when using a user’s long-term inter-
est profile can perform better when a user has more queries,
especially when the number of queries grows from 0 to 70.
This is because we can catch users’ long-term interests more
accurately when their search histories are long enough. At
the same time, we find that the performance of L-Profile
becomes more unstable when the user has more and more
queries, especially when they have more than 80 queries.
This is because there is more noise in queries and further-
more the users have varied information needs. This tell us
that when the user’s search histories increase, we should take
more analysis on user’s real information need and select only
appropriate search histories to build up user profiles. Tan et
al. [31] find that the best performance of profile-based per-
sonalized search methods they proposed is achieved when

WWW 2007 / Track: Search Session: Personalization

588

(a) Ranking scoring.

 1

 10

 100

 1000

-100 -50 0 50 100

N
um

be
r o

f t
es

t q
ue

rie
s

P-Click - WEB

(a) P-Click

 1

 10

 100

 1000

-100 -50 0 50 100

N
um

be
r o

f t
es

t q
ue

rie
s

L-Profile - WEB

(b) L-Profile

 1

 10

 100

 1000

-100 -50 0 50 100

N
um

be
r o

f t
es

t q
ue

rie
s

S-Profile - WEB

(c) S-Profile

 1

 10

 100

 1000

-100 -50 0 50 100

N
um

be
r o

f t
es

t q
ue

rie
s

LS-Profile - WEB

(d) LS-Profile

 1

 10

 100

 1000

-100 -50 0 50 100

N
um

be
r o

f t
es

t q
ue

rie
s

G-Click - WEB

(e) G-Click

Figure 5: Distributions of rank scoring increment over WEB method. The count of the test queries with the
same rank scoring increment range is plot in y-axis with log scale.

-10%

-5%

0%

5%

10%

15%

20%

25%

0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 >=2.5

R
an

k
S

co
rin

g
Im

pr
ov

em
en

t

Entropy

WEB
P-Click
L-Profile

S-Profile
LS-Profile
G-Click

(a) Ranking scoring

-60%

-40%

-20%

0%

20%

40%

60%

0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 >=2.5

A
ve

ra
ge

 R
an

k
Im

pr
ov

em
en

t

Entropy

WEB
P-Click
L-Profile

S-Profile
LS-Profile
G-Click

(b) Average rank

Figure 6: Search accuracy improvements over WEB method on the queries with variant click entropies. Only
the queries asked by at least three users are included. Notice that in figure (b), smaller average rank means
higher search accuracy.

6.3 Performance on Repeated queries
In Subsection 5.4, we find about 46% test queries are re-

peated by the same user or different users and 33% queries
are repeated by the same user. It means that users often re-
view the queries and results they ever referred. Teevan et al.
[33] have also observed that re-finding behavior is common,
and have shown that repeat clicks can often be predicted
based on a user’s previous queries and clicks. In this pa-
per, methods P-Click and G-Click are based on historical
clicks. The high repetition ratio in real world makes these
click-based personalization strategies work well.

Table 3(a) shows the personalization performance on the
repeated non-optimal queries repeated by either the same
user or different users and Table 3(b) gives the results on
the queries repeated by the same user. We find the per-
sonalization methods P-Click and G-Click have significant
improvements over WEB method on queries repeated by
same user. This means that when a user re-submit a query,
his/her selections are also highly consistent with the past
and the personalization based on his/her past clicks per-
forms well. These results tell us that we should record user
query and click histories and use them to improve future
search if no privacy problems exist. We also should provide
convenient ways for users to review their search histories,
just like those provided by some current search engines.

6.4 Performance on Variant Search Histories
Do users who frequently use search engine benefit more

from personalized search? Do profile-based personalized

search strategies perform better when the search history
grows? To answer these questions, we plot the improve-
ments of rank scorings on queries given by users with differ-
ent search frequencies in Figure 7. We find:

(1) Using click-based methods P-Click and G-Click, users
who have greater search activities in training days do not
consistently benefit more than users who do less searching.
This is because users who frequently use the search engine
may have more varied information needs. They may repeat
old queries, but they may also submit lots of fresh queries,
which makes our click-based methods P-Click and G-Click
perform similar averages for users with different search fre-
quencies (notice that the two series of methods P-Click and
G-Click are very close to each other).

(2) Method L-Profile when using a user’s long-term inter-
est profile can perform better when a user has more queries,
especially when the number of queries grows from 0 to 70.
This is because we can catch users’ long-term interests more
accurately when their search histories are long enough. At
the same time, we find that the performance of L-Profile
becomes more unstable when the user has more and more
queries, especially when they have more than 80 queries.
This is because there is more noise in queries and further-
more the users have varied information needs. This tell us
that when the user’s search histories increase, we should take
more analysis on user’s real information need and select only
appropriate search histories to build up user profiles. Tan et
al. [31] find that the best performance of profile-based per-
sonalized search methods they proposed is achieved when

WWW 2007 / Track: Search Session: Personalization

588

(b) Average rank.

Fig. 4.6: Search accuracy improvement over the baseline method (WEB) on varying the entropy

measure [73].

training set corpus) of the web pages. The focus in this survey is on using query logs to generate

training data for learning to rank algorithms. To this extent, learning to rank algorithms will be

discussed briefly, for context, but remember that the focus is on using logs to generate training

data.

More specifically the aim of learning to rank is aimed to learn (as in the machine learning mean-

ing) a function for ranking objects. Learning to rank is useful for document retrieval, collaborative

filtering, and many other applications. We are concerned, in this work, to learning functions that

are able to evaluate the importance of a document d in answer to a query q. Defined this way,

it resembles much the definition of general ranking [221], the main difference is that the ranking

function is not user generated but it is learnt by using a set of features that generally takes into ac-

56

Table 3: Performance on repeated queries. In Table(a), Y means that the query is repeated by either the
same user or different users and N means not. In Table(b), Y means that the query is repeated by the same
user and N means that the query is first submitted by a user. All the queries are not-optimal queries.

(a) Performance on repeated queries

method
Y N

R.S. A.R. R.S. A.R.
WEB 46.6285 8.0620 47.4013 7.7002

P-Click 55.9090 6.1663 47.4013 7.7002
L-Profile 47.7405 8.2953 45.4091 8.4141
S-Profile 46.7600 8.0695 44.7980 8.4003
LS-Profile 46.8138 8.1340 46.6142 8.0169
G-Click 55.7377 6.1886 47.4013 7.7002

(b) Performance on user-repeated queries

method
Y N

R.S. A.R. R.S. A.R.
WEB 45.7215 8.0522 47.4858 7.7387

P-Click 59.4750 5.2090 47.4858 7.7387
L-Profile 48.0128 8.2575 45.5346 8.4100
S-Profile 45.5959 8.1306 45.1058 8.3579
LS-Profile 45.8936 8.1679 46.7618 8.0215
G-Click 59.1086 5.2500 47.5025 7.7332

-15%

-10%

-5%

0%

5%

10%

0-10 30-40 60-70 90-100 120-130

R
an

k
S

co
rin

g
Im

pr
ov

em
en

t

Historical queries of user

WEB
P-Click
L-Profile

S-Profile
LS-Profile
G-Click

Figure 7: Rank scoring increments over WEB
method on all test queries submitted by users with
different query frequencies.

using click-through data of past searches that are related
to the current query. We think this is because of the same
reasons.

(3) Methods S-Profile and LS-Profile are less sensitive to
historical query number. Method LS-Profile is more stable
than method L-Profile.

6.5 Analysis on Profile-based Strategies
From Table 2, we surprisingly find that the profile-based

personalization strategies perform less optimally, which is
inconsistent with existing investigations [28]. We think this
is due to the rough implementation of our strategies. The
experimental results indicate that the straightforward im-
plementation we employ does not work well. From Subsec-
tion 6.4 we see it is difficult to build an appropriate user
profile even when the user history is rich. The search his-
tory inevitably involves a lot of noisy information that is
irrelevant to the current search and such noise can harm the
performance of personalization, as indicated by [31]. In our
experiments we simply use all the historical user searches to
learn user profiles without distinguishing between relevant
and irrelevant parts, which may make the personalization
unstable. We also do none normalization and smoothing
when generating user profiles. Since these strategies are far
from optimal, we will do more investigation and try to im-
prove their performance in future work.

Although profile-based approaches perform badly in our
experiments, we can still find an interesting thing. Method

LS-Profile is more stable than methods L-Profile and S-
Profile, as shown in Table 2, Figure 5, Figure 6 and Fig-
ure 7. That means the incorporation of long-term interest
and short-term context can gain better performance than
solely using either of them. In other words, both long-term
and short-term search contexts are very important to per-
sonalize search results. The combination of the two type of
search context can make the prediction of real user informa-
tion need more reliable.

7. CONCLUSIONS
In this paper, we try to investigate whether personaliza-

tion is consistently effective under different situations. We
develop a evaluation framework based on query logs to en-
able large-scale evaluation of personalized search. We use 12
days of MSN query logs to evaluate five personalized search
strategies. We find all proposed methods have significant im-
provements over common web search on queries with large
click entropy. On the queries with small click entropy, they
have similar or even worse performance than common web
search. These results tell us that personalized search has
different effectiveness on different queries and thus not all
queries should be handled in the same manner. Click en-
tropy can be used as a simple measurement on whether the
query should be personalized and we strongly encourage the
investigation of more reliable ones.

Experimental results also show that click-based personal-
ization strategies work well. They are straightforward and
stable though they can work only on repeated queries. We
suggest that search engine keeps the search histories and
provides convenient and secure review ways to users.

The profile-based personalized search strategies proposed
in this paper are not as stable as the click-based ones. They
could improve the search accuracy on some queries, but they
also harm many queries. Since these strategies are far from
optimal, we will continue our work to improve them in fu-
ture. We also find for profile-based methods, both long-term
and short-term contexts are important in improving search
performance. The appropriate combination of them can be
more reliable than solely using either of them.

8. ACKNOWLEDGMENTS
We are grateful to Dwight Daniels for edits and comments

on writing the paper. Comments from the four anonymous
referees are invaluable for us to prepare the final version.

WWW 2007 / Track: Search Session: Personalization

589

Fig. 4.7: Rank scoring over the WEB method on varying the number of queries submitted by each

user [73].

count more than term or document frequencies (that are, instead, typical of traditional IR ranking

functions). Furthermore, many methods do not make use of any information coming out of query

logs, we do not include those studies in this survey.

One of the seminal papers on this topic has been presented in 1996 at an AAAI workshop on

Internet-Based Information Systems. In their paper Boyen et al. [44] present LASER: a Learning

Architecture for search engine Retrieval. The system is based on machine learning techniques for

the ranking module.

As a side note, not really on topic with the current Text, it is worth mentioning that in 1996,

when neither PageRank [47] nor HITS [125] were yet proposed, the paper started from the ob-

servation that the web was composed of hypertext and links. LASER was the first (as far as we

are aware of) to introduce the concept of reward propagation through the hypertext graph. Given a

retrieval status value (rsv0(q, d)) measuring the likeliness of the document d being relevant for the

query q, by a value iteration process [39] the rsv score after t link traversals is given by

rsvt+1(q, d) = rsv0(q, d) + γ
∑

d′∈links(d)

rsvt(q, d
′)

|links(d)|ν

where γ is a discounting factor governing the propagation of page weights through links, links(d) is

the neighboring set of d, ν is used for normalization purposes. This formula resembles very much

that of PageRank except that instead of considering inlinks it propagates weights through outlinks

(much more in the spirit of Marchiori’s paper on hyper search engines [146]).

In traditional IR experiments, ranking precision has been measured with the help of a popular

benchmark: the TREC collection [97]. Relevance judgements were provided for the precision to be

evaluated in a scientific (i.e. reproducible) way.

The ranking precision of a web search engine, instead, is very difficult to evaluate. Basically, in

57

shortage of humans devoted to evaluate the quality of results for queries the only way that can be

followed is to evaluate how results are clicked by users on query results. Click-through information

is thus used to infer relevance information: if a document receives a click it is relevant for the query

it has answered. Therefore, if f is a ranking function we can define its performance as the average

rank of the clicked results, i.e.

Perf(f) =
1

|Q|

|Q|∑
i=1

1

|Di|

|Di|∑
j=1

rank(f,Qi, Dij)

where Q1 . . . Q|Q| are the queries over which click-through data has been collected, Di is the set

of documents clicked in answer to Qi. The performance metric is very straightforward: if for query

q1 user clicks on the first, the second and the fourth, and for the query q2 user clicks on the second

and the third, than Perf(f) = 1
2

(
7
3 + 6

2

)
= 2.67

Getting back to LASER, the method we are considering, its aim is to learn from users (implicit)

feedback on past queries. Fixing the objective of finding the argument f minimizing Perf(f) a

variant of the simulated annealing [170] is used. Actually, the performance of the learning algorithm

using click-through data as a feature in learning is only assessed for a single experiment. Preliminary

results, though, were very promising thus, motivating further investigations (see Table 4.3).

standard TF-IDF automatically learned parameters

1. Vegetarian Chili Recipes 1. Eating “Indian” in Pittsburgh
2. Vegetarian Recipes 2. Restaurant Reviews
3. Eating “Indian” in Pittsburgh 3. A list of food and cooking sites
4. Restaurant Reviews 4. Duane’s Home Page & Gay Lists
5. Greek Dishes 5. For the Professional Cook
6. Focus on Vegetarian 6. Eating & Shopping Green in Pittsburgh
7. For the Professional Cook 7. Vegetarian Recipes

Score: 3.5 Score: 1.5

Table 4.3: Rankings produced by the standard TF-IDF scoring, and the learnt f function for the

query “vegetarian restaurant”[44].

To be precise, it is worth saying that the technique does not only use click-through information

for learning the ranking. Among its features, in fact, the containment in some special headlines

(H1, H2, etc.), the containment within title, bold, italic, blink modifiers, and the appearance as

anchor text, are also considered.

After this seminal work many other papers have been published on this topic. In particular,

works in [114, 115, 131, 177, 5, 6, 4, 118, 237, 178], show techniques operating on different features

extracted from query logs.

Among the others two popular approaches emerged in these last years: RankSVM [114], and

RankNet [51].

Joachims [114] lays the foundations of the RankSVM technique. Stemming from the observation

that a click on a result is not an unbiased estimator for the importance of the relative web page,

Joachims looks for a set of query log features that could give an unbiased estimate of user’s perceived

relevance for a web page [114, 116].

58

The fact that users click more often on the first result than on the others seem to be related

with a trust feeling with the search engine ranking. Looking back at Figure 4.2 at page 34 it can

be observed that, even if the first and the second results are swapped, the bars denoting their

percentage of clicks are not swapped as well.

The key observation is that:

click is not an unbiased estimator of the absolute importance of a page, yet, since

users scan a page from top to bottom, clicking on a result is likely to be a sign that

the user retains that result more important than the previous ones.

In other words: a click is not an unbiased indication of the absolute importance of a page. However,

because people usually scan search results from top to bottom, a click on a result is evidence that

it may be more important than unclicked results that appeared before it in the ranking.

Starting from the previous key observation Joachims et al. [116] propose a series of strategies to

extract relevance feedback from click-through data. All the strategies are better explained through

an example: let q be a query returning result pages p1 to p7, suppose a user clicks on pages p1, p2,

p4, and p7, i.e.:

p∗1, p
∗
2, p3, p

∗
4, p5, p6, p

∗
7

The following strategies for extracting feedback can be defined.

Strategy 4.1 (Click > Skip Above). For a ranking (p1, p2, . . .) and a set C containing the ranks

of the clicked-on links, extract a preference example rel(pi) > rel(pj) for all pairs 1 ≤ j < i with

i ∈ C and j /∈ C9.

From the running example, using Strategy 4.1, the features rel(p4) > rel(p3), rel(p7) > rel(p5),

rel(p7) > rel(p3), and rel(p7) > rel(p6) are extracted. In other words, the strategy assumes that

when a user clicks on a result retains all the previous results not relevant.

Strategy 4.2 (Last Click > Skip Above). For a ranking (p1, p2, . . .) and a set C containing

the ranks of the clicked-on links, let i ∈ C be the rank of the link the was clicked temporally last.

Extract a preference example rel(pi) > rel(pj) for all pairs 1 ≤ j < i with j /∈ C.

From the running example, using Strategy 4.2, the features rel(p7) > rel(p6), rel(p7) > rel(p5),

and rel(p7) > rel(p3) are extracted. In other words, the strategy assumes that only the last click

counts and it expresses the relevance of the clicked results with respect to all the previously unclicked

ones. The set of relevance features extracted using Strategy 4.2 is a subset of those extracted by

Strategy 4.1.

Another possible assumption is that the abstracts that are most reliably evaluated are those

immediately above the clicked link. This leads to the following strategy, which generates constraints

only between a clicked link and a not-clicked link immediately above.

9 rel(·) is the function measuring the relevance of a page: rel(pi) > rel(pj) means pi is more relevant than pj in the click-set C.

59

Strategy 4.3 (Click > Earlier Click). For a ranking (p1, p2, . . .) and a set C containing the

ranks of the clicked-on links, let t(i), i ∈ C be the time when the link was clicked. We extract a

preference rel(pi) > rel(pj) for all pairs j and i with t(i) > t(j).

From the running example, using Strategy 4.3, assume pages are clicked in this order p4, p1,

p2, p7, we can extract the following features: rel(p1) > rel(p4), rel(p2) > rel(p4), rel(p2) > rel(p1),

rel(p7) > rel(p4), rel(p7) > rel(p1), and rel(p7) > rel(p2). As in the previous strategy the idea that

later clicks are more informed decisions than earlier clicks is followed. But, stronger than the “Last

Click > Skip Above”, it is now assumed that clicks later in time are on more relevant abstracts

than earlier clicks.

Strategy 4.4 (Click > Skip Previous). For a ranking (p1, p2, . . .) and a set C containing the

ranks of the clicked-on links, extract a preference example rel(pi) > rel(pi−1) for all i ≥ 2 with

i ∈ C and (i− 1) /∈ C.

From the running example, using Strategy 4.4, the features rel(p4) > rel(p3), and rel(p7) >

rel(p6) are extracted. The strategy is motivated by the fact that the abstracts that are most reliably

evaluated are those immediately above the clicked link. This leads to the Click > Skip Previous

strategy, which generates constraints only between a clicked link and a not-clicked link immediately

above. The same assumption can also lead to the following strategy.

Strategy 4.5 (Click > No-Click Next). For a ranking (p1, p2, . . .) and a set C containing the

ranks of the clicked-on links, extract a preference example rel(pi) > rel(pi+1) for all i ∈ C and

(i+ 1) /∈ C.

From the running example, using Strategy 4.4, the features rel(p2) > rel(p3), and rel(p4) >

rel(p5) are extracted.

Accuracy of relevance samples extracted using these different strategies is very difficult to mea-

sure. In Joachims et al. [116] an approach tackling, once more, a user study has been used. Table 4.4

shows the percentage of automatically extracted pairs that are in agreement with the user generated

explicit relevance judgements.

As it can be seen all the features are performing fairly above the baseline which corresponds to

the performance of the random extraction, i.e. 50%, in particular the best performing one is the

Last Click > Skip Above, which outperforms all of the others. In particular, the three methods Last

Click > Skip Above, Click > Skip Previous, and Click > Skip Above performed equally better also

when the first two results were swapped10.

Users usually do not issue just a single query and then stop: whenever they are looking for an

information, instead of a precise website, they tend to issue more than a single query until they

have satisfied their needs. Query Chains can be exploited to infer implicit relevance feedback on

document clicks in sequences of user queries.

10Recall from the discussion done in the introductory paragraph of this chapter that the number of clicks a given position
obtained in two different conditions: normal and swapped, i.e. the first two results were swapped, rank is, more or less, stable.

See Figure 4.2.

60

Strategy

Features
per

Query Normal (%) Swapped (%)

Inter-Judge Agreement N/A 89.5 N/A
Click > Skip Above 1.37 88.0 ± 9.5 79.6 ± 8.9
Last Click > Skip Above 1.18 89.7 ± 9.8 77.9 ± 9.9
Click > Earlier Click 0.20 75.0 ± 25.8 36.8 ± 22.9
Click > Skip Previous 0.37 88.9 ± 24.1 80.0 ± 18.00
Click > No Click Next 0.68 75.6 ± 14.1 66.7 ± 13.1

Table 4.4: Accuracy of the strategies shown above for generating pairwise preferences from clicks

within a single query. Feature-Per-Query shows the average number of features extracted per each

query, the Swapped Column represents the experiment with the first two results swapped. These

figures have been extracted from the paper by Joachims et al. [116]. The Inter-Judge Agreement

column correspond to the average agreement with which judges have scored the different results.

To exploit sequentiality in submissions of different queries for the same information need, other

six strategies are proposed.

Let us consider the following example used, as in the description of the strategies above, to

better explain the query chain-related strategies. Consider four subsequent lists of pages returned

in answer to four queries pertaining to the same chain. I.e.

p11, p12, p13, p14, p15, p16, p17

p∗21, p22, p
∗
23, p24, p

∗
25, p26, p27

p31, p
∗
32, p33, p34, p35, p26, p37

p∗41, p42, p43, p44, p45, p36, p47

again the asterisk, ∗, means that the result has been clicked by the user.

Strategy 4.6 (Click > Skip Earlier QC). For a ranking (p1, p2, . . .) followed (not necessarily

immediately) by ranking (p′1, p
′
2, . . .) within the same query chain and sets C, and C ′ containing

the ranks of the clicked-on links in either ranking, extract a preference example rel(p′i) > rel(pj)

for all pairs i ∈ C ′ and j < max(C) with j /∈ C.

For the above example strategy 4.6 produces the following set of examples: rel(p32) > rel(p22),

rel(p32) > rel(p24), rel(p41) > rel(p22), rel(p41) > rel(p24), and rel(p41) > rel(p31). The strategy

is, thus, an analogous extension of “Click > Skip Above” to multiple result sets. A preference is

generated between two links from different result sets within the same query chain, if a link in an

earlier result set was skipped and a link in a later result set was clicked.

To improve the accuracy of the preferences, we may consider the subset of preferences generated

only by the last click in a query chain.

61

Strategy 4.7 (Last Click > Skip Earlier QC). For a ranking (p1, p2, . . .) and a set C contain-

ing the ranks of the clicked-on links. If the last ranking (p′1, p
′
2, . . .) within the same query chain

received a click, the let i the the temporally last click in this ranking and extract a preference

example rel(p′i) > rel(pj) for all pairs j < max(C) with j /∈ C.

Strategy 4.7 produces the following set of features for our running example: rel(p41) > rel(p22),

rel(p41) > rel(p24), and rel(p41) > rel(p31).

In analogy to “Click > Earlier Click” for within query preferences, the following strategy ex-

plores the relationship between pairs of clicked links between queries. In particular, it generates a

preference between a clicked link of an earlier query and a clicked link of a later query in the same

query chain.

Strategy 4.8 (Click > Click Earlier QC). For a ranking (p1, p2, . . .) followed (not necessarily

immediately) by ranking (p′1, p
′
2, . . .) within the same query chain and sets C, and C ′ containing

the ranks of the clicked-on links in either ranking, extract a preference example rel(p′i) > rel(pj)

for all pairs i ∈ C ′ and j ∈ C.

