Mining di Dati Web

Lezione 2 - Webgraph & its Models

Introduction

 A graph G=(V,E) is characterized by a set of nodes (vertexes) V and a set of Edges E whose elements are pairs (v₁,v₂) where v₁,v₂ are vertexes in V.

Directed Graph

 A graph G=(V,E) is directed (a.k.a. digraph) if edges in E are ordered pairs of vertexes.

Features of a (Di)Graph

- The degree of a vertex is the number of edges incident to it
- The in-degree (out-degree) of a node in a digraph is the number of incoming (outgoing) edges.

Successor and Predecessor

- We call successors of a node v, all the nodes pointed by v
- We call predecessors of a node v, all the nodes that point to v

Subset of Nodes

- A subset of nodes S of V is a connected component iff for every pair o vertices u,v in S, u is reachable from v.
- A graph is connected iff for every pair of vertices u,v in V, u is *reachable* from v.
- A set of nodes S is a strongly connected component (SCC) of a digraph iff, for every pair of nodes A,B in S, there exists a directed path from A to B and from B to A, and the set is maximal.

The Webgraph

A "sort of" Webgraph

© 2003 TouchGraph LLC

Well...

The Size of Webgraph

- The web is really infinite
 - Dynamic content, e.g. calendars, online organizers, etc.
 - <u>http://www.raingod.com/raingod/resources/</u>
 <u>Programming/JavaScript/Software/RandomStrings/</u>
 <u>index.html</u>
- Static web contains syntactic duplication, mostly due to mirroring (~ 20-30%)
- Some servers are seldom connected.

Recent Measurement

- A. Gullì and A. Signorini. The Indexable Web is More than 11.5 Billion Pages. WWW2005.
- 2.3B the pages unknown to popular Search We'll dedicate a lesson on this at the end.
- 35-120B of pages are within the hidden web.
- The index intersection between the largest available search engines - namely Google, Yahoo!, MSN, Ask/Teoma - is estimated to be

Let's Characterize it Better

Power-laws (an Informal Definition)

- Power law trends arise in many different natural contexts:
 - Telephone call networks.
 - Java program networks.
 - E-mail networks.
 - Scientific citations.
 - Protein-protein interactions in a cell.
 - <u>http://wordcount.org/main.php</u> (Zipf's law)
 - •

Power-laws (an Informal Definition)

- Sometimes called heavy-tail or long-tail distributions.
- In a power law network many nodes have degree equal to 1 and very few of them have higher degrees.

Power-law

• Two discrete random variables x and y are related by a power-law when:

•
$$y(x) = Kx^{-a}$$

- where K and a are positive constants
- The constant a is often called the power law exponent.

Power-law Distribution

 A discrete random variable is distributed according to a power-law when the probability density function (pdf) is given by:

Examples of Power-laws

Semantic of Power-law Distributions

- Roughly speaking a variable is distributed according to a power-law when there are few values having a very high probability of occurring, whereas the majority of the values occurs very rarely.
- For instance: words in english texts are distributed according a power-law of parameter a=1 (Zipf's Law)

Wikipedia's Word Distribution

From http://en.wikipedia.org/wiki/Zipf's_law

Diameter of a Graph

• Informally it is the "longest shortest path"

Diameter of Webgraphs

- In Webgraphs the diameter should be "as small as possible"
- If N is the number of nodes of the graph, Webgraphs exhibit logarithmic diameters - i.e. O(log N)
- This property is also known as:

Typically diameter in a Webgraph is 19

- Scale-free: because doubling the nodes increase the diameter by only I
- Small World: because every two nodes are linked by very few vertexes

Bipartite Cores

 Informally a bipartite core in a graph consists of two sets of nodes L and R such that every node in L links to every node in R.

Models of the Webgraph

- On-line property.
 - The number of nodes and edges changes with time.
- Power law degree distribution.
- Small world property.
- Many bipartite substructures.

Random Graphs

- RGs are structures introduced by Paul Erdos and Alfred Reny.
- There are several models of RGs. We are concerned with the model G_{n,p}.
- A graph G = (V,E) G_{n,p} is such that |V|=n and an edge (u,v) is selected uniformly at random with probability p.

Why Webgraph Cannot be a Random Graph?

- Suppose X_v is the degree of node v.
- Suppose $X_{v,w}$ be a r.v. equal to 1 if there is an edge joining v and w (v \neq w), 0 otherwise.

$$X_{v} = \sum_{w} X_{v,w}$$
$$E[X_{v}] = \sum_{w} E[X_{v,w}]$$
$$= \sum_{w} p = (n-1)f$$

 Thus X_v is distributed as a Binomial(n-1,k) not a powerlaw.

Preferential Attachment (PA)

- Parameter: m a positive integer
- At time 0, add a single edge
- At time t+1, add m edges from a new node v_{t+1} to existing nodes
 - the edge (v_{t+1}, v_s) is added with probability degree $(v_s)/2t$.

An example

Generated with

http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment

PA in-degree

Fix m a positive integer, fix an epsilon > 0.
 For k a non-negative integer, define

$$\alpha_{m,k} = \frac{2m(m+1)}{(k+m)(k+m+1)(k+m+2)}$$

Then with probability tending to 1 as t goes to infinity, for all k satisfying $0 \le k \le t1/5$

 $(1-\epsilon)\,\alpha_{m,k} \le p(k) \le (1+\epsilon)\,\alpha_{m,k}$

PA Diameter

 Fix an integer m≥2 and a positive real number epsilon. With probability I as t goes to infinity, G_m(t) is connected and

$$(1-\epsilon) \frac{\log t}{\log \log t} \le \operatorname{diam} (G_m(t)) \le (1+\epsilon) \frac{\log t}{\log \log t}$$

Scale-Free Networks

- Network analysis is in its infancy
- Many different examples of networks exists.

co-authors Network

Those with Erdos number ≤ 2

Protein-Protein Interactions

Hollywood Network

The Lesson is Over

