# Mining di Dati Web <br> Lezione 2 - Webgraph \& its Models 

## Introduction

- A graph $G=(V, E)$ is characterized by a set of nodes (vertexes) $V$ and a set of Edges $E$ whose elements are pairs $\left(v_{1}, v_{2}\right)$ where $v_{1}, v_{2}$ are vertexes in V .



## Directed Graph

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is directed (a.k.a. digraph) if edges in $E$ are ordered pairs of vertexes.



## Features of a (Di)Graph

- The degree of a vertex is the number of edges incident to it
- The in-degree (out-degree) of a node in a digraph is the number of incoming (outgoing) edges.



## Successor and

## Predecessor

- We call successors of a node $v$, all the nodes pointed by $v$
- We call predecessors of a node $v$, all the nodes that point to $v$



## Subset of Nodes

- A subset of nodes $S$ of V is a connected component iff for every pair o vertices $u, v$ in $S$, $u$ is reachable from $v$.
- A graph is connected iff for every pair of vertices $u, v$ in $V$, $u$ is reachable from $v$.
- A set of nodes $S$ is a strongly connected component (SCC) of a digraph iff, for every pair of nodes $A, B$ in $S$, there exists a directed path from $A$ to $B$ and from $B$ to $A$, and the set is maximal.


## The Webgraph



## A "sort of" Webgraph


(c) 2003 TouchGraph LLC

## Well...



## The Size of Webgraph

- The web is really infinite
- Dynamic content, e.g. calendars, online organizers, etc.
- http://www.raingod.com/raingod/resources/ Programming/JavaScript/Software/RandomStrings/ index.html
- Static web contains syntactic duplication, mostly due to mirroring ( $\sim 20-30 \%$ )
- Some servers are seldom connected.


## Recent Measurement

- A. Gulli and A. Signorini. The Indexable Web is More than II.5 Billion Pages.WWW2005.
- 2.3B the pages unknown to popular Search $\begin{gathered}\text { We'll dedicate a } \\ \text { lesson on this at }\end{gathered}$ Engines. the end.
- 35-I20B of pages are within the hidden web.
- The index intersection between the largest available search engines - namely Google, Yahoo!, MSN, Ask/Teoma - is estimated to be


# Let's Characterize it Better 



## Power-laws

## (an Informal Definition)

- Power law trends arise in many different natural contexts:
- Telephone call networks.
- Java program networks.
- E-mail networks.
- Scientific citations.
- Protein-protein interactions in a cell.
- http://wordcount.org/main.php (Zipf's law)


# Power-laws (an Informal Definition) 

- Sometimes called heavy-tail or long-tail distributions.
- In a power law network many nodes have degree equal to I and very few of them have higher degrees.


## Power-law

- Two discrete random variables $x$ and $y$ are related by a power-law when:

$$
\text { - } y(x)=K x^{-a}
$$

- where K and a are positive constants
- The constant a is often called the power law exponent.


## Power-law Distribution

- A discrete random variable is distributed according to a power-law when the probability density function (pdf) is given by:

$$
\text { - } p(x)=K x^{-a}
$$

## Examples of Power-laws



## Semantic of Power-law Distributions

- Roughly speaking a variable is distributed according to a power-law when there are few values having a very high probability of occurring, whereas the majority of the values occurs very rarely.
- For instance: words in english texts are distributed according a power-law of parameter $\mathrm{a}=\mathrm{I}$ (Zipf's Law)


## Wikipedia's Word Distribution



From http://en.wikipedia.org/wiki/Zipf's_law


## Diameter of a Graph

- Informally it is the "longest shortest path"



## Diameter of

## Webgraphs

- In Webgraphs the diameter should be "as small as possible"
- If $N$ is the number of nodes of the graph,Webgraphs exhibit logarithmic diameters - i.e. $\mathrm{O}(\log \mathrm{N})$
- This property is also known as:

Typically diameter in a Webgraph is 19

- Scale-free: because doubling the nodes increase the diameter by only I
- Small World: because every two nodes are linked by very few vertexes


## Bipartite Cores

- Informally a bipartite core in a graph consists of two sets of nodes $L$ and $R$ such that every node in $L$ links to every node in R.



# Models of the Webgraph 

- On-line property.
- The number of nodes and edges changes with time.
- Power law degree distribution.
- Small world property.
- Many bipartite substructures.


## Random Graphs

- RGs are structures introduced by Paul Erdos and Alfred Reny.
- There are several models of RGs.We are concerned with the model $G_{n, p}$.
- A graph $G=(V, E) G_{n, p}$ is such that $|V|=n$ and an edge ( $\mathrm{u}, \mathrm{v}$ ) is selected uniformly at random with probability $p$.


## Why Webgraph Cannot be a Random Graph?

- Suppose $X_{v}$ is the degree of node $v$.
- Suppose $X_{v, w}$ be a r.v. equal to $I$ if there is an edge joining v and $\mathrm{w}(\mathrm{v} \neq \mathrm{w}), 0$ otherwise.

$$
\begin{aligned}
X_{v} & =\sum_{w} X_{v, w} \\
E\left[X_{v}\right] & =\sum_{w} E\left[X_{v, w}\right] \\
& =\sum_{w} p=(n-1) p
\end{aligned}
$$

- Thus $\mathrm{X}_{\mathrm{v}}$ is distributed as a Binomial( $\mathrm{n}-\mathrm{I}, \mathrm{k}$ ) not a powerlaw.


## Preferential Attachment (PA)

- Parameter:m a positive integer
- At time 0 , add a single edge
- At time $t+l$, add $m$ edges from a new node $v_{t+1}$ to existing nodes
- the edge $\left(\mathrm{v}_{\mathrm{t}+1}, \mathrm{~V}_{\mathrm{s}}\right)$ is added with probability degree $\left(v_{s}\right) / 2 t$.


## An example



Generated with

## PA in-degree

- Fix m a positive integer, fix an epsilon >0. For k a non-negative integer, define

$$
\alpha_{m, k}=\frac{2 m(m+1)}{(k+m)(k+m+1)(k+m+2)}
$$

Then with probability tending to I as t goes to infinity, for all $k$ satisfying $0 \leq \mathrm{k} \leq \mathrm{tl} / 5$

$$
(1-\epsilon) \alpha_{m, k} \leq p(k) \leq(1+\epsilon) \alpha_{m, k}
$$

## PA Diameter

- Fix an integer $m \geq 2$ and a positive real number epsilon. With probability 1 as $t$ goes to infinity, $\mathrm{G}_{\mathrm{m}}(\mathrm{t})$ is connected and

$$
(1-\epsilon) \frac{\log t}{\log \log t} \leq \operatorname{diam}\left(G_{m}(t)\right) \leq(1+\epsilon) \frac{\log t}{\log \log t}
$$

## Scale-Free Networks

- Network analysis is in its infancy
- Many different examples of networks exists.


## co-authors Network



## Those with Erdos number $\leq 2$



An induced subgraph of the collaboration graph with authors of Erdös number $\leq 2$.

# Protein-Protein Interactions 



## Hollywood Network



## The Lesson is Over