Strategy 4.8 produces the following set of features for our running example: rel(p32) > rel(p21),

rel(p32) > rel(p23), rel(p32) > rel(p25), rel(p41) > rel(p21), rel(p41) > rel(p23), rel(p41) > rel(p25),

and rel(p41) > rel(p32).

One shortcoming of the two strategies “Click > Skip Earlier QC” and “Last Click > Skip Earlier

QC” is that they generate preferences only if an earlier query within the chain drew a click. However,

about 40% of all queries does not receive any clicks. For such queries without clicks, Joachims et al.

[116] observed using eye-tracking techniques that show that users typically view the top links [90].

For queries without clicks, it is therefore assumed that the user evaluated the top two links and

decided to not click on them, but rather to reformulate the query. This leads to the following two

strategies, where a preference is generated between a clicked link in a later query, and the first (or

second) link in a earlier query that received no clicks.

Strategy 4.9 (Click > TopOne NoClickEarlier QC). For a ranking (p1, p2, . . .) that re-

ceived no clicks followed (not necessarily immediately) by ranking (p′1, p
′
2, . . .) within the same

query chain having clicks on ranks in C ′, extract a preference example rel(p′i) > rel(p1) for all

i ∈ C ′.

Strategy 4.10 (Click > TopTwo NoClickEarlier QC). For a ranking (p1, p2, . . .) that re-

ceived no clicks followed (not necessarily immediately) by ranking (p′1, p
′
2, . . .) within the same

query chain having clicks on ranks in C ′, extract a preference example rel(p′i) > rel(p1), and

rel(p′i) > rel(p2), for all i ∈ C ′.

Strategy 4.9 produces the following set of features for our running example: rel(p21) > rel(p11),

rel(p23) > rel(p11), rel(p25) > rel(p11), rel(p32) > rel(p11), rel(p41) > rel(p11). Additionally to the

62

previous features, Strategy 4.10 produces also rel(p21) > rel(p12), rel(p23) > rel(p12), rel(p25) >

rel(p12), rel(p32) > rel(p12), rel(p41) > rel(p12).

The accuracy of the previous strategies “Click > TopOne NoClickEarlier QC” and “Click >

TopTwo NoClickEarlier QC” suggests that users not only give negative feedback about the result

set by not clicking on any link, but also that they learn from the result set how to formulate a

better query. In particular, a user might discover an unanticipated ambiguity of the original query,

which is avoided in a query reformulation. To capture the concept of a user trying to improve their

queries within a chain of reformulations it has been considered how often the top result of a later

query is more relevant than the top result of an earlier query.

Strategy 4.11 (TopOne > TopOne Earlier QC). For a ranking (p1, p2, . . .) that received no

clicks followed (not necessarily immediately) by ranking (p′1, p
′
2, . . .) within the same query chain

having clicks on ranks in C ′, extract a preference example rel(p′i) > rel(p1), and rel(p′i) > rel(p2),

for all i ∈ C ′.

Strategy 4.11 produces the following set of features for our running example: rel(p21) > rel(p11),

rel(p31) > rel(p11), rel(p41) > rel(p11), rel(p31) > rel(p21), rel(p41) > rel(p21), rel(p41) > rel(p31).

Strategy

Features
per

Query Normal (%) Swapped (%)

Click > Skip Earlier QC 0.49 84.5 ± 16.4 71.7 ± 17.0
Last Click > Skip Earlier QC 0.33 77.3 ± 20.6 80.8 ± 20.2
Click > Click Earlier QC 0.30 61.9 ± 23.5 51.2 ± 17.1
Click > TopOne NoClickEarlier QC 0.35 86.4 ± 21.2 77.3 ± 15.1
Click > TopTwo NoClickEarlier QC 0.70 88.9 ± 12.9 80.0 ± 10.1
TopOne > TopOne Earlier QC 0.84 65.3 ± 15.2 68.2 ± 12.8

Table 4.5: Accuracy of the Query Chain strategies shown above for generating pairwise prefer-

ences from clicks within a single query. Feature-Per-Query shows the average number of features

extracted per each query, the Swapped Column represents the experiment with the first two results

swapped [116].

As in the non-QC methods, Table 4.5 shows the accuracy of the methods proposed for the

Query Chains. In particular, it is evident that Strategy 4.10 – Click > TopTwo NoClickEarlier QC

– produces the best results. Indeed, results of Click > TopTwo NoClickEarlier QC are better than

those obtained by all of the non-QC strategies. Note that the average accuracy of this method is

the same of the “Click > Skip Previous” one. The standard deviation, though, is smaller leading

to a smaller number of incorrect rankings. Furthermore, 88.9% is close to the theoretical optimum

of 89.5% corresponding to the Inter-judgements agreement shown in Table 4.4. For this reason

considering the history of the queries submitted by the same user on the same topic, improve the

estimate of the relevance of a page.

For any of the QC strategies discussed above to be applicable, it is necessary to specify the

algorithm used to detect Query Chains, that is segmenting query submission histories of users into

Query Chains automatically. Radlinski and Joachims [177] and Joachims et al. [116] devise the

63

following way of extracting Query Chains. They use a machine learning approach based on features

like the overlap of query words, overlap and similarity of the retrieved results, and time between

queries.

Anyway:

“it remains an open question whether this segmentation can be done equally

accurately in a web search setting, and in how far the information need drifts within

long query chains.” [116]

For instance, rules 4.2, and 4.3 assume that when a user clicks on several results, it is because

the first clicked results did not satisfy the information need. This assumption is not always true. For

example, it may be correct for navigational queries but not necessarily true for informational [48]

ones.

Getting back to how to use query log features to learn to rank, in [114] a formalization of

the Information Retrieval problem is given in order to be able to state it as a machine learning

problem. For a query q and a document collection D = {d1, . . . , dm}, the optimal retrieval system

aims at returning a ranking r∗ that orders the documents in D according to their relevance to

the query. Obviously the ordering r∗ cannot be formalized specifically (otherwise it would be a

Sorting Problem) therefore, usually, an IR system returns an ordering rf(q) that is obtained by

sorting documents in D according to scores computed by a function f over the query q, i.e. f(q).

Formally, both r∗, and rf(q) are binary relations over D × D that fulfill the properties of a weak

ordering (i.e. asymmetric, and negatively transitive). A relation r contains pairs (di, dj) such that

dj is ranked higher than di, i.e. di <r dj . To optimize f(q) in order to produce a ranking as close

as possible to the optimal one r∗, we need to define the similarity between two orderings: r∗ and

rf(q). In the literature one of the most used metric to measure similarity between two ranked lists

is the Kendall’s τ distance metric [123]. Basically it consists of counting the number of concordant

– P – and discordant – Q – pairs in r∗ and rf(q). In a finite domain of m total documents in the

collection, i.e. |D| = m, and the total number of pairs is, thus,
(
m
2

)
. Kendall’s τ can be defined as

τ(ra, rb) =
P −Q
P +Q

= 1− 2Q(
m
2

)
Maximizing τ(r∗, rf(q)) is equivalent to minimize the average rank of relevant documents. Fur-

thermore it is proven the following theorem relating the Kendall’s τ with the Average Precision [25].

Theorem 4.1. Let f(q) be a ranking function returning the ranking rf(q) for query q. Let R be

the number of relevant documents, and let Q be the number of discordant pairs with respect to the

optimal rank. The Average Precision AvgPrec of the scoring function f is bounded by

AvgPrec
(
rf(q)

)
≥ 1

R

[
Q+

(
R+ 1

2

)]−1
(

R∑
i=1

√
i

)2

The above argument shows that maximizing τ(r∗, rf(q)) is connected to improved retrieval qual-

ity in multiple frameworks.

Therefore, we are able to define the problem of learning a ranking function as an optimization

problem.

64

Learning a Ranking Function Problem [114]. For a fixed and unknown distribution Pr(q, r∗)

of queries and target rankings on a document collection D with m documents, the goal is to learn

a retrieval function f(q) for which the expected Kendall’s τ

τPr(f) =

∫
τ(r∗, rf(q))dPr(q, r∗)

is maximal [114].

The learner we are seeking selects a ranking function f from a family of ranking function F

maximizing the empirical expected τ on the training sample set S, an independently and identically

distributed training sample set containing n queries qi with their rankings r∗i , i = 1, ..., n

τS(f) =
1

n

n∑
i=1

τ
(
rf(qi), r

∗
i

)
We consider a class of linear ranking functions satisfying

(di, dj) ∈ f~w(q)⇔ ~wΦ(q, di) > ~wΦ(q, dj)

where, ~w is a weight vector that is the one learnt by the learning algorithm, and Φ(q, d) is a mapping

onto features describing the matching of query q and document d: much in the spirit of Fuhr [84] and

Fuhr et al. [83]. By introducing (non-negative) slack variables ξi,j,k we can formulate the problem

as an optimization problem known as Ranking SVM [114]:

Definition 4.1. Ranking SVM

minimize: V
(
~w, ~ξ
)

= 1
2 ~w · ~w + C

∑
ξi,j,k

subject to:

∀(di, dj) ∈ r∗1 : ~w (Φ(q1, di)− Φ(q1, dj)) ≥ 1− ξi,j,1
. . .

∀(di, dj) ∈ r∗n : ~w (Φ(q1, di)− Φ(q1, dj)) ≥ 1− ξi,j,1
∀i∀j∀k : ξi,j,k ≥ 0

In the definition above, C is a parameter used to allow the trade-off of margin size against

training error. This problem can be solved using a SVM, and Joachims [114] shows how it can be

extended to include also non-linear ranking functions.

The learnt ranking function is, then, used to sort the documents by their values of the retrieval

status value rsv(q, di) = ~wΦ(q, di).

Actually, there is a little trick to adopt in the implementation of the Ranking SVM problem.

Since the whole feedback is not available for each query, i.e. we do not have ranking information

for the whole collection, we must adapt the Ranking SVM to partial data by replacing r∗ with the

observed preferences r′. Given a training set S

(q1, r
′
1), (q2, r

′
2), . . . , (qn, r

′
n)

with partial information about the target ranking, this results in the following problem

65

Definition 4.2. Ranking SVM (partial)

minimize: V
(
~w, ~ξ
)

= 1
2 ~w · ~w + C

∑
ξi,j,k

subject to:

∀(di, dj) ∈ r′1 : ~w (Φ(q1, di)− Φ(q1, dj)) ≥ 1− ξi,j,1
. . .

∀(di, dj) ∈ r′n : ~w (Φ(q1, di)− Φ(q1, dj)) ≥ 1− ξi,j,1
∀i∀j∀k : ξi,j,k ≥ 0

The resulting retrieval function is, thus, defined using the same SVM approach of the non-partial

problem. The function chosen is the one that has the lowest number of discordant pairs with respect

to the observed parts of the target ranking.

Radlinski and Joachims [177] and Joachims et al. [116] show some experimental results. In

particular, Radlinski and Joachims [177] show that using Query Chains helps in improving the

retrieval quality. Through a user study made on training data from the Cornell University Library’s

search engine they showed that 32% of people preferred the rankSVM performance trained over

QC over a 20% of people preferring the non-rankSVM version of ranking (48% of people remained

indifferent). Furthermore, 17% against 13% of users preferred the rankSVM using QC than the

rankSVM not using QC (here, 70% of people remained indifferent).

Other approaches to learn to rank use different learning algorithms. RankNet, for instance, is

said to be used by the Microsoft’s Live search engine [139], it adopts a neural network approach

to tackle the problem of learning a ranking function [51]. Several other approaches have been

proposed during these last years: RankBoost [82], GBRank [244], LambdaRank [52], NetRank [3],

just to name a few. An interesting source of information for this kind of algorithms is the Learning

to Rank11 workshop that, usually, makes his proceedings available online.

For readers interested in deepening their knowledge on learning to rank, a very interesting survey

has been published in the same series of the present survey [143].

4.6 Query Spelling Correction

One of the neatest features of a search engine is the ability of “magically” detect we are mistyping

queries. There is no magic, obviously, and the use of information on past queries is of utmost

importance to infer Spelling Corrections in mistyped queries.

At a first glance, this may look pretty much similar to the problem of Query Suggestion. Indeed

Query Spelling Correction is a little bit subtler. This is particularly true in web search engines where

queries are composed by using terms drawn from a vocabulary of conversational words and people

11Google for “workshop learning to rank” for a list of URLs of past workshops’ editions.

66

Fig. 4.8: The word Brittany representing the name of a person is correctly recognized as valid.

Fig. 4.9: An example of how a popular search engine helps a user that mistyped the word Britney

in Brittany.

names (i.e. Brittany Spears12). Furthermore, contextual information are also extremely important.

For instance, consider the two queries “flash grdn”, and “imperial grdn”. It is straightforward to

correct the first occurrence of “grdn” with “gordon”, whereas the second one with “garden”. This

simplicity derives from the term before “flash gordon” is a popular comics character, for instance.

Query spelling correction is not free from errors. Someone looking for “maurizio marin” might not

look for “marino marin” like, instead, it is suggested13. Figure 4.9 shows the correction presented

for the query “Brittany Spears” into the query “Britney Spears”.

Intuitively, Query Logs constitutes a very comprehensive knowledge base for building spelling

correction models that have to be based on the actual usage of a language and not (only) on a

prebuilt vocabulary of terms. Indeed, recently, there have been proposed works dealing with spelling

correction using web search engines’ query logs [67, 8, 136, 164, 60]. Note that the näıve approach

of extracting from query logs all the queries whose frequencies are above a certain threshold and

consider them valid is not correct. In fact, it can be the case that a misspelled query like “britny

spears” is far more frequent than correctly spelled queries like “relational operator” or “bayesian

net”: shall “britny spears” be suggested as a possible correction in those cases?

Cucerzan and Brill [67] develop a very powerful technique to deal with query correction using

information out of query logs. Authors of the paper very nicely introduce the problem formulation

by reviewing the prior work and by iteratively refining the model to include the most interesting

case of web search.

The most classical methodology followed for spelling correction dates back to 1964 when Dam-

12Note that we have mistyped the name Britney to demonstrate the subtleties of query spelling. The word Brittany is, in fact,
recognized as correct by many spell checkers (see Figure 4.8) whereas the word Britney is not. This is true on our particular

spell checker, at least.
13At least at the time this survey was written.

67

erau [71] published the seminal work on spelling correction. Basically the idea behind traditional

spelling correction is the following. Use a lexicon/dictionary made up of ∼100K words. Flag words

not found in lexicon as misspellings. Suggest lexicon words that are small edit distance14 from un-

recognized word. More formally, let Σ be the alphabet of a language and L ⊂ Σ∗ a broad coverage

lexicon of the language. The definition given by Damerau [71] of lexicon-based spelling correction

is:

Definition 4.3. Given an unknown word w ∈ Σ∗ \L, lexicon-based spelling correction finds w′ ∈ L
such that dist (w,w′) = min

v∈L
dist (w, v).

Here, the function dist (·, ·) is a string distance function. Damerau [71] proposes to use the Edit

distance to evaluate how similar two strings are. The major drawback of the problem formulation

given in Definition 4.3 is that it does not consider the frequency of words in a language. Let us,

then, refine the above formulation by thresholding the maximum distance allowed and to get the

term with the maximum probability of occurrence. Formally:

Definition 4.4. Given an unknown word w ∈ Σ∗ \ L, find w′ ∈ L such that dist (w,w′) ≤ δ and

P (w′) = max
v∈L, dist(w,v)≤δ

P (v).

In this formulation, all distances are set to be δ at maximum, and within the terms at that maximum

distance the most likely word is suggested. The most important fact is that prior probabilities are

computed over a given language. Therefore, it allows the conditioning on the basis of a given

language. Also this formulation is not free from drawbacks: it does not consider, for instance, the

actual distances between each candidate and the input word. The following definition does consider

that distance by conditioning the probability of a correction on the original spelling P (v|w):

Definition 4.5. Given an unknown word w ∈ Σ∗ \ L, find w′ ∈ L such that dist (w,w′) ≤ δ and

P (w′|w) = max
v∈L, dist(w,v)≤δ

P (v|w) = max
v∈L, dist(w,v)≤δ

P (w|v)P (v).

The skilled reader shall recognize the application of the Bayes’ theorem to rewrite the objective

function as P (v|w) = P (w|v)P (v)
P (w) where P (v) is the language model, and P (w|v) is the error model.

The term P (w) can be omitted since it does not depend on v thus does not influence the compu-

tation of the minimum.

In general, the above three formulations consider words to be corrected in isolation. This means

situations like the one shown above when the two queries “flash grdn”, and “imperial grdn” had

to be corrected in a different way are not taken into consideration. A formulation taking into

consideration this issue of contextual spelling correction is the following:

Definition 4.6. Given a string s ∈ Σ∗, s = clwcr, with w ∈ Σ∗ \ L and cl, cr ∈ L∗, find w′ ∈ L
such that dist (w,w′) ≤ δ and P (w′|clwcr) = max

v∈L, dist(w,v)≤δ
P (v|clwcr).

14Edit distance is usually defined as a measure over the number of characters that need to be changed, added, removed or

transposed to convert one word to another.

68

That is, we are considering contextual information like the words preceding (cl) and following (cr)

the given word to be corrected. The last formulation cannot consider query corrections where two

valid words have to be concatenated into an out of lexicon word. For instance, the query “robert

louis steven son” is composed by all valid queries, yet it is very likely that actually the correct

query should have been “robert louis stevenson” despite the fact that both “steven”, and “son” are

two valid words.

The above observations lead to a very general formulation of the problem that is the following:

Definition 4.7. Given s ∈ Σ∗, find s′ ∈ Σ∗ such that dist (w, v) ≤ δ and P (s′|s) =

max
t∈Σ∗, dist(s,t)≤δ

P (t|s).

In the above definition it is important to remark that the formulation does not make use of any

explicit lexicon of the language considered. In a sense, it is the query log induced language that

matters and string probabilities are extracted from the query log itself.

Definition 4.7 is general and correct, yet it cannot be used to derive any algorithm to perform

spelling corrections. First of all, it has to be noticed that query spelling correction can be formulated

as an iterative process. Consider this query: “roberl louis steven son”. The correct query formulation

is, very likely, “robert louis stevenson” and the steps that can be followed to converge to the correct

formulation are: “roberl louis steven son” → “robert louis steven son” → “robert louis stevenson”.

How to pass from string s to string s1? Using the query log information to observe that relatively

frequently s1 appears in the log. Therefore, if s0 is a misspelled query, the algorithm aims at using

query log information to find a succession of queries s1, . . . , sn such that si into sj (0 ≤ i < j ≤ n),

sn is the correct spelling. Formally this leads to the following definition:

Definition 4.8. Given a string s0 ∈ Σ∗, find a sequence s1, . . . , sn ∈ Σ∗ such that for each i ∈
0..n − 1 there exist the decompositions si = w1

i,0 . . . w
li
i,0, si+1 = w1

i+1,1 . . . w
li
i+1,1, where wkj,h are

words or groups of words such that dist
(
wki,0, w

k
i+1,1

)
≤ δ, ∀i ∈ 0..n−1, ∀k ∈ 1..li and P (si+1|si) =

max
t∈Σ∗, dist(si,t)≤δ

P (t|si), ∀i ∈ 0..n− 1, and P (sn|sn−1) = max
t∈Σ∗,dist(sn,t)≤δ

P (t|sn).

A misspelled query that can be corrected by a method applying the above definition is, for

example, s0 =“britenetspaer inconcert” can be transformed into s1 = “britneyspears in concert”

and successively into s2 = “britney spears in concert”, and finally “britney spears in concert”.

Obviously, for the above method to work some assumptions have to be done. First of all we must

fix a maximum number of tokens into which a single word can be split, Cucerzan and Brill [67]

choose to split into bigrams at maximum. Furthermore, it is essential to such an approach to work

correctly that query logs adhere to three properties:

(1) words in the query logs are misspelled in various ways, from relatively easy-to-correct mis-

spellings to very-difficult-to-correct ones, that make the user’s intent almost impossible

to recognize;

(2) the less difficult to correct a misspelling is the more frequent it is;

(3) the correct spellings tend to be more frequent than misspellings.

69

Cucerzan and Brill [67] implement a very nice and efficient algorithm to correct misspelled

queries. Basically, what they do is to explore through a viterbi search algorithm the space of all

possible corrections selecting from time to time the most likely correction out of a trusted lexicon

of words and a lexicon of words built over a query log. The algorithm is made efficient since it does

not allow simultaneous correction of two adjacent words. Therefore, the query “log wood” would

not be corrected into “dog food” by mistake only because the first is less frequent than the second

in the query log.

Cucerzan and Brill [67] also propose a quite accurate evaluation of the effectiveness of the method

they propose. The evaluation has been performed over a set of 1044 unique and randomly sampled

queries from a daily query log, which were annotated by two annotators whose inter-agreement

rate was 91.3%. For those queries considered misspellings the annotators provided also corrections.

The overall precision of the system was 81.8%, that is in the 81.8% of the cases the system either

classified a query as valid, or recognized a misspelled query and proposed a valid correction. The

first case occurred in the 84.8% of the cases, whereas in the 67.2% of the cases the system either

did not recognize a misspelling or it proposed an invalid correction.

Something that has not very deeply studied by authors of the work is the error model, that is

the probability distribution P (s|t) of misspelling the word s with t. This important issue, crucial

for letting the spell-checking algorithm to work with high precision, is thoroughly studied by Ah-

mad and Kondrak [8]. Basically, they run an Expectation-Maximization (EM) algorithm to update

iteratively the error model and to detect “frequent” substitution patterns. These frequent substi-

tution patterns are then plugged into the error model to boost edit distance computations and to

make that more effective to correct errors typical in query logs. To enhance the precision of these

methods based on statistics from query logs, Chen et al. [60] have recently proposed to adopt

information from target pages. This way, a richer text repository is available to be able to detect a

greater number of patterns to be “injected” into the edit distance computation function.

4.7 Summary

One of the possible uses of knowledge mined from query logs is to enhance the effectiveness of the

search engine. By effectiveness we mean the capability of the search engine to answer with the best

possible results to the query issued by a particular user. That is, we aim at presenting each user the

most suitable possible list of results for his specific needs. This technique, known as personalization,

is one of the major topics presented in this chapter.

When a query is badly formulated, or user is too generic or too specific, query suggestion and

query expansion are the other two techniques that are used to improve the search experience. The

former is an explicit help request from the search engine to the user. That is, the user is presented

with a list of query suggestions among which we aim at including queries steering the user towards

his specific information need. The latter is an implicit technique used by the search engine to modify

(by adding search terms) the query in order to make it more expressive.

Learning to rank is used to “learn” static scores, i.e. query-independent, for web pages. Some of

the most recently proposed techniques make use of information about how users click on results for

a query. One of the most interesting claims (that has been empirically evaluated) is that, instead

of considering a click as a distinguishing sign of importance, it is more effective to consider the

relative clicking order among results. A click on the i-th result demote all the previous results, that

70

is clicks are considered as a sort of preference vote.

The last part of the present chapter presented the very recent literature about how search engines

exploit information about queries submitted in the past to spell-check (and correct) submitted

queries. This prevent them to correct the query “Brittany” (Figure 4.8) and allow to correctly

detect the spelling error in the query “Brittany Spears” (Figure 4.9).

71

5

Enhancing Efficiency of Search Systems

Quoting a passage of Baeza-Yates et al. [14]:

“The scale and complexity of web search engines, as well as the volume of queries

submitted every day by users, make query logs a critical source of information to

optimize precision of results and efficiency of different parts of search engines. Fea-

tures such as the query distribution, the arrival time of each query, the results that

users click on, are a few possible examples of information extracted form query logs.

The important question to consider is : can we use, exploit, or transform this in-

formation to enable partitioning the document collection and routing queries more

efficiently and effectively in distributed web search engines?”

This means that dealing with efficiency in web search engines is as important as it is dealing with

user preferences and feedback to enhance effectiveness. Literature works show that usage patterns

in web search engine logs can be exploited to design effective methods for enhancing efficiency in

different directions.

In these last years, the majority of research studied how to exploit usage information to make

caching, and resource allocation, effective in highly distributed and parallel search systems. In

addition, there is a novel trend to exploit usage information from query logs also for Crawling [57]

purposes. In particular two recently published papers deal with a novel user-centric notion of

repository quality [160], and a novel prioritization scheme for page crawling ordering based on

usage information [161]. We do not enter too much into details of this novel research activity,

still we strongly encourage readers interested in crawling to look through those papers since they

represent a nice view point exploiting query log information to enhance the crawling process.

5.1 Caching

Caching is the main mean with which systems exploit memory hierarchies. There is a whole body

of literature on systems where caching is extensively studied [207, 101]. Furthermore, in web ar-

72

chitectures caching is exploited to enhance the user’s browsing experience, and to reduce network

congestion [167].

Caching is a well-known concept in systems with multiple tiers of storage. For simplicity, consider

a system storing N objects in relatively slow memory, that also has a smaller but faster memory

buffer of capacity k which can store copies of k of the N objects (N >> k). This fast memory

buffer is called the cache. The storage system is presented with a continuous stream of queries,

each requesting one of the N objects. If the object is stored in the cache, a cache hit occurs and

the object is quickly retrieved. Otherwise, a cache miss occurs, and the object is retrieved from the

slower memory. At this point, the storage system can opt to save the newly retrieved object in the

cache. When the cache is full (i.e. already contains k objects), this entails evicting some currently

cached object. Such decisions are handled by a replacement policy, whose goal is to maximize the

cache hit ratio (or rate) - the proportion of queries resulting in cache hits.

Often, access patterns to objects, as found in query streams, are temporally correlated. For

example, object y might often be requested shortly after object x has been requested. This motivates

prefetching - the storage system can opt to retrieve and cache y upon encountering a query for x,

anticipating the probable future query for y.

Caching in web search engine [135] is, basically, a matter of stocking either results, partial

results, or raw posting lists, into a smaller, and faster to lookup, buffer memory. Usually, in real

systems, caching uses a combination of the three above kinds, and the final system appears as in

Figure 5.1. The figure is only a slight modification of the architecture depicted in Figure 1.2 at

page 4 and shows that the placement of this cache modules within the architecture does not require

massive modifications.

The right to decide what results are to be kept in cache is acknowledged to the caching policy.

In case of the cache running out of space, the caching policy is responsible for expunging a result

in favor of another retained to be more likely to be requested in future.

In web search engines caching has been studied since 2000 when Markatos presented the (prob-

ably) first work specifically targeted on exploiting caching possibilities in web search engines [75].

The setting with respect to search result caches in web search engines consists of result pages of

search queries to be cached. A search query is defined as a triplet q = (qs, from, n) where qs is a

query string made up of query terms, from denotes the relevance score of the first result requested,

and n denotes the number of requested results. The result page corresponding to q would contain

the results whose relevance score with respect to qs are from, from + 1, . . . , from + n − 1. The

value of n is typically 10. Search engines set aside some storage to cache such result pages. Indeed,

a search engine is not a typical two-tiered storage structure. Results not found in the cache, in

fact, are not stored in slower storage but rather need to be generated through the query evaluation

process of the search engine.

Prefetching of search results occurs when the engine computes and caches p · n results for the

query (qs, from, n), with p being some small integer constant, in anticipation of follow-up queries

requesting additional result pages for the same query string.

Caching (often with the name of paging) has also been studied theoretically in the past, within

the formal context of Competitive Analysis, by many researchers. The seminal paper of Sleator and

Tarjan [206] showed that the LRU (Least Recently Used) paging strategy is optimal with respect

to a competitive point of view.

73

Fig. 5.1: Caching module placement within the typical structure of a web search engine shown in

Figure 1.3.

Projected onto search engines, competitive analysis has been performed by Lempel and

Moran [133] to show that it is possible to design an online paging scheme, tailored to search engine

query workloads, that incurs in an expected number of cache misses no greater that 4 times the

expected number of misses that any online caching algorithm would experience. In the following,

we are going to present some of the most notably results in web search engine caching technology

at all levels.

5.1.1 Caching and Prefetching of Query Results

We already showed in Query Nature chapter that Power-law arises in the distributions regulating

usage patterns in real-world web search engines: TodoBR [188], Yahoo! [15], Tiscali [76], and so on

and so forth.

Caching in web search engines immediately recalls the storing of results of previously computed

queries in a faster memory area. This kind of caching is know as: caching of search results. A good

deal of research has been (and it is currently) conducted on how efficiently manage the (small)

74

space dedicated to the cache in an optimal way. Obviously, caching policies depends heavily on

how requests are distributed. The idea behind the ideal (and theoretically optimal) Belady’s OPT

cache policy: “in case of miss and cache full, replace the page that will be accessed farthest in the

future” [38]. Unfortunately, this would require the cache to be “Clairvoyant” that is, it would

require the cache to know in advance the rest of the query stream. Therefore, caching policies can

only aim at approximating OPT as better as possible.

Roughly speaking, locality of accesses means that queries repeat themselves within (relatively)

small periods of time, and caching should exploit this kind of regularities to keep copies of “likely-

to-be-accessed-in-the-future” queries.

The caching design space is two-dimensional: choosing the caching policy in order to increase

as much as possible the hit-ratio [75, 132, 134, 76, 202, 24], and optimizing the architecture of

the caching system [188, 26, 140, 76, 202, 15] to improve response time and throughput (number

of queries per second) of the search engine. Both dimensions are important since higher hit-ratios

often correspond to lower response times and higher throughput.

Markatos [75] describes different, state-of-the-art, caching policies and compares the hit-ratio

obtained on an Excite log. The paper does not propose any explicit policy tailored to specific

statistical properties of a query log. Furthermore, it does not consider the possibility of exploiting

a prefetching strategy in order to prepare the cache to answer possible requests for following pages.

Nevertheless, the research shows the feasibility of caching in search engines.

The four different policies tested on a query stream coming out of the Excite query logs were:

LRU, FBR, LRU/2, SLRU.

LRU is among the most famous algorithms for cache replacement policies. LRU, also known as

move-to-front, works by using a First-In First-Out (FIFO) queue to store query results. When the

submitted query is present in the cache buffer it is shifted to the front of the queue. If the query

is not in cache, then it is forwarded to the underlying search level and when the results are back,

the new query entry is pushed to the top of the queue. If the cache was full the last element of the

cache is evicted before the new element is put on top.

The FBR replacement algorithm [182] maintains the LRU ordering of all blocks in the cache,

but replaces the block in the cache that is least frequently used (LFU) and in case of more than

one, the LRU.

LRU/2 is a replacement policy that opts for evicting queries whose second-to-last access is least

recent among all penultimate accesses [154].

SLRU combines both recency and frequency of access when making a replacement decision.

In [122] it is stated “An SLRU cache is divided into two segments, a probationary segment and a

protected segment. Lines in each segment are ordered from the most to the least recently accessed.

Data from misses is added to the cache at the most recently accessed end of the probationary

segment. Hits are removed from wherever they currently reside and added to the most recently

accessed end of the protected segment. Lines in the protected segment have thus been accessed at

least twice. The protected segment is finite, so migration of a line from the probationary segment

to the protected segment may force the migration of the LRU line in the protected segment to the

most recently used (MRU) end of the probationary segment, giving this line another chance to be

accessed before being replaced. The size limit on the protected segment is an SLRU parameter that

varies according to the I/O workload patterns. Whenever data must be discarded from the cache,

75

Fig. 5.2: Comparison of different policies hit-ratios on varying the cache size (in MB). Results are

computed over queries in the Excite log [75].

lines are obtained from the LRU end of the probationary segment.”

Figure 5.2 reports result obtained by the four policies over the whole log by varying the cache size.

The different replacement policies behaves differently depending on the cache size. For very small

cache sizes (<100 Mbytes) FBR performs better than LRU/2. For large caches LRU/2 performs a

little better than FBR. However, in all cases, SLRU performs very close to the best of FBR and

LRU/2. Suggesting that SLRU might be the policy of choice.

Furthermore, since LRU and SLRU seem to be the best policies in terms of management com-

plexity and hit-ratio, from now on we restrict our discussion mainly on these two policies. Further-

more, to better highlight the differences of LRU and SLRU policies and to analyze the performance

of the two policies for very large caches, the histogram in Figure 5.3 compares LRU and SLRU for

the same Excite log (2.2GB of data) on caches whose size varies between 1MB and 2,160MB.

The first observation is that both LRU and SLRU perform roughly the same for caches bigger

than 1GB. Caches of that size, anyway, are not of significant interest for such a small log. Instead,

it is interesting to notice the slight advantage of SLRU over LRU for mid-sized caches. For example,

for a 270MB cache, SLRU scored a 18.8% against a 16.4% of LRU’s hit-ratio.

The work of Markatos only proposes the analysis of existing caching policies over a real-world

search engine workload. Even though Markatos timely address the problem of result caching in web

search engines, it does not present any new policies specifically tailored on such a workload.

The first two policies that have been proposed and that exploit the characteristics of search

engine query logs are: Lempel and Moran’s PDC (Probabilistic Driven Caching) [132], and Fagni

et al. SDC (Static Dynamic Caching) [76]. Furthermore, incidentally both papers introduce the

76

0

5.2

10.4

15.6

20.8

26.0

1 13 135 270 540 810 1,080 1,350 1,620 1,890 2,160

SLRU

LRU

H
it
 R

at
io

Cache Size (in MBytes)

Fig. 5.3: SLRU vs. LRU in Result Caching: Excite log [75].

concept of prefetching in web search engine result caches. Prefetching [132, 134, 76] is another

possibility for increasing the hit-ratio of result caching policies. As said briefly in the initial part of

this section, it, basically, consists of anticipating user requests by caching not only the result page

requested but also the successive p (where p is the prefetching parameter). Information extracted

from query logs can be used to tune finely the prefetching policy as shown by Fagni et al. [76].

The idea behind PDC is to associate a probability distribution to all the possible query that can

be submitted to a WSE. The distribution is built over the statistics computed on the previously

submitted queries. For all the queries that have not previously seen, the distribution function

evaluates to zero. This probability distribution is used to compute a priority value that is exploited

to maintain an importance ordering among the entries of the cache. In practice, the higher the

probability of a query to be submitted the higher it is ranked within the cache once it is actually

appeared. Indeed, the probability distribution is used only in the case of queries requesting the

pages subsequent the first. For the first page of results a simple SLRU policy is used. Note that

PDC, also consider a model of users’ behavior. Within this model, a query-session starts with a

request to the WSE. At this point two ways are possible: he can either submit a follow-up query

(i.e. a query requesting the successive page of results), or he can give up and possibly start a new

session by submitting a different query. A session is considered over, if no follow-up query appears

within τ seconds. This model is respected in PDC by demoting the priorities of the entries of the

cache referring to the queries submitted more than τ seconds ago. Note that the caching policy

for the queries requesting the second, and over, page of results are ordered following a priority

computed using the statistical data available. A priority queue is used to keep 2nd+ page of results

sorted according to their priority. They evict from the section the entry which has the lower priority

only if the ready-to-enter query has a priority greater than that. Conversely, the queries referring

77

to the first page of results are managed by a separate SLRU cache. The results on a query log

of Altavista containing queries submitted during a week of 2001, are very good. Using a cache of

256, 0001 elements using PDC and prefetching 10 pages of results, the authors obtained a hit-ratio

of about 53, 5%. For a more comprehensive picture, Figure 5.4 from the paper shows a comparison

of PDC with LRU and SLRU on varying cache size and probationary segments size. Unfortunately

the policy seems to be quite expensive in terms of time-to-serve for each request (in particular

those causing a cache miss). Due to the priority queue used to keep queries sorted, an amortized

complexity of O (n log n) dominates the overall complexity.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

3

3,4,5

5

10

4
0
0
0

1
6
0
0
0

6
4
0
0
0

2
5
6
0
0
0

Hit Ratio

C
a

c
h

e
 S

iz
e

 -
 F

e
tc

h
 U

n
it

Comparing All Policies

PDC 7.5

PDC 5

PDC 2.5

TSLRU

TLRU

Fig. 5.4: Comparison of PDC with SLRU and LRU on varying cache size and the probationary

segment size of SLRU [132].

Interestingly, as far as we are aware of, PDC is the first caching policy which may not apply

the eviction policy in case of full cache and miss. In fact, the result currently considered may not

be stored in cache if all the priorities of the current entries are higher.

Also the SDC policy, proposed by Fagni et al. [76] is an effective exploitation of historical usage

data. As in PDC, SDC integrates both caching and prefetching at the same time. SDC is the

acronym of Static Dynamic Caching since it basically integrates two types of caching: static, and

dynamic.

Static cache was previously analyzed by Markatos [75] where it is shown that a static-only cache

of query results badly performs on the tested log. The merit of SDC, instead, is to have mixed the

two concept of Static and Dynamic caching trying to balance the benefits in terms of capturing

frequent queries by means of the Static caching, and recent queries, by means of the Dynamic

policy.

1Differently from Markatos’ paper, results are expressed as number of entries. Estimating an entry of size 4 KBytes, 256, 000

elements correspond, roughly, to 1 GBytes of memory.

78

In the static cache, the set of the most-frequently-submitted-in-the-past queries is kept. The

dynamic cache is a cache managed through a traditional replacement policy. Differently from PDC,

SDC management complexity is constant, i.e. O(1), whenever a constant policy is used in the

dynamic section. PDC, instead, exhibit a O(log k) amortized management complexity. Furthermore,

SDC introduces a novel kind of prefetching that exploits a particular and peculiar characteristics of

web search users behavior: Adaptive Prefetching. It has been observed that when a user go through

the i-th (i ≥ 2) page of results then he will, with high probability, explore also the i + 1-th page.

Therefore, adaptive prefetching simply consists of performing prefetching whenever a request refers

to the i-th (i ≥ 2) result pages. That is prefetching is performed only in case of requests for the

second, or greater, page of results.

Figure 5.5 shows that SDC resulted to be superior on hit-ratios achieved by a search system

with a traditional completely dynamic policy. For example, on a cache table containing 256,000

results from the Altavista log, the hit-ratio of a pure LRU is about 32%, while SDC with LRU as

the dynamic policy on the 40% of the cache size (i.e. about 100,000 results) obtains a hit-ratio of

about 55% when a prefetching factor of 10 is used.

Fig. 5.5: Comparison of SDC adopting LRU and PDC as dynamic policies on varying static cache

size and prefetching factor. The case of fstatic = 0 corresponds to the pure (all dynamic) policy [76].

In their paper Fagni et al. [76] claim the superiority of SDC being due to the way it exploits

the power law in the query log. Queries that frequently appear, not necessarily present the recency

property (i.e. the same frequent query might be submitted after an arbitrary large number of distinct

queries). If this assumption is true, and if the LRU queue is not large enough, then some frequent

query could be evicted before they will be requested again2. To assess this, Figures 5.6a, and 5.6b

report the cumulative number of occurrences of each distance, measured as the number of distinct

2Cache policies not affected by this problem are said to be scan-resistant. LRU is not scan-resistant

79

queries received by AltaVista and Yahoo! in the interval between two successive submissions of each

frequent query [76, 15]. From the two figures in 5.6 we can conclude that even if we set the size of

a LRU cache to a relatively large number of entries, the miss rate results to be high anyway.

Policies exploiting historical usage information like PDC or SDC might suffer of data model

staling. The model built over a period might be not valid anymore in the next period. Baeza-Yates

et al. [15, 16] use a static cache containing the 128,000 most frequent queries from a Yahoo! log

has been used to test the hit-ratio trends on an hourly basis. Figure 5.7 shows that the hit-ratio is

quit stable (ranging from 0.25 to 0.35) within a period of at least a week (for this particular query

log, obviously). Indeed, there is a slight downward trend from left to right indicating a very limited

entry staling problem. Also, there is a clear periodic trend in the plot indicating that for certain

kind of queries, repetitions are more frequent during certain times of the day. These two observation

need a more careful analysis, that indeed has not been done in the paper by Baeza-Yates et al.

[15, 16], that could highlight fine tuned caching policies for different periods of the day (or year).

Recently Baeza-Yates et al. [15, 16] showed a caching algorithm exploiting an admission policy

to prevent infrequent queries from taking space of more frequent queries in the cache [24]. The

admission policy checks query features like, for instance, length in characters, in words, etc., and

decides whether considering or not the query for being cached. Results have shown the superiority of

the approach over SDC from a hit-ratio point of view. Unfortunately, the computational complexity

of the policy is high, thus (likely), jeopardizing the benefits of a higher hit ratio from a throughput

point of view.

Caching of Posting Lists

As said above, caching of query results is, most likely, the first thing coming to your mind when

speaking about caching in web search engines. Posting list caching also exists , and it is as important

as result caching.

As it has been seen in the Introduction, posting lists are used during the computation of query

results. In less recent search systems, posting lists were thought to be stored on disk. In more

modern web search systems, anyway, due to partitioning of data in large scale distributed search

engines, it is very likely that the entire posting lists would be stored on memory. In both cases,

anyway, having a more compact and faster structure storing frequently accessed lists might be

of help for improving query answering time. This is the idea behind posting list caching: storing

frequently accessed lists to reduce delays due to list seek and retrieval operations.

Furthermore, posting list caching and query result caching are not exclusive: if both used “cum

grano salis”, overall performance might end up being sensitively improved [15, 16].

Posting list caching has not received a lot of attention in the past, yet in these papers [188, 26,

140, 15], it has been shown to be an effective way to increase an Index server performance.

Basically, the potential effectiveness of posting list caching comes from the high recurrence rate

of a few query terms. Think for instance to queries like “britney spears”, “britney spears scandal”,

“britney spears songs”, “britney spears home page”, etc. They all share the common terms “britney”

and “spears” and caching those lists will save retrieval time when processing queries in the examples.

It has been shown that a high percentage of query terms are submitted repeatedly. Therefore, at

least in theory, an infinite posting list cache would obtain a very high hit-ratio. For instance, Baeza-

80

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

No
. o

f o
cc

ur
re

nc
es

distances (#distinct queries)

Distribution of distances

(a) Altavista (from [76]).

Figure 5: Frequency graph after LRU cache.

after going through an LRU cache. On a cache miss, an
LRU cache decides upon an entry to evict using the infor-
mation on the recency of queries. In this graph, the most
frequent queries are not the same queries that were most
frequent before the cache. It is possible that queries that
are most frequent after the cache have different characteris-
tics, and tuning the search engine to queries frequent before
the cache may degrade performance for non-cached queries.
The maximum frequency after caching is less than 1% of
the maximum frequency before the cache, thus showing that
the cache is very effective in reducing the load of frequent
queries. If we re-rank the queries according to after-cache
frequency, the distribution is still a power law, but with a
much smaller value for the highest frequency.

When discussing the effectiveness of dynamically caching,
an important metric is cache miss rate. To analyze the cache
miss rate for different memory constraints, we use the work-
ing set model [6, 14]. A working set, informally, is the set
of references that an application or an operating system is
currently working with. The model uses such sets in a strat-
egy that tries to capture the temporal locality of references.
The working set strategy then consists in keeping in memory
only the elements that are referenced in the previous θ steps
of the input sequence, where θ is a configurable parameter
corresponding to the window size.

Originally, working sets have been used for page replace-
ment algorithms of operating systems, and considering such
a strategy in the context of search engines is interesting for
three reasons. First, it captures the amount of locality of
queries and terms in a sequence of queries. Locality in this
case refers to the frequency of queries and terms in a window
of time. If many queries appear multiple times in a window,
then locality is high. Second, it enables an offline analysis of
the expected miss rate given different memory constraints.
Third, working sets capture aspects of efficient caching algo-
rithms such as LRU. LRU assumes that references farther
in the past are less likely to be referenced in the present,
which is implicit in the concept of working sets [14].

Figure 6 plots the miss rate for different working set sizes,
and we consider working sets of both queries and terms. The
working set sizes are normalized against the total number
of queries in the query log. In the graph for queries, there
is a sharp decay until approximately 0.01, and the rate at
which the miss rate drops decreases as we increase the size
of the working set over 0.01. Finally, the minimum value it
reaches is 50% miss rate, not shown in the figure as we have
cut the tail of the curve for presentation purposes.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

M
is

s
ra

te

Normalized working set size

Queries
Terms

Figure 6: Miss rate as a function of the working set
size.

 1 10 100 1000 10000 100000 1e+06

F
re

qu
en

cy

Distance
Figure 7: Distribution of distances expressed in
terms of distinct queries.

Compared to the query curve, we observe that the mini-
mum miss rate for terms is substantially smaller. The miss
rate also drops sharply on values up to 0.01, and it decreases
minimally for higher values. The minimum value, however,
is slightly over 10%, which is much smaller than the min-
imum value for the sequence of queries. This implies that
with such a policy it is possible to achieve over 80% hit rate,
if we consider caching dynamically posting lists for terms as
opposed to caching answers for queries. This result does
not consider the space required for each unit stored in the
cache memory, or the amount of time it takes to put to-
gether a response to a user query. We analyze these issues
more carefully later in this paper.

It is interesting also to observe the histogram of Figure 7,
which is an intermediate step in the computation of the miss
rate graph. It reports the distribution of distances between
repetitions of the same frequent query. The distance in the
plot is measured in the number of distinct queries separat-
ing a query and its repetition, and it considers only queries
appearing at least 10 times. From Figures 6 and 7, we con-
clude that even if we set the size of the query answers cache
to a relatively large number of entries, the miss rate is high.
Thus, caching the posting lists of terms has the potential to
improve the hit ratio. This is what we explore next.

5. CACHING POSTING LISTS
The previous section shows that caching posting lists can

obtain a higher hit rate compared to caching query answers.
In this section we study the problem of how to select post-

SIGIR 2007 Proceedings Session 8: Managing Memory

186

(b) Yahoo! (from [15]).

Fig. 5.6: Cumulative number of occurrences of each distance, measured as the number of distinct

queries received by AltaVista and Yahoo! in the interval between two successive submissions of each

frequent query.

Yates et al. [15, 16] showed that a posting list cache using LRU as the replacement policy would

reach a terrific hit-ratio of more than 90% for relatively large caches.

81

Fig. 5.7: Hourly hit-ratio for a static cache holding 128,000 answers during the period of a week.

Figures drawn from a Yahoo! query log [15].

Again, as in the case of query results, traditional caching policies can still be used for posting

lists as well. Anyway, more sophisticated policies can be devised.

In fact, caching posting lists is fundamentally different from caching query results because

posting lists are of variable lengths, whereas query results are of fixed-size. For example, the posting

list of a very common term is extremely longer than a list referring to an uncommon term like, for

instance, a typo. Starting from this observation successful posting cache policies consider also the

size of the posting lists among the features used to decide upon evictions. Baeza-Yates et al. [15, 16]

authors consider both dynamic and static caching. For dynamic caching, they use two well-known

policies, LRU and LFU, as well as a modified algorithm that takes posting-list size into account.

Before discussing the static caching strategies, let us recall some notation used by authors in

the original paper: let fq(t) denote the query-term frequency of a term t, that is, the number of

queries containing t in the query log, and fd(t) to denote the document frequency of t, that is, the

number of documents in the collection in which the term t appears.

The first strategy considered, is the algorithm proposed by Baeza-Yates and Saint-Jean [26],

which consists in selecting the posting lists of the terms with the highest query-term frequencies

fq(t). This algorithm is called Qtf . Interestingly, there is a trade-off between fq(t) and fd(t). Terms

with high fq(t) are useful to keep in the cache because they are queried often. On the other hand,

terms with high fd(t) are not good candidates because they correspond to long posting lists and

consume a substantial amount of space. In fact, the problem of selecting the best posting lists

for the static cache can be seen as a standard Knapsack [54] problem: given a knapsack of fixed

capacity, and a set of n items, such as the i-th item has value ci and size si, select the set of items

that fit in the knapsack and maximize the overall value. In our case, “value” corresponds to fq(t)

82

and “size” corresponds to fd(t). Therefore, a simple greedy algorithm for the knapsack problem

is employed: select the posting lists of the terms with the highest values of the ratio
fq(t)
fd(t)

. This

algorithm is called QtfDf .

ing lists to place on a certain amount of available memory,
assuming that the whole index is larger than the amount of
memory available. The posting lists have variable size (in
fact, their size distribution follows a power law), so it is ben-
eficial for a caching policy to consider the sizes of the posting
lists. We consider both dynamic and static caching. For dy-
namic caching, we use two well-known policies, LRU and
LFU, as well as a modified algorithm that takes posting-list
size into account.

Before discussing the static caching strategies, we intro-
duce some notation. We use fq(t) to denote the query-term
frequency of a term t, that is, the number of queries con-
taining t in the query log, and fd(t) to denote the document
frequency of t, that is, the number of documents in the col-
lection in which the term t appears.

The first strategy we consider is the algorithm proposed by
Baeza-Yates and Saint-Jean [2], which consists in selecting
the posting lists of the terms with the highest query-term
frequencies fq(t). We call this algorithm Qtf.

We observe that there is a trade-off between fq(t) and
fd(t). Terms with high fq(t) are useful to keep in the cache
because they are queried often. On the other hand, terms
with high fd(t) are not good candidates because they cor-
respond to long posting lists and consume a substantial
amount of space. In fact, the problem of selecting the best
posting lists for the static cache corresponds to the stan-
dard Knapsack problem: given a knapsack of fixed capac-
ity, and a set of n items, such as the i-th item has value ci

and size si, select the set of items that fit in the knapsack
and maximize the overall value. In our case, “value” corre-
sponds to fq(t) and “size” corresponds to fd(t). Thus, we
employ a simple algorithm for the knapsack problem, which
is selecting the posting lists of the terms with the highest

values of the ratio
fq(t)

fd(t)
. We call this algorithm QtfDf. We

tried other variations considering query frequencies instead
of term frequencies, but the gain was minimal compared to
the complexity added.

In addition to the above two static algorithms we consider
the following algorithms for dynamic caching:

• LRU: A standard LRU algorithm, but many posting
lists might need to be evicted (in order of least-recent
usage) until there is enough space in the memory to
place the currently accessed posting list;

• LFU: A standard LFU algorithm (eviction of the least-
frequently used), with the same modification as the
LRU;

• Dyn-QtfDf: A dynamic version of the QtfDf algo-
rithm; evict from the cache the term(s) with the lowest
fq(t)

fd(t)
ratio.

The performance of all the above algorithms for 15 weeks
of the query log and the UK dataset are shown in Figure 8.
Performance is measured with hit rate. The cache size is
measured as a fraction of the total space required to store
the posting lists of all terms.

For the dynamic algorithms, we load the cache with terms
in order of fq(t) and we let the cache “warm up” for 1 mil-
lion queries. For the static algorithms, we assume complete
knowledge of the frequencies fq(t), that is, we estimate fq(t)
from the whole query stream. As we show in Section 7 the
results do not change much if we compute the query-term
frequencies using the first 3 or 4 weeks of the query log and
measure the hit rate on the rest.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

H
it

ra
te

Cache size

Caching posting lists

static QTF/DF
LRU
LFU

Dyn-QTF/DF
QTF

Figure 8: Hit rate of different strategies for caching
posting lists.

The most important observation from our experiments is
that the static QtfDf algorithm has a better hit rate than
all the dynamic algorithms. An important benefit a static
cache is that it requires no eviction and it is hence more
efficient when evaluating queries. However, if the character-
istics of the query traffic change frequently over time, then
it requires re-populating the cache often or there will be a
significant impact on hit rate.

6. ANALYSIS OF STATIC CACHING
In this section we provide a detailed analysis for the prob-

lem of deciding whether it is preferable to cache query an-
swers or cache posting lists. Our analysis takes into account
the impact of caching between two levels of the data-access
hierarchy. It can either be applied at the memory/disk layer
or at a server/remote server layer as in the architecture we
discussed in the introduction.

Using a particular system model, we obtain estimates for
the parameters required by our analysis, which we subse-
quently use to decide the optimal trade-off between caching
query answers and caching posting lists.

6.1 Analytical Model
Let M be the size of the cache measured in answer units

(the cache can store M query answers). Assume that all
posting lists are of the same length L, measured in answer
units. We consider the following two cases: (A) a cache
that stores only precomputed answers, and (B) a cache that
stores only posting lists. In the first case, Nc = M answers
fit in the cache, while in the second case Np = M/L posting
lists fit in the cache. Thus, Np = Nc/L. Note that although
posting lists require more space, we can combine terms to
evaluate more queries (or partial queries).

For case (A), suppose that a query answer in the cache
can be evaluated in 1 time unit. For case (B), assume that
if the posting lists of the terms of a query are in the cache
then the results can be computed in TR1 time units, while
if the posting lists are not in the cache then the results can
be computed in TR2 time units. Of course TR2 > TR1.

Now we want to compare the time to answer a stream of
Q queries in both cases. Let Vc(Nc) be the volume of the
most frequent Nc queries. Then, for case (A), we have an
overall time

TCA = Vc(Nc) + TR2(Q − Vc(Nc)).

Similarly, for case (B), let Vp(Np) be the number of com-

SIGIR 2007 Proceedings Session 8: Managing Memory

187

Fig. 5.8: Hit rate of different strategies for caching posting lists on queries in the Yahoo! log [15].

Cache size is expressed as the percentage of total memory used to store the whole index in memory.

Two different variations of QtfDf has been tested: static QtfDf , and dynamic QtfDf . In static

QtfDf a static cache has been filled in with the knapsack-like algorithm, whereas in dynamic QtfDf

the entry with the lowest
fq(t)
fd(t)

is evicted, in case of cache-miss and cache full.

Results, in terms of hit-ratio, of different caching policies have been reported in Figure 5.8. The

cache size, in this experiment, is measured as a fraction of the total space required to store the

posting lists of all terms. The most important observation from the results is that the static QtfDf

algorithm has a better hit rate than all the dynamic algorithms. An important benefit that static

cache has, is that it requires no eviction and it is hence more efficient when evaluating queries.

However, if the characteristics of the query traffic change frequently over time, then it requires

re-populating the cache often or there will be a significant impact on hit rate.

To estimate the impacts of this sort of topic shift on query logs, Figure 5.9 reports measures on

the effect on the QtfDf algorithm of the changes in a 15-week Yahoo! query log.

The query term frequencies is computed over the whole stream in order to select which terms to

cache, and then compute the hit-ratio on the whole query stream. Obviously, since this computation

assumes perfect knowledge of the query term frequencies, this hit-ratio is to be considered as an

upper bound to the maximum hit-ratio attainable. A realistic scenario is simulated using the first

6(3) weeks of the query stream for computing query term frequencies and the following 9(12) weeks

to estimate the hit-ratio. As Figure 5.9 shows, the hit-ratio decreases by less than 2% from the upper

bound. Therefore, the static QtfDf strategy can be considered as a very good approximation of

the behavior of the optimal policy for a long time.

Caching is not just a matter of improving hit-ratio of its policy. Indeed, as it has also been

83

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0.37

 0 20 40 60 80 100 120 140 160

H
it
-r

a
te

Time

Hits on the frequent queries of distances

Figure 13: Hourly hit rate for a static cache holding
128,000 answers during the period of a week.

The static cache of posting lists can be periodically re-
computed. To estimate the time interval in which we need
to recompute the posting lists on the static cache we need
to consider an efficiency/quality trade-off: using too short
a time interval might be prohibitively expensive, while re-
computing the cache too infrequently might lead to having
an obsolete cache not corresponding to the statistical char-
acteristics of the current query stream.

We measured the effect on the QtfDf algorithm of the
changes in a 15-week query stream (Figure 14). We compute
the query term frequencies over the whole stream, select
which terms to cache, and then compute the hit rate on the
whole query stream. This hit rate is as an upper bound, and
it assumes perfect knowledge of the query term frequencies.
To simulate a realistic scenario, we use the first 6 (3) weeks
of the query stream for computing query term frequencies
and the following 9 (12) weeks to estimate the hit rate. As
Figure 14 shows, the hit rate decreases by less than 2%. The
high correlation among the query term frequencies during
different time periods explains the graceful adaptation of
the static caching algorithms to the future query stream.
Indeed, the pairwise correlation among all possible 3-week
periods of the 15-week query stream is over 99.5%.

8. CONCLUSIONS
Caching is an effective technique in search engines for

improving response time, reducing the load on query pro-
cessors, and improving network bandwidth utilization. We
present results on both dynamic and static caching. Dy-
namic caching of queries has limited effectiveness due to the
high number of compulsory misses caused by the number
of unique or infrequent queries. Our results show that in
our UK log, the minimum miss rate is 50% using a working
set strategy. Caching terms is more effective with respect to
miss rate, achieving values as low as 12%. We also propose a
new algorithm for static caching of posting lists that outper-
forms previous static caching algorithms as well as dynamic
algorithms such as LRU and LFU, obtaining hit rate values
that are over 10% higher compared these strategies.

We present a framework for the analysis of the trade-off
between caching query results and caching posting lists, and
we simulate different types of architectures. Our results
show that for centralized and LAN environments, there is
an optimal allocation of caching query results and caching
of posting lists, while for WAN scenarios in which network
time prevails it is more important to cache query results.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

H
it

ra
te

Cache size

Dynamics of static QTF/DF caching policy

perfect knowledge
6-week training
3-week training

Figure 14: Impact of distribution changes on the
static caching of posting lists.

9. REFERENCES
[1] V. N. Anh and A. Moffat. Pruned query evaluation using

pre-computed impacts. In ACM CIKM, 2006.
[2] R. A. Baeza-Yates and F. Saint-Jean. A three level search

engine index based in query log distribution. In SPIRE,
2003.

[3] C. Buckley and A. F. Lewit. Optimization of inverted
vector searches. In ACM SIGIR, 1985.

[4] S. Büttcher and C. L. A. Clarke. A document-centric
approach to static index pruning in text retrieval systems.
In ACM CIKM, 2006.

[5] P. Cao and S. Irani. Cost-aware WWW proxy caching
algorithms. In USITS, 1997.

[6] P. Denning. Working sets past and present. IEEE Trans.
on Software Engineering, SE-6(1):64–84, 1980.

[7] T. Fagni, R. Perego, F. Silvestri, and S. Orlando. Boosting
the performance of web search engines: Caching and
prefetching query results by exploiting historical usage
data. ACM Trans. Inf. Syst., 24(1):51–78, 2006.

[8] R. Lempel and S. Moran. Predictive caching and
prefetching of query results in search engines. In WWW,
2003.

[9] X. Long and T. Suel. Three-level caching for efficient query
processing in large web search engines. In WWW, 2005.

[10] E. P. Markatos. On caching search engine query results.
Computer Communications, 24(2):137–143, 2001.

[11] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald,
and C. Lioma. Terrier: A High Performance and Scalable
Information Retrieval Platform. In SIGIR Workshop on
Open Source Information Retrieval, 2006.

[12] V. V. Raghavan and H. Sever. On the reuse of past optimal
queries. In ACM SIGIR, 1995.

[13] P. C. Saraiva, E. S. de Moura, N. Ziviani, W. Meira,
R. Fonseca, and B. Riberio-Neto. Rank-preserving two-level
caching for scalable search engines. In ACM SIGIR, 2001.

[14] D. R. Slutz and I. L. Traiger. A note on the calculation of
average working set size. Communications of the ACM,
17(10):563–565, 1974.

[15] T. Strohman, H. Turtle, and W. B. Croft. Optimization
strategies for complex queries. In ACM SIGIR, 2005.

[16] I. H. Witten, T. C. Bell, and A. Moffat. Managing
Gigabytes: Compressing and Indexing Documents and
Images. John Wiley & Sons, Inc., NY, 1994.

[17] N. E. Young. On-line file caching. Algorithmica,
33(3):371–383, 2002.

SIGIR 2007 Proceedings Session 8: Managing Memory

190

Fig. 5.9: Impact of distribution changes on the static caching of posting lists [15]. Cache size is

expressed as the percentage of total memory used to store the whole index in memory.

pointed out and shown by Lempel and Moran [133], optimal policies for graph based workload

models are possible at the cost of a linear time in the number of cache entries. Obviously, a linear

time cache management is useless since it is prohibitively expensive. PDC exploits a reduced model

that allows a logarithmic, i.e.O (log k), management policy. A high management cost may jeopardize

the benefit of a high hit-ratio. Furthermore, in a real setting on the same machine many different

index server instances run in parallel (via multithreading) and it is inconceivable to think of several

private copies of the cache for every index server. While a shared cache reduces the space occupancy,

it introduces the need of a regulated concurrent access to the cache structure by each thread, i.e.

a spin-lock around the cache. Therefore, each access implies: lock acquisition, cache management

(in case of miss the management time is higher due to the querying phase), lock release. The more

efficient the cache management phase, the higher the scalability of the querying system as more

concurrent tasks can run in parallel.

Therefore, having a static caching policy is important since, being the buffer read-only, it does

not require any management operation and therefore, no lock is needed around the shared cache.

This impacts heavily on the cache performance. Fagni et al. [76] assessed the throughput of a

SDC cache under two different conditions: a lock around all the cache, a lock only on the dynamic

set. Note that this last setting is the one which realistically should be used to manage concurrent

accesses to a SDC cache.

Figure 5.10 reports the results of some of the tests conducted. In particular, the figure plots,

for fstatic = 0.6 and no prefetching, the throughput of an SDC caching system (i.e., the number

of queries answered per second) as a function of the number of concurrent threads contemporary

and concurrently accessing the cache. The two curves show the throughput of a system when each

thread accesses in a critical section either the whole cache (dashed line) or just the Dynamic Set

(solid line). Note that locking the whole cache is exactly the mandatory behavior of threads when

accessing a purely dynamic cache (i.e., fstatic = 0). Throughput was measured by considering that

84

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 50 100 150 200 250 300

Q
ue

rie
s

pe
r

se
co

nd

Number of threads

Throughput - Size 50000 - No prefetching

SLRU-0.4: lock only dynamic
SLRU-0.4: lock all

Fig. 5.10: Throughput of a caching system (in number of queries served per second) for fstatic = 0.6

as a function of the number of concurrent threads used and different locking policies [76].

a large bunch of 500, 000 queries (from the Tiscali log) arrives in a burst. The size of the cache was

50, 000 blocks (quite small, though), while the replacement policy considered was SLRU.

Therefore, the presence of the Static Set, which does not need to be accessed using a mutex,

permits to approximately double the number of queries served per second. Moreover, the caching

system does not only provides high throughput but can also sustain a large number of concurrent

queries. Performance starts degrading only when more than 200 queries are served concurrently.

Obviously the same argument holds also in case of posting list caching.

5.2 Index Partitioning and Querying in Distributed Web search Systems

As it have been pointed out by Baeza-Yates et al. [14] data distribution is one of the most important

aspect to optimize in a modern distributed web search system. Engineering a fully distributed index

server can be as easy as just randomly spreading data on the servers, or can be tricky as carefully

partitioning data into topically consistent document partitions. Moreover, a still open problem is

to devise whether document partitioning, or term partitioning is the index partitioning method of

choice.

In this paragraph, we revise the problem of selecting a collection in a distributed information

retrieval system. Then, we analyze the first efforts towards using knowledge extracted from answers

to submitted queries. Finally, we review how to apply these methods to search systems, and we show

how such methods can improve greatly the performance and reduce the costs of search engines.

5.2.1 Partitioning and Querying in Federated Distributed IR Systems

Parallel and distributed computing techniques have been used since many years, so far [184]. The

majority of the methods that have been proposed so far makes use of knowledge acquired from past

users’ activity models obtained by mining web search engine query logs. The reader interested in

such techniques shall find many juicy details in literature works such as [91, 92, 55, 226, 238, 93,

85

85, 100, 233, 169, 168, 141, 195]. In the following we review some of the basic techniques used just

to set the ground for the future discussion on methods using users’ feedback.

Nowadays, the mostly used parallel architectures are: Cluster of PC, Grid platforms, and the

more modern Cloud computing facilities. The former consists of a collection of interconnected

stand-alone PCs working together as a single, integrated computing resource [53, 40]. The latter

is a distributed computing infrastructure for advanced science and engineering. The underlining

problems of Grid concepts consist of coordinating resource sharing and problem solving in dynamic,

multi–institutional, virtual organizations [81, 106]. Yahoo! Grid [235], for instance, is an example

of how distributed computing is used within a large search company to improve their performance.

Since realistic web search engines usually manage distinct indexes, the only way to ensure timely

and economic retrieval is designing the broker module so that it forwards a given query only to the

workers managing documents related to the query topic. Collection Selection plays a fundamental

role in the reduction of the search space. Particular attention should be paid, though, when using

such a technique in a real web search system since the loss of relevant documents resulting form the

exclusion of some Index servers, could impact dramatically, by degrading the overall effectiveness,

on the system’s performance.

A collection selection index (CSI) summarizing each collection as a whole, is used to decide which

collections are most likely to contain relevant documents for a submitted user’s query. Document

retrieval, actually, only takes place at such collections.

Hawking and Thistlewaite [100] and Craswell et al. [65] compare several selection methods.

Authors showed that the method of using only a näıve collection selection index, may lacks of effec-

tiveness. This implies that many proposals try to improve both the effectiveness and the efficiency

of the previous schema.

Moffat et al [153] use a centralized index on blocks of B documents. For example, each block

might be obtained by concatenating documents. A query first retrieves block identifiers from the

centralized index, then searches the highly ranked blocks to retrieve single documents. This ap-

proach works well for small collections, but causes a significant decrease in precision and recall

when large collections have to be searched.

Garcia–Molina et. al. [91, 92, 93] propose GlOSS, a broker for a distributed IR system based on

the boolean IR model that uses statistics over the collections to choose the ones which better fits

the user’s requests. The authors of GlOSS made the assumption of independence among terms in

documents so, for example, if term A occurs fA times and the term B occurs fB times in a collection

with D documents, than they estimated that fA
D ·

fB
D ·D documents contain both A and B. Authors

of GlOSS generalize their ideas to vector space IR systems (gGlOSS), and propose a new kind of

server, called hGlOSS, that collects information for a hierarchy of several GlOSS servers and select

the best GlOSS server for a given query.

Xu and Croft [233] analyze collection selection strategies using cluster-based language models.

Xu et al. propose three new methods of organizing a distributed retrieval system, called global

clustering, local clustering, and multiple-topic representation. In the first method, assuming that all

documents are made available in one central repository, a clustering of the collection is created; each

cluster is a separate collection that contains only one topic. Selecting the right collections for a query

is the same as selecting the right topics for the query. The next method is local clustering and it is

very close to the previous one except for the assumption of a central repository of documents. This

86

method can provide competitive distributed retrieval without assuming full cooperation among

the subsystems. The last method is multiple-topic representation. In addition to the constraints

in local clustering, the authors assume that subsystems do not want to physically partition their

documents into several collections. The advantage of this approach is that it assumes minimum

cooperation from the subsystem. The disadvantage is that it is less effective than both global and

local clustering.

Callan et al. [55] compare the retrieval effectiveness of searching a set of distributed collections

with that of searching a centralized one using an inference networks in which leaves represent

document collections, and nodes represent terms that occur in the collection. The probabilities

that flow along the arcs can be based upon statistics that are analogous to tf and idf in classical

document retrieval: document frequency df (the number of documents containing the term) and

inverse collection frequency icf (the number of collections containing the term). They call this type

of inference network a collection retrieval inference network, or CORI for short. They found no

significant differences in retrieval performance between distributed and centralized searching when

about half of the collections on average were searched for a query.

5.2.2 Query-based Partitioning and Collection Selection

The use of queries information on “traditional”, i.e. non web, Distributed IR systems has been

proposed in the past [56, 197, 198, 58, 196]. Only recently, it has been started to investigate the

opportunities offered by collection selection architectures in web IR systems [173, 172, 175, 171].

Puppin [171] shows that combining different methods (collection prioritization, incremental

caching, and load balancing) it is possible to reduce the load of each query server up to 20% of the

maximum by loosing only a fraction (up to 5%) of the precision attained by the centralized system.

At the core of the technique shown by Puppin [171] there is a collection partitioning strategy

whose goal is to cluster the most relevant documents for each query. The cluster hypothesis states

that closely associated documents tend to be relevant to the same requests [221]. Clustering algo-

rithms, like k-means [107], for instance, exploit this claim by grouping documents on the basis of

their content.

The partitioning method used by Puppin et al. [173] is, instead, based on the novel query-

vector (QV) document model, introduced by Puppin and Silvestri [172], instead exploits the cluster

hypothesis the other way around. It clusters queries and successively devises a document clustering.

In the QV model, documents are represented by the weighted list of queries (out of a training set)

that recall them: the QV representation of document d is a vector where each dimension is the score

that d gets for each query in the query set. The set of the QVs of all the documents in a collection

can be used to build a query-document matrix, which can be normalized and considered as an

empirical joint distribution of queries and documents in the collection. Our goal is to co-cluster

queries and documents, to identify queries recalling similar documents, and groups of documents

related to similar queries. The algorithm adopted is by Dhillon et al. [72] based on a model

exploiting the empirical joint probability of picking up a query/document pair. The results of the

co-clustering algorithm are then used to build the Collection Selection Index and to subsequently

perform collection selection.3

3The implementation of the co-clustering algorithm used in [171] is available at http://hpc.isti.cnr.it/~diego/phd.

87

In alternative to the two popular ways of modeling documents, bag-of-words, and vector space,

QV can be used to represent a document by recording which documents are returned as answers to

each query. The query-vector representation of a document is built out of a query log. The actual

search engine is used in the building phase: for every query in a training query set, the system

stores the first N results along with their score.

Table 5.1 gives an example. The first query q1 recalls, in order, d3 with score 0.8, d2 with score

0.5 and so on. Query q2 recalls d1 with score 0.3, d3 with score 0.2 and so on. We may have empty

columns, when a document is never recalled by any query (in this example d5). Also, we can have

empty rows when a query returns no results (q3).

Query/Doc d1 d2 d3 d4 d5 d6 ... dn

q1 - 0.5 0.8 0.4 - 0.1 ... -

q2 0.3 - 0.2 - - - ... 0.1

q3 - - - - - - ... -

q4 - 0.4 - 0.2 - 0.5 ... 0.3

...

qm 0.1 0.5 0.8 - - - ... -

Table 5.1: In the query-vector model, every document is represented by the query it matches

(weighted with the score) [173].

This concept can be stated more formally by the following definition of the Query-vector

model [172].

Definition 5.1. Query-vector model. Let Q be a query log containing queries q1, q2, . . . , qm. Let

di1 , di2 , . . . , dini
be the list of documents returned, by a reference search engine, as results to query

qi. Furthermore, let rij be the score that document dj gets as result of query qi (0 if the document

is not a match).

A document dj is represented as an m-dimensional query-vector dj = [rij]
T , where rij ∈ [0, 1] is

the normalized value of rij :

rij =
rij∑

i∈Q

∑
j∈D

rij
(5.1)

In QV model, the underlying reference search engine is treated as a black box, with no particular

assumptions on its behavior. Internally, the engine could use any metric, algorithm and document

representation. The QV model is simply built out of the results recalled by the engine using a given

query log.

Definition 5.2. Silent documents. A silent document is a document never recalled by any query

from the query log Q. Silent documents are represented by null query-vectors.

Incidentally, this is another important benefit granted by the use of historical query log informa-

tion. The ability of identifying silent documents is a very important feature of the model because

88

it allows to determine a set of documents that can safely be moved to a supplemental index. Ob-

viously, a silent document can become “audible” again. For example, whenever it is about a topic

that become suddenly popular due to a news event. In this case, a document re-distribution will

be needed and partitions will be created again.

The rij values defined according to 5.1, form a contingency matrix R, which can be seen as an

empirical joint probability distribution and used by the cited co-clustering algorithm. This approach

creates, simultaneously, clusters of rows (queries) and columns (documents) out of an initial matrix,

with the goal of minimizing the loss of information.

Co-clustering considers both documents and queries. We, therefore, have two different sets of

results: (i) groups made of documents answering to similar queries, and (ii) groups of queries with

similar results. The first group of results is used to build the document partitioning strategy, while

the second is the key to the collection selection strategy (see below).

More formally, the result of co-clustering is a matrix P̂ defined as:

P̂ (qca, dcb) =
∑
i∈qcb

∑
j∈dca

rij

In other words, each entry P̂ (qca, dcb) sums the contributions of rij for the queries in the query

cluster a and the documents in document cluster b. Authors call this matrix simply PCAP4 and

its entries measure the relevance of a document cluster to a given query cluster, thus, forming

a Collection Selection Index that naturally induces a simple, but effective, collection selection

algorithm.

The queries belonging to each query cluster are chained together into query dictionary files. Each

dictionary file stores the text of each query belonging to a cluster, as a single text file. For instance, if

the four queries “hotel in Texas”, “resort”, “accommodation in Dallas”, and “hotel downtown Dallas

Texas” are clustered together as the first query cluster, the first query dictionary is qc1=“hotel in

Texas resort accommodation in Dallas hotel downtown Dallas Texas”. The second query dictionary

file could be, for instance qc2 =“car dealer Texas buy used cars in Dallas automobile retailer Dallas

TX”. A third query cluster could be qc3 =“restaurant chinese restaurant eating chinese Cambridge”.

When a new query q is submitted to the IR system, the BM25 metric [180] is used to find which

clusters are the best matches: each dictionary file is considered as a document, which is indexed

using the vector-space model, and then queried with the usual BM25 technique. This way, each

query cluster qci receives a score relative to the query q, say rq(qci). In our example, if a user asks

the query “used Ford retailers in Dallas”, rq(qc2) is higher than rq(qc1) and rq(qc3).

This is used to weight the contribution of PCAP P̂ (i, j) for the document cluster dcj , as follows:

rq(dcj) =
∑
i

rq(qci) · P̂ (i, j)

Table 5.2 gives an example. The top table shows the PCAP matrix for three query clusters and

five document clusters. Suppose BM25 scores the query-clusters respectively 0.2, 0.8 and 0, for a

given query q. We compute the vector rq(dci) by multiplying the matrix PCAP by rq(qci), and the

collections dc3, dc1, dc2, dc5, dc4 are chosen in this order.

4Because authors erroneously though that the LATEX command to typeset P̂ was \cap{P}

89

PCAP dc1 dc2 dc3 dc4 dc5 rq(qci)

qc1 0.5 0.8 0.1 0.2

qc2 0.3 0.2 0.1 0.8

qc3 0.1 0.5 0.8 0

rq(dc1) = 0 + 0.3× 0.8 + 0 = 0.24

rq(dc2) = 0.5× 0.2 + 0 + 0 = 0.10

rq(dc3) = 0.8× 0.2 + 0.2× 0.8 + 0 = 0.32

rq(dc4) = 0.1× 0.2 + 0 + 0 = 0.02

rq(dc5) = 0 + 0.1× 0.8 + 0 = 0.08

Table 5.2: Example of PCAP to perform collection selection. We have three query clusters:

qc1=“hotel in Texas resort accommodation in Dallas hotel downtown Dallas Texas”, qc2 =“car

dealer Texas buy used cars in Dallas automobile retailer Dallas TX” and qc3 =“restaurant chinese

restaurant eating chinese Cambridge”. The second cluster is the best match for the query “used

Ford retailers in Dallas”. The third document cluster is expected to have the best answers.

The QV model and the PCAP selection function together are able to create very robust docu-

ment partitions. In addition, they allow the search engine to identify, with great confidence, what

the most authoritative servers are for any query. These ideas, in fact, can be used to design a

distributed IR system for web pages. The strategy is as follows. First, we train the system with

the query log relative to a training period, by using a reference centralized index to answer all the

queries submitted to the system. The top-ranking results are recorded for each query. Then, the

co-clustering step is applied on the resulting query-document matrix representing the QV formal-

ization of the problem. The documents are then partitioned onto several IR cores according to the

results of clustering.

In the experiments conducted by Puppin et al. [173], ∼ 6M documents are partitioned into

17 clusters: the first 16 clusters are the clusters returned by co-clustering, and the last one holds

the silent documents, i.e. the documents that are not returned by any query, represented by null

query-vectors (the 17-th cluster is used as a sort of supplemental index). Authors partitioned the

collection into 16 clusters because empirically they observed that a smaller number of document

clusters would have brought to a situation with a very simple selection process, while a bigger

number would have created artificially small collections.

After the training, collection selection is performed using the method shown above. In this

experiment, the broker actively chooses which cores are going to be polled for every query. Actually,

more responsibility can be given to each core resulting in a more balanced load and in a better

precision (see load balancing strategy paragraph below). The index servers holding the selected

collections receive the query, and return their results, eventually merged by the broker. In order

to have comparable document ranking within each index core, the global collection statistics are

distributed to each IR server.

Authors were not able to obtain a list of human-chosen relevant documents for each query (as

it happens with the TREC data5). Nevertheless, following the example of previous works by Xu

5The TREC web Corpus: WT10g is available at http://www.ted.cmis.csiro.au/TRECWeb/wt10g.html.

90

and Callan [232] they compare the results coming from collection selection with the results coming

from a centralized index. In particular, they use the intersection and competitive similarity metrics,

adapted from Panconesi et al. [61] and briefly recalled below.

Let GNq denote the top N results returned for q by a centralized index (ground truth), and let

HN
q be the top N results returned for q by the set of servers chosen by the collection selection

strategy. The intersection at N, INTERN (q), for a query q is the fraction of results retrieved by

the collection selection algorithm that appear among the top N documents in the centralized index:

INTERN (q) =
|HN

q ∩GNq |
|GNq |

Given a set D of documents, we call total score the value:

Sq(D) =
∑
d∈D

rq(d)

with rq(d) the score of d for query q. The competitive similarity at N , COMPN (q), is measured as:

COMPN (q) =
Sq(H

N
q)

Sq(GNq)

This value measures the relative quality of results coming from collection selection with respect

to the best results from the central index. In both cases, if |GNq | = 0 or Sq(G
N
q) = 0, the query q is

not used to compute average quality values.

This strategy is tested on a simulated distributed web search engine. They use the WBR99

web document collection6, of 5,939,061 documents, i.e. web pages, representing a snapshot of the

Brazilian web (domains .br) as spidered by the crawler of the TodoBR search engine. The collection

consists of about 22 GB of uncompressed data, mostly in Portuguese and English, and comprises

about 2,700,000 different terms after stemming.

Along with the collection, a query log of queries submitted to TodoBR has been used, in the

period January through October 2003. The first three weeks of the log has been selected as the

training set and it is composed of about half a million queries, of which 190,000 are distinct. The

main test set is composed by the fourth week of the log, comprising 194,200 queries. The main

features of test setup are summarized in Table 5.3.

Zettair7 was used as the central search engine. Zettair is a compact and fast text search engine

designed and written by the search engine Group at RMIT University. This IR system has been

modified so to implement different collection selection strategies (CORI and PCAP) in the Query

Broker front end.

To assess the quality of the approach, Puppin et al. [174] perform a clustering task aimed at

document partitioning and collection selection, for a parallel information retrieval system. To be

as complete as possible, different approaches to partitioning and selection have been compared.

First of all, documents are partitioned into 17 clusters. For partitions created with co-clustering,

the 17-th cluster, or overflow cluster (OVR), holds the supplemental index, which stores the silent

documents. The tested approaches are:

6Thanks to Nivio Ziviani and his group at UFMG, Brazil, who kindly provided the collection, along with logs and evaluated

queries.
7Available under a BSD-style license at http://www.seg.rmit.edu.au/zettair/.

91

d 5,939,061 documents taking (uncompressed) 22 GB

t 2,700,000 unique terms

t′ 74,767 unique terms in queries

tq 494,113 (190,057 unique) queries in the training set

q1 194,200 queries in the main test set (first week - TodoBR)

Table 5.3: Main features of test set.

• Random: a random allocation. This is, to the best of our knowledge, the most popular

approach to document partitioning among commercial search engines [33].
• Shingles: k-means clustering of document signatures computed using shingling [50]. Shin-

gles have already been used in the past for clustering text collections, [50] and for de-

tecting duplicate pages [63, 104]. It has also been shown to be a very effective document

representation for identifying near-duplicate documents.
• URL-sorting : it is a very simple heuristics, which assign documents block-wise, after

sorting them by their URL; this is the first time URL-sorting is used to perform document

clustering; this simple technique, already used for other IR tasks [179, 43, 203], can offer

a remarkable improvement over a random assignment.
• K-means: k-means clustering over the document collection, represented by query-vectors.
• Co-clustering : co-clustering algorithm is used to compute documents and query clusters.

16 document clusters and 128 query clusters have been created through 10 iterations of

the co-clustering algorithm.

CORI is the collection selection function of choice in all the tests performed, excepting the

last one, where PCAP has been used. Results are shown in Table 5.4. Intersection at 5, 10, 20

(INTER5, INTER10, INTER20) is computed, when using only a subset of servers is chosen on

the basis of the ranking returned by the collection selection function used. The first column shows

the value of the INTERk measure when only the most promising server is used to answer each

query. The following observation can be made.

Shingles offer only a moderate improvement over a random allocation, and a bigger improvement

when a large number of collections, about half, are chosen. Shingles are not able to cope effectively

with the curse of dimensionality. Experimental results show that URL-sorting is actually a good

clustering heuristic, better than k-means on shingles when a little number of servers is polled.

URL-sorting is even better if we consider that sorting a list of a billion URLs is not as complex

as computing clustering over one billion documents. This method, thus, could become the only one

feasible in a reasonable time within large scale web search engines if no usage information can be

used.

Results improve dramatically when we shift to clustering strategies based on the query-vector

representation. The results of using CORI over partitions created with k-means on query-vectors

(a value of INTERk of about 29% when a single partition is queried) are much better than the

results obtained by other clustering strategies that do not exploit usage information (obtaining an

INTERk score up to 18%).

Even better does co-clustering behave. Both CORI and PCAP on co-clustered documents are

92

INTER5

1 2 4 8 16 OVR

CORI on random 6 11 25 52 91 100

CORI on shingles 11 21 38 66 100 100

CORI on URL sorting 18 25 37 59 95 100

CORI on kmeans qv 29 41 57 73 98 100

CORI on co-clustering 31 45 59 76 97 100

PCAP on co-clustering 34 45 59 76 96 100

INTER10

1 2 4 8 16 OVR

CORI on random 5 11 25 50 93 100

CORI on shingles 11 21 39 67 100 100

CORI on URL sorting 18 25 37 59 95 100

CORI on kmeans qv 29 41 56 74 98 100

CORI on co-clustering 30 44 58 75 97 100

PCAP on co-clustering 34 45 58 76 96 100

INTER20

1 2 4 8 16 OVR

CORI on random 6 12 25 48 93 100

CORI on shingles 11 21 40 67 100 100

CORI on URL sorting 18 24 36 57 95 100

CORI on kmeans qv 29 41 56 74 98 100

CORI on co-clustering 30 43 58 75 97 100

PCAP on co-clustering 34 45 58 75 96 100

Table 5.4: Comparison of different clustering and selection strategies: intersection (percentage) at

5, 10, 20.

superior to previous techniques, with PCAP also outperforming CORI by about 10% (from 30% to

34%). This result is even stronger when we watch at the footprint of the collection representation,

which is about 5 times smaller for PCAP [173].

We can conclude, thus, that by choosing a fixed, limited number of servers to be polled for each

query, the system can return a very high fraction of the relevant results.

We report results on COMPN (q) later on this section. This strategy can cause a strong difference

in the relative computing load of the underlying IR cores, if one server happens to be hit more often

than another: the IR system results to be slowed down by the performance of the most loaded server.

In Figure 5.11, we show a sample of the peak load reached by the Index servers when we use the

four most authoritative collections for every query (i.e. the FIXED strategy by Puppin [171]), with

93

the presence of a LRU result cache of 4,000 entries: it varies from 100 to about 250 queries out of

a rotating window of 1000 queries.

0

75

150

225

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIXED 4

BASIC 24.7

BOOST 4 24.7

BOOST 4 24.7 + INC

Fig. 5.11: Computing pressure (sample) on the cores when using different routing strategies: routing

to the 4 most promising servers for each query (FIXED), load-driven routing capped to 24.7% load

(BASIC), boost with 4 servers, cap to 24.7% (BOOST) and boost with incremental cache (INC).

The load is measured as the number of queries that are served by each core from a window of 1,000

queries. BASIC, BOOST and INC are able to improve results by utilizing the idle resources: there

is no need for additional computing power [171].

The LRU cache is used to make experiments as realistic as possible. Not filtering queries through

an LRU cache would make things even worse. Roughly speaking, we can design a load-driven

collection selection system where more servers can choose to answer a given query, even if they are

not the most authoritative for it, if they happen to be momentarily under-loaded. Furthermore,

this way, the system can exploit the load differences among servers to gather more possible relevant

results. We can instruct the IR cores about the maximum allowed computing load, and let them drop

the queries they cannot serve. In this configuration, the broker still performs collection selection,

and ranks the collections according to the expected relevance for the query at hand. The query is

broadcasted, but now every server is informed about the relevance it is expected to have w.r.t. the

given query. At this point, each Index server can choose to either serve, or drop the query, according

to its instant load8.

The most promising core receives a query tagged with top priority, equal to 1. The other cores

c receive a query q tagged with linearly decreasing priority pq,c (down to 1/N , with N cores). At

time t, a core c with current load `c,t serves the query q if:

`c,t × pq,c < L

8An implementation issue arising here, is to give the query broker the ability to determine if a query has been answered or not
by a core. If the query is accepted, the core answers with its local results. Otherwise, it can send a negative acknowledgment.

Alternatively, the broker can use a time-out, so to guarantee a chosen query response time.

94

where L is a load threshold that represents the computing power available to the system. This is

done to give preferred access to queries on the most promising cores: if two queries involve a core c,

and the load in c is high, only the query for which c is very promising is served by c, and the other

one is dropped. This way, overloaded cores are not hit by queries for which they represent only a

second choice.

If the condition at the index server is met, the core computes its local results and returns them

to the broker. In this model, thus, the broker, instead of simply performing collection selection,

performs a process of prioritization, i.e. chooses the priority that a query should get at every Index

server.

In the experimental evaluation three query routing strategies are devised and compared:

• Fixed < T >: the query is routed to the T most relevant servers, according to a collection

selection function, with T given once for all. This allows us to measure the computing

power required to have at least T servers answer a query (and to have a guaranteed

average result quality).
• Load-driven basic (LOAD) < L >: the system contacts all servers, with different priority.

Priority ranges from 0 down to 1/N (on a system with N cores). The load threshold on

cores is fixed to L.
• Load-driven boost (BOOST) < L, T >: same as load-driven, but here we contact the

first T servers with maximum priority, and then the other ones with linearly decreasing

priority. By boosting, we are able to keep the lower loaded servers closer to the load

threshold. Boosting is valuable when the available load is higher, as it enables us to use

the lower loaded servers more intensively. If the threshold L is equal to the load reached

by FIXED < T >, we know that we can poll T servers every time without problems. The

lower-priority queries are dropped when we get closer to the threshold.

Using the load-driven strategy, we are able to keep busy all the cores in the system by asking

them to answer also the queries for which they are less authoritative (see Figure 5.11).

The last optimization shown by Puppin [171] is incremental caching. Basically, it is a caching

scheme, i.e. all the consideration above on caching still hold, plus it has an additional information

per query that records which servers have answered back with results. Therefore, the incremental

cache holds the best r results returned thus far by the underlying search service. Performance, obvi-

ously, depends on the policy used. In this case, however, hit-ratio and throughput are not the only

measurable results: precision of results returned for each query is also important due to the fact

that the higher the number of times a query is requested the higher the precision gets. Since queries

follow a power-law, we expect precision of frequent queries to stabilize to the maximum attainable

possible, after a very few references to those queries.

To formalize in detail incremental caching, we need to redefine the type of entries stored in a

cache line.

Definition 5.3. A query-result record is a quadruple of the form < q, p, r, s >, where: q is the query

string, p is the number of the page of results requested, r is the ordered list of results associated

with q and p, s is the set of servers from which results in r are returned. Each result is represented

by a pair < doc id, score >.

95

If we cache an entry < q, p, r, s >, this means that only the servers in s answered, and that they

returned r. Also, since in an incremental cache the stored results might be updated, we need to

store the score (along with the document identifier) to compare the new results with the old ones.

The complete algorithm is formally shown in Table 5.5. Results in an incremental cache are

continuously modified by adding results from the servers that have not been queried yet. The set s

serves to this purpose and keeps track of the servers that have answered so far.

For a query with topic q, result page p, with a selection function ρ (q).

1. Look up (q,p).

2. If not found:

1. tag the query with priorities ρ (q);

2. let s be the set of servers that accepted the query;

3. let r be the result set coming from s;

4. select and remove the best candidate for replacement;

5. store < q, p, r, s >;

6. return r to user.

3. If found < q, p, r, s >:

1. tag the query with priorities ρ (q) for the remaining servers;

2. let s2 be the set of servers that accepted the query;

3. let r2 be the result set coming from s2;

4. add s2 to s;

5. merge r2 with r (sorting by score);

6. return r to user.

Table 5.5: The incremental cache algorithm, as performed by the search engine broker. The case

when the cache is not full is straightforward and not shown [171]

When load-driven selection is used, only the results coming from the polled servers are available

for caching. In case of a subsequent hit, the selection function gives top priority to the first server

that was not polled before. Let’s say, for example, that for a query q, the cores are ranked in this

order: s4, s5, s1, s3 and s2. In other words, s4 has priority 1. Now, let’s say that only s4 and s1

are actually polled, due to their lower load. When q hits the system a second time, s5 has the top

priority, followed by s3 and s2. Their results are eventually added to the incremental cache.

This strategy does not add computing pressure to the system w.r.t. to boost (see Figure 5.11).

The advantage comes to the fact that repeated queries get higher priority also for the low-relevance

servers, at the cost of other non-repeated queries.

It is important to emphasize that load-driven routing and incremental caching strategy work

independently from the selection function, which is used as a black box. Puppin [171] uses PCAP,

96

 30

 40

 50

 60

 70

 80

 90

 100

OVR16151413121110987654321

Number of polled servers/Load level

Metric: COMP5

FIXED*
NO SELECTION

NO SELECTION + INC
BOOST

BOOST + INC
 40

 50

 60

 70

 80

 90

 100

OVR16151413121110987654321

Number of polled servers/Load level

Metric: COMP20

FIXED*
NO SELECTION

NO SELECTION + INC
BOOST

BOOST + INC

Fig. 5.12: Comparison with real query timing information on TodoBR [171].

yet these concepts can be successfully utilized with any other collection selection algorithm. Across

all configurations, load-driven routing, combined with incremental cache, clearly surpasses the other

strategies. Furthermore, changing from fixed to load-driven routing and incremental caching does

not add computing pressure: results can be improved with the same computing requirements in the

IR cores, at the cost of a negligibly higher cache complexity.

In Figure 5.12, we show the competitive similarity of different strategies, under this model,

for the tests performed with the TodoBR log. With a peak load set to the average load of FIXED

< 1 >, i.e. the average load needed to always poll only the most promising server for every query, the

strategy based on load-driven routing and incremental caching surpasses a competitive similarity

of 65% (with an 80% COMP10).

Moreover, in order to assess how the strategy exploits the underlying cluster, in Table 5.6 the

average number of servers per query is shown. While the configuration without collection selection

polls more servers on average (see Table 5.6), they are less relevant for the queries, and the final

results are better for the approaches based on collection selection, which poll fewer, but more

relevant, servers.

5.2.3 Partitioning and Load Balancing in Term-partition based Search Engines

Term-partitioning has always been considered not as effective as document partitioning in real

search settings. Nonetheless, some recent works have made this fact not as solid as before. Due

to recent proposals of a pipelined architecture, the term partitioning approach is now attracting

some attention again [152]. According to this partitioning strategy, the set of terms occurring in the

index, i.e. the lexicon, is partitioned among the Index servers, and each server is able to discover

only the documents containing a subset of the lexicon. The strategies proposed so far suffer from

a significant load imbalance, due, again, to the power-law distribution of terms in user queries and

indexed documents.

In the classical term partitioning approach, the query is segmented into several disjoint sub-

queries. Each sub-query must be sent to the server that is responsible for the corresponding terms.

97

1 2 3 4 5 6 7 8

FIXED* 0.86 1.77 2.75 3.64 4.58 5.56 6.50 7.41

NO COLL 5.72 7.57 9.17 10.43 11.43 12.08 12.59 13.04

NO COLL + INC 8.72 10.35 11.57 12.65 13.31 13.90 14.26 14.61

BOOST 2.04 2.88 3.78 4.68 5.57 6.47 7.30 8.23

BOOST + INC 5.32 6.52 7.69 8.78 9.70 10.57 11.34 12.05

9 10 11 12 13 14 15 16 16+OVR

FIXED* 8.33 9.26 10.23 11.15 12.06 13.04 14.01 15.08 16.34

NO COLL 13.45 13.86 14.16 14.57 14.86 15.19 15.40 15.63 16.34

NO COLL + INC 14.88 15.14 15.37 15.58 15.77 15.92 16.06 16.17 16.62

BOOST 9.14 9.98 10.91 11.93 12.85 13.83 14.71 15.50 16.34

BOOST + INC 12.65 13.17 13.67 14.19 14.68 15.16 15.64 15.98 16.62

Table 5.6: Average number of servers polled per query with different strategies, for different load

levels. FIXED* polls a fixed number of servers, but queries can be dropped by overloaded servers.

Even if Boost and Boost + Incremental Caching are utilizing, on average, a smaller number of

servers than broadcast (i.e. no collection selection), the choice is more focused and gives better

results [171].

Note that each sub-query can be served locally by each server that has to return, in principle, the

whole result list. Then, local results must be merged in order to produce the list of relevant DocIDs

to be returned to the user. In the pipelined approach, the broker, after dividing the query into

sub-queries, packs them up into a structure denoting the list of servers to invoke. The first server of

the list receives the whole query-pack, resolves its sub-query, sends its own results, along with the

remainder of the query-pack, to the second server in the list. This, in turn, resolves its sub-query

and merges the results with those received from the previous index server. This process goes on

until no more sub-queries are left and the last index server in the list is able to select the r best

documents that are sent back to the broker. Finally, the broker returns the rendered result page to

the user.

Term-partitioning is easily explained through an example. Suppose we have an index built on

a toy collection made up of three documents: d1 = {t1, t2}, d2 = {t1, t3}, d3 = {t2, t3}. Suppose,

we have two index servers and we store t1, and t2 on server 1, t3 on server 2. First server’s index

contains t1 → {d1, d2}, and t2 → {d1, d3}. Server number two contains t3 → {d2, d3}. If a user

submits a query consisting of terms t1 and t2 only the first server is involved in the resolution. For

the query t1, t3, instead, both servers are involved. In traditional term partitioning the broker sends

t1, and t2 separately to server 1 and 2, respectively. In pipelined term-partitioning the broker packs

t1, and t2, sends the packet to server 1, which extracts t1’s postings. Afterwards, server 1 forwards

t2 along with the list {d2, d3} to server 2. Finally, server 2 sends the list consisting of the document

d2 back to the broker.

From the above example, it is quite clear why term-partitioning suffers a lot from the imbalance

problem. If the query stream consists of all resubmissions of query t1, t2, then server two is never

involved in a query resolution. Balancing the load is, therefore, the first objective if we want to

98

prove the applicability of term partitioning in real-world web search engines.

Results of preliminary studies made [151, 240, 142] are good and promising. The aim at balancing

the load in a term-partitioned distributed search system using information about how terms are

distributed across requests in the past. Anyway, none of the proposed studies have shown, yet, that

term-partitioning can be better than document-partitioning.

The load balancing problem is also addressed by Moffat et al. [151], where the authors exploited

both term frequency information and postings list replication to improve load balancing in their

pipelined WSE. Although they showed a strong improvement of about 30% in the throughput of

the system, still the document partitioning approach behaves better. The term distribution strategy

used is called fill smallest. It basically consists in applying a bin-packing heuristic to fill up the

partitions by weighting each term with its frequency of occurrence within a stream of queries. This

technique is enhanced by exploiting partial replications of terms and associated postings lists. As

replication strategy, they proposed to replicate up to 1, 000 most frequent terms. They also tested

a multi-replicate strategy, in which they replicated the 100 most frequent terms only: the most

frequent one is placed on all their eight servers, then the following nine frequent ones are placed on

four of them, and then the other ninety terms are placed on two servers.

Nevertheless, believing in the potential of the pipelined query evaluation, authors envision in

term partitioning a great potential. The authors indicate as future directions of research the explo-

ration of load balancing methodologies based on the exploitation of term usage patterns present in

the query stream. Such patterns can drive both the dynamic reassignment of lists while the query

stream is being processed, and the selective replication of the most accessed inverted lists.

Such techniques are studied by Lucchese et al. [142]. They demonstrate the feasibility and

efficacy of exploiting a frequent-patterns driven partitioning of the vocabulary of terms among the

servers, in order to enhance the performance of a term-partitioned, large-scale, pipelined WSE. The

model they propose takes into account: correlation of terms in user queries, the disk cost as, the

OS buffer cache, and the communication and computation overheads. They shown, through simu-

lated results, that the novel model overcomes the performance limits of the previous partitioning

strategies.

Without entering too much into the theoretical details of the methods by Lucchese et al. [142]

we show some results proving that the method effectively reduces the load unbalance and, at the

same time, reduces the number of queried servers. These two parameters create, obviously, a trade-

off. The parameter α is a value tuning the importance of load balancing over the average number

of servers queried in the original formula of Lucchese et al. [142].

All the results are drawn from the TodoBR query log but the same conclusions can be drawn also

for other query logs. All query logs were preliminarily cleaned and transformed into a transactional

form, where each query is simply formed by a query identifier and the list t1, t2, . . . , tq of terms

searched for. The terms were all converted to lower case, but neither stemming nor stopword removal

was performed. The first 2/3 of each query log were used to drive the partitioning of the index,

while the last part was used to test the partitioning obtained. Since they do not have available a

real collections of documents coherent with the query logs, they validated the proposed approach

by simulating a broker and assuming constant times for disk, retrieval and network disregarding

the lengths of the involved posting lists. It is worth noticing that the model is however sound and

as general as possible. The knowledge of the actual values of the above parameters could be easily

99

Baseline Cases Term Ass.
Servers random bin packing α = 0.9

1 28 28 50
2 31 30 20
3 17 17 14
> 3 24 25 16

(a) Percentages of queries as a function of the number

of servers involved in their processing. The parameter α

states the how much load-balancing should be preferred
over term-packing [142]

Replication Factors
0.0001 0.0005 0.001

bin term bin term bin term
Servers pack. ass. pack. ass. pack. ass.

TodoBR

1 42 54 56 62 63 67
2 31 22 22 18 19 16
3 12 10 9 8 8 8
> 3 15 14 12 11 10 9

(b) Effect of replicating the index entries of most frequently

queried terms [142].

Fig. 5.13: Term assignment results.

taken into account during the term assignment process.

The figures reported in Table 5.13 show the percentage of queries occurring in the test sets of the

TodoBR query log as a function of the number of servers queried. Each column of the table refers

to a different assignment of terms to the partitions. In particular, the baseline cases are random

assignment – i.e. the traditional one, and bin packing [151]. The term assignment algorithm is

executed with values of α equal to 0.8 meaning that we are preferring to lower the number of server

per query. The assignment strategy allows to remarkably increase the number of queries involving

only one server. Obviously, the less the servers involved in answering a query the lower the query

response time and the communication volume. On the TodoBR log the number of queries served by

a single server almost doubled w.r.t. the random and bin packing assignments. As a consequence,

the number of queries requiring more than one server decreases correspondingly. We can see that

the number of queries solved by more than 3 servers is reduced by at least 1/3 on TodoBR. The

effect of replicating in all the servers the index entries of some of most frequently queried terms was

also tested. By introducing only very small percentages of replicated terms, ranging from 0.001% to

0.1% of the the total number of terms, the effect on the average number of per-query servers were

very remarkable. Indeed, replication is very effective in reducing the average number of per-query

servers also in the baseline case of bin packing. However, the advantages of using term assignment

technique are remarkable also in these tests.

Load balancing also improved. Figure 5.14a, and 5.14b report the comparison of the average

number of servers vs. load balancing in TodoBR query log when term assignment is performed. In

particular, Figure 5.14a reports the case where the load balancing is preferred over reducing the

number of servers involved per query. Whereas, Figure 5.14b shows the effect on the load of giving

more importance to reducing the average number of servers involved per query.

Therefore, term assignments improved WSE throughput and query response time with respect

to random and bin packing [151] term assignments. However, since a web search engine is a complex,

highly nonlinear environment, the analysis conducted by Lucchese et al. [142] and thus the above

results should be confirmed by testing performed on an actual web search engines with an actual

index.

100

!3e+06

!4e+06

!5e+06

!6e+06

!7e+06

!8e+06

!9e+06

!0 !0.2 !0.4 !0.6 !0.8 !1
!1

!1.5

!2

!2.5

!3

se
rv
er
!lo
ad

qu
er
y!
w
id
th

alpha

TodoBR:!disk-dominant

maximum!load
average!load
average!width

bin!packing!average!width

(a) Load balancing first

!1e+06

!2e+06

!3e+06

!4e+06

!5e+06

!6e+06

!7e+06

!0 !0.2 !0.4 !0.6 !0.8 !1
!1

!1.5

!2

!2.5

!3

se
rv
er
!lo
ad

qu
er
y!
w
id
th

alpha

TodoBR:!network-dominant

maximum!load
average!load
average!width

bin!packing!average!width

(b) Less servers best

Fig. 5.14: Number of servers vs. load balancing in TodoBR term partitioning experiments.

From [142].

5.3 Summary

Differently from the previous chapter, this one presented how the knowledge mined from query logs

can be used to speed-up query processing in search engines. We showed two major directions:

• Caching, that consists in exploiting past usage information to build cache replacement

policies suitable for search engine workloads;
• Data partitioning, that is the design of carefully chosen strategies to improve the place-

ment of data within a distributed web search engine. For this topic, we showed how to

improve both document and term partitioned search engines.

101

6

New Directions

As the title says we review some of the open problems and challenges as highlighted by many

scholars. Obviously, this section does not contain any consolidated result but only some new ideas

that are briefly sketched.

6.1 Eye Tracking

As we have seen in the Enhancing Effectiveness chapter, relevance feedback is a very important

mean with which one can improve the users’ search experience by adapting the engine’s ranking

function to particular class of users, or to a particular time period.

Feedback of some sort can also be obtained by observing how people interact with a search

result page by tracking eye movements [90, 74, 95, 70].

As an example of what kind of information can be captured by eye tracking techniques, Figure 6.1

shows users’ fixation patterns for a page of web search results. It is clearly shown that users clearly

read the contextual descriptions, especially on the seventh result.

By using eye tracking some useful feedback information, not previously available with click-

through information, can be envisioned. Indeed, a lot of nice applications for this kind of feedback

can be thought: learning how to better rank search results, how to place advertisement in a way

they capture more attention from users, etc.

For instance, Guan and Cutrell [95] perform the following experiment: for a given search query

the more relevant results (i.e. targets in their terminology) are alternatively displayed (for different

users) at the top, in the middle, at the bottom of search result page. Therefore, this study empirically

evaluates how people’s attention is distributed across search results when the target is systematically

manipulated to be displayed at different positions. As a result, it is shown that people spend more

time and are less successful in finding target results when targets were displayed at lower positions

in the list. When people could not find the target results for navigational search, they either selected

the first result, or switched to a new query. From this study it could be concluded that

102

 1

What are you looking for? An eye-tracking study of
information usage in Web search

 Edward Cutrell
Microsoft Research

1 Microsoft Way, Redmond, WA 98052
cutrell@microsoft.com

Zhiwei Guan
University of Washington

Box 352195, Seattle, WA 98195-2195
zguan@u.washington.edu

ABSTRACT
Web search services are among the most heavily used
applications on the World Wide Web. Perhaps because
search is used in such a huge variety of tasks and contexts,
the user interface must strike a careful balance to meet all
user needs. We describe a study that used eye tracking
methodologies to explore the effects of changes in the
presentation of search results. We found that adding
information to the contextual snippet significantly improved
performance for informational tasks but degraded
performance for navigational tasks. We discuss possible
reasons for this difference and the design implications for
better presentation of search results.

Author Keywords
Web search, eye tracking, contextual snippets, user studies.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
As an increasingly large fraction of human knowledge
migrates to the World Wide Web and other information
systems, finding useful information is simultaneously more
important and much more difficult. In 2000, Jansen and
Pooch estimated that 1 in 28 of all Web pages that users
viewed were search results pages [11]. Today, search is
among the most important activities that Web users engage
in. Beyond the Web, search is a central activity for users of
corporate intranets, specialized databases (from shopping to
Medline), and increasingly for personal archives of
documents and email [4].

Given the importance and ubiquity of search, it is
remarkable how similar most search interfaces are. Users
typically type a few words into a query box and receive a
rank-ordered list of search results comprising document
titles, brief descriptions of the pages and perhaps some

metadata about the results (e.g., author, date, size, etc.). On
the Web, such interfaces are extremely effective,
considering the wide range of tasks they are used for and
the very short queries most users provide. However, even
given the simplicity of most interfaces, it is not obvious
how users utilize different information from lists of search
results to complete their tasks. Do users read the
descriptions? Are the URLs and other metadata used by
anyone other than expert searchers? Does the context of the
search or the type of task being supported matter? Eye-
tracking methodologies may help us answer such questions
by explicitly recording how users attend to different parts of
Web search results. As an example, Figure 1 shows users’
fixation patterns for a page of Web search results in our
study. For this task, users were clearly reading the
contextual descriptions, especially on the seventh result.

Two or three broad classes of Web search tasks have been
identified in the literature [1, 22] and used in various
studies on Web search [12, 15, 17]. In navigational tasks,
users are trying to find a specific Web site or homepage that
they have in mind; the goal is simply to get to their
destination. In informational tasks, the goal is to acquire

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2007, April 28–May 3, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-593-9/07/0004...$5.00.

Figure 1. Heat map visualization of the number of fixations
across 3 users on a page of search results for an informational
task with long contextual snippets (see below). Boxes indicate
defined areas of interest (AOIs).

Fig. 6.1: Heat map visualization of the areas across which three different users direct their sights [70].

“the search engine could show variety of different search results where “best” ranking

is not clear so that users could have an accurate estimation of the relevance of results

and then behave accordingly.”

Cutrell and Guan [70] describe a study that used eye tracking to explore the effects of changes

in the presentation of search results. An interesting finding is that making snippets richer signifi-

cantly improves the performance in terms of attractiveness for informational queries, but degrades

performance for navigational queries. These results suggest this difference in performance is due

to the fact that as the snippet length increases, users pay more attention to the snippet and less

attention to the URL located at the bottom of the search result.

6.2 Web Search Advertisement

Web advertisement is more and more used by a continuously growing number of commercial bod-

ies [89].

Advertisement is another area in which relevance feedback and click-through data can help a

lot. Obviously, since the main goal of online advertisement is to attract clicks, analyzing the charac-

teristics of the most clicked advertisement pages could help in determining a better advertisement

placement.

To be more precise, an advertisement can be modeled as a quadruple 〈T ,D,U ,K〉, where: T is

the title of the advertisement; D is the description – usually a few words that effectively describe

what is advertised; U is the URL of the landing page for that advertisement; K is a set of keywords

103

related to the advertised business with the relative maximum amount of money the advertiser is

willing to pay in case someone clicks the advertisement.

The maximum amount of money willed to pay in case of a click on the relative advertisement,

is called bid1, and usually is part of the advertisement ranking process. Indeed, the process of

specifying a maximum amount of money for a keyword is commonly referred to as “to bid for a

keyword”.

One of the main factors involved in the estimation of the CTR is the relevance of the adver-

tisement with respect to the user query. In the simplest case this can be done by selecting all those

advertisements whose keywords match at least one term in the query. For instance, if a user submit

the query “first aid” all those advertisements that have bid either for “first”, for “aid”, or both

are selected. This, indeed, does not keep into account any relevance judgement with respect to

query results possibly presenting users advertisements that are not of their interest. Therefore, the

number of clicks generated by this näıve technique can be low and should be improved.

For instance, a straightforward way to enhance the CTR for an advertiser is to count the number

of clicks it has received in the past. However, this näıve approach may result not as effective as

possible. In fact, it penalizes newly inserted, or rarely recalled advertisements. Therefore, a finer

analysis of query log entries and click-through data could enable the finding of better ranking

functions for advertisers.

6.3 Time-series Analysis of Queries

Here we present an alternative viewpoint on query logs. Better to say, queries can be viewed as

signals in the domain of time. In each time unit we record the occurrences of the query. This would

result in a sort of signal to which standard temporal series techniques may be applied [222, 223, 86,

59, 243]. The techniques reported in the above papers allow for the discovering of peculiar query

features such as being periodic, or bursty.

Adar et al. [2] use time series to predict (i) why users issue queries and (ii) how users react and

cause news spreading. In particular, a novel way to compare signals coming from different sources

of information. Dynamic Time Warping (DTW) is a way to compare two time series also capturing

behavioral properties by mapping inflection points and behaviors such as the rise in one curve to

the rise in the second, peak to peak, run to run. Figure 6.2 shows an example of DTW, against a

simple linear mapping. Lines going from a curve to the other show how events are mapped within

each line.

Computing a DTW is simply done by a dynamical programming algorithm minimizing the

distance in terms of euclidean distance between to time series points.

The algorithm shown in Figure 6.1 produces a two dimensional array, DTW, containing how

the two time series maps. The best warping path is simply obtained by crawling the array from the

extreme corner in a backward fashion along the minimum gradient direction.

Goal of the project described in the article, was to discover how time-series were correlated in

order to be able to use events in one information source to predict those in another. For example

as the article reports: “one might expect a ramp-up much earlier for expected events in the query-

1This recall the action of bidding in auctions. Actually this auction-based mechanism is part of the advertisement process.

104

Fig. 6.2: The difference of using DTW against a simple linear mapping for comparing two time

series.

Procedure DynamicTimeWarping(x, y).

(1) DTW[0, 0] = 0;

(2) for i = 1..length(x)

(a) DTW[0, i],DTW[i, 0] =∞;

(b) for i = 1..length(x)

i. for i = 1..length(y)

A. cost = |x(i)− y(j)|;
B. DTW[i, j] = min(DTW[i − 1, j] + cost, DTW[i, j − 1] +

cost,DTW[i− 1, j − 1] + cost);

Table 6.1: Dynamic Time Warping Algorithm.

logs followed by a burst of posting and news activity in the blog and NEWS datasets around the

time of the actual event”. The datasets used were two query logs (from MSN, and AOL), a blog

dataset, a NEWS dataset. By using human-based tests they devised five different general trends in

time-series-based behavior prediction.

News of the weird – Events that are so weird and/or strange to be able to virally spread over a

huge amount of people. Anticipated events – Events that produce a lot of queries but only few blog

posts. Familiarity breed contempt – Events that are newsworthy but not searched by users. Filtering

behaviors – Events that have the capability of deepening the filtering of categories. Elimination of

noise – Events that combined reduces the noise that might have been generated around a topic,

for instance a set of blog posts discussing a news article.

The models describing the aggregated and social behavior of users studied by Adar et al. [2] can

be used in practice, for instance, to analyze the market, or to make search engines more reactive

to changing user needs.

There are still many open issues that are interesting to, at least, enumerate:

105

• The effects of query log analysis on exploratory search
• Complex and interactive question answering;
• Client-side instrumentation (including keystroke and mouse movement analysis)
• Direct mental activity analysis

This shows how this research field is still in its infancy and needs the efforts of many researchers to

enable a better search experience for end users. On the other hand, search companies should find

a way to give researchers not working in private companies access to query log information. In this

case, not only search experience is enhanced, but also REsearch experience will be.

6.4 Summary

This chapter is a sort of “What’s Next?” for the topic presented in this survey. We have presented

some challenging problems whose solutions are trailblazing. These problems have not fully solved,

yet. In particular, very few research papers have been presented on how to improve the effectiveness

(read “incomes”) of advertisement placement algorithms. We strongly believe that one of most

promising directions is, thus, represented by using query log information.

106

Conclusions

This work has covered some of the most important issues in web search engine optimization through

past query mining. Starting from first order statistics of query distributions (i.e. query frequency,

click frequency, page popularity, etc.), we have shown more complex analyses of historical web

search usage data such as: query sessions (also known as query chains) and social relations between

queries (i.e. folksonomies).

Results and observations from this introductory parts meet the two central chapters where

technique for enhancing search effectiveness and efficiency are presented.

Due to the experimental nature of these analyses, results are, to some extent, fragmented into

several parts that, in the vast majority of the cases, are taken by the relative articles published in

literature. Actually, a comparison of the various techniques would require to re-implement them

and this was beyond the scope, and not much in the spirit of this work.

To conclude we really hope to have been able to give readers the basic tools they can use for

working on this, still quite young, field of query log mining.

107

Acknowledgements

This journey has come to an end...

I have enjoyed so much writing this survey for many reasons. I have had the opportunity to

discover new material and papers by “crawling” the space of papers in the literature by following

the “links” their references showed to me. Apart from kidding, I must thank first of all Jamie

Callan, and Fabrizio Sebastiani (in strict alphabetical order) for having helped me so much during

the time I spent writing this survey. I want also thank the reviewers for all the useful and invaluable

comments.

Finally, thanks to Francesca who “joyfully” supported me during this journey!

108

References

[1] E. Adar, “User 4xxxxx9: Anonymizing query logs,” in Query Log Analysis: Social And Technological Challenges.
A workshop at the 16th International World Wide Web Conference (WWW 2007), (E. Amitay, C. G. Murray,
and J. Teevan, eds.), May 2007.

[2] E. Adar, D. S. Weld, B. N. Bershad, and S. S. Gribble, “Why we search: visualizing and predicting user
behavior,” in WWW ’07: Proceedings of the 16th international conference on World Wide Web, (New York,
NY, USA), pp. 161–170, ACM, 2007.

[3] A. Agarwal and S. Chakrabarti, “Learning random walks to rank nodes in graphs,” in ICML ’07: Proceedings
of the 24th international conference on Machine learning, (New York, NY, USA), pp. 9–16, ACM, 2007.

[4] E. Agichtein, E. Brill, and S. Dumais, “Improving web search ranking by incorporating user behavior infor-
mation,” in SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference on Research and
development in information retrieval, (New York, NY, USA), pp. 19–26, ACM, 2006.

[5] E. Agichtein, E. Brill, S. Dumais, and R. Ragno, “Learning user interaction models for predicting web search
result preferences,” in SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, (New York, NY, USA), pp. 3–10, ACM, 2006.

[6] E. Agichtein and Z. Zheng, “Identifying ”best bet” web search results by mining past user behavior,” in KDD
’06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining,
(New York, NY, USA), pp. 902–908, ACM, 2006.

[7] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association rules between sets of items in large databases,”
in Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington,
D.C., May 26-28, 1993, (P. Buneman and S. Jajodia, eds.), pp. 207–216, ACM Press, 1993.

[8] F. Ahmad and G. Kondrak, “Learning a spelling error model from search query logs,” in Proceedings of the 2005
Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing
(HLT/EMNLP), (Vancouver, Canada), pp. 955–962, Association for Computational Linguistic, October 2005.

[9] C. Anderson, The Long Tail. Random House Business, 2006.
[10] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan, “Searching the web,” ACM Trans. Inter.

Tech., vol. 1, no. 1, pp. 2–43, 2001.
[11] V. Authors, “About web analytics association,” Retrieved on August 2009. http://www.

webanalyticsassociation.org/aboutus/.
[12] R. Baeza-Yates, Web Mining: Applications and Techniques, ch. Query Usage Mining in Search Engines, pp. 307–

321. Idea Group, 2004.
[13] R. Baeza-Yates, “Algorithmic challenges in web search engines,” in Proc. of the 7th Latin American Symposium

on Theoretical Informatics (LATIN’06), (Valdivia, Chile), pp. 1–7, 2006.
[14] R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, and F. Silvestri, “Challenges in distributed information

retrieval,” in International Conference on Data Engineering (ICDE), (Istanbul, Turkey), IEEE CS Press, April
2007.

109

[15] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and F. Silvestri, “The impact of caching
on search engines,” in SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, (New York, NY, USA), pp. 183–190, ACM, 2007.

[16] R. Baeza-Yates, A. Gionis, F. P. Junqueira, V. Murdock, V. Plachouras, and F. Silvestri, “Design trade-offs for
search engine caching,” ACM Trans. Web, vol. 2, no. 4, pp. 1–28, 2008.

[17] R. Baeza-Yates, C. Hurtado, and M. Mendoza, Query Recommendation Using Query Logs in Search Engines,
pp. 588–596. Vol. 3268/2004 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, November
2004.

[18] R. Baeza-Yates, C. Hurtado, and M. Mendoza, “Ranking boosting based in query clustering,” in Proceedings
of 2004 Atlantic Web Intelligence Conference, (Cancun, Mexico), 2004.

[19] R. Baeza-Yates and A. Tiberi, “Extracting semantic relations from query logs,” in KDD ’07: Proceedings of
the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY,
USA), pp. 76–85, ACM, 2007.

[20] R. A. Baeza-Yates, “Applications of web query mining,” in Advances in Information Retrieval, 27th European
Conference on IR Research, ECIR 2005, Santiago de Compostela, Spain, March 21-23, 2005, Proceedings, (D. E.
Losada and J. M. Fernández-Luna, eds.), pp. 7–22, Springer, 2005.

[21] R. A. Baeza-Yates, “Graphs from search engine queries,” in SOFSEM 2007: Theory and Practice of Computer
Science, 33rd Conference on Current Trends in Theory and Practice of Computer Science, Harrachov, Czech
Republic, January 20-26, 2007, Proceedings, (J. van Leeuwen, G. F. Italiano, W. van der Hoek, C. Meinel,
H. Sack, and F. Plasil, eds.), pp. 1–8, Springer, 2007.

[22] R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza, “Improving search engines by query clustering,” JASIST,
vol. 58, no. 12, pp. 1793–1804, 2007.

[23] R. A. Baeza-Yates, C. A. Hurtado, M. Mendoza, and G. Dupret, “Modeling user search behavior,” in Third Latin
American Web Congress (LA-Web 2005), 1 October - 2 November 2005, Buenos Aires, Argentina, pp. 242–251,
IEEE Computer Society, 2005.

[24] R. A. Baeza-Yates, F. Junqueira, V. Plachouras, and H. F. Witschel, “Admission policies for caches of search
engine results,” in SPIRE, pp. 74–85, 2007.

[25] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1999.

[26] R. A. Baeza-Yates and F. Saint-Jean, “A three level search engine index based in query log distribution,” in
SPIRE, pp. 56–65, 2003.

[27] J. Bar-Ilan, “Access to query logs – an academic researcher’s point of view,” in Query Log Analysis: Social And
Technological Challenges. A workshop at the 16th International World Wide Web Conference (WWW 2007),
(E. Amitay, C. G. Murray, and J. Teevan, eds.), May 2007.

[28] Z. Bar-Yossef and M. Gurevich, “Mining search engine query logs via suggestion sampling,” Proc. VLDB
Endow., vol. 1, no. 1, pp. 54–65, 2008.

[29] R. Baraglia, F. Cacheda, V. Carneiro, F. Diego, V. Formoso, R. Perego, and F. Silvestri, “Search shortcuts: a
new approach to the recommendation of queries,” in RecSys ’09: Proceedings of the 2009 ACM conference on
Recommender systems. To Appear, (New York, NY, USA), ACM, 2009.

[30] R. Baraglia, F. Cacheda, V. Carneiro, V. Formoso, R. Perego, and F. Silvestri, “Search shortcuts: driving users
towards their goals,” in WWW ’09: Proceedings of the 18th international conference on World wide web, (New
York, NY, USA), pp. 1073–1074, ACM, 2009.

[31] R. Baraglia, F. Cacheda, V. Carneiro, V. Formoso, R. Perego, and F. Silvestri, “Search shortcuts using click-
through data,” in WSCD ’09: Proceedings of the 2009 workshop on Web Search Click Data, (New York, NY,
USA), pp. 48–55, ACM, 2009.

[32] R. Baraglia and F. Silvestri, “Dynamic personalization of web sites without user intervention,” Commun. ACM,
vol. 50, no. 2, pp. 63–67, 2007.

[33] L. A. Barroso, J. Dean, and U. Hölzle, “Web search for a planet: The google cluster architecture,” IEEE Micro,
vol. 23, no. 2, pp. 22–28, 2003.

[34] S. M. Beitzel, E. C. Jensen, A. Chowdhury, O. Frieder, and D. Grossman, “Temporal analysis of a very large
topically categorized web query log,” J. Am. Soc. Inf. Sci. Technol., vol. 58, no. 2, pp. 166–178, 2007.

[35] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman, and O. Frieder, “Hourly analysis of a very large
topically categorized web query log,” in SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval, (New York, NY, USA), pp. 321–328, ACM,
2004.

110

[36] S. M. Beitzel, E. C. Jensen, O. Frieder, D. D. Lewis, A. Chowdhury, and A. Kolcz, “Improving automatic
query classification via semi-supervised learning,” in ICDM ’05: Proceedings of the Fifth IEEE International
Conference on Data Mining, (Washington, DC, USA), pp. 42–49, IEEE Computer Society, 2005.

[37] S. M. Beitzel, E. C. Jensen, D. D. Lewis, A. Chowdhury, and O. Frieder, “Automatic classification of web
queries using very large unlabeled query logs,” ACM Trans. Inf. Syst., vol. 25, no. 2, p. 9, 2007.

[38] L. A. Belady, “A study of replacement algorithms for a virtual storage computer,” IBM Systems Journal, vol. 5,
no. 2, pp. 78–101, 1966.

[39] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton University Press, 1957.
[40] “Beowulf Project at CESDIS,”. http://www.beowulf.org.
[41] M. Bilenko and R. W. White, “Mining the search trails of surfing crowds: identifying relevant websites from

user activity,” in WWW ’08: Proceeding of the 17th international conference on World Wide Web, (New York,
NY, USA), pp. 51–60, ACM, 2008.

[42] B. Billerbeck, F. Scholer, H. E. Williams, and J. Zobel, “Query expansion using associated queries,” in Proceed-
ings of the twelfth international conference on information and knowledge management, pp. 2–9, ACM Press,
2003.

[43] P. Boldi and S. Vigna, “The webgraph framework i: compression techniques,” in WWW ’04: Proceedings of the
13th international conference on World Wide Web, (New York, NY, USA), pp. 595–602, ACM Press, 2004.

[44] J. Boyan, D. Freitag, and T. Joachims, “A machine learning architecture for optimizing web search engines,”
in Proceedings of the AAAI Workshop on Internet-Based Information Systems, 1996.

[45] O. Boydell and B. Smyth, “Capturing community search expertise for personalized web search using snippet-
indexes,” in CIKM ’06: Proceedings of the 15th ACM international conference on Information and knowledge
management, (New York, NY, USA), pp. 277–286, ACM, 2006.

[46] J. S. Breese, D. Heckerman, and C. M. Kadie, “Empirical analysis of predictive algorithms for collaborative
filtering,” in UAI, pp. 43–52, 1998.

[47] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” in WWW7: Proceedings of
the seventh international conference on World Wide Web 7, (Amsterdam, The Netherlands, The Netherlands),
pp. 107–117, Elsevier Science Publishers B. V., 1998.

[48] A. Z. Broder, “A taxonomy of web search,” SIGIR Forum, vol. 36, no. 2, pp. 3–10, 2002.
[49] A. Z. Broder, M. Fontoura, E. Gabrilovich, A. Joshi, V. Josifovski, and T. Zhang, “Robust classification of

rare queries using web knowledge,” in SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, (New York, NY, USA), pp. 231–238, ACM,
2007.

[50] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic clustering of the web,” in Selected
papers from the sixth international conference on World Wide Web, (Essex, UK), pp. 1157–1166, Elsevier
Science Publishers Ltd., 1997.

[51] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender, “Learning to rank
using gradient descent,” in ICML ’05: Proceedings of the 22nd international conference on Machine learning,
(New York, NY, USA), pp. 89–96, ACM, 2005.

[52] C. J. C. Burges, R. Ragno, and Q. V. Le, “Learning to rank with nonsmooth cost functions.,” in NIPS,
(B. Schölkopf, J. Platt, and T. Hoffman, eds.), pp. 193–200, MIT Press, 2006.

[53] R. Buyya, ed., High Performance Cluster Computing. Prentice Hall PTR, 1999.
[54] H. C. by Thomas, E. L. Charles, L. R. Ronald, and S. Clifford, Introduction to Algorithms. The MIT Press,

2001.
[55] J. P. Callan, Z. Lu, and W. B. Croft, “Searching distributed collections with inference networks,” in SIGIR

’95: Proceedings of the 18th annual international ACM SIGIR conference on Research and development in
information retrieval, (New York, NY, USA), pp. 21–28, ACM, 1995.

[56] J. Callan and M. Connell, “Query-based sampling of text databases,” ACM Trans. Inf. Syst., vol. 19, no. 2,
pp. 97–130, 2001.

[57] C. Castillo, Effective Web Crawling. PhD thesis, Dept. of Computer Science – University of Chile, Santiago,
Chile, November 2004.

[58] J. Caverlee, L. Liu, and J. Bae, “Distributed query sampling: a quality-conscious approach,” in SIGIR ’06: Pro-
ceedings of the 29th annual international ACM SIGIR conference on Research and development in information
retrieval, (New York, NY, USA), pp. 340–347, ACM, 2006.

[59] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,” in KDD ’06: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA),
pp. 554–560, ACM, 2006.

111

[60] Q. Chen, M. Li, and M. Zhou, “Improving query spelling correction using web search results,” in Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, (Prague, Czech Republic), pp. 181–189, Association for Computational Linguistic, June
2007.

[61] F. Chierichetti, A. Panconesi, P. Raghavan, M. Sozio, A. Tiberi, and E. Upfal, “Finding near neighbors through
cluster pruning,” in Proceedings of ACM SIGMOD/PODS 2007 Conference, 2007.

[62] P. A. Chirita, C. S. Firan, and W. Nejdl, “Personalized query expansion for the web,” in SIGIR ’07: Proceedings
of the 30th annual international ACM SIGIR conference on Research and development in information retrieval,
(New York, NY, USA), pp. 7–14, ACM, 2007.

[63] A. Chowdhury, O. Frieder, D. Grossman, and M. C. McCabe, “Collection statistics for fast duplicate document
detection,” ACM Trans. Inf. Syst., vol. 20, no. 2, pp. 171–191, 2002.

[64] A. Cooper, “A survey of query log privacy-enhancing techniques from a policy perspective,” ACM Trans. Web,
vol. 2, no. 4, pp. 1–27, 2008.

[65] N. Craswell, P. Bailey, and D. Hawking, “Server selection on the world wide web,” in DL ’00: Proceedings of
the fifth ACM conference on Digital libraries, (New York, NY, USA), pp. 37–46, ACM, 2000.

[66] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey, “An experimental comparison of click position-bias models,”
in WSDM ’08: Proceedings of the international conference on Web search and web data mining, (New York,
NY, USA), pp. 87–94, ACM, 2008.

[67] S. Cucerzan and E. Brill, “Spelling correction as an iterative process that exploits the collective knowledge
of web users,” in Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2004), pp. 293–300, July 2004.

[68] S. Cucerzan and R. W. White, “Query suggestion based on user landing pages,” in SIGIR ’07: Proceedings of
the 30th annual international ACM SIGIR conference on Research and development in information retrieval,
(New York, NY, USA), pp. 875–876, ACM Press, 2007.

[69] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma, “Probabilistic query expansion using query logs,” in WWW ’02:
Proceedings of the 11th international conference on World Wide Web, (New York, NY, USA), pp. 325–332,
ACM, 2002.

[70] E. Cutrell and Z. Guan, “What are you looking for?: an eye-tracking study of information usage in web search,”
in CHI ’07: Proceedings of the SIGCHI conference on Human factors in computing systems, (New York, NY,
USA), pp. 407–416, ACM, 2007.

[71] F. J. Damerau, “A technique for computer detection and correction of spelling errors,” Commun. ACM, vol. 7,
no. 3, pp. 171–176, 1964.

[72] I. S. Dhillon, S. Mallela, and D. S. Modha, “Information-theoretic co-clustering,” in Proceedings of The Ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD-2003), pp. 89–98,
2003.

[73] Z. Dou, R. Song, and J. Wen, “A large-scale evaluation and analysis of personalized search strategies,” in
Proceedings of the 16th international World Wide Web conference (WWW2007), pp. 572–581, May 2007.

[74] “Search engine users,” White paper, 2005. http://www.enquiroresearch.com/personalization/.
[75] M. E.P., “On caching search engine query results,” Computer Communications, vol. 24, pp. 137–143(7), 1

February 2000.
[76] T. Fagni, R. Perego, F. Silvestri, and S. Orlando, “Boosting the performance of web search engines: Caching and

prefetching query results by exploiting historical usage data,” ACM Trans. Inf. Syst., vol. 24, no. 1, pp. 51–78,
2006.

[77] C. H. Fenichel, “Online searching: Measures that discriminate among users with different types of experience,”
JASIS, vol. 32, no. 1, pp. 23–32, 1981.

[78] P. Ferragina and A. Gulli, “A personalized search engine based on web-snippet hierarchical clustering,” in
WWW ’05: Special interest tracks and posters of the 14th international conference on World Wide Web, (New
York, NY, USA), pp. 801–810, ACM, 2005.

[79] L. Fitzpatrick and M. Dent, “Automatic feedback using past queries: social searching?,” in SIGIR ’97: Pro-
ceedings of the 20th annual international ACM SIGIR conference on Research and development in information
retrieval, (New York, NY, USA), pp. 306–313, ACM, 1997.

[80] B. M. Fonseca, P. B. Golgher, E. S. de Moura, and N. Ziviani, “Using association rules to discover search
engines related queries,” in LA-WEB ’03: Proceedings of the First Conference on Latin American Web Congress,
(Washington, DC, USA), p. 66, IEEE Computer Society, 2003.

[81] I. Foster and C. Kesselman, eds., The Grid: Blueprint for a Future Computing Infrastructure. Morgan-
Kaufmann, 1999.

112

[82] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boosting algorithm for combining preferences,”
J. Mach. Learn. Res., vol. 4, pp. 933–969, 2003.

[83] N. Fuhr, S. Hartmann, G. Knorz, G. Lustig, M. Schwantner, and K. Tzeras, “AIR/X - a rule-based multistage
indexing system for large subject fields,” in Proceedings of the RIAO’91, Barcelona, Spain, April 2-5, 1991,
pp. 606–623, 1991.

[84] N. Fuhr, “Optimal polynomial retrieval functions based on the probability ranking principle,” ACM Trans. Inf.
Syst., vol. 7, no. 3, pp. 183–204, 1989.

[85] N. Fuhr, “A decision-theoretic approach to database selection in networked ir,” ACM Trans. Inf. Syst., vol. 17,
no. 3, pp. 229–249, 1999.

[86] G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu, “Parameter free bursty events detection in text streams,” in VLDB
’05: Proceedings of the 31st international conference on Very large data bases, pp. 181–192, VLDB Endowment,
2005.

[87] G. W. Furnas, S. C. Deerwester, S. T. Dumais, T. K. Landauer, R. A. Harshman, L. A. Streeter, and K. E.
Lochbaum, “Information retrieval using a singular value decomposition model of latent semantic structure,” in
SIGIR, pp. 465–480, 1988.

[88] G. Galilei, “Discorsi e dimostrazioni matematiche intorno a due nuove scienze,” Leida : Appresso gli Elsevirii,
1638.

[89] “The associated press: Internet ad revenue exceeds $21b in 2007,” 2008.
http://ap.google.com/article/ALeqM5hccYd6ZuXTns2RWXUgh6br4n1UoQD8V1GGC00.

[90] L. A. Granka, T. Joachims, and G. Gay, “Eye-tracking analysis of user behavior in www search,” in SIGIR
’04: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in
information retrieval, (New York, NY, USA), pp. 478–479, ACM, 2004.

[91] L. Gravano, H. Garcia-Molina, and A. Tomasic, “The efficacy of gloss for the text database discovery problem,”
Tech. Rep., Stanford University, Stanford, CA, USA, 1993.

[92] L. Gravano, H. Garćıa-Molina, and A. Tomasic, “The effectiveness of gioss for the text database discovery
problem,” in SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD international conference on Management
of data, (New York, NY, USA), pp. 126–137, ACM, 1994.

[93] L. Gravano, H. Garćıa-Molina, and A. Tomasic, “Gloss: text-source discovery over the internet,” ACM Trans.
Database Syst., vol. 24, no. 2, pp. 229–264, 1999.

[94] L. Gravano, V. Hatzivassiloglou, and R. Lichtenstein, “Categorizing web queries according to geographical
locality,” in CIKM ’03: Proceedings of the twelfth international conference on Information and knowledge man-
agement, (New York, NY, USA), pp. 325–333, ACM, 2003.

[95] Z. Guan and E. Cutrell, “An eye tracking study of the effect of target rank on web search,” in CHI ’07:
Proceedings of the SIGCHI conference on Human factors in computing systems, (New York, NY, USA), pp. 417–
420, ACM, 2007.

[96] T. H. Haveliwala, “Topic-sensitive pagerank,” in WWW ’02: Proceedings of the 11th international conference
on World Wide Web, (New York, NY, USA), pp. 517–526, ACM, 2002.

[97] D. Hawking, “Overview of the trec-9 web track,” in TREC, 2000.
[98] D. Hawking, “Web search engines: Part 1,” Computer, vol. 39, no. 6, pp. 86–88, 2006.
[99] D. Hawking, “Web search engines: Part 2,” Computer, vol. 39, no. 8, pp. 88–90, 2006.

[100] D. Hawking and P. Thistlewaite, “Methods for information server selection,” ACM Trans. Inf. Syst., vol. 17,
no. 1, pp. 40–76, 1999.

[101] J. Hennessy and D. Patterson, Computer Architecture - A Quantitative Approach. Morgan Kaufmann, 2003.
[102] M. R. Henzinger, “Algorithmic challenges in web search engines,” Internet Mathematics, vol. 1, no. 1, 2003.
[103] M. R. Henzinger, R. Motwani, and C. Silverstein, “Challenges in web search engines,” SIGIR Forum, vol. 36,

no. 2, pp. 11–22, 2002.
[104] T. C. Hoad and J. Zobel, “Methods for identifying versioned and plagiarized documents,” Journal of the

American Society for Information Science and Technology, vol. 54, no. 3, pp. 203–215, 2003.
[105] I. Hsieh-Yee, “Effects of search experience and subject knowledge on the search tactics of novice and experienced

searchers,” JASIS, vol. 44, no. 3, pp. 161–174, 1993.
[106] S. T. I. Foster, C. Kesselman, “The Anatomy of the Grid: Enabling Scalable Virtual Organization,” Int’l Journal

on Supercomputer Application, vol. 3, no. 15.
[107] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Comput. Surv., vol. 31, no. 3,

pp. 264–323, 1999.
[108] B. J. Jansen and M. Resnick, “An examination of searcher’s perceptions of nonsponsored and sponsored links

during ecommerce web searching,” J. Am. Soc. Inf. Sci. Technol., vol. 57, no. 14, pp. 1949–1961, 2006.

113

[109] B. J. Jansen and A. Spink, “An analysis of web searching by european alltheweb.com users,” Inf. Process.
Manage., vol. 41, no. 2, pp. 361–381, 2005.

[110] B. J. Jansen and A. Spink, “How are we searching the world wide web? a comparison of nine search engine
transaction logs,” Inf. Process. Manage., vol. 42, no. 1, pp. 248–263, 2006.

[111] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic, “Real life information retrieval: a study of user queries
on the web,” SIGIR Forum, vol. 32, no. 1, pp. 5–17, 1998.

[112] B. J. Jansen, A. Spink, and S. Koshman, “Web searcher interaction with the dogpile.com metasearch engine,”
JASIST, vol. 58, no. 5, pp. 744–755, 2007.

[113] B. J. J. Jansen, “Understanding user-web interactions via web analytics,” Synthesis Lectures on Information
Concepts, Retrieval, and Services, vol. 1, no. 1, pp. 1–102, 2009.

[114] T. Joachims, “Optimizing search engines using clickthrough data,” in KDD ’02: Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 133–
142, ACM Press, 2002.

[115] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay, “Accurately interpreting clickthrough data as
implicit feedback,” in SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval, (New York, NY, USA), pp. 154–161, ACM, 2005.

[116] T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay, “Evaluating the accuracy of implicit
feedback from clicks and query reformulations in web search,” ACM Trans. Inf. Syst., vol. 25, no. 2, p. 7, 2007.

[117] T. Joachims, H. Li, T.-Y. Liu, and C. Zhai, “Learning to rank for information retrieval (lr4ir 2007),” SIGIR
Forum, vol. 41, no. 2, pp. 58–62, 2007.

[118] T. Joachims and F. Radlinski, “Search engines that learn from implicit feedback,” Computer, vol. 40, no. 8,
pp. 34–40, 2007.

[119] K. S. Jones, S. Walker, and S. E. Robertson, “A probabilistic model of information retrieval: development and
comparative experiments,” Inf. Process. Manage., vol. 36, no. 6, pp. 779–808, 2000.

[120] R. Jones, R. Kumar, B. Pang, and A. Tomkins, “”i know what you did last summer”: query logs and user pri-
vacy,” in CIKM ’07: Proceedings of the sixteenth ACM conference on Conference on information and knowledge
management, (New York, NY, USA), pp. 909–914, ACM, 2007.

[121] R. Jones, B. Rey, O. Madani, and W. Greiner, “Generating query substitutions,” in WWW ’06: Proceedings of
the 15th international conference on World Wide Web, (New York, NY, USA), pp. 387–396, ACM Press, 2006.

[122] R. Karedla, J. S. Love, and B. G. Wherry, “Caching strategies to improve disk system performance,” Computer,
vol. 27, no. 3, pp. 38–46, 1994.

[123] M. Kendall, Rank Correlation Methods. Hafner, 1955.
[124] J. Kleinberg, “Bursty and hierarchical structure in streams,” in KDD ’02: Proceedings of the eighth ACM

SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 91–
101, ACM, 2002.

[125] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” J. ACM, vol. 46, no. 5, pp. 604–632,
1999.

[126] S. Koshman, A. Spink, and B. J. Jansen, “Web searching on the vivisimo search engine,” JASIST, vol. 57,
no. 14, pp. 1875–1887, 2006.

[127] M. Koster, “Aliweb: Archie-like indexing in the web,” Comput. Netw. ISDN Syst., vol. 27, no. 2, pp. 175–182,
1994.

[128] S. Kullback and R. A. Leibler, “On information and sufficiency,” Annals of Mathematical Statistics, vol. 22,
pp. 49–86, 1951.

[129] R. Kumar, J. Novak, B. Pang, and A. Tomkins, “On anonymizing query logs via token-based hashing,” in
WWW ’07: Proceedings of the 16th international conference on World Wide Web, (New York, NY, USA),
pp. 629–638, ACM, 2007.

[130] T. Lau and E. Horvitz, “Patterns of search: analyzing and modeling web query refinement,” in UM ’99: Pro-
ceedings of the seventh international conference on User modeling, (Secaucus, NJ, USA), pp. 119–128, Springer-
Verlag New York, Inc., 1999.

[131] U. Lee, Z. Liu, and J. Cho, “Automatic identification of user goals in web search,” in WWW ’05: Proceedings
of the 14th international conference on World Wide Web, (New York, NY, USA), pp. 391–400, ACM, 2005.

[132] R. Lempel and S. Moran, “Predictive caching and prefetching of query results in search engines,” in WWW
’03: Proceedings of the 12th international conference on World Wide Web, (New York, NY, USA), pp. 19–28,
ACM, 2003.

[133] R. Lempel and S. Moran, “Competitive caching of query results in search engines,” Theor. Comput. Sci.,
vol. 324, no. 2-3, pp. 253–271, 2004.

114

[134] R. Lempel and S. Moran, “Optimizing result prefetching in web search engines with segmented indices,” ACM
Trans. Inter. Tech., vol. 4, no. 1, pp. 31–59, 2004.

[135] R. Lempel and F. Silvestri, “Web search result caching and prefetching,” Encyclopedia of Database Systems,
Springer Verlag, 2008. To Appear.

[136] M. Li, Y. Zhang, M. Zhu, and M. Zhou, “Exploring distributional similarity based models for query spelling
correction,” in ACL-44: Proceedings of the 21st International Conference on Computational Linguistics and the
44th annual meeting of the Association for Computational Linguistics, (Morristown, NJ, USA), pp. 1025–1032,
Association for Computational Linguistics, 2006.

[137] Y. Li, Z. Zheng, and H. K. Dai, “Kdd cup-2005 report: facing a great challenge,” SIGKDD Explor. Newsl.,
vol. 7, no. 2, pp. 91–99, 2005.

[138] F. Liu, C. Yu, and W. Meng, “Personalized web search by mapping user queries to categories,” in CIKM ’02:
Proceedings of the eleventh international conference on Information and knowledge management, (New York,
NY, USA), pp. 558–565, ACM Press, 2002.

[139] Live Search Team at Microsoft, “Local, relevance, and japan!,” http://blogs.msdn.com/livesearch/archive/

2005/06/21/431288.aspx, 2005.
[140] X. Long and T. Suel, “Three-level caching for efficient query processing in large web search engines,” in WWW

’05: Proceedings of the 14th international conference on World Wide Web, (New York, NY, USA), pp. 257–266,
ACM, 2005.

[141] R. M. Losee and L. C. Jr., “Information retrieval with distributed databases: Analytic models of performance,”
IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 1, pp. 18–27, 2004.

[142] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri, “Mining query logs to optimize index partitioning in
parallel web search engines,” in InfoScale ’07: Proceedings of the 2nd international conference on Scalable
information systems, (New York, NY, USA), ACM, 2007.

[143] T.-Y. Lui, “Learning to rank for information retrieval,” Foundations and Trends in Information Retrieval,
vol. 3, no. 3, 2008.

[144] Y. Lv, L. Sun, J. Zhang, J.-Y. Nie, W. Chen, and W. Zhang, “An iterative implicit feedback approach to
personalized search,” in ACL ’06: Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the ACL, (Morristown, NJ, USA), pp. 585–592, Association for Computational
Linguistics, 2006.

[145] C. D. Manning and H. Schütze, Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT
Press, 1999.

[146] M. Marchiori, “The quest for correct information on the web: Hyper search engines.,” Computer Networks,
vol. 29, no. 8-13, pp. 1225–1236, 1997.

[147] M. Mat-Hassan and M. Levene, “Associating search and navigation behavior through log analysis: Research
articles,” J. Am. Soc. Inf. Sci. Technol., vol. 56, no. 9, pp. 913–934, 2005.

[148] O. A. McBryan, “Genvl and wwww: Tools for taming the web,” in Proceedings of the first International World
Wide Web Conference, (O. Nierstarsz, ed.), (CERN, Geneva), p. 15, 1994.

[149] S. Melink, S. Raghavan, B. Yang, and H. Garcia-Molina, “Building a distributed full-text index for the web,”
ACM Trans. Inf. Syst., vol. 19, no. 3, pp. 217–241, 2001.

[150] T. Mitchell, Machine Learning. McGraw-Hill International Editions, 1997.
[151] A. Moffat, W. Webber, and J. Zobel, “Load balancing for term-distributed parallel retrieval,” in SIGIR ’06: Pro-

ceedings of the 29th annual international ACM SIGIR conference on Research and development in information
retrieval, (New York, NY, USA), pp. 348–355, ACM, 2006.

[152] A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates, “A pipelined architecture for distributed text query
evaluation,” Inf. Retr., vol. 10, no. 3, pp. 205–231, 2007.

[153] A. Moffat and J. Zobel, “Information retrieval systems for large document collections,” in TREC, pp. 0–, 1994.
[154] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “An optimality proof of the lru-k page replacement algorithm,” J.

ACM, vol. 46, no. 1, pp. 92–112, 1999.
[155] S. Orlando, R. Perego, and F. Silvestri, “Design of a Parallel and Distributed WEB Search Engine,” in Pro-

ceedings of Parallel Computing (ParCo) 2001 conference, Imperial College Press, September 2001.
[156] H. C. Ozmutlu, A. Spink, and S. Ozmutlu, “Analysis of large data logs: an application of poisson sampling on

excite web queries,” Inf. Process. Manage., vol. 38, no. 4, pp. 473–490, 2002.
[157] S. Ozmutlu, H. C. Ozmutlu, and A. Spink, “Multitasking web searching and implications for design,” JASIST,

vol. 40, no. 1, pp. 416–421, 2003.
[158] S. Ozmutlu, A. Spink, and H. C. Ozmutlu, “A day in the life of web searching: an exploratory study,” Inf.

Process. Manage., vol. 40, no. 2, pp. 319–345, 2004.

115

[159] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing order to the web,”
Tech. Rep., Stanford Digital Library Technologies Project, 1998.

[160] S. Pandey and C. Olston, “User-centric web crawling,” in WWW ’05: Proceedings of the 14th international
conference on World Wide Web, (New York, NY, USA), pp. 401–411, ACM, 2005.

[161] S. Pandey and C. Olston, “Crawl ordering by search impact,” in WSDM ’08: Proceedings of the international
conference on Web search and web data mining, (New York, NY, USA), pp. 3–14, ACM, 2008.

[162] G. Pass, A. Chowdhury, and C. Torgeson, “A picture of search,” in InfoScale ’06: Proceedings of the 1st
international conference on Scalable information systems, (New York, NY, USA), p. 1, ACM, 2006.

[163] “Pew research center for the people & the press,” WWW page, 2007. http://people-press.org/.
[164] J. Piskorski and M. Sydow, “String distance metrics for reference matching and search query correction,”

in Business Information Systems, 10th International Conference, BIS 2007, Poznań, Poland, April 2007,
(W. Abramowicz, ed.), pp. 356–368, Springer-Verlag, 2007.

[165] J. Pitkow, H. Schütze, T. Cass, R. Cooley, D. Turnbull, A. Edmonds, E. Adar, and T. Breuel, “Personalized
search,” Commun. ACM, vol. 45, no. 9, pp. 50–55, 2002.

[166] B. Poblete, M. Spiliopoulou, and R. Baeza-Yates, “Website privacy preservation for query log publishing,” in
First International Workshop on Privacy, Security, and Trust in KDD (PINKDD’07), August 2007.

[167] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement strategies,” ACM Comput. Surv., vol. 35,
no. 4, pp. 374–398, 2003.

[168] A. L. Powell and J. C. French, “Comparing the performance of collection selection algorithms,” ACM Trans.
Inf. Syst., vol. 21, no. 4, pp. 412–456, 2003.

[169] A. L. Powell, J. C. French, J. Callan, M. Connell, and C. L. Viles, “The impact of database selection on
distributed searching,” in SIGIR ’00: Proceedings of the 23rd annual international ACM SIGIR conference on
Research and development in information retrieval, (New York, NY, USA), pp. 232–239, ACM, 2000.

[170] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C. Cambridge
University Press, second ed., 1992.

[171] D. Puppin, A Search Engine Architecture Based on Collection Selection. PhD thesis, Dipartimento di Infor-
matica, Università di Pisa, Pisa, Italy, December 2007.

[172] D. Puppin and F. Silvestri, “The query-vector document model,” in CIKM ’06: Proceedings of the 15th ACM
international conference on Information and knowledge management, (New York, NY, USA), pp. 880–881,
ACM, 2006.

[173] D. Puppin, F. Silvestri, and D. Laforenza, “Query-driven document partitioning and collection selection,” in
InfoScale ’06: Proceedings of the 1st international conference on Scalable information systems, (New York, NY,
USA), p. 34, ACM, 2006.

[174] D. Puppin, F. Silvestri, R. Perego, and R. Baeza-Yates, “Tuning the capacity of search engines: Load-driven
routing and incremental caching to reduce and balance the load,” ACM Trans. Inf. Syst.

[175] D. Puppin, F. Silvestri, R. Perego, and R. Baeza-Yates, “Load-balancing and caching for collection selection
architectures,” in InfoScale ’07: Proceedings of the 2nd international conference on Scalable information systems,
(New York, NY, USA), ACM, 2007.

[176] F. Qiu and J. Cho, “Automatic identification of user interest for personalized search,” in WWW ’06: Proceedings
of the 15th international conference on World Wide Web, (New York, NY, USA), pp. 727–736, ACM, 2006.

[177] F. Radlinski and T. Joachims, “Query chains: learning to rank from implicit feedback,” in KDD ’05: Proceeding
of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, (New York,
NY, USA), pp. 239–248, ACM Press, 2005.

[178] F. Radlinski and T. Joachims, “Active exploration for learning rankings from clickthrough data,” in KDD ’07:
Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, (New
York, NY, USA), pp. 570–579, ACM, 2007.

[179] K. H. Randall, R. Stata, J. L. Wiener, and R. G. Wickremesinghe, “The link database: Fast access to graphs of
the web,” in DCC ’02: Proceedings of the Data Compression Conference (DCC ’02), (Washington, DC, USA),
p. 122, IEEE Computer Society, 2002.

[180] S. E. Robertson and S. Walker, “Some simple effective approximations to the 2-poisson model for probabilistic
weighted retrieval,” in SIGIR ’94: Proceedings of the 17th annual international ACM SIGIR conference on
Research and development in information retrieval, (New York, NY, USA), pp. 232–241, Springer-Verlag New
York, Inc., 1994.

[181] S. E. Robertson and S. Walker, “Okapi/keenbow at trec-8,” in TREC, 1999.
[182] J. T. Robinson and M. V. Devarakonda, “Data cache management using frequency-based replacement,” SIG-

METRICS Perform. Eval. Rev., vol. 18, no. 1, pp. 134–142, 1990.
[183] J. Rocchio, Relevance feedback in information retrieval. Prentice-Hall, 1971.

116

[184] G. Salton and C. Buckley, “Parallel text search methods,” Commun. ACM, vol. 31, no. 2, pp. 202–215, 1988.
[185] G. Salton and C. Buckley, “Improving retrieval performance by relevance feedback,” JASIS, vol. 41, no. 4,

pp. 288–297, 1990.
[186] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval. New York, NY, USA: McGraw-Hill,

Inc., 1986.
[187] M. Sanderson and S. T. Dumais, “Examining repetition in user search behavior,” in ECIR, pp. 597–604, 2007.
[188] P. C. Saraiva, E. S. de Moura, N. Ziviani, W. Meira, R. Fonseca, and B. Ribeiro-Neto, “Rank-preserving two-

level caching for scalable search engines,” in SIGIR ’01: Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in information retrieval, (New York, NY, USA), pp. 51–58,
ACM, 2001.

[189] F. Scholer, H. E. Williams, and A. Turpin, “Query association surrogates for web search: Research articles,” J.
Am. Soc. Inf. Sci. Technol., vol. 55, no. 7, pp. 637–650, 2004.

[190] “Search engine use shoots up in the past year and edges towards email as the primary internet application,”
WWW page, 2005. http://www.pewinternet.org/pdfs/PIP_SearchData_1105.pdf.

[191] “Search engine users,” WWW page, 2005. http://www.pewinternet.org/pdfs/PIP_Searchengine_users.

pdf.
[192] F. Sebastiani, “Machine learning in automated text categorization,” ACM Comput. Surv., vol. 34, no. 1, pp. 1–

47, 2002.
[193] D. Shen, R. Pan, J.-T. Sun, J. J. Pan, K. Wu, J. Yin, and Q. Yang, “Q2c@ust: our winning solution to query

classification in kddcup 2005,” SIGKDD Explor. Newsl., vol. 7, no. 2, pp. 100–110, 2005.
[194] X. Shen, B. Tan, and C. Zhai, “Ucair: a personalized search toolbar,” in SIGIR ’05: Proceedings of the 28th

annual international ACM SIGIR conference on Research and development in information retrieval, (New York,
NY, USA), pp. 681–681, ACM, 2005.

[195] M. Shokouhi, J. Zobel, and Y. Bernstein, “Distributed text retrieval from overlapping collections,” in ADC
’07: Proceedings of the eighteenth conference on Australasian database, (Darlinghurst, Australia, Australia),
pp. 141–150, Australian Computer Society, Inc., 2007.

[196] M. Shokouhi, J. Zobel, S. Tahaghoghi, and F. Scholer, “Using query logs to establish vocabularies in distributed
information retrieval,” Inf. Process. Manage., vol. 43, no. 1, pp. 169–180, 2007.

[197] L. Si and J. Callan, “Using sampled data and regression to merge search engine results,” in SIGIR ’02: Pro-
ceedings of the 25th annual international ACM SIGIR conference on Research and development in information
retrieval, (New York, NY, USA), pp. 19–26, ACM, 2002.

[198] L. Si and J. Callan, “Relevant document distribution estimation method for resource selection,” in SIGIR
’03: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in
informaion retrieval, (New York, NY, USA), pp. 298–305, ACM, 2003.

[199] S. Siegfried, M. J. Bates, and D. N. Wilde, “A profile of end-user searching behavior by humanities scholars:
The getty online searching project report no. 2,” JASIS, vol. 44, no. 5, pp. 273–291, 1993.

[200] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz, “Analysis of a very large altavista query log,” Tech.
Rep., Systems Research Center – 130 Lytton Avenue – Palo Alto, California 94301, 1998.

[201] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz, “Analysis of a very large web search engine query log,”
SIGIR Forum, vol. 33, no. 1, pp. 6–12, 1999.

[202] F. Silvestri, High Performance Issues in Web Search Engines: Algorithms and Techniques. PhD thesis, Dipar-
timento di Informatica, Università di Pisa, Pisa, Italy, May 2004.

[203] F. Silvestri, “Sorting out the document identifier assignment problem,” in Proceedings of the 29th European
Conference on Information Retrieval, April 2007.

[204] F. Silvestri, S. Orlando, and R. Perego, “Assigning identifiers to documents to enhance the clustering property
of fulltext indexes,” in SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, (New York, NY, USA), pp. 305–312, ACM, 2004.

[205] F. Silvestri, S. Orlando, and R. Perego, “Wings: A parallel indexer for web contents,” in International Conference
on Computational Science, pp. 263–270, 2004.

[206] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging rules,” Commun. ACM, vol. 28,
no. 2, pp. 202–208, 1985.

[207] A. J. Smith, “Cache memories,” ACM Comput. Surv., vol. 14, no. 3, pp. 473–530, 1982.
[208] M. Speretta and S. Gauch, “Personalized search based on user search histories,” in Web Intelligence, pp. 622–

628, 2005.
[209] A. Spink, B. J. Jansen, D. Wolfram, and T. Saracevic, “From e-sex to e-commerce: Web search changes,”

Computer, vol. 35, no. 3, pp. 107–109, 2002.

117

[210] A. Spink, S. Koshman, M. Park, C. Field, and B. J. Jansen, “Multitasking web search on vivisimo.com,” in
ITCC ’05: Proceedings of the International Conference on Information Technology: Coding and Computing
(ITCC’05) - Volume II, (Washington, DC, USA), pp. 486–490, IEEE Computer Society, 2005.

[211] A. Spink, H. C. Ozmutlu, and D. P. Lorence, “Web searching for sexual information: an exploratory study,”
Inf. Process. Manage., vol. 40, no. 1, pp. 113–123, 2004.

[212] A. Spink and T. Saracevic, “Interaction in information retrieval: Selection and effectiveness of search terms,”
JASIS, vol. 48, no. 8, pp. 741–761, 1997.

[213] A. Spink, D. Wolfram, M. B. J. Jansen, and T. Saracevic, “Searching the web: the public and their queries,”
J. Am. Soc. Inf. Sci. Technol., vol. 52, pp. 226–234, February 2001.

[214] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan, “Web usage mining: Discovery and applications of
usage patterns from web data,” SIGKDD Explorations, vol. 1, no. 2, pp. 12–23, 2000.

[215] J. Teevan, E. Adar, R. Jones, and M. Potts, “History repeats itself: repeat queries in yahoo’s logs,” in SIGIR
’06: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in
information retrieval, (New York, NY, USA), pp. 703–704, ACM, 2006.

[216] J. Teevan, E. Adar, R. Jones, and M. A. S. Potts, “Information re-retrieval: repeat queries in yahoo’s logs,” in
SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development
in information retrieval, (New York, NY, USA), pp. 151–158, ACM, 2007.

[217] J. Teevan, S. T. Dumais, and E. Horvitz, “Beyond the commons: Investigating the value of personalizing
web search,” in Proceedings of Workshop on New Technologies for Personalized Information Access (PIA ’05),
(Edinburgh, Scotland, UK), 2005.

[218] J. Teevan, S. T. Dumais, and E. Horvitz, “Personalizing search via automated analysis of interests and ac-
tivities,” in SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on Research and
development in information retrieval, (New York, NY, USA), pp. 449–456, ACM Press, 2005.

[219] H. Turtle and J. Flood, “Query evaluation: strategies and optimizations,” Inf. Process. Manage., vol. 31, no. 6,
pp. 831–850, 1995.

[220] M. van Erp and L. Schomaker, “Variants of the borda count method for combining ranked classifier hypotheses,”
in Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition, pp. 443 – 452,
International Unipen Foundation, 2000.

[221] C. J. van Rijsbergen, Information Retrieval. London: Butterworths, 2nd ed., 1979.
[222] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos, “Identifying similarities, periodicities and bursts for

online search queries,” in SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, (New York, NY, USA), pp. 131–142, ACM, 2004.

[223] M. Vlachos, P. S. Yu, V. Castelli, and C. Meek, “Structural periodic measures for time-series data,” Data Min.
Knowl. Discov., vol. 12, no. 1, pp. 1–28, 2006.

[224] D. Vogel, S. Bickel, P. Haider, R. Schimpfky, P. Siemen, S. Bridges, and T. Scheffer, “Classifying search engine
queries using the web as background knowledge,” SIGKDD Explor. Newsl., vol. 7, no. 2, pp. 117–122, 2005.

[225] X. Wang and C. Zhai, “Learn from web search logs to organize search results,” in SIGIR ’07: Proceedings of
the 30th annual international ACM SIGIR conference on Research and development in information retrieval,
(New York, NY, USA), pp. 87–94, ACM, 2007.

[226] R. Weiss, B. Vélez, and M. A. Sheldon, “Hypursuit: a hierarchical network search engine that exploits content-
link hypertext clustering,” in HYPERTEXT ’96: Proceedings of the the seventh ACM conference on Hypertext,
(New York, NY, USA), pp. 180–193, ACM, 1996.

[227] R. W. White, M. Bilenko, and S. Cucerzan, “Studying the use of popular destinations to enhance web search
interaction,” in SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval, (New York, NY, USA), pp. 159–166, ACM, 2007.

[228] R. W. White, M. Bilenko, and S. Cucerzan, “Leveraging popular destinations to enhance web search interac-
tion,” ACM Trans. Web, vol. 2, no. 3, pp. 1–30, 2008.

[229] R. W. White and D. Morris, “Investigating the querying and browsing behavior of advanced search engine
users,” in SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, (New York, NY, USA), pp. 255–262, ACM, 2007.

[230] L. Xiong and E. Agichtein, “Towards privacy-preserving query log publishing,” in Query Log Analysis: Social
And Technological Challenges. A workshop at the 16th International World Wide Web Conference (WWW
2007), (E. Amitay, C. G. Murray, and J. Teevan, eds.), May 2007.

[231] J. L. Xu and A. Spink, “Web research: The excite study,” in WebNet 2000, pp. 581–585, 2000.
[232] J. Xu and J. Callan, “Effective retrieval with distributed collections,” in SIGIR ’98: Proceedings of the 21st

annual international ACM SIGIR conference on Research and development in information retrieval, (New York,
NY, USA), pp. 112–120, ACM, 1998.

118

[233] J. Xu and W. B. Croft, “Cluster-based language models for distributed retrieval,” in SIGIR ’99: Proceedings of
the 22nd annual international ACM SIGIR conference on Research and development in information retrieval,
(New York, NY, USA), pp. 254–261, ACM, 1999.

[234] J. Xu and W. B. Croft, “Improving the effectiveness of information retrieval with local context analysis,” ACM
Trans. Inf. Syst., vol. 18, no. 1, pp. 79–112, 2000.

[235] Yahoo! Grid, “Open source distributed computing: Yahoo’s hadoop support,” http://developer.yahoo.net/

blog/archives/2007/07/yahoo-hadoop.html, 2007.
[236] Y. Yang and C. G. Chute, “An example-based mapping method for text categorization and retrieval,” ACM

Trans. Inf. Syst., vol. 12, no. 3, pp. 252–277, 1994.
[237] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector method for optimizing average precision,” in

SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development
in information retrieval, (New York, NY, USA), pp. 271–278, ACM, 2007.

[238] B. Yuwono and D. L. Lee, “Server ranking for distributed text retrieval systems on the internet,” in Proceedings
of the Fifth International Conference on Database Systems for Advanced Applications (DASFAA), pp. 41–50,
World Scientific Press, 1997.

[239] O. R. Zäıane and A. Strilets, “Finding similar queries to satisfy searches based on query traces,” in OOIS
Workshops, pp. 207–216, 2002.

[240] J. Zhang and T. Suel, “Optimized inverted list assignment in distributed search engine architectures,” in IPDPS,
pp. 1–10, 2007.

[241] Y. Zhang and A. Moffat, “Some observations on user search behavior,” in Proceedings of the 11th Australasian
Document Computing Symposium, Brisbane, Australia, 2006.

[242] Z. Zhang and O. Nasraoui, “Mining search engine query logs for query recommendation,” in WWW ’06:
Proceedings of the 15th international conference on World Wide Web, (New York, NY, USA), pp. 1039–1040,
ACM, 2006.

[243] Q. Zhao, S. C. H. Hoi, T.-Y. Liu, S. S. Bhowmick, M. R. Lyu, and W.-Y. Ma, “Time-dependent semantic similar-
ity measure of queries using historical click-through data,” in WWW ’06: Proceedings of the 15th international
conference on World Wide Web, (New York, NY, USA), pp. 543–552, ACM, 2006.

[244] Z. Zheng, K. Chen, G. Sun, and H. Zha, “A regression framework for learning ranking functions using relative
relevance judgments,” in SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, (New York, NY, USA), pp. 287–294, ACM, 2007.

[245] G. K. Zipf, Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-
Wesley, 1949.

[246] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM Comput. Surv., vol. 38, no. 2, p. 6, 2006.

119

120

